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Abstract
Under what conditions are lexicographically representable preferences con-

tinuously representable? This question is actually two questions, since there are
two natural definitions of continuity for lexicographic representations. A com-
plete answer is given for one of these questions, and the other is answered for
two-dimensional lexicographic representations.
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1. Introduction

Most of the work in Debreu’s (1964) characterization of preferences representable by a

continuous utility function involves showing that every binary relation that can be repre-

sented by a utility function can be represented by a continuous utility function. Theorems

1 and 2 below address the related question of continuous representability for lexicograph-

ically representable preferences.

The lexicographic order on �n favors one point of �n over another if the points are

distinct and, in the first coordinate at which they differ, the first point exceeds the second.

It is sometimes argued that a reasonable individual’s preferences cannot be lexicographic,

since reasonable preferences should be representable by a utility function. This argument

cannot be made for group preferences. Suppose a group employs a reasonable decision-

making procedure–voting–each time it is presented with a pair of alternatives from �n.

Then, even if each member of the group holds preferences generated by a utility function,

the group’s preferences might be lexicographic, Paretian or even cyclic.

A lexicographic representation for preferences over a set X is a function from X to �n

ordered by the lexicographic order that preserves preference and indifference. Consider a

team of n executives, each of whom holds preferences governed by a utility function over

a set X . Each day the top executive is presented with a pair of alternatives from X and is

asked to choose one. She does so unless she is indifferent between the two alternatives, in

which case she passes the choice on to her second in command. The procedure is repeated

until the choice is made or the pair has been passed by all n executives. Depending on

the individual preferences of executives, the team preferences as defined by the decision

procedure may or may not be representable by a utility function, but the team preferences

do have a lexicographic representation. The required function from X to �n has as its ith

coordinate function the ith executive’s utility function.

A preference representation provides a conceptual handle for an individual’s or group’s

preferences by embedding those preferences in another better-known preference profile,

such as > on �, the lexicographic order on �n or the Pareto relation on �n. Adding

continuity further enhances understanding. A continuous lexicographic order provides not
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only a portrait of preference but also a portrait of closeness of alternatives. In addition,

continuity can be a useful technical tool; it can for example be helpful in determining

which subsets of a set of alternatives contains a maximally preferred element.

A lexicographic representation is said to be continuous if it is continuous as a function

from X with the given order topology to �n with the lexicographic order topology; it is

said to be coordinate continuous if its coordinate functions are continuous functions from

X with the given order topology to � with the Euclidean topology. Propositions 1 and

2 below concern these definitions, and serve as the basis for a short discussion comparing

the two definitions.

The main results of this paper comprise easy tests of the continuous representability

of lexicographic preferences: lexicographically representable preferences are continuously

representable if and only if they are locally utility representable (Theorem 1); and prefer-

ences lexicographically represented in �2 are coordinate-continously representable if and

only if the points at which they are not locally utility representable satisfy two countability

conditions to be introduced below (Theorem 2).

Theorems 1 and 2 can be thought of as modules that can be combined with any

lexicographic representation existence theorem (such as Knoblauch [2000]) to obtain a

continuous lexicographic representation existence theorem and a coordinate continuous

lexicographic representation existence theorem.

Lexicographic preferences appear in both theoretical and empirical studies. Fishburn

(1975) characterizes lexicographic orders axiomatically. Binmore and Samuelson (1992)

study games wherein a player’s utility is lexicographic in his payoff and the simplicity

of the strategy he chooses. As an example of an empirical study, Jensen (1990) tests

fertility decisions to determine whether preferences are lexicographic with old-age security

as the primary deciding factor. Most recently, Hougaard and Tvede (2001) use generalized

lexicographic relations to construct an example of an economy with continuous demand

functions that nevertheless does not possess equilibria.

The paper is organized as follows. Section 2 consists of preliminaries, a discussion of

two definitions of continuity for lexicographic representations, and the statements of two

theorems on the existence of continuous lexicographic representations. Section 3 contains
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four examples illustrating the theorems, which are proven in Section 4.

2. Statement of Results

A binary relation on a set X is a subset of X × X . If � is a binary relation on X ,

< x, y >∈ � will be written x � y. If � is a binary relation on X , then �∼ and ∼ are

the binary relations defined by x�∼y if not(y � x) and x ∼ y if x�∼y�∼x. For x ∈ X let

W (x) = {y ∈ X : x � y} and let B(x) = {y ∈ X : y � x}.
The �-order topology on X is the topology generated by the subbasis consisting of all

sets W (x) and all sets B(x) where x is allowed to vary over X .

The lexicographic order >L on �n is defined by x >L y if there exists k ∈ {1, 2, . . . , n}
such that xi = yi for i < k, and xk > yk.

A lexicographic representation for a binary relation � on a set X is a function v: X →
�n such that , for x, y ∈ X , x � y if and only if v(x) >L v(y).

A lexicographic representation is continuous if it is continuous as a function from X

with the �-order topology to �n with the lexicographic order topology.

A binary relation � on X is locally utility representable at x ∈ X if there is an open

O ⊆ X with x ∈ O such that � |O has a utility representation. Here � |O is � ∩ (O×O),

the restriction of � to O. Also, � is locally utility representable if it is locally utility

representable at x for every x ∈ X .

Theorem 1. A lexicographically representable binary relation has a continuous lexico-

graphic representation if and only if it is locally utility representable

A preference representation v: X → �n is coordinate continuous if for each i ∈
{1, 2, . . . , n} vi is a continuous function from X with the �-order topology to � with

the Euclidean topology.

A binary relation � on X is one-sided locally utility representable at x ∈ X if there is

an open O ⊆ X with x ∈ O such that either � |O∩W (x) or � |O∩B(x) can be represented

by a utility function. Also, � is exactly one-sided locally utility representable at x if � is

one-sided locally utility representable at x, but not locally utility representable at x.
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Theorem 2. A binary relation � on X with a lexicographic representation v: X → �2

has a coordinate continuous lexicographic representation if and only if

a. the set of elements of X at which � is exactly one-sided locally utility representable

has only countably many ∼-equivalence classes.

b. there is a nested sequence < Ak > of open subsets of X such that
⋂+∞

k=1 Ak is the set

of elements of X at which � is not locally utility representable.

Four examples will serve to illustrate the theorems, but first two propositions will

facilitate a comparison of continuity and coordinate continuity.

Proposition 1. A preference representation v: X → �n for � on X is coordinate contin-

uous if and only if it is continuous as a function from X with the �-order topology to �n

with the Euclidean topology.

Proof. Suppose v is coordinate continuous and O ⊆ �n is open in the Euclidean topology.

Then O is a union of sets of the form I1× I2× . . .× In where each Ii is an open interval in

�. Then v−1(I1 × I2 × . . .× In) =
⋂n

i=1 v−1
i (Ii) which is open. Therefore v−1(O) is open

which implies v is continuous as a function from X to �n with the Euclidean topology.

Now suppose v is continuous as a function from X to �n with the Euclidean topology,

O is an open subset of � and i ∈ {1, 2, . . . , n}. Then v−1
i (O) = v−1(�×. . .×�×O×�×. . .×

�) where O occurs in the ith factor. Since v is continuous, v−1(�×. . .×�×O×�×. . .×�)

is open so that v−1
i (O) is open and v is coordinate continuous.

Proposition 2. A continuous lexicographic representation is coordinate continuous.

Proof. Suppose v: X → �n is a continuous lexicographic representation for � on X and

O ⊆ �n is open in the Euclidean topology. Then O is open in the lexicographic order

topology, since r ∈ O implies the existence of a, b ∈ � such that r ∈ O′ =

{< r1, r2, . . . , rn−1, s >: a < s < b} ⊆ O. Since v is continuous, v−1(O) is open. This

proves that v is continuous as a function from X to �n with the Euclidean topology. By

5



Proposition 1, v is coordinate continuous.

Proposition 1 can be used to argue that, for lexicographic representations, coordinate

continuity is a less appropriate concept than continuity; a lexicographic representation

links a binary relation � with the lexicographic order on �n, so it is reasonable that

continuity for a lexicographic representation should link the �-order topology on �n with

the lexicographic order topology on �n, not with the Euclidean order topology on �n.

On the other hand, coordinate continuity suggests the executive team scenario of

Section 1, with the added feature that each executive has preferences represented by a

continuous utility function. Under this scenario coordinate continuity seems to be an

appropriate definition of continuity for lexicographic representations.

Notice that coordinate continuity requires that each executive’s utility function is

continuous as a function from X with the given �-order topology, not merely as a function

from X with the order topology generated by the executive’s own preferences.

This third form of continuity could be called weak coordinate continuity . There are

two reasons for not further considering weak coordinate continuity. First, the relationship

between a given binary relation � and the topology on X generated by a coordinate of

a lexicographic representation for � could best be described as tenuous. Second, by De-

breu (1964) every lexicographically representable binary relation has a weakly coordinate-

continuous lexicographic representation. Therefore there is no need for a theorem char-

acterizing lexicographically representable binary relations that are weakly coordinate-

continuously lexicographically representable, and consequently no need for examples il-

lustrating such a theorem.

3. Four Examples.

The following examples illustrate Theorems 1 and 2.

The binary relation of Example 1 has neither a continuous nor a coordinate-continuous

lexicographic representation.
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Example 1. Let X = (0, 1] × {0, 1} ⊆ �2 and define � on X by x � y if x >L y.

Obviously v(x) = x is lexicographic representation for �.

First if r ∈ (0, 1] then O = W (< r, 1 >) is open, < r, 0 >∈ O and O∩B(< r, 0 >) = ∅
so that, trivially, > |O∩B(<r,0>) can be represented by a utility function.

Next suppose r ∈ (0, 1], O ⊆ X is open, < r, 0 >∈ O and Q ⊆ O is �-dense in O,

that is, for x, y ∈ O, x � y implies x�∼q � y for some q ∈ Q. Choose s ∈ (0, r) such that

B(< s, 0 >) ∩ W (< r, 0 >) ⊆ O. For each t ∈ (s, r), < t, 1 >�< t, 0 >, < t, 1 >∈ O

and < t, 0 >∈ O so that < t, 1 > �∼q � < t, 0 > for some q ∈ Q. Then < t, 1 >= q.

Therefore (s, r) × {1} ⊆ Q which means Q is uncountable. Since every �-dense subset of

Q is uncountable, by Debreu (1964), � |O cannot be represented by a utility function.

The previous two paragraphs demonstrate that � is exactly one-sided locally utility

representable at each point of {< r, 0 >: r ∈ (0, 1]}. But clearly for this example if x 	= y

then it is not the case that x ∼ y. Therefore {< r, 0 >: r ∈ (0, 1]} has uncountably

many ∼-equivalence classes. By Theorem 2, condition (a), � does not have a coordinate-

continuous lexicographic representation. By Theorem 1 or Proposition 2, � does not have

a continuous lexicographic representation.

The binary relation of Example 2 has neither a continuous nor a coordinate-continuous

lexicographic representation, but this time it is condition (b) of Theorem 2 that is violated.

Example 2. Let X = Q× {0} ∪ J × (−1, 1) ⊆ �2 where Q is the set of rationals in (0, 1)

and J is the set of irrationals in (0, 1). Define � on X by x � y if x >L y. Obviously

v(x) = x is a lexicographic representation for �.

If < j, t >∈ J × (−1, 1), then � is locally utility representable at < j, t > since

v|{j}×(−1,1) is a utility function representing � |{j}×(−1,1).

If < q, 0 >∈ Q × {0}, then by an argument like that in Example 1, � is not locally

utility representable at < q, 0 >.

Suppose < Ak > is a nested sequence of open subsets of X such that Q×{0} ⊆ Ak for

all k. Then < Ok >=<Interior (Ak ∩ (0, 1) × {0}) > is a nested sequence of open subsets

of (0, 1) × {0} such that Q × {0} ⊆ Ok for all k.
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By the Baire Category Theorem, ∩+∞
k=1O

k 	= Q×{0} [Dugundji (1966),p.249]. There-

fore ∩+∞
k=1A

k 	= Q × {0}. Since condition (b) of Theorem 2 cannot be met, � has no

coordinate-continuous lexicographic representation. By Proposition 2 or Theorem 1, �
has no continuous lexicographic representation.

The binary relation of Example 3 has both a continuous and a coordinate continuous

lexicographic representation.

Example 3. Let X = [0, 1] × (0, 1) ∪ {< 1, 1 >} ∪ (2, 3] × {0} ⊆ �2. Define � on X by

x � y if x >L y. Obviously v(x) = x is a lexicographic representation for �.

Is � locally utility representable? If y ∈ [0, 1] × (0, 1), let O = {y1} × (0, 1) and let

u(x) = x2. If y ∈ (2, 3] × {0} let O = (2, 3] × {0} and let u(x) = x1. If y =< 1, 1 >, let

O = {1} × (0, 1] ∪ (2, 3]× {0} and let

u(x) =
{

x2 if x1 = 1;
x1, if x2 = 0.

Since � is locally utility representable, by Theorem 1 � has a continuous lexicographic

representation.

The procedure that will be introduced in the proof of Theorem 1 (⇐) produces the

following continuous lexicographic representation for �:

V (x) =
{

x if 0 ≤ x1 ≤ 1;
< 1, x1 − 1 > if 2 < x1 ≤ 3.

By Proposition 2, v(x) is also a coordinate-continuous lexicographic representation

for �.

The binary relation of Example 4 has a coordinate continuous, but not a continuous,

lexicographic representation.

Example 4. Let X = (0, 1) × (0, 1) ∪ {< 1, 0 >}. Define � on X by x � y if x >L y.

Obviously v(x) = x is a lexicographic representation for �.

By the argument used in Example 1, � is not locally utility representable at < 1, 0 >.

By Theorem 1, � does not have a continuous lexicographic representation.
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If y ∈ (0, 1) × (0, 1), let O = {y1} × (0, 1) and let u(x) = x2. This shows that � is

locally utility representable at every y ∈ X − {< 1, 0 >}. Therefore � satisfies condition

(a) of Theorem 2.

For each positive integer k, let Ak = {x ∈ X : x1 > 1 − 1
k}. Then < Ak > is a nested

sequence of open subsets of X such that ∩+∞
k=1A

k = {< 1, 0 >} so that � satisfies condition

(b) of Theorem 2.

By Theorem 2, � has a coordinate continuous lexicographic representation. The

procedure that will be introduced in the proof of Theorem 2 (⇐) produces the following

coordinate continuous lexicographic representation for �:

V (x) =
{

< x1, x2(1 − x1) > for 0 < x1 < 1;
< 1, 0 > for x =< 1, 0 >.

4. Proofs of Theorems 1 and 2.

Proof of Theorem 1 (⇒).

Suppose � is a binary relation on X , v: X → �n is a continuous lexicographic

representation for � and x ∈ X .

Let U = {< v1(x), v2(x), . . . , vn−1(x), rn >: rn ∈ �}.
Let O = v−1(U). Since v(x) ∈ U , x ∈ O. Since U is open in the >L-order topology

and v is continuous, O is open. If y, z ∈ O then y � z if and only if v(y) >L v(z) if and

only if vn(y) > vn(z). This establishes vn|O as a utility function for � |O. Therefore � is

locally utility representable.

Proof of Theorem 1 (⇐).

The proof proceeds by induction on n. When n = 1, that is, when �n = �1, a

lexicographic representation is a utility function. By Debreu (1964) every binary relation

represented by a utility function can be represented by a continuous utility function.

Suppose that n > 1.

Induction Hypothesis: If a binary relation is locally utility representable and has a lexico-

graphic representation from X to �n−1, then it has a continuous lexicographic represen-
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tation from X to �n−1.

Suppose also that � is a locally utility representable binary relation on X and v: X →
�n is a lexicographic representation for �.

Fix r ∈ �. Let

D(r) = {s ∈ �: s ≥ r and � |v−1
1 ([r,s]) has a lexicographic representation

vs: v−1
1 ([r, s]) → �n−1}.

Then D(r) = [r, d] for some d ≥ r or D(r) = [r, +∞] or D(r) = [r, d) for some d > r

or D(r) = ∅.
The alternative D(r) = ∅ is not possible since, writing v−1 for (v2, v3, . . . , vn),

v−1|v−1
1 ([r,r]) is an n − 1 dimensional lexicographic representation for � |v−1

1 ([r,r]).

To see that the alternative D(r) = [r, d) is not possible, suppose r = d1 < d2 < . . . < d;

dk → d; for k a positive integer, vk: v−1
1 ([r, dk]) → (1 − 1/k, 1 − 1/(k + 1)) × �n−2 is a

lexicographic representation for � |v−1
1 ([r,dk]); and v−1: X → (1, 2) ×�n−2. Then

v∗(x) =




vk(x) if x ∈ v−1
1 ([dk, dk+1))

v−1(x) if x ∈ v−1
1 ({d}).

is an n − 1 dimensional lexicographic representation for � |v−1
1 ([r,d]).

In summary, D(r) = [r, d] for some d ≥ r or D(r) = [r, +∞). In addition, � |v−1
1 (D(r))

has an n − 1 dimensional lexicographic representation: if D(r) = [r, d], an n − 1 dimen-

sional representation exists by the definition of D(r); if D(r) = [r, +∞), mimicking the

construction of v∗ produces an n − 1 dimensional representation.

Next define

C(r) = {s ∈ �: s ≤ r and � |v−1
1 ([s,r]) has an n − 1 dimensional lexicographic

representation}.

If E(r) = C(r)∪D(r), then E(r) is a closed interval; that is, E(r) = [c, d], [c, +∞), (−∞, d]

or (−∞, +∞), where c ≤ r ≤ d. Also, � |v−1
1 (E(r)) has an n − 1 dimensional lexicographic

representation.
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If r, s ∈ � and E(r) ∩ E(s) 	= ∅, then it can be shown that E(r) = E(s) using a con-

struction that resembles the construction of v∗, but splices together only two functions.

For example if a ∈ E(r)∩E(s), b ∈ E(r) and b < a < s, then an n− 1 dimensional lexico-

graphic representation for � |v−1
1 ([b,s]) is constructed from n− 1 dimensional lexicographic

representations for � |v−1
1 ([b,a]) and � |v−1

1 ([a,s]). Therefore the E(r)’s form a partition of

�.

Summarizing the proof so far, there is a partition {Eα} of � such that

Each Eα is a closed interval (1)

� |v−1
1 (Eα) has an n−1 dimensional lexicographic representation (2)

If K ⊆ � is an interval and � |v−1
1 (K) has an n − 1 dimensional lexicographic

representation, then K ⊆ Eα for some Eα (3)

The partition {Eα} will now be used to construct a continuous lexicographic repre-

sentation for �. Let

V1(x) =




d if v1(x) ∈ Eα = [c, d] or (−∞, d];
c if v1(x) ∈ Eα = [c, +∞] ;
0 if v1(x) ∈ Eα = (−∞, +∞).

For each Eα, let vα be a continuous n − 1 dimensional lexicographic representation for

� |v−1
1 (Eα). An n − 1 dimensional lexicographic representation exists by (2); and by the

induction hypothesis it can be taken to be a continuous function from v−1
1 (Eα) with the

� |v−1
1 (Eα)-order topology to �n−1 with the lexicographic order topology.

Let (V2(x), V3(x), . . . , Vn(x)) = vα(x) for that α such that v1(x) ∈ Eα. Denote

(V2(x), V3(x), . . . , Vn(x)) by V−1(x).

It remains to show that V = (V1, V−1) is a continuous lexicographic representation for

�.

Since v is a lexicographic representation for �, x � y if and only if v(x) >L v(y).

By the definition of V , v(x) >L v(y) if and only if V (x) >L V (y). Therefore V is a

lexicographic representation for �.

Next suppose r ∈ �n and B(r) = {s ∈ �n: s >L r}. It will be shown that V −1(B(r))

is open.
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Lemma 1. If y�∼x for all y ∈ V −1
1 (V1(x)), then y�∼x for all y ∈ X .

Proof. Suppose y�∼x for all y ∈ V −1
1 (V1(x)) but there is a z ∈ X such that x � z. Since � is

locally utility representable, there exists w ∈ X such that x � w and � |{y∈X: x�∼ y�w} can

be represented by a utility function. Therefore there is an Eα such that (v1(w), v1(x)] ∈
Eα. By (1) [v1(w), v1(x)] ∈ Eα which implies V1(x) = V1(w), contradicting the hypothesis

that y�∼x for all y ∈ V −1
1 (V1(x)).

If V −1(B(r)) contains no �-minimal element, then V −1(B(r)) =
⋃

x∈V −1(B(r)) B(x),

which is open.

If V −1(B(r)) contains a �-minimal element which is also a �-minimal element of X ,

then V −1(B(r)) = X , which is open.

If V −1(B(r)) contains a �-minimal element x0 that is not a �-minimal element of X ,

then, by Lemma 1, x0 is not a minimal element of V −1
1 (V1(x0)).

Therefore V1(x0) = r1 and

V −1
1 (r1) − V −1(B(r)) 	= ∅ (4)

Since V−1|V −1
1 (r1)

is continuous and V −1
1 (r1) ∩ V −1(B(r)) = (V−1|V −1

1 (r1)
)−1(B(r)),

V −1
1 (r1)∩V −1(B(r)) is an open subset of the relative topology on V −1

1 (r1) (5)

By (5) V −1
1 (r1) ∩ V −1(B(r)) = O ∩ V −1

1 (r1) where O is open in the �-order topology on

X . By (4), there exists z0 ∈ V −1
1 (r1) − V −1(B(r)). Let O′ = O ∩B(z0). Then O′ is open

in the �-order topology on X , V −1
1 (r1)∩ V −1(B(r)) = O′ ∩ V −1

1 (r1) and O′ ∩W (x0) = ∅.
Therefore O′ ∪ B(x0) = V −1(B(r)) so that V −1(B(r)) is open.

The following facts establish the continuity of V : V −1(�n) = X is open; V −1(∅) = ∅
is open; V −1(B(r)) has just been shown to be open for all r ∈ �n; V −1(W (r)) is open for

all r ∈ �n by a symmetric argument; the sets B(r) and W (r), r ∈ �n, form a subbasis for

the >L-order topology on �n. .
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Proof of Theorem 2 (⇒). Suppose � has a coordinate-continuous lexicographic repre-

sentation v: X → �2. Let Y be the set of elements of X at which � is exactly one-sided

locally utility representable. Let

YB = {x ∈ Y : there exists open O ⊆ X such that x ∈ O and � |O∩B(x) can

be represented by a utility function}

Suppose condition (a) does not hold; that is, suppose Y has uncountably many

∼-equivalence classes. Without loss of generality, suppose YB has uncountable many equiv-

alence classes.

If e is a ∼-equivalence class of YB and e is not the set of �-maximal elements of X ,

choose a representative element x(e) ∈ e and choose y(e) ∈ X − e such that y(e) � x(e)

and � |B(x(e))∩W (y(e)) has a utility representation. Let

Z = {x(e) ∈ YB: v1(y(e)) = v1(x(e))}.

Since (B(x(e))∩W (y(e))∩(B(x(f))∩W (y(f)) = ∅ if e 	= f , there can be at most countably

many e such that v1(y(e)) > v1(x(e)) and therefore Z is uncountable.

For positive integer k, let

Zk = {x(e) ∈ Z: v2(y(e)) ≥ v2(x(e)) + 1/k}.

Since Z =
⋃+∞

k=1 Zk and Z is uncountable, there exists K such that ZK is uncountable. For

e 	= f , v(x(e)) 	= v(x(f)). Also, for all y ∈ X and all x(e) ∈ ZK , if v1(y) = v1(x(e)), then

v2(y) ≥ v2(x(e)), since x(e) ∈ YB . These facts imply v1(x(e)) 	= v1(x(f)) for x(e), x(f) ∈
ZK and e 	= f . Therefore v1(ZK) is uncountable.

Since v1(ZK) is uncountable, there exits r∗ ∈ v1(ZK) and a sequence < ri > in v1(ZK)

such that ri < r∗ for all i and ri → r∗. If not, for each r ∈ v1(ZK) there would exist a

nonempty open interval (s, r) ⊆ � such that (s, r)∩v1(Zk) = ∅. Then {(s, r): r ∈ v1(ZK)}
would comprise an uncountable collection of mutually disjoint nonempty open intervals in

�.

There is a unique x(e) ∈ ZK such that v1(x(e)) = r∗. Choose < xi > and < yi > in X

such that v1(xi) = v1(yi) = ri for all i and v2(yi) ≥ v2(xi)+1/k for all i. Since x(e) ∈ YB,
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v1(xi) < v1(x) for all i and v1(xi) → v1(x(e)), xi → x(e). Similarly, yi → x(e). But it is

not the case that both v2(xi) → v2(x(e)) and v2(yi) → v2(x(e)), since v2(yi) ≥ v2(xi)+1/K

for all i.

The assumption that YB has uncountably many ∼-equivalence classes has contradicted

the coordinate continuity of v.

It remains to show that condition (b) holds. Let

C = {x ∈ X : � is locally utility representable at x}.

A �-interval of X is a set S ⊆ X such that x, y ∈ S and x�∼y together imply {z ∈
X : x�∼z�∼y} ⊆ S.

Suppose I is a �-interval of X , � |I can be represented by a utility function, I is

maximal with respect to these two properties and I ⊆ C. Let {Iα} be the set of all such

I.

Lemma 2. Each Iα contains at least two ∼-equivalence classes–except in the trivial case

in which X contains only one ∼-equivalence class.

Proof. Suppose x ∈ Iα, y ∈ X and not(x ∼ y). Without loss of generality suppose y � x.

Since x ∈ C, there exists z � x such that � |B(x)∩W (z) can be represented by a utility

function. Then for the �-interval [x, z], � |[x,z] can be represented by a utility function.

By the definition of Iα, z ∈ Iα.

For each S ⊆ X , let

l(S) = sup{
√

(v1(a) − v1(b))2 + (v2(a) − v2(b))2: a, b ∈ S}.

By Lemma 2, l(Iα) > 0 for all Iα except in the trivial case in which X contains only one

∼-equivalence class, which will be ignored from here on.

Suppose Jβ is a �-interval, � |Jβ can be represented by a utility function, Jβ is

maximal with respect to two properties, and Jβ∩Y 	= ∅ (recall that Y is the set of elements

of X at which � is exactly one-sided locally utility representable). Then Jβ contains one
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or two ∼-equivalence classes of Y . For each Jβ , let < Jβ(k) > be a sequence of closed

�-intervals such that Jβ(k) ⊆ Jβ(k + 1) ⊆ Jβ for each k and Jβ − ⋃+∞
k=1 Jβ(k) = Jβ ∩ Y .

Finally, for k a positive integer, let

Ak = (X − C) ∪ (∪l(Iα)<1/kIα) ∪ (∪l(Jβ)<1/kJβ) ∪ (∪l(Jβ)≥1/k(Jβ − Jβ(k)))

Clearly < Ak > is nested; that is, Ak+1 ⊆ Ak.

Since (X − C) ⊆ Ak for all k, X − C ⊆ ⋂+∞
k=1 Ak

Suppose x ∈ C. Then x ∈ Iα for some α or x ∈ Jβ for some β. If x ∈ Iα choose

K such that 1/K < l(Iα). Then x /∈ Ak. If x ∈ Jβ, l(Jβ) > 0 since Jβ also contains

an element y ∈ Y . Choose K such that 1/K < l(Jβ) and x ∈ Jβ(K). Again x /∈ AK .

Therefore
⋂+∞

k=1 Ak ⊆ X − C. Since X − C ⊆ ⋂+∞
k=1 Ak ⊆ X − C, X − C =

⋂+∞
k=1 Ak.

It remains to show that each Ak is open.

Towards showing that Ak is open, suppose x ∈ Ak. It will be shown that x ∈ O ⊆ Ak

for some open O.

Case 1. x ∈ Iα ⊆ Ak. Since x ∈ Iα, there exists open O ⊆ X such that x ∈ O and

� |O can be represented by a utility function. Since O is open and � has a lexicographic

representation, there exists a, b ∈ X such that x ∈ B(a) ∩ W (b) ⊆ O or x ∈ B(a) ⊆ O

or x ∈ W (b) ⊆ O or the ∼-equivalence class of x is X . Then x ∈ B(a) ∩ W (b) ⊆ Iα or

x ∈ B(a) ⊆ Iα or x ∈ W (b) ⊆ Iα or x ∈ X = Iα.

Case 2. x ∈ Jβ ∩ C ⊆ Ak. The argument that Jβ ∩ C is open is very similar to the

argument in Case 1 that Iα is open.

Case 3. x ∈ (Jβ − Jβ(k)) ∩ C ⊆ Ak. Since Jβ ∩ C is open, Jβ ∩ C − Jβ(k) is open.

Case 4. x ∈ Y . Then for some β, x ∈ Jβ. Since x ∈ Y , y�∼x for all y ∈ Jβ or x�∼y for all

y ∈ Jβ. Without loss of generality, assume y�∼x for all y ∈ Jβ . There exists b ∈ Jβ such

that b � x and {z: b � z�∼x} ⊆ Jβ − Jβ(k), unless x�∼y for all y ∈ X .

Let

O = {r ∈ �2:
√

(v1(x) − r1)2 + (v2(x) − r2)2 < 1/2k}.

Then by Proposition 1 and the coordinate continuity of v, v−1(O) is open. Since � |Jβ has

a utility function, y�∼x for all y ∈ Jβ, and x ∈ Y , � |v−1(O)∩W (x) cannot be represented by
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a utility function. Therefore v−1(O)∩W (x) is not empty. There exists x0 ∈ v−1(O)∩W (x),

such that B(x0) ∩ W (x) ⊆ v−1(O). Then x0 ∈ X − C − Y or x0 ∈ Iα0
for some α0 or

x0 ∈ Jβ0
for some β0. Set S0 = {x0} or Iα0

or Jβ0
respectively. Again using x ∈ Y , there

exists x1 ∈ v−1(O) ∩ W (x) such that x1 � y for all y ∈ S0. If z ∈ B(x1) ∩ W (x), then

z ∈ X − C ⊆ Ak; or z ∈ Iα ⊆ B(x0) ∩ W (x) ⊆ v−1(O) ∩ W (x) so that l(Iα) < 1/k which

implies Iα ⊆ Ak; or z ∈ Jβ ⊆ B(x0) ∩ W (x) ⊆ v−1(O) ∩ W (x) so that l(Jβ) < 1/k which

implies Jβ ⊆ Ak.

Summarizing the conclusions reached in case 4, there exist x1, b ∈ X such that x ∈
B(x1) ∩ W (b) ⊆ Ak or there exists x1 ∈ X such that x ∈ B(x1) ⊆ Ak.

Case 5. x ∈ X −C − Y . Apply the v−1(O) argument in case 4 to both B(x) and W (x).

Proof of Theorem 2 (⇐). Suppose v: X → �2 is a lexicographic representation for �
on X , Y has only countably many ∼-equivalence classes and < Ak > is a nested sequence

of open subsets of X such that
⋂+∞

i=1 AK = X − C. (Recall that C and Y are the sets

of elements of X at which � is locally utility representable, and exactly one-sided locally

utility representable, respectively).

Construct V : X → �2 as in the proof of Theorem 1 (⇐). Recall that

V is a lexicographic representation for � (6)

for each x ∈ X , V2|V −1
1 (V1(x)): V −1

1 (V1(x)) → � is continuous as a function from

V −1
1 (V1(x)) with the �-order topology to � (7)

for x, y ∈ X , V1(x) > V1(y) implies � |B(y)∩W (x) cannot be represented

by a utility function (8)

In addition, by Debreu (1964) V1 can be taken to be continuous as a function from X

with the �1-order topology to �, where �1 is defined by x �1 y if V1(x) > V1(y).
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Lemma 3. V1 is continuous as a function from X with the �-order topology to �.

Proof. Suppose x ∈ X . Let B1(x) = {y ∈ X : y �1 X}. If y ∈ B1(x), then there exists

z ∈ X such that y �1 z �1 x, since otherwise � |B(x)∩W (y), could be represented by a

utility function, contradicting (8). Therefore y ∈ B(z) ⊆ B1(x). Since y ∈ B1(x) implies

y ∈ O ⊆ B1(x) for some O open in the order topology, B1(x) is open in the �-order

topology. Similarly W1(x) is open in the �-order topology. Therefore any subset of X

that is open in the �1-order topology is open in the �-order topology.

Now suppose O ⊆ � is open. Then V −1
1 (O) is open in the �1-order topology and

therefore open in the �-order topology.

Unfortunately, despite (7) V2 is not necessarily continuous as a function from X with

the �-order topology to �. A coordinate continuous w will now be constructed. First

suppose J is a �-interval, � |J can be represented by a utility function, J is maximal

with respect to these two properties, and J ∩ Y 	= ∅. Then there exists x ∈ Y such that

J ∩ Y = e(x), the ∼-equivalence class of x, and y�∼x for all y ∈ J ; or there exists z ∈ Y

such that J ∩ Y = e(z) and z�∼y for all y ∈ J ; or J ∩ Y = e(x) ∪ e(z), z � x and z�∼y�∼x

for all y ∈ J .

Since by hypothesis Y has only countable many ∼-equivalence classes, there is a

countable collection {J i} of all J ’s described above.

Construction of w: X → �2.

Step 1. Construct a countable collection {[ai, bi]} of mutually disjoint closed intervals in

� and a function f : �− (∪iV1(J i)) → �− (∪i[ai, bi]) such that f is continuous, 1-1, onto

and order preserving.

Step 2. For each J i, let gi: [inf V2(J i), sup V2(J i)] → [ai, bi] be a continuous, 1-1, onto,

order preserving function.
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Step 3. Define w1: X → � by

w1(x) =




gi(V2(x)) if x ∈ J i;

f(V1(x)) if x ∈ X − (∪iJ
i)).

Step 4. Let {Iα} be the collection of all I such that I is a �-interval, � |I can be represented

by a utility function, I is maximal with respect to these two properties, and I ⊆ C.

For each Iα, define a continuous, onto, order preserving function

hα: [inf V2(Iα), sup V2(Iα)] → [0, max {1/k: not(Iα ⊆ Ak)}]

Step 5. Finally, define w2: X → � by

w2(x) =




0 if x ∈ X − (∪αIα);

hα(V2(x)) if x ∈ Iα.

It remains to show that w = (w1, w2) is a coordinate continuous lexicographic repre-

sentation for �.

That w is a lexicographic representation is clear from (6) and the construction of w

from V in such a way that w(x) >L w(y) if and only if V (x) >L V (y).

That w1 is continuous follows from Lemma 3, and the construction of w1.

Next suppose O ⊆ � is open and x ∈ w−1
2 (O). Now w2 will be proven continuous by

producing U ⊆ X such that x ∈ U ⊆ w−1
2 (O) and U is open in the �-order topology on

X .

Case 1. x ∈ Iα for some α. By (7) and the continuity of hα, w−1
2 (O) ∩ Iα is open in the

�-order topology on Iα. Therefore w−1
2 (O) ∩ Iα = A ∩ Iα where A ⊆ X is open in the

�-order topology on X . Since Iα is also open in the �-order topology on X , A∩Iα is open

in the �-order topology on X . Let U = A ∩ Iα. Then x ∈ w−1
2 (O) ∩ Iα = U ⊆ w−1

2 (O).

Case 2. x ∈ Jβ − Y for some β. Since w2(Jβ − Y ) = {0}, w2(x) = 0 and x ∈ w−1
2 (O),

Jβ − Y ⊆ w−1
2 (O). Also Jβ − Y is open. Let U = Jβ − Y .

Case 3. x ∈ Jβ ∩ Y for some β. Without loss of generality, assume x ∈ Y β. Recall

that x ∈ Y β implies y�∼x for all y ∈ Jβ . Choose k such that [0, 1/k] ⊆ O. Since
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x ∈ Y β and Ak is open, there exists x0, x1 ∈ X such that w1(x) > w1(x1) > w1(x0)

and B(x0) ∩ W (x) ⊆ Ak. For y ∈ X such that x � y � x1 either y ∈ X − ∪ Iα so that

w2(y) = 0 or y ∈ Iα. If y ∈ Iα, then since B(x0) ∩ W (x) ⊆ Ak, it must be that Iα ⊆ Ak.

Since Iα ⊆ Ak, w2(y) ∈ [0, 1/k] ⊆ O. Let

U = (B(x1) ∩ W (x)) ∪ w−1
1 (w1(x)) ∪ (Jβ − Y )

Then x ∈ U ⊆ w−1
2 (O) and U is open.

Case 4. x ∈ X −C −Y . Construct x1 as in case 3 and construct x2 symmetrically, so that

w1(x2) > w1(x) and if y ∈ W (x2) ∩ B(x), then w2(y) ∈ O. Let U = B(x1) ∩ W (x2).
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