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Abstract
The notion of incrementalism, formulated by Aaron Wildavsky in the 1960s,

has been extremely influential in the public budgeting literature. In essence, it
entails the claim that legislators engaged in budgetary policymaking accept past
allocations, and decide only on the allocation of increments to revenue. Wildavsky
explained incrementalism with reference to the cognitive limitations of lawmakers
and their desire to reduce conflict. This paper uses a legislative bargaining frame-
work to undertake a formal analysis of incremental budgeting. An exogenously
chosen agenda setter proposes budgets and seeks to build coalitions to secure pas-
sage, over multiple periods. The central result is that the agenda setter can lower
her cost of building a winning coalition, and thereby raise her payoff, by fol-
lowing an incrementalist strategy, which involves maintaining the same coalition
every period. First, it is shown within a simple 2-period model that there exist
subgame perfect incremental budgeting equilibria of this nature. If the agenda
setter is assumed to be able to commit to the grandfathering of past allocations,
the unique subgame perfect equilibrium (up to the choice of the coalition mem-
bers) involves incremental budgeting. The model is then extended to an infinitely
repeated setting, and it is shown that the agenda setters incentives for incremen-
tal budgeting are reinforced in this context. Some testable implications (relating
incrementalism to various characteristics of the legislature) are also derived. Fi-
nally, the implications for incrementalism of heterogeneity among legislators are
analyzed.
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1) Introduction 

Ever since it was proposed by Aaron Wildavsky (e.g. 1984; 1988) in the 1960’s, 

‘incrementalism’ has proven to be an extremely influential theory within the field of public 

budgeting.1 Incrementalism is defined as “a process in which budgetary bases (i.e. previous 

expenditures) are accepted . . . [and] budgeting is a stable process . . .” (Gist, 1982, p. 859). This 

theoretical framework encompasses a descriptive claim as well as a normative one. The former 

involves the contention that Congress and other legislatures follow an incrementalist mode of 

budgetary decisionmaking (or, at least, that they did so during the period in which Wildavsky 

developed the theory). The latter claim rests on Wildavsky’s (1984, p. 136) argument that 

incremental budgeting is superior to feasible alternatives because of the cognitive limitations of 

lawmakers, and because it can attenuate political conflict over budgeting priorities. Although the 

theory has declined in salience in the United States since the 1980’s due to various changes in 

the budgetary environment,2 it remains an important account of ‘classical’ or ‘traditional’ 

budgeting in the public budgeting literature. 

 While there have been extensive conceptual discussions and empirical studies of this 

topic, little attempt has previously been made to examine the implications of formal game-

theoretic models of legislative institutions for the analysis of incremental budgeting. The aim of 

this paper is to develop such an analysis, using a modified version of the legislative bargaining 

framework of Baron and Ferejohn (1989).3 The model assumes a legislature with an exogonously 

given agenda setter, who has the power to propose budget allocations over multiple periods. In 

order to secure passage of the budget each period, the agenda setter must attract the support of a 

given number of the other (‘junior’) legislators. She obtains their votes by allocating funds for 

their districts in the budget proposal. The requirement that the budget must be passed, and the 

available revenue, constrain the agenda setter in seeking to maximize the budgetary allocation 

for her own district. 

                                                           
1 According to Berry (1990, p. 167): “No single concept has been more central to the study of public budgeting over 
the last three decades.” 
2 Among the most important of these changes was that the budgetary increments of the past were transformed into 
decrements - both due to the deficits of the 1980's, and to the growth of entitlement spending, which reduced the 
revenue available for discretionary allocation. Thus, Garrett (1998, p. 392, note 14) notes that incrementalism was 
“easier to maintain when federal budgets seemed to be continually increasing”, while “[t]he salience of the budget 
deficit and the disappearance of the increment . . . undermined the theory.” 
3 Recent examples of the use of such a model to analyze issues in public finance include Leblanc, Snyder and 
Tripathi (1999) and Dharmapala (1999). See also Knight (2002) for an empirical perspective. 
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This paper uses a specific conceptualization of the notion of incrementalism. An 

incremental budgeting process is defined as one characterized by ‘coalitional stability’ (the 

maintenance by the agenda setter of the same coalition every period), where the budget 

allocations of members of this stable coalition are nondecreasing.4 The basic intuition for the 

results of this paper is that, by instituting incremental budgeting practices, the agenda setter can 

lower the cost of building a winning coalition to pass the budget, and thereby raise her payoff. In 

particular, under incremental budgeting, the junior legislators who are included in the stable 

coalition are willing to accept (and vote for) lower budget allocations each period than under 

alternative nonincremental procedures, in exchange for the certainty of being included in future 

coalitions. Thus, incremental budgeting lowers the cost (in terms of allocations to other 

legislators’ districts) that the agenda setter incurs to secure passage of the budget, and leaves 

more of the budget available for allocation to her own district. 

Section 3 develops a simple 2-period budgeting game of the kind described above. It is 

shown that there exist subgame perfect ‘incremental budgeting’ equilibria (in which the agenda 

setter maintains the same coalition in period 2 as in period 1, and the members of this coalition 

vote for period 1 allocations that are lower than their default payoffs). However, there also exist 

other (‘nonincremental’) equilibria, where the agenda setter’s payoff is lower (and the payoffs of 

the other legislators are higher) than in the incremental equilibria. Then, it is assumed that the 

agenda setter can credibly precommit to ‘grandfathering’ past budget allocations, for example, 

through the choice of institutional features of budgetary decisionmaking, such as budget 

baselines or procedural rules that preclude (or impose high transactions costs on) revisiting past 

allocations.5 In such circumstances, the only subgame perfect equilibrium (unique up to the 

choice of the coalition members) involves incremental budgeting. 

In Section 4, it is shown that the agenda setter’s incentives for incremental budgeting are 

reinforced in an infinite horizon context. Moreover, numerical simulations for reasonable values 

of the model’s parameters suggest that the magnitude of the increase in the agenda setter’s per-

period payoff is substantial. Section 5 introduces heterogeneity among the junior legislators in 

the default payoffs they receive if the agenda setter’s proposal is defeated. The result is that, if 

                                                           
4 Clearly, this formulation fails to capture all of the myriad ways that the term ‘incrementalism’ has been used in the 
public budgeting literature; however, it is sufficiently precise to serve as a starting point for formal analysis. 
5 For an empirical analysis of the consequences of budget baselines for fiscal policy, see Crain and Crain (1998). 
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the differences in the default payoffs are sufficiently small, then, an agenda setter who can 

credibly precommit to grandfathering can increase her payoff by using incremental budgeting. 

These results imply that budget proposers may have an incentive to institute incremental 

budgeting practices in order to lower their costs of passing the budget, thereby increasing the 

revenue available for their own preferred spending priorities. This explanation for 

incrementalism contrasts with Wildavsky’s emphasis on cognitive limitations and the desire to 

reduce conflict. The model also yields some testable predictions linking this incentive for 

incremental budgeting to factors such as the size of the legislature, supermajority requirements, 

and the discount rate. 

 Following this introduction, Section 2 elaborates further on the idea of incrementalism. 

The basic 2-period model is presented in Section 3, and Section 4 develops the infinitely 

repeated version of the model. The extension to heterogeneous legislators is presented in Section 

5. Section 6 concludes the paper, and discusses some further possible extensions. 

 

2) The Notion of Incremental Budgeting 

The notion of incremental budgeting is closely associated with Aaron Wildavsky's 

characterization of ‘classical budgeting’. While there are many different definitions of 

incrementalism (see e.g. Berry (1990)), the basic feature is that budgetary allocations are 

relatively stable over time. The allocation received by a particular area for one year forms the 

basis of its allocation for the next, and decisionmaking focuses on increments to revenue. Thus, 

Wildavsky (1984, p. xii) characterizes incrementalism as a process “where changes are small, 

alternatives resemble those of the past, and patterns of relationships among participants remain 

stable.” 

 Wildavsky’s formulation, as developed in his classic 1964 book, The Politics of the 

Budgetary Process, and in his subsequent writings, has both positive and normative components. 

The positive, or descriptive, aspect of his theory is summarized as follows: “The largest 

determining factor of this year’s budget is last year’s. Most of each budget is a product of 

previous decisions . . . many items are standard, simply reenacted every year” (1988, p. 78). 

Moreover, “[a]t any one time, after past commitments are paid for, a rather small percentage - 
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seldom larger than 30 percent, often smaller than 5 - is within the realm of anybody's . . . 

discretion as a practical matter” (1988, p. 78).6 

The major alternatives to budgetary incrementalism that have been proposed by scholars 

of public budgeting are ‘zero-based budgeting’ (ZBB) and ‘planning, programming, and 

budgeting systems’ (PPBS), also known as ‘program budgeting’. The former involves 

reconsidering budgetary allocations in their entirety each year, using a zero base for each 

program. The latter involves focusing on the goals and objectives of budgetary expenditures (i.e. 

the outputs of government programs) and comparing different expenditure packages in terms of 

their success in producing these outputs. 

 The normative aspect of Wildavsky’s theory entails the claim that incremental budgeting 

is superior to these ‘comprehensive’ approaches; two main reasons are offered. One is that 

incrementalism “increases agreement among the participants” (1984, p. 136), and can thus 

promote consensus (or at least suppress conflict) among budgetary policymakers. The other is 

that incrementalism reduces the “burden of calculation” (1984, p. 136) and imposes fewer 

demands on legislators’ cognitive capacities.7 In this vein, he argues that: “Clinging to last year's 

agreements is enormously economical of critical resources . . . which would be seriously 

depleted if all or most past agreements were reexamined yearly.” (1984, p. 217). 

 Thus, Wildavsky's explanation for why legislators may favor an incremental approach to 

budgeting relies primarily on their information-processing limitations, as well as on their desire 

to avoid conflict. These motivational assumptions are quite distinct from those that are 

highlighted in the rational choice literature (notably, the desire to maximize the probability of 

reelection and to obtain redistributive transfers). Indeed, the issue of incremental budgeting has 

attracted little analysis from a rational choice perspective. In particular, while there has been 

some recent literature on the impact of interest group lobbying on incremental budgetary 

outcomes (Tohamy, Aranson and Dezhbaksh, 1999; 2000),8 no previous attempt has been made 

                                                           
6 Wildavsky (1984, p. 14) examines appropriations for a sample of 37 agencies, and shows that the variation for the 
majority was less than 10% per year. See also Davis, Dempster, and Wildavsky (1966) and Kamlet and Mowery 
(1987) for further evidence. However, Gist (1982) finds a contrary result. 
7 This idea could perhaps also be formulated in terms of the transaction costs of reaching a budgetary agreement. 
8 Tohamy et al. (1999; 2000) develop an interest group approach, in which a single legislator (who is assumed to 
have unilateral control of budgetary policy) is lobbied by interest groups seeking budget allocations. The legislator 
can choose between ‘single-period budgeting’, allocating funds for one period only, or ‘multi-period budgeting’, 
allocating funding in perpetuity; the latter tends to lead to incremental outcomes. Interest groups are generally 
willing to pay more (in campaign contributions) for a stream of future benefits, so the legislator trades off these 
higher contributions against the loss of flexibility entailed by incrementalism. The legislator’s optimal policy 
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to analyze incrementalism from the perspective of formal game-theoretic models of legislative 

institutions. 

 

3) The Basic Model 

3.1) Assumptions 

This section presents a simple model that illustrates the main themes of the paper. The 

model assumes a legislature with an odd number n of members. The legislature is denoted as the 

set L (so that card (L) = n). It is assumed that the legislature operates under a rule requiring        

(q + 1) votes (out of n) for the passage of legislation, where q < (n – 1) (i.e. the legislature does 

not have a requirement of unanimity). The task faced by the legislature is to enact a budget 

(allocating funds to each of n areas) for each of two periods. The revenue available in each 

period is assumed to be exogenously fixed, and denoted by R in period 1, and (R + I) in period 2, 

where I ≥ 0 is the incremental revenue gained in period 2.9 The (common) discount factor is 

given by δ ∈ (0, 1]. Time periods are indexed by i, and the legislators by j. The budget enacted in 

period i is denoted bLi. Legislator j’s payoff in period i is simply the allocation bj
Li, the amount 

that the enacted budget allocates to the j’th budgetary function. Thus, legislator j’s aggregate 

payoff is (bj
L1 + δbj

L2). Note that the formulation here entails that the legislators are risk-neutral; 

generally speaking, the results below would only be reinforced if legislators were risk-averse. A 

natural interpretation of the model is as one of distributive politics, with the j’th element of the 

budget vector bLi representing the level of spending in legislator j’s district (electoral 

considerations are not explicitly modeled here; however, it is implicit in this interpretation that 

securing spending for one's district increases the probability of reelection). 

 In the standard legislative bargaining framework of Baron and Ferejohn (1989), nature 

randomly chooses a proposer from among the legislators. However, the analysis in this paper 

focuses on the behavior of a given agenda setter over multiple periods. Thus, it is assumed that 

an exogenously chosen legislator, denoted A, is the agenda setter for each of the two periods. 

Without loss of generality, A is numbered legislator j = 1; the other legislators (j = 2, . . . , n) will 

be described as ‘junior’ legislators, and are collectively denoted as the set J (where {A} ∪ J = L). 

                                                                                                                                                                                           
depends on a variety of economic conditions. The authors also develop a new procedure for empirically testing for 
incremental outcomes. 
9 The restriction that the increments to revenue are nonnegative is not required in the infinitely repeated game of 
Section 4, as long as a convergence requirement is satisfied. 
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Exclusive proposal power is vested in A, and her proposals are voted on under a closed rule (with 

no amendments being permitted).10 Thus, within each period, A proposes a budget allocation (A’s 

proposals in the two periods are denoted by bPi (i = 1, 2)), and then the legislature votes on it. If 

it is passed, the proposal is implemented; if it is not passed, then an exogenous default budget 

allocation is implemented. The default allocation (or reversion point) in period i is denoted by 

bDi (i =1, 2). Initially, it will be assumed that the (n – 1) junior legislators are ex ante identical,11 

so that each of them receives b0
Di if A’s proposal is defeated in period i, while A receives bA

Di; 

thus, bDi = (bA
Di, b0

Di . . . , b0
Di). Note that the (exogonous) revenue in each period must be 

sufficient to at least cover the default budget - thus, it is assumed that:12 

R ≥ (n – 1)b0
D1 + bA

D1           (1a)  

and         R + I ≥ (n – 1)b0
D2 + bA

D2           (1b) 

It is assumed that A’s proposals must satisfy a period-by-period budget constraint; however, 

permitting an intertemporal budget constraint would not substantially affect the results.13  

 The most straightforward interpretation of the default payoffs is as the consumption 

levels that are implemented when agreement is not reached within the legislature. This is similar 

to the model of Leblanc et al. (1999), where there are multiple periods of legislative bargaining, 

and a known, finite number of rounds of proposals within each period. If no proposal has passed 

by the end of the last round, the default is implemented for that period. It is possible to interpret 

the model of this paper in the same spirit as that of Leblanc et al. (1999), with the number of 

rounds within each period being set to 1. This interpretation is illustrated by Figure 1. 

[Fig. 1 about here] 

 Alternatively, it is possible to motivate the default payoffs as follows (in a manner closer 

to the original Baron-Ferejohn (1989) formulation). Suppose that, within each period, A makes 

                                                           
10 These institutional features are intended to reflect the Congressional budgeting context upon which Wildavsky 
based his theories, with A playing a role analogous to the Appropriations Committee (the assumption of a closed rule 
need not necessarily entail a formal rule to this effect, but may reflect A’s agenda setting and procedural advantages, 
even when an open rule nominally applies). However, the assumptions are capable of being interpreted more 
broadly; for instance, A could be viewed as the cabinet in a parliamentary system. For models of coalition-building 
in parliamentary systems, see Baron (1998) and Diermeier and Merlo (2000). 
11 The impact of legislator heterogeneity is analyzed in Section 5. 
12 The budget constraint, of course, includes the special case where the default allocation exactly exhausts the 
budget. The formulation in the text also allows for the possibility that the default budget is smaller in size than the 
available revenue. Obviously, the results below all hold for the special case as well. 
13 Essentially, the equilibria derived below are unchanged, except that, as A discounts future payoffs, she may 
borrow in period 1 and thereby increase her equilibrium payoff. This would not, however, affect the comparison 
between incremental and nonincremental budgeting. 
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the first proposal. If it passes, it is implemented; otherwise, A loses the floor, and a junior 

legislator is randomly chosen to propose a budget allocation. If this proposal passes, it is 

implemented; otherwise, another junior legislator is randomly chosen to make a proposal, and so 

on (the number of rounds within a period is thus potentially infinite). Then, b0
Di is the expected 

continuation value of the game in period i to each j∈J, if A’s proposal is rejected. A number of 

points concerning this interpretation are worth noting. Firstly, since the j’s are ex ante identical, 

and given that they face identical recognition probabilities if A’s proposal is rejected, b0
Di should 

be the same for all j. Secondly, suppose that A’s proposal in period 1, bP1, is voted down, so that 

oe of the j’s is chosen as proposer. In equilibrium, this j can be expected to treat A 

asymmetrically with respect to the other j’s in choosing a coalition, because A will have proposal 

power (with probability 1) in round 1 of period 2. That is, equilibrium play in the game in period 

1 will involve anticipating what will happen in period 2; hence, bA
D1 will, in general differ from 

b0
D1. Finally, if A’s proposal in period 2, bP2, fails, a randomly chosen j will propose without 

considering the ‘shadow of the future’; thus, the default payoffs may differ across periods. 

 While the discussion above suggests that the default payoffs may differ across periods, it 

turns out that imposing the restriction that 

A1: b0
D1 = b0

D2 = b0
D > 0 ∀j∈J 

greatly simplifies the notation and algebra, without fundamentally affecting the results; thus, this 

restriction will be imposed below. A more significant assumption in this model is that the default 

payoffs are exogenous, in the sense of being independent of the realized play of the game. In 

particular, this rules out the case where bj
D2 = bj

L1 (i.e. where legislator j’s period 2 default is 

simply her period 1 allocation). While this may seem to be a significant restriction, it is argued in 

Section 3.6 below that, as long as A can commit to grandfathering (in a sense made more precise 

in Section 3.4 below), then this is not so restrictive, in the sense that ‘incremental’ outcomes can 

still occur with endogenous period 2 defaults.14 

 Before proceeding to solve the model, it is helpful to derive two preliminary results that 

apply to any Nash equilibrium of the budgeting game described above. The first is closely 

analogous to a result in Leblanc et al. (1999, p. 35): 

Lemma 1: In any Nash equilibrium, legislators resolve indifference by voting for (rather than 
against) a proposed budget. 
                                                           
14 Restricting the default payoffs to be exogenous in this sense also addresses the problem that the default payoffs 
may not satisfy the budget constraint if they are endogenous. 
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Proof: Suppose that legislator j∈J is indifferent between voting ‘yes’ and ‘no’ for some 
proposed allocation that involves bj

P1 = x. Now suppose that j resolves indifference by 
voting ‘no’; then, A can induce j to vote ‘yes’ by setting bj

P1 = x + ε (for small ε > 0). 
However, this cannot be part of a Nash equilibrium, as ∃ some ε′ ∈ (0, ε) for which j will 
also vote ‘yes’, and for which A will enjoy a strictly larger payoff. Thus, in any Nash 
equilibrium, j must resolve indifference by voting ‘yes’. End of Proof. 

 
Note also that it is assumed that A always votes for her own proposal. The second result is: 

Lemma 2: In any Nash equilibrium, A’s proposal always passes. 
 
Proof:  Consider period 1: 
 R ≥ (n – 1)b0

D + bA
D1 by assumption (Equation 1a, and A1) 

 ⇒ bA
D1 ≤ R – (n – 1)b0

D 
To ensure passage, it is sufficient for A to offer b0

D to q j’s; i.e. A can obtain a payoff of 
at least (R – qb0

D) by proposing a budget that passes. As q < (n – 1) (by assumption), this 
payoff is strictly greater than bA

D1. A similar argument can be made for period 2. Thus, 
there is no Nash equilibrium in which A’s proposal fails to pass. End of Proof. 

 
These two preliminary results are used repeatedly below. 

3.2) Solution without Commitment 

 This section presents and solves a 2-period model, in which the basic game depicted in 

Figure 1 is played once, and then repeated once. Before proceeding, however, it is helpful to 

briefly consider the 1-period model, where the game in Figure 1 is played once (without 

repetition). A’s strategy is simply a proposal bP1, while each j’s strategy maps A’s proposal bj
P1 

into an action from the set {yes, no} (i.e. into a vote for or against the proposed budget). The 

relevant solution concept here (as in the later analysis) is subgame perfect Nash equilibrium. It is 

also generally assumed that the j’s behave symmetrically when placed in identical circumstances 

(e.g. being offered the same allocation).  

The subgame perfect equilibrium of the 1-period game involves A proposing the default 

payoff b0
D for exactly q junior legislators, and 0 for all others. The j’s in the coalition vote ‘yes’, 

while the others vote ‘no’ (this outcome follows from the following strategies being mutual best 

responses: A proposes b0
D to exactly q junior legislators and 0 for all others, and each j votes 

‘yes’ whenever bj
P1 ≥ b0

D and ‘no’ otherwise). This equilibrium is unique up to the choice of the 

coalition of q j’s. Note that subgame perfection rules out certain Nash equilibria, such as those in 

which each j demands strictly more than b0
D to vote ‘yes’. Note also that A’s equilibrium payoff  

(R – qb0
D) is greater than the default payoff bA

D1. 

 8



Now consider the 2-period game. In this section, it is assumed that A cannot make 

binding commitments to other legislators in period 1 concerning budgetary proposals to be made 

in period 2. Intuitively, the prevailing budgetary institutions are assumed to entail a zero base for 

each area of spending. A’s strategies now involve 2 proposals, bP1 and bP2. However, eliminating 

certain clearly dominated strategies (such as proposing strictly positive allocations to more than 

q j’s, or proposing 0), it is readily apparent that the crucial element of A’s strategy is whether or 

not it specifies that the same coalition will be chosen in period 2 as in period 1. Let the period-1 

and period-2 coalitions be denoted by M1 and M2, respectively. Then, any strategy that involves 

setting M2 = M1 (conditional on bP1 being enacted) will be termed an ‘incrementalist’ strategy 

(denoted σA
I). Note that it will be assumed as part of such a strategy that, if bP1 is defeated in 

period 1, A chooses M2 randomly. This is always an optimal strategy in the remaining subgame 

after a first-period defeat. Essentially, it entails that A cannot credibly threaten to punish those j’s 

in M1 who vote ‘no’ in period 1 by, for instance, excluding them from M2 with probability 1. 

Allowing A to play any (optimal) strategy following a first-period defeat, however, only 

reinforces the basic results of this section (see Section 3.5 for a discussion). 

Now consider j’s strategies. Note that subgame perfection entails that play in period 2 

will always be essentially identical to the outcome of the 1-period game (discussed above): A 

will propose b0
D for exactly q j’s, and these j’s will vote ‘yes’. Thus, j’s optimal strategy in 

period 2 will always involve voting ‘yes’ to a proposal allocating bj
P2 ≥ b0

D, and ‘no’ otherwise. 

Taking this into account, and eliminating dominated strategies, j’s strategy in the 2-period game 

can be characterized simply as the cut-point value of bj
P1 at and above which j votes ‘yes’ in 

period 1 (contingent, of course, on A’s strategy in period 2). To characterize this, consider           

j ∈ M1, and suppose A is playing σA
I (i.e. a strategy that involves setting M2 = M1). When A’s 

first-period proposal bP1 is voted on, each member of M1 is pivotal. If she votes ‘no’, bP1 is 

defeated; she receives the default payoff b0
D in period 1, and (in expectation) receives (q/(n – 

1))b0
D in period 2. If, on the other hand, she votes ‘yes’, bP1 is enacted; she receives bj

P1 in period 

1, and b0
D (with certainty) in period 2. Thus, the payoffs can be expressed as b0

D  + δ(q/(n – 1))b0
D 

from a ‘no’ vote, and bj
P1 + δb0

D from voting ‘yes’. The minimum bj
P1 that will induce each j ∈ 

M1 to vote ‘yes’ is denoted x*, and is obtained by equating the payoffs from voting ‘yes’ and 

‘no’; it can be characterized as follows: 
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(2)                                             
1

11* 0 















−
−−

−=
n

qnbx D δ

As (n – 1 – q)/(n – 1) > 0, δ > 0 and b0
D > 0, it follows straightforwardly that: 

Remark 1: x* < b0
D  

Thus, A can propose less than the default payoff in period 1 to each j ∈ M1 while still inducing 

each to vote ‘yes’. 

 The ‘incremental budgeting’ strategies can be defined more formally as follows (where 

j’s strategy of voting ‘yes’ to period-1 allocations greater than x* is denoted σj
I): 

 
σA

I:  In period 1, choose at random15 a subset of J, denoted M1, where card (M1) = q, and 
propose bj

P1  
 
= x*  if j ∈ M1 
= 0  if j ∉ M1 
= R – qx*  if j = A 

 
If bP1passes (i.e. bL1 = bP1), then, in period 2, propose bj

P2  
= b0

D  if j ∈ M1 
= 0  if j ∉ M1 
= R + I – qb0

D  if j = A 
 
If bP1does not pass, then, in period 2, choose at random a subset of J, denoted M2, where 
card M2 = q, and propose bj

P2 
= b0

D  if j ∈ M2 
= 0  if j ∉ M2 
= R + I – qb0

D  if j = A 
 
σj

I: In period 1, if bj
P1 ≥ x*, then vote ‘yes’; otherwise, vote ‘no’. 

 In period 2, if bj
P2 ≥ b0

D, then vote ‘yes’; otherwise, vote ‘no’. 
 

It can be shown that the strategies defined above are mutual best responses; this will be termed 

the ‘incremental budgeting’ equilibrium: 

                                                           
15 The random choice of the q legislators means that A is, in a sense, following a mixed strategy. More precisely, A’s 
strategy involves the (random) choice of coalition members, followed by the proposal of a budget that includes 
offers of allocations to these members. This formulation is preferable to one that characterizes A’s strategy as a 
probabilistic offer to each j (i.e. A offers b0

D to each j with probability (q/(n – 1))) because it avoids the possibility of 
realizations of A’s strategy that lead to the defeat of A’s proposal in equilibrium. Myerson (1993) adopts the latter 
approach, but in a very different context, with multicandidate elections and an infinite number of voters. 
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Proposition 1: Consider the 2-period budgeting game. There exist subgame perfect ‘incremental 
budgeting’ equilibria, where A plays σA

I and each j plays σj
I. In an equilibrium of this type, A 

chooses q j’s at random to form M1, and proposes x* for each j ∈ M1; bL1 = bP1. In period 2, A 
proposes b0

D for each j ∈ M1; bL2 = bP2. 
 
Proof: To show that σA

I and σj
I are mutual best responses: 

Suppose that A plays σA
I. Consider j ∈ M1; deviating by voting ‘no’ in period 1 will lead 

to the defeat of bP1 (as each j is pivotal) and lead to an expected payoff of x*. Thus, this 
deviation does not raise j’s payoff. Deviating by voting ‘no’ in period 2 leads to the 
default payoff b0

D in period 2, which is identical to the equilibrium payoff in period 2; 
thus, j cannot raise her payoff by deviating. For j ∉ M1, deviating by voting ‘yes’ in either 
period clearly cannot raise her payoff above 0. 
 
Suppose that each j plays σj

I. If A deviates by offering bj
P1 < x* to any j ∈ M1, bP1 will 

fail, and A will receive a payoff of bA
D in period 1, which is strictly less than the 

equilibrium period-1 payoff R – qx* (recall Equation (1a) and A1, while q < (n – 1) by 
assumption, and x* < b0

D by Remark 1), while the period-2 payoff is unchanged. 
Deviating by offering bj

P1 > x* to any j ∈ M1 also makes A worse off. Similar arguments 
hold for period 2. Moreover, note that A has no incentive to deviate by changing the 
membership of the coalition across periods (i.e. setting M2 ≠ M1). Regardless of the 
identity of the q legislators in M2, A’s payoff in period 2 is R + I - qb0

D. Of course, there 
is no incentive for A to expand the coalition to include more than q members. End of 
Proof. 

   

This incremental equilibrium is not unique, however. Indeed, there is a continuum of 

equilibria. To see this, note that A’s strategy (with respect to the choice of M2) can be 

characterized by a probability distribution over the elements of the set J, indicating the 

probability that each j will be included in the period 2 coalition (e.g. assigning probability pj to j 

being chosen, contingent on bP1 passing). Each probability distribution defines an allocation xj* 

that makes j indifferent between voting ‘yes’ and ‘no’ in period 1. Consider a strategy for A that 

involves choosing q j’s in period 1, and proposing xj* to each j ∈ M1; if bP1 passes, A includes 

each of these j’s in M2 with probability pj. This strategy and a strategy for j that involves voting 

‘yes’ in period 1 whenever bj
P1 > xj* clearly constitute mutual best responses. There are, 

however, an infinite number of possible probability distributions over the j’s; thus, there are an 

infinite number of equilibria (note that the equilibrium characterized in Proposition 1 involves 

setting pj = 1 for j ∈ M1 and pj = 0 for j ∉ M1). 

 In comparing the properties of the incremental budgeting equilibria in Proposition 1 with 

those of the other types of equilibria, it is helpful to focus on an extreme case that will be labeled 
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the ‘nonincremental budgeting’ equilibrium. This involves A randomizing completely over the 

j’s (i.e. setting the pj’s equal) in period 2, even when bP1 passes. The ‘nonincremental’ strategies 

(denoted σA
N and σj

N) can be defined as follows: 

σA
N:  In period 1, choose at random a subset of J, denoted M1, where card (M1) = q, and 

propose bj
P1  

= b0
D  if j ∈ M1 

= 0  if j ∉ M1 
= R – qb0

D  if j = A 
 
In period 2, choose at random a subset of J, denoted M2, where card (M2) = q, and 
propose bj

P2 
= b0

D  if j ∈ M2 
= 0  if j ∉ M2 
= R + I – qb0

D  if j = A 
 
σj

N: In each period i = 1, 2, if bj
Pi ≥ b0

D, then vote ‘yes’; otherwise, vote ‘no’. 
 

It can be shown that: 

Proposition 2: Consider the 2-period budgeting game. There exist subgame perfect 
‘nonincremental budgeting’ equilibria, where A plays σA

N and each j plays σj
N. In an equilibrium 

of this type, A chooses q j’s at random to form M1, and proposes b0
D for each j ∈ M1; bL1 = bP1. In 

period 2, A chooses q j’s at random to form M2, and proposes b0
D for each j ∈ M1; bL2 = bP2. 

 
Proof: To show that σA

N and σj
N are mutual best responses: 

Suppose that A plays σA
N. Consider a j who is offered an allocation of b0

D in either period. 
Deviating by voting ‘no’ entails the proposal’s defeat, and leads to the default payoff b0

D; 
thus, j cannot raise her payoff by defecting when she is included in A’s coalition. 
Similarly, a j who is offered 0 cannot raise her payoff by deviating and voting ‘yes’. 
 
Suppose that each j plays σj

N. If A deviates (in either period) by offering bj
Pi < b0

D to any j 
in the coalition, the proposal will be defeated; A will receive the default payoff b0

D, rather 
than the equilibrium payoff R – qb0

D (period 1) or R + I – qb0
D (period 2). Note that, by 

Equation (1) and A1, and given that q < (n – 1) by assumption, it follows that R – qb0
D > 

b0
D, and (as I ≥ 0), R + I – qb0

D > b0
D. Thus, A cannot raise her payoff by deviating in this 

way. Deviating by proposing bj
Pi > b0

D also leads to a strictly lower payoff. A also does 
not have an incentive to deviate by changing the selection of M2 from the random process 
specified in σA

N: any coalition of q j’s leads to the same payoff in period 2 (of R + I – 
qb0

D), so the random choice of M2 is a best response. End of Proof. 
 
This equilibrium replicates in each period the outcome of the 1-period game (discussed above). 
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3.3) Comparing Incremental and Nonincremental Equilibria 

A noteworthy feature of these different equilibria (in Propositions 1 and 2) is that they 

lead to systematically different payoffs for A and the j’s. More precisely, let UA
I(σA

I, σj
I) and 

UA
N(σA

N, σj
N) be A’s payoffs in the incremental and nonincremental equilibria, respectively. 

Similarly, define Uj
I(σA

I, σj
I) and Uj

N(σA
N, σj

N) for j = 2, . . . , n as the expected payoff of each j 

in the incremental and nonincremental equilibria. Then:  

Proposition 3: UA
I > UA

N and Uj
I < Uj

N for j = 2, . . . , n. Moreover, UA
I is the highest payoff that 

A can obtain in any subgame perfect equilibrium. 
 
Proof:  UA

I(σA
I, σj

I) = (R – qx*) + δ(R + I – qb0
D) and 

UA
N(σA

N, σj
N) = (R – qb0

D) + δ(R + I – qb0
D) 

As x* < b0
D (see Remark 1), it follows that UA

I > UA
N 

 Uj
I(σA

I, σj
I) = (q/(n – 1))(x* + δb0

D) 

 Uj
N(σA

N, σj
N) = (1 + δ)(q/(n – 1))b0

D 

 Again, from Remark 1, it follows that Uj
I < Uj

N for j = 2, . . . , n 

Finally, recall the partially incremental equilibria, where there is some probability (< 1) 
that j ∈ M1 is included in the period-2 coalition. Clearly, any reduction in this probability 
below 1 requires that A propose a larger period-1 allocation xj* to compensate. 
Consequently, A’s period-1 payoff must be lower than R – qx*; on the other hand, A’s 
period-2 payoff is always R + I – qb0

D. Thus, UA
I is the highest payoff A can obtain in any 

subgame perfect equilibrium. End of Proof. 
 
The significance of this result is that the higher payoff received by A under incremental 

budgeting may provide a rationale for why traditional or ‘classical’ budgeting was organized in 

this fashion. More specifically, it suggests that those legislators with agenda setting power on 

budgetary policy may wish to foster an incrementalist ethos in order to increase the payoffs they 

receive from budget allocations. 

 3.4) Solution with Commitment 

 The analysis of the 2-period game above proceeded under the assumption that A cannot 

make commitments in period 1 to allocate money in particular ways in period 2. However, it may 

be the case that, in many real-world budgeting contexts, there exist institutional mechanisms that 

enable A to make such a commitment (at least to some degree). This section analyzes the 2-

period model under the assumption that A can make the following commitment to legislator j     

(j = 2, . . . , n): 
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Definition 1 (‘Grandfathering’): If bj
P1 = x, and bP1 is enacted (bL1 = bP1), then bj

P2 ≥ x ∀j∈J  

This amounts to a commitment to ‘grandfather’ budget allocations, contingent on the proposed 

period-1 budget being enacted. Institutions that may enable A to commit to grandfathering 

include budget baselines and procedural rules that preclude (or impose high transactions costs 

on) revisiting past allocations (as discussed in Section 1). 

 The main result of this section is that, if A can commit to grandfathering, then the 

nonincremental (and partially incremental) equilibria are eliminated: 

Proposition 4: Consider the 2-period budgeting game, and assume that A can commit to 
grandfathering budget allocations (as specified in Definition 1). Then, the only subgame perfect 
equilibria involve incremental budgeting (i.e. the same equilibrium outcomes as when A plays 
σA

I and each j plays σj
I). 

 
Proof: Consider the subgame consisting of period 2, and suppose that bP1 has been enacted. A 

will always choose M2 such that card (M2) = q. The cost incurred by A in passing the 
period-2 budget can be expressed as: 

∑
∉∈

+
21  and 

1
0 (3)                                             

MjMj

P
j

D bqb

i.e. A needs to allocate b0
D to each of the q members of M2. In addition, if there are any 

j’s who were part of M1 but are not included in M2, A must allocate each of these j’s her 
period-1 allocation bj

P1 in order to satisfy the commitment to grandfathering. Clearly, this 
cost can be minimized by ensuring that there is no j ∈ M1 who is excluded from M2 (note 
that this is feasible, as card (M1) = card (M2) = q). Thus, setting M2 = M1 is strictly 
preferred by A to any alternative strategy (as it leads to a period-2 payoff of R + I – qb0

D, 
which is strictly higher than that resulting from any difference between M2 and M1).  
Therefore, any subgame perfect equilibrium must involve M2 = M1; i.e. incremental 
budgeting. Given this, A’s optimal period-1 strategy is to propose x* for each j ∈ M1 (as 
in the strategy σA

I). As shown in Proposition 1, each j’s best response is σj
I; moreover, 

any best response must involve the same action (i.e. voting ‘yes’) in period 1. Thus, the 
equilibrium outcomes are those specified in Proposition 1. End of Proof. 

 

Thus, if A has the ability to precommit to grandfathering period-1 allocations, incremental 

budgeting represents the unique subgame perfect equilibrium (up to the choice of M1); in effect, 

A can ensure that she receives the higher payoff associated with the incremental budgeting 

outcome. 

 3.5) A Note on Credible Threats of Exclusion 

In deriving the results above, it was assumed that, in the event that bP1 is defeated, A 

simply randomizes over all legislators in choosing M2. If it is assumed that it is possible for A to 

credibly make more specific threats to the members of M1 off the equilibrium path, then the 
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results are strengthened. In particular, suppose that A can threaten to exclude as many members 

of M1 who vote ‘No’ as possible from M2. Thus, if the q legislators in M1 vote ‘No’ in period 1,16 

then, when building a period 2 coalition, A will turn first to the (n – 1 – q) legislators who were 

not part of M1, recruiting only the other (2q – n + 1) from the members of M1. The probability 

that a legislator who votes ‘No’ in period 1 is subsequently included in M2 is reduced to           

(2q – n + 1)/q. The analog to x* under these circumstances, denoted x**, can be defined as: 

(4)                                           11** 0 














 −−
−=

q
qnbx D δ

As (n – 1) > q, δ > 0 and b0
D > 0 by assumption, it follows that (n – 1 – q)/(n – 1) < (n – 1 – q)/q, 

and hence that: 

Remark 2: x** < x*  

That is, allowing A to make a credible out-of-equilibrium threat of exclusion from the period 2 

coalition further lowers the period 1 allocation necessary to ensure passage of bP1, thereby 

raising A’s payoff and reducing the expected payoff of each junior legislator. 

An interesting special case occurs when the legislature operates under a simple majority 

rule, so that q = (n – 1)/2. Then, it is possible for A to exclude every single member of M1 if she 

votes ‘No’ in period 1, so the threat involves a zero probability of being in M2. In these 

circumstances, x** = (1 – δ)b0
D; intuitively, x** only needs to be sufficient to compensate for 

discounting, as j ∈ M1 faces a choice between receiving b0
D now and 0 next period (by voting 

‘no’) or x** now and b0
D next period (by voting ‘yes’). 

 3.6) A Note on Endogenous Default Payoffs 

 In the preceding analysis, it has been assumed (as discussed in Section 3.1) that the 

default payoffs of legislators are exogenous: they are independent of the realized pattern of play 

in thegame. As noted earlier, this rules out the case where bj
D2 = bj

L1 (i.e. legislator j’s period 2 

default is her period 1 allocation). To see why this assumption may seem restrictive, suppose that 

A is unable to commit to grandfathering (in the sense of Definition 1). Suppose further that A 

offers some amount x (sufficient to induce a vote for the proposal) to q j’s in period 1. This 

proposed allocation is enacted, by assumption. Then, in period 2, each j ∈ M1 has default payoff 

                                                           
16 It is assumed here that all the members of M1 vote ‘No’, given the assumption of symmetric behavior. If only 
some of them vote ‘No’, then A’s threat to exclude is even more potent, as the probability of a legislator who voted 
‘No’ being part of M2 can be reduced even further. 
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x, while each j ∉ M1 has default payoff 0. Obviously, the latter will be the cheapest to buy, from 

A’s point of view; thus, A will build a coalition M2 that contains as many j ∉ M1 as possible, and 

each of these j’s will be offered an allocation of 0. Only as many j ∈ M1 as absolutely necessary 

to ensure passage will be included in M2, with each of these j’s being offered x (in the special 

case of a simple majority rule, no j ∈ M1 will be included in M2). This result would seem to be 

the opposite of incremental budgeting – those legislators excluded from the period 1 coalition are 

always included in period 2, while those in the period 1 coalition are only included in period 2 if 

absolutely necessary. 

 However, if it is possible for A to comit to grandfathering (as defined above), then 

incremental budgeting outcomes are possible, even when bj
D2 = bj

L1. To see this, consider a 

simple example. Let n = 5, with L = {A, 2, 3, 4, 5}, q = 2 (i.e. a simple majority rule), and δ = 1. 

Suppose that bj
D1 = b0

D (i.e. the first-period default is exogenous) and bj
D2 = bj

L1, and that M1 = 

{2, 3}; in addition, suppose that (as in Section 3.5) A can credibly threaten to exclude j’s from 

the period 2 coalition. In the absence of commitment to grandfathering, the equilibrium involves 

nonincremental budgeting, with A offering b0
D to 2 and 3 in period 1, and 0 to all j’s in period 2, 

with M2 = {4, 5}; A’s payoff is 2R + I – 2 b0
D. Now suppose that commitment to grandfathering 

(in the sense of Definition 1) is possible. The equilibrium here involves A offering b0
D/2 to 2 and 

3 in each period. Of course, 4 and 5 are technically ‘included’ in M2, in that they are offered their 

default of 0, and will vote ‘yes’; however, when there is at least a small ε cost of expanding the 

coalition, the M1 = M2 feature of incrementalism will hold. This equilibrium gives A the same 

payoff 2R + I – 2 b0
D as that from nonincremental budgeting (where A does not precommit to 

grandfathering, and changes the coalition from one period to the next). Thus, incremental 

budgeting can be an optimal strategy for A when commitment to grandfathering is available, 

even if the default payoffs of junior legislators are endogenous. 

 

4) Incremental Budgeting with an Infinite Horizon 

 The basic model developed in Section 3 assumed that the budgeting game is played only 

over two periods. This section extends this framework to budgeting with an infinite horizon; the 

budgeting game (involving a budget proposal by A and a vote under a closed rule by the 

legislature) is assumed to be repeated infinitely. The rationale for this assumption is that there is 

uncertainty regarding how long A’s proposal power will last. Of course, as incremental 
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budgeting outcomes can be sustained in the 2-period case (with and without commitment to 

grandfathering), it is obvious that they can also be sustained in the infinitely repeated game. The 

aim of this section is thus not to establish the existence of incremental outcomes, but rather to 

analyze how the infinite horizon setting affects the gains to A from incremental budgeting. As in 

Section (3.4), it is assumed here that A can credibly precommit to the grandfathering of budget 

allocations. Incremental budgeting outcomes can of course be sustained even in the absence of 

such commitment (though, in those circumstances, there are many other types of equilibria). This 

section also returns to the assumption that A randomizes with equal probability over all j’s if a 

proposal is defeated. 

 The (exogenous) stream of revenues available to the legislature for budgetary allocations 

will be denoted by Rt, t = 1, 2, . . ., where Rt ≥ (n – 1)b0
D + bA

D ∀t.17 In the 2-period model, the 

‘last-period’ factor in period 2 suggested that the default payoff for A in the last period should 

differ from that in period 1. Here, however, the game to be played in the future is identical at 

each point in time; thus, there is a common default payoff bA
D. It is assumed that the infinite 

sequence represented by the (discounted) revenue stream converges - i.e. that the discounted sum 

of the Rt’s is finite: 

Condition 1:   and  is finiteδ δ< ≡ −

=

∞

∑1 1

1
R Rt

t
t

*

This condition is assumed to hold throughout the analysis in this section. The game in the 

infinitely repeated case is a straightforward extension of that described in Section 3. In each 

period, A proposes a feasible budget allocation,18 and the legislature votes the proposal up or 

down, with the default allocations being given by b0
D. The definition of ‘grandfathering’ is now 

somewhat more general than in Section 3: 

Definition 1′ (‘Grandfathering’): If bj
Pt = x, and bPk is enacted (∀k ≥ t), then bj

P(k+1) ≥ x ∀j∈J  

That is, if A offers x to j in period t, and the proposal passes, then A (credibly) commits to 

offering at least x to j as long as the previous period’s proposal has passed. This is a 

straightforward generalization of Definition 1. 

                                                           
17 Note that it is not necessary to impose the restriction that Rt+1 ≥ Rt ∀t (i.e. that the revenue stream is 
nondecreasing) to derive the results below. 
18 ‘Feasibility’ here refers to the budget constraint. Note that, as in the previous analysis, a period-by-period 
constraint is being assumed. However, the results would not change fundamentally if A were permitted to reallocate 
revenue across different periods, as long as there are some constraints on borrowing (so that, for instance, A cannot 
spend the entire revenue stream in t = 1, and allocate 0 thereafter). 
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As before, the solution concept involves looking for subgame perfect Nash equilibria.19 

The central result of this section is: 

Proposition 5: Suppose that Condition 1 holds, and that precommitment to grandfathering is 

possible; then, in every subgame perfect equilibrium of the infinitely repeated game, 

(i) A chooses M1 (consisting of q junior legislators) randomly in period 1 

(ii) ∀t = 1, 2, . . ., A proposes bj
Pt  

= γb0
D  if j ∈ M1 

      = 0  if j ∉ M1 

  where         

(note that γ < 1 for any δ > 0), and bPt passes ∀t = 1, 2, . . . 

(5)                                     

1
1

1

−
−

−
=

n
qδ
δγ

(iii) A’s equilibrium payoff (in present value terms) is 

(6)                                           
1

)1(
* 0

qn
qbn

R
D

δ−−
−

−

(which exceeds A’s default payoff bA
D/(1 – δ)) 

 (iv) j’s expected payoff (in present value terms) is 

      qb0
D/(n – 1 – δq)            (7) 

Proof: (i) The MWC result from the 2-period model extends to this context, so M1 will consist of 
q j’s; A will choose them randomly because the j’s are identical. 

 
(ii) Let bj

P1 = x ∀j ∈ M1. Consider period t. There are two relevant kinds of histories to 
consider. Following histories in which bP(t-1) failed, the subgame following this history is 
identical to the entire game from t = 1; thus, in period t, A will choose Mt randomly, and 
offer bj

Pt = x ∀j ∈ Mt. Following histories in which bP(t-1) passed, note that there must 
have been a continuous history of passage since period h, where 1 ≤ h ≤ t – 1. By 
Definition 1′ above, it follows that A chose a coalition consisting of q j’s, Mh, in period h, 
and that A offers bj

Pt = x ∀j ∈ Mh in period t. (Note that, in each case, it will be optimal 
for A to set bj

Pt = 0 for j’s outside the coalition) 
 
To characterize x: consider t = 1, or t > 1 following a history in which bP(t-1) failed. As 
noted above, A will choose q j’s randomly to form Mt. Consider the choice faced by j ∈ 

                                                           
19 In addition, an assumption of stationarity is made, requiring that behavior be identical in all subgames that are 
structurally essentially identical. A complication here is that the stage games may not be precisely identical, because 
the future revenue stream may differ in different periods. However, this does not fundamentally affect the results, as 
Condition 1 ensures that, at any point in time, the future revenue stream converges. 
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Mt: voting ‘yes’ will lead (given the definition of incrementalism) to a payoff of x(1 + δ + 
δ2 + . . .) = x/(1 - δ). Voting ‘no’ leads to a payoff of b0

D in period t, and to a (q/(n - 1)) 
probability of being included in next period’s coalition – i.e. to a payoff of b0

D + (q/(n - 
1))x(δ + δ2 + . . .) = b0

D + (q/(n – 1))(δ/(1 – δ))x. Thus, A must choose x so as to just 
induce j  to vote ‘yes’: 

x/(1 - δ) = b0
D + xqδ/((n - 1)(1 - δ)) 

Rearranging yields x = γb0
D. 

 
An alternative approach is to assume that deviation by j involves voting ‘no’ whenever 
the opportunity arises (i.e. ‘no’ in period t, ‘no’ in period (t + 1) if j is in Mt+1, which 
happens with probability (q/(n - 1)), and so on). This leads to the same expression for x. 

 
Given the above proposal, each j ∈ Mt will vote ‘yes’ ∀t (recall that j votes ‘yes’ when 
indifferent); thus, bPt passes ∀t = 1, 2, . . . 

 
To establish subgame perfection: consider the subgame beginning after period t. There 
are two types of histories to consider: 
 
– after a history in which bPt passes, note that A is constrained by Definition 1′. Using 

the strategies specified above, A will offer each j ∈ Mh (where h = 1 if A’s proposals 
have all passed, or 1 < h < t if one or more previous proposals have failed (where h - 
1 is the last period where a proposal failed)) x = γb0

D in period t and each subsequent 
period, and each j ∈ Mh will vote ‘yes’ each period; from the reasoning above, this 
constitutes a Nash equilibrium 

 
– after a history in which bPt fails, A will choose Mt+1 randomly, and offer x = γb0

D to 
each j ∈ Mt+1 in period t and each subsequent period, and each j ∈ Mt+1 will vote 
‘yes’ each period; from the reasoning above, this also constitutes a Nash equilibrium 

 
This reasoning applies for each t; thus, the strategies specified in the Proposition are a 
Nash equilibrium in every subgame. This establishes subgame perfection. (Note that 
there are many subgame-perfect equilibria, corresponding to different choices of M1; 
however, all have the characteristics specified in the Proposition). 

 
(iii) Given the equilibrium strategies, A allocates, in present value terms, γb0

D(1 + δ + δ2 
+ . . .) to each of the q members of the coalition M1. A also allocates the remainder of the 
(finite) revenue stream R* to her own district; thus, her aggregate allocation is  

R* – γb0
D(1 + δ + δ2 + . . .) 

in present value terms. Substituting in the expression for γ and simplifying gives the 
result. 
To show that A’s payoff exceeds her default payoff, note that the latter involves receiving 
bA

D each period (a present value of bA
D/(1 – δ)). Consider the smallest revenue stream 

that is consistent with the assumptions of the model, namely, Rt = (n – 1)b0
D + bA

D ∀t; 
then, R* = ((n – 1)b0

D + bA
D)/(1 – δ), and A’s payoff can be expressed as: 
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δ
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δ δ
( )

( )
( )( )

                           (8)  

Note that the expression in brackets is greater than 0, so that A’s payoff exceeds the 
default payoff bA

D/(1 – δ). As this holds for the minimum possible revenue stream, it 
must also hold for any (finite) revenue stream. Thus, A always prefers to play the strategy 
specified in the proposition, rather than receive the default payoff each period. 
 
(iv) Each j has a q/(n - 1) probability of being included in M1. If so, she receives a stream 
of payoffs γb0

D(1 + δ + δ2 + . . .) with present value γb0
D/(1 – δ); otherwise, she receives 

0 each period. Thus, her expected payoff, in present value terms, is  
qγb0

D/[(n – 1)(1 – δ)] 
Substituting in the expression for γ and simplifying yields the result. End of Proof. 

 

The result above generalizes Proposition 4 to the case where the budgeting game is repeated 

infinitely. It is noteworthy that this extension to an infinitely repeated game reinforces the result 

from the 2-period game. Specifically, A can now offer a lower per-period allocation (γb0
D) to 

each member of the winning coalition than the x* defined in Equation (2) above, and still ensure 

passage of the budget: 

Remark 3: γb0
D < x* 

Proof: From Proposition 5(ii), γb0
D can be expressed as: 

γ
δ

δ
b

n
n n

D
0

21 1
1 1

=
− −
− − −

( )( )
( )( q)

 

and x* (from Equation (2)) can be expressed as: 

x
n q n

n n q
*

( )[( )( )
( )( )

=
q]− − − − +

− − −
1 1 1

1 1
δ δ δ

δ
 

The numerator of this expression can be simplified as follows: 

   (1 – δ)(n – 1)2 – δq(1 – δ)(n – 1) + δq(n – 1) – δ2q2 

           = (1 – δ)(n – 1)2 + δ2q(n – 1 – q) 

As q < n – 1, q > 0, and δ > 0 by assumption, it follows that γb0
D < x*. End of Proof. 

 

This result suggests that A’s gains from incremental budgeting are even greater in the infinitely 

repeated context than in the simple 2-period setting of Section 3. Intuitively, the consequences 

for j of being excluded from the coalition are more severe when the time horizon involved is 

longer, so those included in the coalition will be willing to accept a lower per-period payoff. 
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Moreover, there is no final period in which each coalition member must be allocated her default 

payoff. Note that, because it is not necessary to impose a restriction that the revenue stream is 

nondecreasing, another significant implication is that a declining revenue stream does not, by 

itself, undermine the budget proposer’s incentive to institute incrementalism. 

 The expression for γ in Proposition 5(ii) also yields some (potentially) testable 

implications regarding how A’s benefits from incrementalism change in response to the model’s 

parameters. In particular, the higher is δ, the lower is γ; the more patient are the legislators, the 

greater is the benefit to A of incremental budgeting. This is because more patient j’s will weight 

the loss from their possible noninclusion in future coalitions more heavily, and hence will be 

more willing to accept a lower per-period allocation in exchange for the certainty of inclusion. In 

addition, the larger is the number of votes required for passage (i.e. the higher is q relative to n), 

the higher is γ. Thus, supermajority requirements for budgetary bills will, ceteris paribus, tend to 

lower the benefits to A from incrementalism, because they reduce the risk to j’s of being 

excluded from future coalitions (and, hence, make j’s less willing to accept low per-period 

allocations). 

 Finally, it should be emphasized that, for reasonable parameter values, the magnitude of 

the effect in Proposition 5 is quite substantial. That is, the difference between the γb0
D allocated 

to each coalition member each period and the default payoff b0
D is large. For example, consider 

the following values: n = 101, q = 60 (so that 61 votes are required for passage), and δ = 0.9. 

Then, γb0
D = (10/46)b0

D ≈ 0.22b0
D. Thus, for these (reasonable) parameter values, the allocation 

that is sufficient to attract the support of each coalition member is only approximately a fifth of 

the default allocation that the member would receive.  

[Table 1 about here] 

Table 1 shows the values of γ (the fraction of the default payoff required to induce a 

coalition member to vote ‘yes’) that result from various values of n, (q + 1), and δ. In addition to 

the generally low values of γ, the table illustrates how γ changes in response to the parameters. 

As δ rises (i.e. legislators become more patient), γ falls, while, as δ decreases, γ rises. As q 

increases relative to n (which makes it less likely that those j’s who vote ‘no’ can be excluded 

from the future coalition), γ rises. Conversely, as q decreases relative to n, γ falls. Overall, the 

calculations suggest that the magnitude of the effect of incremental budgeting is substantial. 

 21



5) Incremental Budgeting with Heterogeneous Legislators  

The analysis so far has relied on the assumption that the junior legislators are ex ante 

identical in all respects. This section returns to the simple 2-period game of Section 3, and 

considers the situation where legislators differ (strictly) in terms of the default payoffs they 

receive if A’s proposal is defeated. Specifically, it is assumed that j’s default payoff is bj
D, where, 

without loss of generality, the j’s are numbered such that b2
D < b3

D < b4
D . . . < bn

D (they will be 

referred to for convenience as j2, j3, . . . jn). As before, revenue is assumed to be sufficient to 

cover the aggregate default payoffs, so that:  

R bj
D

j A

n

≥
=
∑                                                     (9)

 

Then, one can define: 

Definition 2: The cheapest MWC, denoted MC, consists of q junior legislators {2, 3, . . . , (q + 

1)} (so that Σbj
D is minimized). 

Initially, consider the 2-period game with no precommitment to grandfathering. In the 

subgame consisting of period 2, it is immediately apparent that the equilibrium proposal must 

involve bj
P2  

    = bj
D  if j ∈ MC 

    = 0  if j ∉ MC 

In period 1, this equilibrium proposal is anticipated, so each j ∈ MC kows that she has probability 

1 of being included in the period-2 coalition; consequently, no j ∈ MC will accept a proposal that 

allocates her less than her default bj
D. Conversely, each j ∉ MC knows that she has probability 0 

of being included in the period-2 coalition, and will hence not accept a proposal that allocates her 

less than her default bj
D. Clearly, it will be cheapest for A to build a coalition M1 = MC; thus, the 

period-1 proposal will be identical to the period-2 proposal specified above. A’s equilibrium 

payoff is:20 

( ) ( )1 1
2

1

+ + − +
=

+

∑δ δ δR I bj
D

j

q

                         (10)  

                                                           
20 Note that, from Eq. (9) above, this equilibrium payoff always exceeds A’s default payoff of receiving bA

D each 
period (given that I ≥ 0 and q + 1 < n). 
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 Thus, without commitment to grandfathering, A builds the cheapest coalition MC each 

period. The issue considered here is whether, when precommitment to grandfathering is 

available, A can achieve a higher payoff. The circumstances in which this is possible can perhaps 

best be introduced through a very simple example. Suppose that n = 5, and that the j’s have the 

following default payoffs: 

b2
D = 9; b3

D = 10; b4
D = 11; b5

D = 12 

Assume a simple majority rule, so that q + 1 = 3 (i.e. A needs 2 coalition partners for the passage 

of the budget), and that δ = 1. Let CC be the cost to A of a strategy that involves building MC each 

period. As MC = {j2, j3}, it follows that CC = 38. Note that, without commitment, this is A’s 

equilibrium cost (yielding equilibrium payoff 2R + I – 38). 

 Suppose that A has the ability to precommit to grandfathering, and seeks to build a 

coalition consisting of j4 and j5. Thus, A proposes some positive allocation to each of j4 and j5 in 

period 1. If one of them votes ‘no’ and bP1 fails, then A will minimize period-2 costs by 

proposing bP2 = (⋅, 9, 10, 0, 0).21 The issue, then, is what allocations will induce j4 and j5 to vote 

‘yes’ in period 1. Suppose that A proposes b5
P1 = 1; then, j5 will anticipate that, in period 2, it will 

be cheaper for A to replace her with j2, despite the fact that A will still have to allocate b5
P2 = 1 to 

satisfy the grandfathering commitment. Thus, j5 will vote ‘no’. By this reasoning, it is clear that a 

proposal b5
P1 = 3 will just induce j5 to vote ‘yes’, as it eliminates the incentive for A to drop j5 

from the period-2 coalition. Similarly, b4
P1 = 2 will induce j4 to vote ‘yes’ in period 1 (note that, 

as we are considering deviations from a candidate equilibrium one at a time, it is the difference 

between bj
D and the default payoff of the cheapest alternative j that matters here). If A proposes 

bP1 = (⋅, 0, 0, 2, 3) and bP2 = (⋅, 0, 0, 11, 12), each proposal will pass, and A incurs a total cost of 

28 (i.e. a payoff of 2R + I – 28). Clearly, A can benefit from the ability to precommit. 

 Now suppose that q + 1 = 4, so that A needs 3 coalition partners. Without commitment, 

the coalition would consist each period of MC = {j2, j3, j4}, with CC

                                                          

 = 60. Assume that A can 

precommit. Note that A can no longer recruit the entire coalition from outside MC. Instead, A will 

build a coalition of all j’s outside MC, together with as many j’s (specifically, the cheapest ones) 

from MC as required. The j whose default determines how much each j ∉ MC must be paid in 

 
21 This notation omits A’s own allocation for convenience, to focus on the proposals for the j’s. 
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period 1 is now the cheapest j ∈ MC outside A’s coalition. Thus, suppose A proposes bP1 = (⋅, 9, 

10, 0, 1) and bP2 = (⋅, 9, 10, 0, 12); then, each proposal will pass, and A’s cost will be 51. 

 To generalize from these examples, return to the more abstract formulation of the 

situation at the beginning of this section. Recall that the j’s are numbered such that b2
D < b3

D < b4
D 

. . . < bn
D, and that MC = {j2, j3, . . . , jq+1}, where card MC = q. Legislators {jq+2, jq+3, . . . , jn} are 

outside MC, with card J ∼ MC = n – q – 1. In the examples above, a strategy of choosing MC each 

period was contrasted with one that used A’s precommitment capacity to lower the cost of the 

coalition. Strictly speaking, the outcomes associated with both these strategies appear 

‘incremental’ (in the sense that the same coalition is maintained from period 1 to period 2). 

However, choosing MC each period is only incidentally incremental (in that it is simply 

equivalent to period-by-period optimization by A), whereas the other strategy relies crucially on 

the grandfathering commitment. Thus, the latter will be labeled an ‘incremental’ strategy in the 

analysis to follow, and the cost associated with adopting this strategy will be denoted by CI. 

 The incremental strategy for A involves including each j ∈ J ∼ MC in the coalition. This 

secures the support of (n – q – 1) legislators, leaving a shortfall of (2q + 1 – n); this is made up 

by also including {j2, j3, . . . , j2q+2-n} in the coalition. The cost of securing passage of each 

period’s budget using this strategy is: 

(11)                     )()1(
2 2
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whereas the cost of simply choosing MC each period is: 
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It can be shown that: 

Proposition 6: Consider the 2-period budgeting game with commitment, and suppose that 
legislators have strictly heterogeneous default payoffs, such that b2

D < b3
D < b4

D . . . < bn
D. Then, 

if (bn
D – b2

D) > 0 is sufficiently small, CI < CC (i.e. the cost to A of an incremental strategy is 
lower than that of choosing MC each period). 
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Proof: Define ε3, ε4, . . ., εn, where εj > 0 ∀j = 3, . . ., n and εj+1 > εj ∀j = 3, . . ., n – 1, such that: 

    bj
D = b2

D + εj                                                                              (13)  

 Then, it is possible to express CI and CC as: 
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Recall that q < n – 1. Thus, when εj = 0 ∀j = 3, . . ., n, CI < CC. Note that this is a strict 
inequality, Thus, there must exist a sequence of sufficiently small εj’s, where εj > 0        
∀j = 3, . . ., n (and hence (bn

D – b2
D) > 0) for which CI < CC. End of Proof. 

 

This result shows that, if the heterogeneity among j’s is not too great, then an incremental 

strategy will be optimal for A. To see the intuition for why this does not hold more generally, 

recall the simple example above, with n = 5, q + 1 = 3, and δ = 1. Suppose that the default 

payoffs are: 

b2
D = 1; b3

D = 2; b4
D = 20; b5

D = 21 

To secure passage, A would have to propose bP1 = (⋅, 0, 0, 19, 20) and bP2 = (⋅, 0, 0, 20, 21), 

entailing a cost of CI = 80, whereas CC = 6. Clearly, if the legislators are sufficiently 

heterogeneous, A cannot gain by adopting an incremental strategy. However, the general lesson 

of this section is that, even when there is some heterogeneity among the j’s, there exist 

circumstances in which incrementalism is optimal. 

  

6) Conclusion, and Possible Extensions 

This paper has developed a formal analysis of the concept of incremental budgeting, 

linking the substantive concerns of public budgeting scholars with the theoretical approach of the 

 25



rational choice tradition. A simple 2-period model was presented in Section 3, using a legislative 

bargaining framework in which an exogenously chosen agenda setter proposes budget 

allocations for each period. It was shown that the agenda setter can lower the cost of building a 

winning coalition, and thereby increase her payoff, through the use of incremental budgeting. In 

Section 4, the model was extended to an infinitely repeated context, and it was shown that the 

basic result is reinforced in this setting. Moreover, calculations using reasonable values of the 

model’s parameters suggest that the magnitude of the effect is quite large. Another significant 

implication is that a declining revenue stream does not, by itself, undermine the budget 

proposer’s incentive to institute incrementalist practices. A further extension in Section 5 showed 

that incrementalism can be optimal for the agenda setter, even when there is some heterogeneity 

among the other legislators. 

These results show that incrementalist budgeting practices can be explained in terms of 

the incentives of budget proposers to minimize the costs of building winning coalitions (and 

thereby maximize their payoffs). This provides an alternative perspective to Wildavsky’s focus 

on cognitive limitations and the reduction of conflict. While this paper has shown that significant 

insights can be gained by analyzing public budgeting issues within a legislative bargaining 

framework, a number of further extensions have been left for future research. For instance, this 

paper follows the standard legislative bargaining approach and assumes that revenues are 

exogenous. However, it would be of interest to relax this assumption, and to examine the 

consequences of incrementalism for the aggregate size of the budget.22 Another issue that could 

be explored is whether a legislature that is choosing its institutional structure by majority vote 

would decide to permit institutions and rules that support incrementalism.23 

It should also be noted that the model in Section 4 gives rise to a number of (potentially) 

testable predictions (illustrated numerically in Table 1). In particular, the higher is q in relation to 

n, the less incentive exists for incremental budgeting; thus, supermajority requirements that 

reduce A’s ability to exclude j’s from the coalition will tend to decrease the payoff from 

incrementalism. In addition, the more patient are the legislators (i.e. the higher is δ), the greater 

                                                           
22 Tohamy (2000) examines Wagner’s Law (of growth in government size) in the light of budgetary incrementalism. 
23 Recall that A’s allocations are higher and each j’s allocations are lower under incrementalism. This paper uses 
linear payoffs (an assumption that is innocuous here, as the results would generally be reinforced if payoffs were 
concave).  If A is chosen randomly before the first period, each legislator, voting in a prior organizational stage, 
would be indifferent between incremental and nonincremental budgeting (as A’s gains are offset by the losses to the 
j’s). However, this would not be true with concave payoffs, so this issue merits further exploration. 
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the incentives for incremental budgeting. It would be an interesting exercise to confront these 

predictions with the available data. Other possible topics to explore include the impact of term 

limits on the ability to sustain coalitions over time, and the role of incrementalism in facilitating 

logrolling among legislators and among legislative committees. 
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Fig. 1: Timing of One Period of the Budgeting Game 

 
 
 
 
 
 
 
 
 
 

 

The 
legislature 
votes on  
bP v. bD  
under a 
closed rule 

A proposes a 
budget 

allocation bP 

 
 
 

Table 1: The Magnitude of the Effect of Increm
 
n q + 1 δ 
101 61 0.9 
101 61 0.99 
101 61 0.75 
101 81 0.9 
201 101 0.9 
435 218 0.9 
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Payoffs are 
realized 
ental Budgeting on γ 

γ (to 2 d.p.) 
0.22 
0.02 
0.45 
0.36 
0.18 
0.18 
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