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Abstract
Knowles, Persico, and Todd (2001) develop a model of police search and of-

fender behavior. Their model implies that if police are unprejudiced the rate of
guilt should not vary across groups. Using data from Interstate 95 in Maryland,
they find equal guilt rates for African-Americans and whites and conclude that
the data is not consistent with racial prejudice against African-Americans. This
paper generalizes the model of Knowles, Persico, and Todd by accounting for the
fact that potential offenders are frequently not observed by the police and by in-
cluding two different levels of offense severity. The paper shows that for African-
American males the data is consistent with prejudice against African-American
males, no prejudice, and reverse discrimination depending on the form of equi-
libria that exists in the economy. Additional analyses based on stratification by
type of vehicle and time of day were conducted, but did not shed any light on the
form of equilibria that best represents the situation in Maryland during the sample
period.

We would like to thank John Knowles and the Maryland ACLU for providing
the data.



1) Introduction 

 The issue of racial bias in law enforcement has attracted considerable attention in recent 

years. For example, on I-95 in the state of Maryland during the period January 1995 - January 

1999, African-American motorists accounted for only 18 percent of motorists on the road, but 

represented 63 percent of motorists searched (Knowles, Persico, and Todd, 2001).1  The 

fundamental problem with this type of racial comparison is that the observed differences may 

reflect racial differences on the attributes that police consider when deciding which motorists to 

cite, search, or arrest.  This classic omitted variable problem has been raised in relation to work 

on discrimination in labor and mortgage markets as well, but is especially problematic in the case 

of racial profiling.  Most law enforcement databases only contain information on the individuals 

who the police actually chose to cite, search, or arrest, and little if any information is available to 

describe the attributes of the population that the police observed when making these decisions.   

Performance approaches have often been considered as an alternative test for prejudice-

based discrimination when direct analysis of racial differences is thought to suffer from omitted 

variable bias.  The logic behind performance analysis is that if decision makers are prejudiced 

against minorities then the minorities who are selected must have exhibited superior performance 

in order to compensate the decision maker for selecting minority candidates.  For example, 

Szymanski (2000) finds evidence of prejudice-based discrimination in English soccer leagues by 

examining the performance of soccer teams after controlling for each team’s wage bill.  

Berkovec, Gabriel, Canner, and Hannan (1998, 1994) examine racial differences in default using 

a publicly available FHA foreclosure database, and find no evidence of prejudice-based 

discrimination.  Ross (2000, 1997, 1996) and Ross and Yinger (2002, Chapter 8) argue that the 

default approach does not provide a valid test for discrimination.  Specifically, a default analysis 

suffers from the same omitted variable bias as direct examinations of lender underwriting 

decisions, but the bias works in the opposite direction. 2  Moreover, unlike a direct regression, the 

                                                 
1 Similarly, a study of Tulsa, OK (Ayres, 2000) shows that African-American motorists are much more likely to be 
issued traffic citations, have their automobiles searched, or be arrested than white motorists. In Tulsa during the 
period June 1995 - June 2000, African-Americans were 14 percent of the population (and most likely a much 
smaller fraction of the drivers because of the large number of white suburban commuters and the lower incidence of 
automobile ownership among African-Americans), but received 23 percent of citations.  Furthermore, African-
American motorists were 4 times as likely to be arrested (Ayres, 2000). 
2 Another criticism discussed by Ross (2000, 1997, 1996) is that performance approaches cannot capture statistical 
discrimination, where factors that influence performance are correlated with race and unobserved by both the 
researcher and the decision maker, and in the case of mortgage default the existence of statistical discrimination may 
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complete elimination of the omitted variable bias results in a test with no power because it also 

eliminates the selection bias on which the default approach is based.   

A major recent contribution to both the debate over racial bias in law enforcement and 

the methodological debate over performance approaches as tests for discrimination is Knowles, 

Persico and Todd (2001) (hereafter referred to as KPT). They develop a model of strategic 

behavior by police (in their choice of motorists to search) and motorists (in their decision to carry 

contraband), and show that the equilibrium involves randomization by both police and offenders. 

Their model implies that in equilibrium the probability of guilt for motorists who are searched 

should be equal across races, unless the police are prejudiced against one group (in the sense that 

the police are willing to search that group even when the expected return is lower than that for 

the other group).3 KPT use a dataset on police stops along Interstate-95 in Maryland, collected 

by the Maryland ACLU in connection with a lawsuit against the state. They find equal guilt rates 

for African-Americans and whites and conclude that the data is not consistent with the 

hypothesis of racial prejudice against African-Americans.4 

Their model suggests that the omitted variable bias problem may not be present in 

performance approaches due to the adjustments made by individuals in equilibrium.  The 

randomizing equilibrium suggested in KPT breaks the link between the expected return to an 

action and the observed frequency of that action, and in doing so breaks the link between 

observed frequency and the unobservable individual attributes that are correlated with the 

expected return.  Moreover, the model proposed by KPT might be reasonably applied to other 

markets.  For example, a randomizing equilibrium similar to that proposed by KPT might be 

relevant to the labor market separation process where workers and employers must make 

decisions about shirking and monitoring (Shapiro and Stiglitz, 1984) or to the mortgage market 

where asymmetric information leads to credit rationing and an associated randomization of 

underwriting decisions (Besanko and Thakor, 1987; and Calem and Stutzer, 1995). 

This paper generalizes the KPT model to account for the possibility that potential 

offenders are frequently not observed by the police (which creates the possibility that some types 
                                                                                                                                                             
bias the default test away from finding discrimination. See Borooah (2001) for a discussion of statistical 
discrimination in the context of racial bias in policing. 
3 Intuitively, this equality holds because potential offenders adjust their behavior in response to the possibility of 
being searched by the police. Those who may appear to have the most to gain from carrying contraband will also be 
the most likely searched if they do not adjust their behavior. 
4 KPT, as well as Ayres (2000), use microdata drawn from a specific geographic area. See Donohue and Levitt 
(2001) for an analysis of racial differences in arrests using aggregate data across 134 metropolitan areas. 
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do not randomize), and by including two different levels of offense severity.5 Multiple types of 

equilibria exist in models where potential offenders may not be observed by the police, and the 

test applied in KPT only provides a valid test for prejudice for the class of equilibria where all 

potential offenders randomize. Using the model with imperfect observation and two offense 

levels, this paper develops valid tests for prejudice for each class of equilibria. The paper shows 

that the Maryland data is consistent with prejudice against African-American males, with no 

prejudice, and with reverse discrimination, depending on the assumption about which 

equilibrium is being played. Additional empirical analysis is conducted in an attempt to identify 

the form or forms of equilibria that are consistent with the data.  An analysis using a time of day 

variable is not consistent with any form of equilibria considered and suggests that other 

maintained assumptions, such as uniform returns to arrest or uniform search costs, may be 

violated in the data.   

These results suggest that theory is unlikely to solve the omitted variables problem often 

associated with tests for racial prejudice and discrimination in law enforcement or in any other 

markets.  The remainder of the paper is organized as follows.  Section 2 presents the basic model 

from KPT.  Sections 3 and 4 present the model extensions and empirical analyses, respectively.  

Section 5 briefly summarizes the results and discusses the broader implications of these findings. 

 

2) The Basic Model 

 KPT develop a model that has two types of actors – a continuum of motorists and a 

continuum of police officers. Each motorist is characterized by (c, r), where r є {A, W} is the 

motorist’s race (either African-American (A) or white (W)), and c is a continuous variable that 

represents the motorist’s nonracial characteristics. Note that c is observable to the police, but is 

unobserved (or only partially observed) by the researcher. Given their characteristics, and the 

anticipated probability of being searched by the police, motorists choose whether or not to carry 

drugs. Each motorist receives a default payoff of 0 from not carrying drugs (whether or not she is 

searched). If a motorist of type (c, r) chooses to carry drugs, she receives a payoff of v(c, r) if not 

searched and – j(c, r) if searched. 

                                                 
5 Persico (2002) extends the KPT model in a number of directions, but does not deal with the particular issues that 
we focus on. 
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 The police observe each motorist’s characteristics (c, r), and decide whether or not to 

search. Crucially, KPT assume that, for any type (c, r), the police can choose any search 

probability γ є [0, 1]. The police have the following objective function: to maximize expected 

benefits (where the benefit from a successful search is normalized to 1), net of the cost to the 

police of searching cars. This cost can depend on the motorist’s race, and is denoted by tW, tA є 

(0, 1), for r = W, A, respectively. KPT define the preferences of the police as being “prejudiced” 

against A’s if tW < tA (i.e. if the police have lower costs of searching A’s, for a given benefit). 

 The game between motorists and the police does not have a pure strategy equilibrium. To 

see the intuition for this, suppose some type (c, r) were to decide to always carry drugs; then, the 

police would always search motorists of this type. But, given that they will always be searched, 

this type of motorist is better off not carrying drugs (thereby receiving a payoff of 0 rather than – 

j(c, r)). Similarly, if some type (c, r) were to never carry drugs, the best response of the police 

would be to never search that type; however, given that one is never searched, a motorist’s best 

response (for v(c, r) > 0) is to carry drugs.6 

 Thus, KPT analyze a mixed-strategy equilibrium, where motorists randomize over 

whether to carry drugs, and the police randomize over whether to search. In this equilibrium, it is 

possible that a motorist’s probability of being searched depends on race. However, if police are 

unprejudiced (i.e. tW = tA ≡ t), then it follows that the probability of guilt (denoted D) for 

motorists of each race is the same in equilibrium – i.e.  

D(W) = D(A) = t 

If this is the case, then any difference in the search probabilities across the races can be 

interpreted as “statistical discrimination” (in the sense of being caused by the efforts of the police 

to apprehend motorists carrying drugs), rather than being attributable to prejudice. 

 

3) Extensions to the Basic Model 

 Our objective in this section is to extend the basic KPT model sketched above in two 

distinct directions. The first of these relates to what we term “imperfect observation.” As 

highlighted above, KPT assume that, for any type (c, r), the police can choose any search 

probability γ є [0, 1]. We modify this by allowing for the possibility that not all motorists are 

                                                 
6 Of course, it is possible that some types of motorists receive a zero or negative payoff from carrying drugs, even 
when facing a zero probability of search. However, such types will never carry or be searched in equilibrium, and so 
will not appear in the data on police searches. 
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observed by the police. If police do not observe all motorists, equilibria may exist in which some 

agents do not randomize. In those equilibria, racial differences in the distribution of c will be 

correlated with guilt probability, and an empirical test that does not control for c will not be 

valid. Secondly, we allow for different levels of offense severity – in particular, while KPT allow 

each motorist only a binary choice of whether or not to carry drugs, we expand this choice set to 

permit motorists to choose between carrying no drugs, committing a low-severity offense, and 

committing a high-severity offense. Potential offenders sort over low and high severity offenses 

based on c in equilibrium. For equilibria involving non-randomizing offenders, offense severity 

can be used to restrict the sample to randomizers providing valid tests for prejudice.   

3.1) Imperfect Observation 

 A crucial assumption of KPT’s model is that the police observe all motorists, and can 

choose to search any motorist with probability one. In these circumstances, they argue that: “For 

our test to fail, we would need to have a fraction of “crazy” criminals who are not deterred even 

if they know for sure that they are going to be caught” (KPT, p. 214, fn. 16). This assumption 

requires that the police are omniscient (or at least omnipresent), and thus seems to strain 

credibility. A simple generalization of the KPT model is thus to assume that the police do not 

necessarily observe every motorist with certainty; rather, there is a probability m є (0, 1) that any 

given motorist is observed.7 We reinterpret the probability of search γ є [0, 1] as the probability 

that the police search a motorist, conditional on observing her. Thus, the highest feasible 

unconditional probability of search is m; this occurs if the police always search a given type 

contingent on observing that type (i.e. set γ = 1 for that type). 

 If the motorist is observed (with probability m), then she faces a γ probability of search. If 

the motorist is not observed (with probability (1 – m)), she gets the payoff v if she carries drugs. 

Thus, KPT’s Eq. (1) (p. 209) – the expected payoff to a motorist of type (c, r) from carrying 

drugs – now becomes: 

m(– γ(c, r)j(c, r) + (1 – γ(c, r))v(c, r)) + (1 – m)v(c, r)                                         (1) 

                                                 
7 The data includes all searches carried out on a stretch of I-95 in Maryland between 1995 and 1999. There are many 
reasons why the police may not have observed every motorist who traveled within or through the state during this 
period, such as the limited resources and/or limited attention of the police.  In fact, many variables that influence the 
decision to search may only be apparent after the police have stopped the vehicle.  Police only have the resources to 
stop a  very small fraction of all vehicles and even a small fraction of people who commit traffic violations, and thus 
police can only observe many attributes relevant to search for a small fraction of motorists. In practice, m may be 
quite small. 
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The motorist will be willing to randomize if the expression above equals 0. Rearranging, we 

obtain the following expression (analogous to that in KPT, p. 211) for the critical value γ*(c, r) 

that makes type (c, r) willing to randomize: 

(2)                                                        
)),(),((

),(),(*
rcjrcvm

rcvrc
+

=γ  

In KPT’s model, γ*(c, r) < 1 for any type (c, r): every type of motorist is willing to randomize 

for some feasible search probability γ*(c, r). Here, in contrast, since (1/m) > 1, it is possible that 

γ*(c, r) > 1 for some types of motorists, so that there are some types who are not willing to 

randomize for any feasible γ. These types will carry drugs with probability 1, and the police will 

set γ = 1 for these types (i.e. will search them whenever they are observed). It is important to 

stress that such a motorist is not “crazy” (in the sense used by KPT, p. 214, fn. 16), because she 

is not facing an unconditional probability of search of one. For those types that always carry 

drugs, the rewards are sufficient to outweigh a probability m of being searched. 

Our seemingly minor change in assumptions has quite drastic consequences for the 

equilibrium, and for the validity of KPT’s test for prejudice. These can be most easily explained 

in the simple case where c (like r) is binary (say, c є {0, 1}); as will be explained below, this 

does not involve any significant loss of generality. When c є {0, 1}, KPT’s mixed-strategy 

equilibrium can be characterized as follows: 

 

1) the police randomize by setting γ*(0, W), γ*(0, A), γ*(1, W), γ*(1, A) є (0,1) 

2) all motorists randomize by setting the probability of carrying drugs (denoted by P*(G)) 

to P*(G | 0, W) = P*(G | 1, W) = tW and P*(G | 0, A) = P*(G | 1, A) = tA 

 

where P*(G | c, r) denotes the equilibrium probability of guilt of a motorist, conditional on the 

motorist’s type (c, r): i.e. the probability with which motorists of type (c, r) choose to carry 

drugs. 

 Consider a situation where γ*(1, A), γ*(1, W) ≥ 1 (i.e. there does not exist an equilibrium 

where the police randomize over searching motorists of type c = 1), while γ*(0, W), γ*(0, A) < 1 

(so that the police are willing to randomize over searching motorists of type c = 0). Thus, 

motorists of type c = 1 will always carry drugs; for convenience, we will refer to type c = 1 as 

“dealers” (and to type c = 0 as “nondealers”) because the former receive a larger net benefit from 

carrying drugs (this is of course without loss of generality, as the labeling of types is arbitrary). 
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Note that we focus on “racially symmetric” strategy profiles.  Alternative, non-symmetric 

profiles exist where, for example γ*(1, A), γ*(0, A) ≥ 1 and γ*(1, W), γ*(0, W) < 1.  These 

equilibria, however, are not consistent with the empirical evidence because neither white nor 

African-American motorists have guilty rates near one. 

For the police to be willing to randomize over searching motorists of type c = 0, it has to 

be the case that: 

mP*(G | 0, W) = tW 

and      mP*(G | 0, A) = tA 

i.e. the expected payoff of the police is zero (the benefit to police from an arrest is normalized to 

1, so the expected payoff is the (unconditional) probability of arrest, minus the cost of search). 

For motorists of type c = 0 to be willing to randomize, it has to be that case that (tW/m) < 1 and 

(tA/m) < 1. This is analogous to KPT’s assumption that tW < 1 and tA < 1 (p. 209).8 Given these 

assumptions, we can characterize a mixed-strategy equilibrium as follows: 

 

1) the police randomize over c = 0 types by setting γ*(0, W), γ*(0, A) є (0,1) 

2) the police always search c = 1 types whenever they are observed: i.e. γ*(1, W) = γ*(1, A) 

= 1) 

3) motorists of type c = 0 randomize by setting the probability of carrying drugs to P*(G | 0, 

W) = tW/m and P*(G | 0, A) = tA/m 

4) motorists of type c =1 always carry drugs – i.e. P*( G | 1, W) = P*(G | 1, A) = 1  

 

Now consider the empirical implications of this equilibrium. Suppose initially that the 

distribution of types is identical across races – i.e. 

Pr[c = 1 | r = A] = Pr[c = 1 | r = W] and Pr[c = 0 | r = A] = Pr[c = 0 | r = W] 

Under these circumstances, if there is no prejudice (i.e. tW = tA = t), then it follows that: 

     D(W) = D(A) = t 

So the KPT test for prejudice remains valid. However, note that in our extension the validity of 

this test depends crucially on the distribution of nonrace characteristics c across races. For 

instance, suppose that 

                                                 
8 If this is not true, then either one or both of types (0, W) and (0, A) will always carry drugs; this case is 
uninteresting, because it would mean that the data is completely uninformative about police prejudice. Hence, we 
restrict attention to the case where (tW/m) < 1, (tA/m) < 1. 
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Pr[c = 1 | r = A] > Pr[c = 1 | r = W] 

(so that a larger fraction of A’s (relative to W’s) are “dealers”). In the equilibrium specified 

above, P*(G | 1, ·) = 1 for dealers of both races. Thus, police search behavior when a c = 1 type 

is observed is uninformative about police prejudice. This is because, by assumption, tW, tA є (0, 

1); hence, γ*(1, W) = γ*(1, A) = 1 is consistent with any admissible tW and tA. On the other hand, 

as c = 0 types of both races are randomizing, the KPT argument applies: if tW = tA = t, then it 

follows that P*(G | 0, W) = P*(G | 0, A) = t. 

When there are more dealers among A’s than among W’s, the fraction of (1, A) types 

who are found guilty (as a fraction of all A’s searched) will be larger than the corresponding 

fraction among W’s. Combining this with the equal values of P* for c = 0 types of both races, it 

follows that if the police are unprejudiced, then the observed probability of guilt has to be higher 

for A’s (i.e D(A) > D(W)). In other words, observing equal D’s for the two races may well be 

consistent with police prejudice. Thus, the KPT test for prejudice is not valid when the 

equilibrium generating the observed outcomes is of the form specified above. 

Finally, note that while we have assumed that c is a discrete variable for expositional 

ease, the basic argument above is unaffected by assuming a continuous c. In KPT’s model, for 

each type (c, r), there exists some search probability γ*(c, r) < 1 for which that type is willing to 

randomize. Once we introduce imperfect observation (m < 1), the expression for this probability 

is given by Eq. (2) above. When m < 1, if there is any c for which γ*(c, r) ≥ 1, then the KPT test 

is no longer valid. Such a type would set P*(G) = 1, and the police would set γ*(c, r) = 1; the 

latter’s search behavior would not be informative about the presence of prejudice. Note, 

moreover, that for lower values of m, it becomes more reasonable to suppose that γ* ≥ 1 for some 

type. Thus, unless there are strong grounds for believing that m = 1, it appears unreasonable to 

restrict attention to the case where all types of motorists randomize. 

3.2) Offense Severity 

In this section, we retain the assumption of imperfect observability, and extend the KPT 

model in another direction, namely to consider offenses of varying severity. In their empirical 

analysis, KPT consider a number of different definitions of guilt, taking into account variations 

in the quantity and type of drugs carried by motorists. However, their theoretical model only 

allows only two (pure strategy) choices for the motorist: to carry or not carry drugs. Here, we 

introduce the possibility that there are two levels of offenses – a less severe offense (such as 
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carrying a small quantity of drugs), denoted by L, and a high-severity offense (such as carrying a 

large quantity of drugs or carrying “hard” drugs), denoted by H. Each motorist thus has three 

pure strategies: to carry nothing (denoted N), L and H. 

Let the payoff from committing L be denoted by vL(c, r) if not searched, and – jL(c, r) if 

searched. Denote the payoff from committing H as vH(c, r) if not searched, and – jH(c, r) if 

searched. Let GH and GL denote the events that a motorist is guilty of offenses H and L, 

respectively, and let DH and DL be the guilt probabilities for each offense. As before, the payoff 

from not carrying is zero, whether or not the motorist is searched. Also as before, let γ(c, r) be 

the probability of search chosen by the police, given that the motorist is observed, and let m be 

the probability of being observed. Once again, we assume that c є {0, 1} for expositional 

convenience (although the intuition carries through to the case where c is continuous). 

When there are offenses of differing severity, it seems natural to assume that the benefits 

derived by the police from arresting motorists for each offense are different. That is, it appears 

likely that (normalizing the return from an arrest for H to 1) the return from an arrest for L would 

be b, where (typically) one would expect that b є (0, 1). However, under these assumptions, it is 

very difficult to find any testable restrictions on the data that are implied by the absence of police 

prejudice. In particular, the test employed by KPT is invalid, even in those circumstances 

identified below (as equilibrium 1a-b) where it remains valid under the assumption that b = 1.9 

Thus, in order to preserve at least some possibility that the KPT is valid, we maintain for now the 

assumption that the police receive equal returns from arrests for each offense. In the next section, 

we discuss the implications of relaxing this assumption, in the light of our empirical results. 

 Consider a motorist of given type (c, r): she can choose any of the following classes of 

mixed strategies – (i) play N, (ii) play L, (iii) play H, (iv) randomize between N and L, (v) 

randomize between N and H, (vi) randomize between L and H, (vii) randomize between N, L, 

and H. Clearly, there are many possible cases, even when c is assumed to be binary. However, 

given the assumptions above, it is possible to eliminate most of these cases. For example, 

consider the class of equilibria where some type(s) randomize over L and H. Recall that 

equilibria exist where motorists randomize, for instance, between N and L because for any given 

set of parameter values, there exists a search probability for which the motorist is indifferent 

                                                 
9 In part of their empirical analysis, KPT assume, in effect, that b = 0; under this assumption, their test is valid if all 
types of motorists are randomizing. However, the validity of their test does not extend to the case where b is strictly 
positive. 

 9



between N and L. In contrast, as a motorist who randomizes over L and H will always carry 

some quantity of drugs, the police will not adjust their behavior in response to the randomization, 

instead simply setting γ = 1 (i.e. the unconditional probability of search = m). A type (c, r) will 

randomize between L and H if: 

    (1 – m)vH(c, r) – mjH(c, r) = (1 – m)vL(c, r) – mjL(c, r)                             (3) 

The underlying parameter spaces for m and for the motorists’ payoffs (the v’s and j’s) are 

continuous. Thus, it is clear that the condition above can only hold for a subset of the parameter 

space that is of measure zero – for generic parameter values, equilibria where some type(s) 

randomize over L and H can be ruled out. This argument can also be extended to equilibria 

where some type(s) randomize over N, L and H: for generic parameter values, these cases should 

collapse to randomization over either N and L or over N and H. 

 The possible equilibria can be further restricted by imposing a requirement of consistency 

with the basic features of the observed data. The data suggest that both offenses were committed 

in equilibrium by members of each race. Thus, equilibria in which neither crime, or only one 

kind, is committed can be ruled out as being inconsistent with the observed data. We also 

continue to restrict attention to equilibria in what we term “racially symmetric” strategy profiles. 

These are strategy profiles for which the following is true: for any given c, types (c, A) and (c, 

W) play the same class of strategy (note that this does not require that, for mixed strategies, the 

two races have to mix with identical probabilities).  As discussed earlier, non-symmetric strategy 

profiles are also inconsistent with the observed data. 

 We are thus left with the following six cases to consider. They are grouped in symmetric 

pairs (noting that the labeling of types as c = 0 and c = 1 is arbitrary):  
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Fully Randomizing Equilibria: 

1a) For each r, motorists of type (0, r) randomize between N and H (i.e. choose P*(GH | 

0, r) є (0, 1) and P*(GL | 0, r) = 0), while motorists of type (1, r) randomize between N 

and L (i.e. choose P*(GL | 0, r) є (0, 1) and P*(GH | 0, r) = 0); the police set γ*(0, r) є (0, 

1) and γ*(1, r) є (0, 1) 

1b) For each r, motorists of type (0, r) randomize between N and L (i.e. choose P*(GL | 0, 

r) є (0, 1) and P*(GH | 0, r) = 0), while motorists of type (1, r) randomize between N and 

H (i.e. choose P*(GH | 0, r) є (0, 1) and P*(GL | 0, r) = 0); the police set γ*(0, r) є (0, 1) 

and γ*(1, r) є (0, 1) 

 

Assuming one of these types of equilibria prevails, one can test for prejudice simply by 

comparing probabilities of guilt (of each offense) for each race. This is essentially the test that 

KPT implement. However, this is not a valid test if the observed data is generated by equilibrium 

behavior other than that of case 1a-b). 

 

 Equilibria with Randomization over Low-level Offenses: 

2a) For each r, motorists of type (0, r) randomize between N and L (i.e. choose P*(GL | 0, 

r) є (0, 1) and P*(GH | 0, r) = 0), while motorists of type (1, r) play H (i.e. choose P*(GH | 

0, r) = 1 and P*(GL | 0, r) = 0); the police set γ*(0, r) є (0, 1) and γ*(1, r) = 1 

2b) For each r, motorists of type (0, r) play H (i.e. choose P*(GH | 0, r) = 1 and P*(GL | 0, 

r) = 0), while motorists of type (1, r) randomize between N and L (i.e. choose P*(GL | 0, 

r) є (0, 1) and P*(GH | 0, r) = 0); the police set γ*(0, r) = 1 and γ*(1, r) є (0, 1) 

 

Here, a subset of motorists (identifiable to the police but not to the econometrician) are playing a 

strategy of always carrying a large quantity of drugs (i.e. committing H). For these motorists, a 

comparison of probabilities of guilt across races will not be informative about police prejudice. 

This is because, by assumption, tW, tA є (0, 1); hence, γ*(c, W) = γ*(c, A) = 1 is consistent with 

any admissible tW and tA. In this setting, a valid test for prejudice requires omitting all 

observations where a motorist is found guilty of H, and testing for the equality of probabilities of 

guilt (of offense L) for the remaining sample. 
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 Equilibria with Randomization over High-level Offenses: 

3a) For each r, motorists of type (0, r) play L (i.e. choose P*(GL | 0, r) = 1 and P*(GH | 0, 

r) = 0), while motorists of type (1, r) randomize between N and H (i.e. choose P*(GH | 0, 

r) є (0, 1) and P*(GL | 0, r) = 0); the police set γ*(0, r) = 1 and γ*(1, r) є (0, 1) 

3b) For each r, motorists of type (0, r) randomize between N and H (i.e. choose P*(GH | 

0, r) є (0, 1) and P*(GL | 0, r) = 0), while motorists of type (1, r) play L (i.e. choose 

P*(GL | 0, r) = 1 and P*(GH | 0, r) = 0); the police set γ*(0, r) є (0, 1) and γ*(1, r) = 1 

 

This represents the case where a subset of motorists always carry a small quantity (i.e. commit 

L). Thus, a valid test for prejudice requires omitting all observations where a motorist is found 

guilty of L, and testing for the equality of probabilities of guilt (of offense H) for the remaining 

sample. 

 

4) Empirical Analysis 

 The data used by KPT were collected as part of a lawsuit settlement between the ACLU 

and the Maryland State Police. The settlement required the state to maintain detailed records on 

motorist searches and to file quarterly reports with the court and the ACLU. The data contains 

1,590 observations on all motor vehicle searches on a section of Interstate 95 in Maryland. The 

data provide information on the race and gender of the driver; the make, model, and year of the 

automobile; date, time, and location of the search, and finally whether any controlled substances 

are found and if found the amount and type.10   

 Our model differs from KPT in two ways: 1) Police do not always observe potential 

offenders and as a result some types may offend with certainty, and 2) Potential offenders choose 

between two levels of offense and different types may separate over these offense levels. The 

empirical tests arising from these extensions suggest stratifying the sample by guilt severity for 

those that offend.11 Therefore, the first task of this paper is to choose a stratification of offenses. 

                                                 
10 After obtaining permission from the Maryland Chapter of the American Civil Liberties Union, John Knowles 
provided us with the complete sample used in KPT. 
11 It should be noted that our empirical analysis focuses on the case where there are multiple levels of offenses, as 
well as imperfect observability. When the offense is homogeneous, and imperfect observability may lead to 
equilibria with some nonrandomizing agents, a valid test for prejudice is not available given the data limitations. In 
particular, information about the distribution of c across races is required. The multiple level of offense extension 
addresses this problem by providing predictions about sorting over offense type that can be used to infer information 
about c. 
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In their empirical analysis, KPT apply increasingly more stringent definitions of guilt starting 

with any controlled substance (Guilt 1), eliminating offenses involving amounts marijuana less 

than 2 grams (Guilt 2), eliminating offenses involving marijuana only (Guilt 3), and finally only 

considering offenses involving felony amounts of contraband. Using these definitions of guilt, 

KPT found no evidence of racial prejudice against African-Americans. Guilt frequencies were 

nearly identical for white and African-American motorists over all offenses, and after dropping 

offenses involving small quantities of marijuana they found higher rates of guilt among African-

Americans suggesting reverse discrimination by state police. 

 Table 1 presents a similar breakdown of offenses. The sample contains 1473 searches of 

white and African-American motorists of which 1007 or 68 percent are of African-American 

motorists. The first two columns show the distribution of searches by race over offense category.  

The first row is the fraction of searches for which no contraband was found. The next three rows 

represent the fraction of searches where misdemeanor offenses were identified involving small 

amounts of marijuana, larger, non-felony amounts of marijuana, and hard drugs, respectively. 

The final category shows the fraction of searches locating felony amounts of contraband. 

The racial pattern of offenses is striking. Although no racial differences in the likelihood 

of guilt exist overall, African-Americans are more likely to be guilty of felonies, and whites have 

higher guilty rates on misdemeanors for any of the three offense categories. Columns three and 

four show the frequency of guilt divided between misdemeanors and felony. African-Americans 

have a 6 percentage point lower guilty rate for misdemeanors overall and a 9 percentage point 

higher guilty rate for felonies. Racial differences in the pattern of guilt are statistically significant 

with less than a 0.001 chance of error for both the modified KPT categorization and the 

categorization of offenses into felony and non-felony.   

 Our theoretical analysis suggests that KPT’s strategy of simply dropping low level 

offenses is not necessarily an appropriate way to handle offense heterogeneity. In fact, the 

identification of an appropriate strategy depends upon the type of equilibrium arising in the 

economy. Under the assumptions that equilibria 1a-b hold, where all types randomize, and that 

the police return to identifying guilty motorists does not vary by level of guilt, the appropriate 

test is the primary test provided by KPT where overall frequencies of guilt are compared for 

white and African-American motorists. Table 2 Panel A shows the results for these tests overall 

and by gender. African-Americans have a three percentage point higher guilty rate overall, but 
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the difference is not statistically significant. No meaningful racial difference exists in the 

frequency of guilt for African-American males, but a 22 percentage point difference in guilty 

rates, which is statistically significant at the 2 percent level, for females suggests prejudice 

against white females or reverse discrimination.   

 On the other hand, if equilibria 2a-b or 3a-b are assumed to describe the behavior of 

motorists and police, one type of motorist will randomize and the other type will offend with 

certainty. Under these circumstances, the correct strategy is to compare frequency of guilt after 

dropping the type that offends with certainty, which can be accomplished by simply dropping the 

offense level that is chosen by the type that offends with certainty. In equilibria 2a-b, some types 

of motorists commit high level offenses or felonies with certainty while in equilibrium 3a-b, 

some types commit low level offenses with certainty. In each of these equilibria, some types 

randomize, and an unbiased test for prejudice can be obtained from a sample consisting only of 

these types. For equilibria 2a-b, since certain types commit high level offenses with certainty, 

those types are never not guilty or guilty of low level offenses, a sample consisting only of those 

types that are randomizing is obtained by dropping those that are guilty of high level offenses. 

Similarly, a sample consisting only of those types that are randomizing is obtained in equilibria 

3a-b by dropping those guilty of low level offenses. 

 Panels B and C of Table 2 show the results for these alternative tests of prejudice. If some 

types commit high level infractions or felonies with certainty (equilibrium 2a-b), whites have a 4 

percentage point higher rate of guilt overall, but this result only exhibits very weak statistical 

significance at the 12 percent confidence level. It should be noted, however, that this difference 

represents a 7 percentage point change in the guilt frequency differences when compared to the 

results from panel A. For equilibria 3a-b, whites have a 13 percentage point lower guilty 

frequency, providing evidence of reverse discrimination with a high level of statistical 

significance. The shift from equilibria 1a-b to equilibria 3a-b also shifts the estimated difference 

by 7 percentage points, but in the opposite direction as the shift to equilibria 2a-b. While formal 

approaches do not exist to compare estimates across potential equilibria, these seven percentage 

point differences are quite meaningful given that KPT and this paper often find racial differences 

of 5 to 6 percentage points to be statistically significant. 

This stratification also affects the empirical implications for the male and female 

subsamples. For the male subsample, the differences increase to 5 percentage points and are 
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statistically significant at the 6 percent level. Racial differences for the female subsample falls to 

9 percentage points and are not statistically significant. On the other hand, for equilibrium 3a-b), 

whites have a lower rate of guilt overall and in both the male and female subsamples with 

differences ranging between 10 and 24 percentage points, and these results are statistically 

significant at better than the 0.1 percent level. 

Clearly, the interpretation of data depends strongly on assumptions concerning the form 

of equilibria. An assumption that equilibrium 2a-b holds reverses the findings of no prejudice 

against African-American males and eliminates the finding of prejudice against white females. 

On the other hand, the results for equilibrium 3a-b imply the exact opposite finding reverse 

discrimination against white males and maintaining the finding of reverse discrimination against 

white females. 

 In an attempt to shed more light on these issues, we continue our empirical analysis in 

order to examine whether some additional forms of equilibria can be ruled out by the data.   

Specifically, the supplementary analysis considers variables in the sample that might provide a 

proxy for the police’s assessment of a potential offenders return to offending (c). Based on the 

theoretical model, any variable that is correlated with the return to offending will be correlated 

with offenders’ level of guilt. The level of guilt comparison must be made conditional on the 

guilt of individual searched in order to assure that the proxy variables are chosen based on their 

relationship with offense level rather than a relationship with the likelihood of guilt. 

Two such variables are vehicle type, which is divided between vehicles that are owned by 

the motorist and those that are owned by a third-party, and time of day, which is divided between 

the periods of 6 AM to 4 PM (workday) and 4 PM to 6 AM (other times).  The fraction of all 

offenses that are felonies are 35 percentage points higher for third-party than owned vehicles and 

almost 10 percentage points lower for the workday period than the rest of the day.  Both 

differences exhibit a high level of statistical significance (see Table 3). 

 Table 3 also shows the fraction guilty and the fraction African-American by both vehicle 

type and time of day. While guilt frequencies do not vary by vehicle type, the frequency of guilt 

is more than 5 percentage points lower during the workday, and the differences are statistically 

significant at the 2 percent level. This finding is not consistent with either the KPT model nor 

with a fully randomizing equilibrium in our model. These differences can only be explained if 

either some types offend with certainty or the police return to search varies by type of offense. 
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Finally, both of these proxy variables are highly correlated with race. In the sample of searched 

vehicles, third party vehicles are 18 percentage points more likely to be driven by African-

American motorists as compared to vehicles that are owned by the motorists.  Similarly, searches 

that are conducted during the workday period are 9 percentage points less likely to involve 

African-American motorists. 

 Table 4 presents additional tests under the assumption that either equilibria 2a-b or 3a-b 

hold and that either vehicle type or time of day provides a reasonable proxy for the potential 

offender type that determines both offender and police search behavior. Stratification by the 

proxy variable should shift the proportion of the sample either away from or towards types who 

offend with certainty and as a result either reduce or increase the bias in the traditional KPT test 

for prejudice. For vehicle type, the own vehicle sample should have lower bias under equilibrium 

2a-b than the unconditional guilt frequency test of KPT, and the third-party sample should have 

lower bias under equilibrium 3a-b.   

The results provide a partial confirmation of the findings in Table 2.  The own-vehicle 

sample does not provide any evidence of prejudice against African-Americans as was found in 

Table 2 for equilibrium 3.  The third-party sample, however, identifies a 13 percentage point 

higher rate of guilt for African-Americans, which is consistent with the Table 2 results for 

equilibrium 4 and implies reverse discrimination against whites. Of course, the test for 

equilibrium 3 may have weak power because the own vehicle subsample contains most of the 

overall sample and the fraction of felony offenses only fell by about 6 percentage points from 28 

in the full sample to 22 in the own vehicle subsample.  On the other hand, the fraction of felony 

offenses is almost 30 percentage points higher in the third-party vehicle than in the overall 

sample. 

 The results for the time of day variable, however, are quite at odds with the previous 

findings from Table 2. African-Americans are 7 percentage points more likely to be guilty in 

workday sample, which should have reduced bias under equilibrium 2a-b; and 5 percentage 

points less likely to be guilty in the other time sample, which should have reduced bias under 

equilibrium 3a-b.  The racial differences are only statistically significant for the workday sample, 

but regardless the results imply reverse discrimination against whites for equilibrium 2a-b and at 

least suggest prejudice against African-Americans for equilibrium 3a-b.  On the other hand, 

Table 2 provided strong evidence of reverse discrimination under the assumption that 
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equilibrium 3a-b held, as well as some evidence of prejudice under equilibrium 2a-b.  

Conditional on the earlier assumptions in the model, this contradiction suggests that the data is 

not consistent with equilibria where some types offend with certainty. 

 In summary, the results for own vehicle do not provide any more information than Table 

2.  Guilt frequencies do not vary across vehicle type, which is consistent with the assumptions of 

equilibria where all types randomize and of equal returns to police across offense types.  The 

stratification analysis is also broadly consistent with the findings in panels B and C after 

accounting for the weak power provided by the own vehicle subsample.  Therefore, vehicle type 

does not allow us to rule out any of the equilibria considered in the paper. 

 On the other hand, given the maintained assumptions in the model, the results for time of 

day are inconsistent with all of the equilibria forms considered.  Equilibria 1a-b are rejected 

because guilty rates are not equal across the time of day variable that is clearly observable to 

police.  Equilibria 2a-b and 3a-b are rejected because the analyses in Tables 2 and 4 are 

contradictory.  If the behavior of agents is described by either equilibria 2a-b or 3a-b, Table 2 

provides unbiased tests for prejudice, and the stratification by time of day in Table 4 should 

reduce the magnitude of the bias in the test relative to the KPT test based on unconditional guilt 

frequencies.  This stratification produces racial differences in guilt that are further away from the 

Table 2 Panel B and C estimates as compared to the KPT estimates in Panel A. These findings 

suggest that one or more of the maintained assumptions in the theoretical model are incorrect. 

 One assumption imposed in the multiple offense level model is that the return to police is 

the same across offense types. Guilt rates are over 5 percentage points lower during the workday.  

This finding can be explained if return varies by offense type.  The finding, however, is 

consistent with a model where police accept a lower frequency of successful searches, guilt rate, 

during the workday in exchange for higher return from the offense type that is more common 

during the workday. Therefore, the empirical relationship between time of day and guilt can only 

be explained by differences in the return to offense type if we accept the counter-intuitive 

implication that police value misdemeanor arrests more than felony arrests. 

 Another alternative explanation might involve the assumption that the cost of search is 

not same between workday and other times. Specifically, in order to be consistent with the 

findings, the cost of search would have to be lower during the workday and as a result police 

accept in equilibrium both lower rates of felony arrests and lower rates of guilt overall from 
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those searches. This assumption appears more reasonable than the higher return to misdemeanors 

assumption. In fact, the frequency of guilt does not differ by type of vehicle, which is predicted 

by the model if separate randomizing equilibria exist during the workday and other times.  

Nonetheless, identifying appropriate interpretations of these findings is dramatically more 

problematic under the possibility that both search costs may vary over observables and returns to 

arrests vary by type of offense. 

 

5) Conclusion 

This paper seeks to contribute to the literature on performance-based measures of 

discrimination. In particular, we have reexamined the theoretical and empirical framework 

developed by Knowles, Persico and Todd (2001) to analyze racial bias in motor vehicle searches. 

We have generalized the KPT model to account for the possibility that potential offenders are not 

always observed by the police, and by including two different levels of offense severity. While 

these extensions are quite straightforward, they lead to the existence of multiple types of 

equilibria, including some in which potential offenders do not randomize, but rather offend with 

certainty. The validity of KPT’s simple empirical test for prejudice depends crucially on which 

of these types of equilibria prevail, as well as on a number of other maintained assumptions. Our 

empirical analysis shows that the data used by KPT (on motor vehicle searches in Maryland) is 

consistent with prejudice against African-American males, with no prejudice, and with reverse 

discrimination, depending on which equilibrium is being played. Additional analysis using the 

time of day that searches were carried out casts doubt on the consistency of the data with any of 

these equilibria and/or with the maintained assumptions of the model. 

The theoretical model in Knowles, Persico, and Todd (2001) is elegant and appears to 

offer a simple solution to the very difficult problem of omitted variables bias in analyses of 

discrimination in policing. Their model also might have formed the basis for resolving debates 

concerning the existence of discrimination in other markets, such as the labor or mortgage 

markets. The results presented above suggest, however, that theory is unlikely to solve the 

omitted variables problem often associated with tests for racial prejudice and discrimination in 

law enforcement or in any other markets.  An alternative solution to these problems is to 

determine the factors considered by police during their patrols and undertake efforts to generate 

information on the distribution of these attributes in the relevant population of motorists.  
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Potential strategies for gathering such information might include the use of traditional trip diaries 

(Scott and Kanaroglou, 2002) or random monitoring of roadways to record the incidence of 

factors that might lead to police stops. 

More recent work by Persico (2002) suggests that even when the randomizing 

equilibrium studied by KPT exists, it may not lead to a socially optimal outcome in terms of 

minimizing crime. The underlying assumption about police behavior is that it involves 

maximizing the probability of arrest (i.e. the number of successful searches), rather than 

minimizing the amount of crime. Hence, the search intensities for each race are chosen by the 

police to equate guilt rates, and are independent of the elasticities of crime to police auditing.12 

Thus, Persico argues that if W’s are more responsive to policing than are A’s, there is no conflict 

between the goals of greater fairness (i.e. reducing disparities in the search probabilities across 

races) and crime minimization.  While the basic intuition of Persico’s results may be robust to 

extensions of the model, both the theoretical and empirical analysis in this paper suggests that an 

evaluation of the efficiency of reducing racial disparities in search requires consideration of 

many more factors than just the elasticity of crime. 

                                                 
12 This feature pertains specifically to the model in Persico (2002), and does not apply to the broader KPT 
framework. 
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Table 1:                                      Guilt Probabilities by Race 

KPT’s Offense Categories Misdemeanor vs. Felony Definitions of 
Guilt Black White Black1 White 
Not Guilty 66.1 69.1 66.1 69.1 
Small Amount 7.9 9.9   
Marijuana Only 10.9 13.9 21.9 27.9 
Hard Drugs  3.1 4.1   
Felony 12.0 3.0 12.0 3.0 
Sample Size 466 1007 466 1007 
Chi-Square Test <0.001 <0.001 
1.  The entry in the third row contains the faction of all non-felony offences. 
 
Table 2:                       Tests for Prejudice by Type of Equilibrium 
 Full Sample Male Subsample Female Subsample 
Panel A:  Everyone Randomizes - KPT (Equilibria 1a-b) 
     White Fraction Guilty 30.9 31.8 22.0 
     Black Fraction Guilty 33.9 33.1 44.0 
     Chi-Square Test 0.261 0.640 0.018 
Panel B:  Felonies Committed with Certainty (Equilibria 2a-b) 
     White Fraction Guilty 28.8 29.6 20.0 
     Black Fraction Guilty 24.8 24.6 28.8 
     Chi-Square Test 0.122 0.056 0.322 
Panel C:  Misdemeanors Committed with Certainty (Equilibria 3a-b) 
     White Fraction Guilty 4.2 4.3 3.0 
     Black Fraction Guilty 15.2 14.4 27.6 
     Chi-Square Test >0.001 >0.001 0.004 
Sample Size 1473 1357 116 
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Table 3:       Offense Type, Guilt, and Race Frequencies by Observable Attribute 

Vehicle Type Time of Day  
Own Third-Party Workday Other Times 

Share of Observations 82.1 17.9 52.8 47.2 
Sample Size 1209 264 778 695 

 
Fraction Felony Offenses  21.7 57.1 23.0 32.4 
Chi-Square Test >0.001 0.021 

 
Fraction Guilty 33.2 31.4 30.2 35.8 
Chi-Square Test 0.588 0.022 

 
Fraction Black 65.1 83.3 64.0 73.2 
Chi-Square Test >0.001 >0.001 
 
 
 
Table 4:                     Tests for Prejudice based by Observable Attributes 

Type of Vehicle Time of Day Definitions of Guilt 
Own Vehicle Third-Party Workday Other Times 

White Fraction Guilty 32.0 20.5 25.7 38.7 
Black Fraction Guilty 33.8 33.6 32.7 33.8 
Chi-Square Test 0.524 0.086 0.041 0.338 
 
 




