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Abstract
Industrial economists tend to think of competition as occurring between atomic

units called ”firms.” Theorists of organization tend to think about the choice among
various kinds of organizational structures – what Langlois and Robertson (1995)
call ”business institutions.” But few have thought about the choice of business in-
stitution as a competitive weapon. This essay will examine, and attempt to learn
from, a case in which choice of organizational form is in fact a major element
of competition. Cluster tools, a type of equipment for manufacturing semicon-
ductors, are becoming increasingly important as manufacturers attempt to pack
more and more circuits on a chip. Within the U. S. industry, competition for
these devices is divided between a large vertically integrated firm, Applied Mate-
rials, that designs and builds largely internally according to its own specifications
and a large fringe of smaller, more specialized competitors. These latter have re-
sponded to the competition from Applied by creating a common set of technical
interface standards, called the Modular Equipment Standards Committee (MESC)
standards. Rather than a battle of the standards, the current situation might best
be thought of as a battle of alternative development paths: the closed system of
Applied Materials, with its significant internal economies of scale and scope, and
the open modular system of the competitive fringe, driven by external economies
of standardization. At this point, the forces favoring the integrated development
path are more-or-less evenly balanced against the forces favoring the path of tech-
nical standardization. I analyze these forces in terms of the tradeoff between the
benefits of systemic innovation and systemic coordination on the one hand and
the benefits of external economies of scope and modular innovation on the other.
Although standards have so far kept the competitive fringe in the ballgame, modu-
larity in the industry may ultimately take a different, and somewhat more familiar,
form, as some of the larger firms adhering to the standards become broadly capa-
ble systems integrators who outsource manufacturing to specialized suppliers of
subsystems.

Paper for a conference on Standards and Public Policy, Federal Reserve Bank
of Chicago, May 13-14, 2004
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Introduction. 

Industrial economists tend to think of competition as occurring between atomic 

units called “firms.”  Theorists of organization tend to think about the choice 

among various kinds of organizational structures – what Langlois and Robertson 

(1995) call “business institutions.”  But few have thought about the choice of 

business institution as a competitive weapon.1   

In this essay I examine, and attempt to learn from, a case in which choice 

of organizational form is in fact a major element of competition.  Cluster tools, a 

type of equipment for manufacturing semiconductors, are becoming increasingly 

important as manufacturers attempt to pack more and more circuits on a chip.  

Within the U. S. industry, competition for these devices is divided between a 

large vertically integrated firm, Applied Materials, that designs and builds 

largely internally according to its own specifications and a large fringe of 

smaller, more specialized competitors.  These latter have responded to the 

competition from Applied by creating a common set of technical interface 

standards, called the Modular Equipment Standards Committee (MESC) 

standards.   

Rather than a battle of the standards, the current situation might best be 

thought of as a battle of alternative development paths: the closed system of 

                                                 
1  One exception was Schumpeter, who listed “new forms of industrial organization” as 

among the sources of the “fundamental impulse that sets and keeps the capitalist engine in 
motion” (Schumpeter 1942 [1976], p. 82). 
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Applied Materials, with its significant internal economies of scale and scope, and 

the open modular system of the competitive fringe, driven by external economies 

of standardization.  At this point, the forces favoring the integrated development 

path are more-or-less evenly balanced against the forces favoring the path of 

technical standardization.  I analyze these forces in terms of the tradeoff between 

the benefits of systemic innovation and systemic coordination on the one hand 

and the benefits of external economies of scope and modular innovation on the 

other.  Although standards have so far kept the competitive fringe in the 

ballgame, modularity in the industry may ultimately take a different, and 

somewhat more familiar, form, as some of the larger firms adhering to the 

standards become broadly capable systems integrators who outsource 

manufacturing to specialized suppliers of subsystems. 

Background. 

The integrated circuit was very much an American invention, developed 

independently but simultaneously by researchers at Texas Instruments and 

Fairchild in 1959.  As an integrated-circuit industry grew out of the discrete-

transistor industry, American firms dominated, both in the fabrication of the 

chips themselves and in the manufacture of the equipment to make chips.  In the 

early days, semiconductor firms developed much of their own process 

equipment, often in collaboration with firms in the scientific-equipment industry.  
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Gradually, a distinct semiconductor-equipment industry emerged.  In 1980, nine 

out of the top ten firms were American.  (See Table 1.) 

With the rise of Japanese IC fabrication in the 1980s and the loss of 

American market share in dynamic random-access memories (DRAMs), 

American dominance in semiconductor equipment also declined.  By 1990, only 

four of the top ten were American, and only Applied Materials remained among 

the top five.  (See Table 1.)  Between 1980 and 1988, worldwide sales of 

equipment for lithography, chemical vapor deposition (CVD), and ion 

implantation quadrupled; during the same period, the American share fell from 

75 to 49 per cent, while the Japanese share rose from 18 per cent to 39 per cent 

(Department of Commerce 1991).  The Japanese success was most pronounced in 

lithography equipment, automatic test equipment, and assembly and packaging 

equipment.   
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The decline in American pre-eminence in semiconductor equipment 

generated much the same angst as the better-known decline in American market 

share in DRAMs.  A number of groups, including the National Advisory 

Committee on Semiconductors, issued dire warnings (NACS 1990). And 

Sematech, the government-industry consortium, quickly began defining much of 

its role as helping to reverse the fortunes of the American equipment industry 

(Robertson 1991).  The diagnosis of the equipment industry's problems was 

similar to that for the semiconductor industry as a whole: the American industry 

suffered from excess “fragmentation” and insufficient vertical integration.  In one 

of the few contemporary academic examinations of this industry, a study by the 

Berkeley Roundtable on the International Economy concluded that  

 
1980       1990        2000       

Company Sales Company Sales Company Sales 
Perkin-Elmer (US) 151 Tokyo Electron Ltd (J) 706 Applied Materials (US) 10,410 
GCA (US) 116 Nikon (J) 692 Tokyo Electron Ltd (J) 5,142 
Applied Materials (US) 115 Applied Materials (US) 572 Nikon (J) 2,432 
Fairchild TSG (US) 105 Advantest (J) 423 Teradyne (US) 2,044 
Varian (US) 90 Canon (J) 421 ASM Lithography (E) 2,016 
Teradyne (US) 83 Hitachi (J)  304 KLA-Tencor (US) 2,003 
Eaton (US) 79 General Signal-GCA (US) 286 Advantest (J) 1,865 
General Signal (US) 57 Varian (US) 285 Lam Research (US) 1,627 
Kulicke and Soffa (US) 47 Teradyne (US) 215 Canon (J) 1,418 
Takeda Riken  (J) 46 Silicon Valley Group (US) 204 Dainippon Screen (J) 1,390 

 
 Note: nominal dollars in millions. 
 US = U. S. firm; J = Japanese; E = European. 

 Source: VLSI Research. 

     Table 1: Top 10 Semiconductor-equipment suppliers, 1980, 1990, and 2000. 
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with regard to both the generation of learning in production and 
the appropriation of economic returns from such learning, the U.S. 
semiconductor equipment and device industries are structurally 
disadvantaged relative to the Japanese.  The Japanese have evolved 
an industrial model that combines higher levels of concentration of 
both chip and equipment suppliers with quasiintegration between 
them, whereas the American industry is characterized by levels of 
concentration that, by comparison, are too low and [by] excessive 
vertical disintegration (that is, an absence of mechanisms to 
coordinate their learning and investment processes) (Stowsky 1989, 
p. 243, emphasis original). 

By 1992, however, the situation had changed markedly, and American firms 

regained and retained the lead in market share in semiconductors.2  Behind this 

resurgence lay a number of factors.  American firms had increased their attention 

to manufacturing quality in response to the Japanese challenge.  More 

importantly, the decentralized and “fragmented” structure of the industry 

proved innovative and responsive in a world in which production was becoming 

international and in which an increasingly modular technology of design 

permitted efficient vertical specialization.  Most importantly, American 

manufacturers benefited from a favorable shift in demand away from mass-

produced DRAMs and toward design-intensive chips and microprocessors.   

The rising tide of the American resurgence and of the internationalization 

of chip production also raised the boats of the American equipment industry.3  

                                                 
2  For a detailed history and analysis of the fall and rise of the American semiconductor 

industry, on which the remainder of this paragraph draws, see Langlois and Steinmueller 
(1999). 

3  This paragraph draws on Macher, Mowery, and Hodges (1999, p. 266). 
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During the nadir of American fortunes in the period 1984-1991, Japanese 

semiconductor companies were responsible for nearly half of all the capital 

expenditures in the industry.  By 1997, however, the Japanese share of those 

expenditures had fallen to 25 per cent despite an absolute increase.  This reflected 

in part an increase in American investment in response to the booming personal 

computer market, to which American semiconductor makers (notably Intel) were 

closely tied.  American equipment makers benefited, since, in both the U. S. and 

Japan, manufacturers rely heavily on their own indigenous equipment 

industries.4  At the same time, manufacturers in parts of Asia other than Japan, 

principally Korea and Taiwan, had doubled their share of capital spending over 

that period, to a level that together exceeded Japan’s in 1996.  This provided a 

fertile new market for American equipment makers.  So-called silicon foundries – 

firms in the Far East and elsewhere that specialize in the manufacturing stage 

only – typically produce American-designed products that involve multiple 

layers with metal interconnections and require sophisticated “mid-process” 

technology for tasks like CVD and PVD (physical vapor deposition – also called 

                                                 
4  In 1997, both the U. S. and Japan sourced about 75 per cent of their equipment from their 

respective domestic industries, according to data from VLSI Research (cited in Macher, 
Mowery, and Hodges (1999), pp. 252 and 266).  The link between manufacturers and 
equipment makers is arguably tighter in Japan, however, where manufacturers often own 
their own equipment firms (e. g., Hitachi) and where, at least in the view of American 
industry participants, the relationship of equipment makers to manufacturers is generally 
more dependent and even “deskilling” of the equipment makers (Langlois 2000).  The 
relative independence of American equipment firms has been an asset in export markets 
outside Japan. 
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“sputtering”).  These are areas in which American equipment firms have 

specialized and excelled. 

Indeed, there has arisen something of an international division of labor in 

the industry, partly by default.  We can think of the more than 500 process steps 

in semiconductor fabrication as grouped into three phases akin to the steps in 

 

Rank Company Sales 
1 Applied Materials (US) 4.8 
2 Tokyo Electron (J) 3.3 
3 ASM Lithography (E) 1.8 
4 Nikon (J)  1.3 
5 KLA-Tencor (US) 1.3 
6 Canon (J) 1.2 
7 Advantest (J) 1.1 
8 Dainippon Screen (J) 1.0 
9 Novellus (US) 0.9 
10 Hitachi (J) 0.8 
11 Lam Research (US) 0.7 
12 Teradyne (US) 0.7 
13 Agilent (US) 0.7 
14 ASM International (E) 0.6 
15 Yokogawa Electric (J) 0.5 

 
  Note: Dollars in millions. 
  US = U. S. firm; J = Japanese; E = European. 

  Source: VLSI Research. 

Table 2: Top 15 Semiconductor-equipment suppliers, 2003 
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photo developing.  The front-end steps involve optical lithography, the process 

that projects the circuit design onto the silicon wafers in the manner of a 

darkroom enlarger.  The middle steps involve the processing of the wafers in 

analogy with the business of plunging a photo print into successive chemical 

baths.  And the back-end steps involve testing the finished wafers and packaging 

them to into individual ICs.  Just as American manufacturers of DRAMs virtually 

disappeared during the Japanese ascendancy of the 1980s, so too did American 

suppliers of lithography equipment – a field that, like DRAMs, Americans had 

pioneered.  Optical giants Nikon and Canon accounted for much of the Japanese 

market share in that decade, and they are joined today by the Dutch firm ASM 

Lithography.  As we saw, test equipment was also an area of Japanese 

dominance, but that is changing with the ascendancy of American firms like 

KLA-Tencor, Teradyne, and Agilent (a spin-off from Hewlett-Packard).5  (See 

Table 2.)   

It is in the mid-process stages, however, that American firms have 

retained and indeed increased their strength.  Here a single firm, Applied 

Materials, accounts for much of that success.  By 1992, Applied Materials had 

overtaken its Japanese rivals to become the largest semiconductor-equipment 

firm in the world.  In the boom year 2000, Applied generated revenues of over 

                                                 
5  At the same time, the market for “test” equipment has shifted toward metrology – real-time 

monitoring and testing of product and process rather than merely testing of the final 
product. 
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$10 billion, almost double those of the next largest firm, Tokyo Electron (TEL), an 

independent concern that is essentially Applied’s Japanese counterpart and its 

principal international rival.6  (See Table 1.)  But Applied is not without 

American competitors.  This single large firm is ringed by an array of smaller, 

more specialized, less vertically integrated firms led by Novellus and Lam 

Research.   (See Table 2.)  And herein lies our story.  To tell that story properly, 

however, we need to know more about the mid-process technology of 

semiconductor fabrication. 

Single-wafer processing and cluster tools. 

The traditional approach to the mass production of semiconductors has been 

batch processing.  Silicon wafers, each containing what will become many 

separate chips, move through the various steps in batches, queuing up when 

necessary in work-in-process (WIP) inventories.  For example, a large vertical 

furnace may process more than 200 wafers at a time.  Increasingly, however, 

batch processing is being replaced by single-wafer processing, that is, systems 

that process one wafer at a time.  This is analogous to the continuous-throughput 

techniques that have largely supplanted batch-processing approaches in the 

chemical industries.7  In today’s fabs – as semiconductor manufacturing facilities 

                                                 
6  In fact, however, the product categories in which Applied and TEC compete directly account 

for only a small fraction of TEC’s sales (InfoNet 2004a, p. 4-27). 
7 This is an analogy one hears often in this industry. Indeed, it is more than just an analogy, as 

wafer fabrication involves a series of what are basically chemical-engineering processes. 
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are called – about 70 per cent of process steps use single-wafer techniques, with 

batch processing restricted to so-called hot-wall thermal steps (furnaces) and 

“wet-bench” steps that are literally like plunging a photo print in a chemical bath 

(InfoNet 2004c, p. 3-5).    

Single-wafer techniques are likely to become increasingly significant as 

semiconductor line widths decrease below 0.25 microns.8  Already many hot-

wall processes have been replaced by more thermally efficient single-wafer 

technologies like rapid thermal processing (RTP), and wet-bench approaches are 

yielding to “dry” alternatives suitable for single-wafer processing.  Indeed, a 

completely single-wafer fab is entirely feasible.  By 1993, Texas Instruments’s  

Microelectronics Manufacturing Science and Technology (MMST) project, 

funded partially by the U. S. Department of Defense, had demonstrated a small-

scale fully single-wafer production line (Doering and Nishi 2001).  More recently, 

Japanese start-up Trecenti Technologies has claimed to have put in production a 

fully single-wafer 300-mm manufacturing facility (Ikeda et al. 2003).  Among the 

major players, the Taiwanese foundry companies Taiwan Semiconductor 

Manufacturing and United Microelectronics have apparently moved the farthest 

in the direction of single-wafer processing (Bass and Christensen 2002). 
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The advantages of single-wafer processing are several (Singh, et al. 2003).  

Like most industries, semiconductor fabrication has its share of waggish jargon.  

One of these is the “milk carton” principle.  If you needed to keep a single carton 

of milk cold, you wouldn’t cool down your entire house.  But that is in effect 

what classic batch-processing fabs do.  Fabs traditionally store in-process wafers 

in the ambient air of the facility.  This means, that, to keep the wafers free of 

contamination – so critical at such small line widths – fabs must try to keep the 

entire plant, including the workers who inhabit it, hyper-clean.  Quite apart from 

the cost and difficulties of such cleanliness, even hyper-clean air can cause 

problems: since inventories must queue up in ambient air waiting their turn for 

various batch processes, oxygen can attack and oxidize the wafers, producing a 

“black silicon” that can reduce yield.9  Other process sequences are sensitive to 

moisture in the atmosphere.  The effects of atmospheric degradation become 

increasingly significant as line widths get smaller.  In addition, WIP inventories 

are subject to other kinds of oxidations, to polymer deformation of resists, and to 

ordinary dust contamination and handling breakage. 

                                                                                                                                                 
8 A micron is a thousandth of a millimeter.  Finer line widths allow more dense packing of a 

chip.  Line widths of 20 microns were typical in the early 1970s, falling to 2 to 4 microns in 
the mid 80s, and to less than one micron today.  4M DRAMS have line widths of around 0.8 
microns, 16M DRAMs require line widths of about 0.5 microns, and 64M DRAMs require 
widths of 0.33 microns or less.  Technology now coming on line will process 300mm (12-
inch) wafers with line widths less than 0.25 microns.  Intel’s new D1C fab in Oregon 
produces 300-mm wafers using 0.13 micron technology. 

9  Yield – perhaps the most important parameter in semiconductor fabrication – is the fraction 
of total chips processed that actually work. 

http://www.intel.com/pressroom/archive/releases/20010402corp.htm
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With a single-wafer system, by contrast, one can more easily integrate or 

cluster together sequential process steps within a controlled atmosphere.  In 

effect, a single-wafer system cools the milk carton in a refrigerator (or a series of 

refrigerators).  This helps to eliminate cleaning steps that would otherwise be 

necessary if the wafers were exposed to air between steps.  Moreover, large batch 

tools, such as diffusion furnaces, cannot maintain uniformity of temperature and 

other parameters across all the wafers in the batch, a problem that becomes 

increasingly important as line widths diminish.  By processing only one wafer in 

a chamber at a time, single-wafer tools can achieve much greater process 

uniformity.10  Most importantly, many process steps simply require extremely 

tight atmospheric control.  Prominent among these are dielectric planarization, 

the smoothing of certain layers on the chip, and intermetal connection, the tricky 

business of making electrical contacts among the various levels of circuitry in a 

chip.11  As line widths shrink, however, more and more stages will require the 

kind of atmospheric control that only a single-wafer system can provide. 

                                                 
10 Actually, it isn't necessary to process only one wafer in a chamber at a time.  So-called semi-

batch systems can also achieve high uniformity with a continuous-throughput system that 
processes several wafers at a time.  The Novellus Concept One, for example, is a CVD tool 
with a lazy susan holding seven wafers (see Figure 2).  It is ultimately a single-wafer system, 
however, as the wafers are fed in and removed one at a time.  Each wafer is exposed to one-
seventh of the deposition process at each turn of the carousel, in effect increasing uniformity 
by averaging. 

11 One normally thinks of a simple integrated circuit as like a microscopic printed-circuit board 
of great complexity.  In fact, the most complicated modern chips are like several distinct 
printed-circuit boards sandwiched together and connected in appropriate places by metal 
plugs.  The microprocessors produced at Intel’s D1C fab in Oregon require six layers of 
copper metalization.  

http://www.intel.com/pressroom/archive/releases/20010402corp.htm
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Another benefit of single-wafer processing is the ease with which the 

wafers can be monitored and tested in real time rather than at discrete testing 

steps.  In Shoshana Zuboff’s (1988) famous phrase, single-wafer systems are 

more easily “informated.”  Monitoring provides a steady stream of data for 

operators to use in detecting problems quickly and for process engineers to use 

in uncovering bottlenecks and fine-tuning the system.  This includes improved 

manufacturing-process documentation and more reliable “recipe downloading,” 

the process of programming process steps.  Moreover, the real-time aspect of the 

data makes it possible to engage in closed-loop control, that is, to test and adjust 

the process as it is happening rather than to wait until a step is finished, test, and 

then adjust subsequent runs.  In the long run, the single-wafer approach thus 

leads more easily to overall factory simulation, including linking to computer-

aided design and engineering. 

Perhaps the most important benefit of single-wafer processing, however, 

is reduced cycle time.  Cycle time is the time from when the blank wafers enter 

the production system to when the completed wafers emerge and are ready for 

assembly and packaging.  In a batch system, output rates may be high, but so is 

cycle time.  Instead of thinking about refrigerators, think now about 

dishwashers, and consider the problem of washing a kitchen-full of dirty dishes.  

Using a dishwasher is a batch process; washing by hand is a continuous process.  

Loading the dishwasher may ultimately have a larger “throughput,” but the first 
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clean plate reaches the cupboard more quickly with hand-washing. Batch 

semiconductor processing is like running dishes sequentially through many 

different dishwashers with many different capacities.  This creates a queuing 

problem, and the wafers must often sit around in WIP inventories while waiting 

to form a batch of the appropriate size for the next process step.  By contrast, 

single-wafer systems push only a single wafer through at a time (putting aside 

parallel processing steps), but the progress of that single wafer is not slowed as 

much waiting for other wafers to be ready.12   

                                                 
12  In addition to reduced queuing time, single-wafer systems can also speed throughput 

because it simply takes less time to process a single wafer than it does a batch of wafers.  
This is so for physical reasons: it takes more time to heat up or cool down a large batch than 
a single wafer, for example.  A single-wafer system may also be more easily controlled in a 
number of respects.  This means that the wafer spends less time in the machinery, an 
important source of lower cycle time.  A related benefit of reduced cycle time is the potential 
for faster learning by doing, since it permits production engineers to see more quickly the 
full effect on a wafer of all the process steps and allows them to adjust the process for all 
subsequent wafers (rather than for subsequent batches of wafers).   
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Faster cycle time means that the first chips get to market more quickly, 

which can significantly affect ultimate demand by making it more likely that 

engineers will choose the chip in a systems design.  Even for standardized chips 

like DRAMs, lower cycle time is important because profits are highest earlier in 

the product life-cycle.  But the flexibility of single-wafer processing becomes 

especially important for specialized and customized chips, production runs of 

Loadlock

CVD

CVD

CVD
 

 
 

Figure 1. A parallel-processing configuration. 
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which may not be large enough to justify the set-up costs of batch processing.  

Lately, a number of industry observers, including strategy guru Clayton 

Christensen (Bass and Christensen 2002), have begun predicting the “demise” of 

Moore’s Law.  This famous dictum, named after Intel co-founder Gordon Moore, 

predicts that circuit density will continue to double every 18-24 months (Langlois 

2002, p.) without increasing production cost, thus yielding an exponential 

growth in chip performance.  Christensen argues that Moore’s Law has lately 

begun to generate such an embarrassment of riches that users are increasingly 

unable to take advantage of available chip performance.  As a result, competition 

will inevitably move away from the race for higher densities toward 

customization and speed to market.  This in turn will accelerate the transition 

from batch to single-wafer processing. 

Introducing a single-wafer step into a batch fab instantly creates a 

bottleneck, of course, since throughput of the fab is limited to the throughput of 

the single-wafer step.  The obvious answer is to replicate the bottleneck stage in a 

parallel-processing configuration.  The need for parallel processing was the 

original motivation for common-platform “cluster” tools. (See Figure 1.)  Rather 

than having, say, four separate stand-alone process chambers, each with its own 

separate wafer loading and unloading facilities, one could mount the four 

chambers on a common platform and use a common robotic wafer-handling 

mechanism to move wafers to and from the various chambers and input-output 



 

- 17 - 

loadlocks.  From the common-platform configuration, however, it becomes an 

easy step to serial rather than parallel processing.  Instead of running the same 

process in all four chambers, one could instead run different processes, using the 

wafer handler to move the wafers from one to the other within a controlled 

atmosphere.  This was the genesis of the integrated cluster tool (see Figure 2), 

 
 

Clean

CVD

Dry etch

PVD

RTP

Loadlocks

Queue
location

 
Figure 2. A hypothetical modular integrated-processing system.   

(After Burggraaf 1989.) 
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which represents a genuine move in the direction of single-wafer processing.13   

The parallel configuration offers the benefit of redundancy, and can generate 

higher throughput when downtime is an issue; but as tools become more 

reliable, the serial configuration – which boasts superior cycles times – gains the 

advantage (López and Wood 2003). 

Capabilities, organization, and standards. 

The clustering of modules on a single platform implies the integration of distinct 

tools, each requiring a distinct set of design and manufacturing competences.  

This is even true of parallel clusters, since making a robotic wafer-handler 

requires competences different from those needed for the modules.  But the 

integration of distinct competences is especially important in the case of serial 

clusters.  One way to marshal the necessary capabilities is within the boundaries 

of a single firm large enough to possess and wield all, or at least most of, the 

competences necessary to produce a cluster tool.  Another way is somehow to 

organize and integrate through contract the competences of a number of distinct 

firms.  The American semiconductor equipment industry uses both of these 

approaches simultaneously.   

                                                 
13  In the limit, indeed, independent modules for all fabrication steps could be linked and 

combined so that, in principle, the wafer never leaves the controlled internal environment of 
the system.  All the modules would be tied together in a computer network, providing a 
real-time database for monitoring and engineering improvement.  This is the ultimate vision 
of single-wafer processing, what some call the “pipeline fab.”   
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Applied Materials is of course the preeminent example of a firm that tries 

to integrate a wide array of competences within a single organization.   

Interestingly, however, Applied’s success reflects an initial strategy of narrowing 

its business focus and reducing its portfolio of products.14  Michael McNeilly 

founded the company in 1967 to supply equipment to the nascent semiconductor 

manufacturing industry.  Applied went public in 1972, and McNeilly quickly 

diversified into a variety of ventures that even included the purchase of a maker 

of silicon wafers.15   But the recession of 1975 saw profits turn into losses, and the 

Applied board ousted McNeilly in favor of a venture capitalist called James 

Morgan.  Morgan promptly jettisoned non-core businesses and reoriented the 

company back to semiconductor process equipment.  Applied weathered the 

Japanese invasion, and even prospered by an aggressive entry into the Japanese 

and other international markets (Morgan and Morgan 1991).   

In the 1980s, Applied placed another major strategic bet.  At a time when 

batch processing ruled semiconductor production, Morgan and his colleagues 

chose to focus Applied’s product development efforts exclusively on single-

wafer technology.  In 1987, the company introduced its first cluster tool, the 

                                                 
14  This paragraph draws on Kinni (2002, p. 27-42). 
15  In many respects, the menu of diversification alternatives facing Applied in the 1970s was 

not unlike that facing the manufacturing sector.  Because of the rapid growth of the industry 
attendant on the development of the planar process and the integrated circuit, American 
firms enjoyed so many profitable product opportunities that they became vulnerable to a 
focused attack by the Japanese, who entered with a narrower range of products and strong 
capabilities in volume production (Langlois and Steinmueller 1999). 
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Precision 5000, which has been touted as the most successful product 

introduction in the history of the business.  The Precision platform was originally 

offered as a parallel-processing CVD tool; but within two years, chambers for 

etch and tungsten processes became available, opening the door to serial 

configuration.  In 1990, the company rolled out another platform, called Endura, 

built around sputtering (PVD) processes, but later upgraded to include CVD, 

etch, and RTP modules (InfoNet 1994b, p. 5-10).     

Thus, although Applied’s capabilities are focused on mid-process cluster 

tools, the increasing variety of technologies that can be clustered in sequence 

means that Applied is necessarily widening its technological and product 

capabilities.  In principle, of course, a maker of cluster tools could contract with 

outside concerns for the development of some of the modules.  In the limit, a 

firm could outsource the design of all the modules and simply act as a systems 

integrator. Applied has quite deliberately chosen the opposite strategy – to 

develop internally capabilities in all areas of semiconductor fabrication 

technology.  Initially, Applied did contract with firms like Peak Systems for an 

RTP module and GaSonics (since acquired by Novellus) for a photoresist 

stripping module.  Both of these arrangements generated contractual problems 

and were abandoned.16   

                                                 
16  In the case of Peak, the result was a $420,000 judgment against Applied Materials for breach 

of contract and misappropriation of trade secrets (Peak Sys., Inc. v. Applied Materials, Inc., No. 
707566 (Cal. Super. Ct. December 1, 1993)).   
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The difficulty of using outside suppliers for modules arose in  part from 

the fact that Applied’s cluster-tool platforms were and are closed proprietary 

systems.  The chambers reside on a central platform or “mainframe” and are 

linked by a centralized control and communications architecture that uses a 

closed proprietary standard.  This means that the investments that firms like 

Peak and GaSonics would have had to make in adapting their technology to 

Applied’s mainframe would have been specific to transactions with Applied – 

the modules, and the knowledge investments they represent, couldn’t be 

“reused” in transactions with other buyers.17 

By contrast, modular cluster tools — or simply modular tools — comprise 

self-contained “smart” modules, each possessing its own computer and its own 

piping.  The modules are tied together not by a central controller but by a set of 

open interconnect and control standards.  The modules conform to a mechanical 

interface standard, which governs the placement and dimensions of the modules 

and handlers, and to various communications standards, which govern the way 

the decentralized computers talk to each other over a network.  In the case of 

                                                 
17  A follower of Williamson (1985) would be tempted to assert at this point that Applied’s 

strategy of internal development as a whole was no doubt motivated by such problems of 
“contractual hazards” and “hold-up” in the face of transaction-specific knowledge and 
irreversible investments.  And, as we will see, the SEMI/MESC cluster tools standards to 
which Applied’s competitors adhere were motivated in part to reduce contractual costs by 
reducing the transaction specificity of a firm’s development of a module.  In this case, 
however, the court agreed with Peak’s contention that Applied was secretly developing its 
own RTP technology all along and was using its contract with Peak to gain knowledge to 
speed that internal development.  Contractual hazards were arguably more the result of 
Applied’s strategy than the cause. 
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cluster tools, such an approach is not hypothetical.  Most makers of cluster tools 

– apart from Applied – adhere in whole or in part to the so-called SEMI/MESC 

standards, which are promulgated by the Modular Equipment Standards 

Committee (MESC) of Semiconductor Equipment and Materials International 

(SEMI), the industry trade association. 

The emergence of standards. 

The process by which standards emerged in the cluster tool industry is rather 

different from those of well-documented cases like the QWERTY keyboard 

(David 1985; Liebowitz and Margolis 1990), the VHS videocassette recorder 

(Cusumano, et al. 1992), the IBM-compatible personal computer (Langlois 1992), 

or the 33-rpm LP record (Robertson and Langlois 1992).  In all of those cases, 

standards emerged through a competition or “battle of the standards” among 

alternatives originally offered as proprietary schemes.  In cluster tools, however,  

a single standard emerged immediately out of collective action within a 

fragmented industry.18   

                                                 
18 A better historical analogy for the MESA/MESC standards might be the efforts of the 

Society of Automotive Engineers, led at first by Howard E. Coffin of the Hudson Motor Car 
Company, to standardize numerous parts used in the early automobile industry (Epstein 
1928, pp. 41-3). Between 1910 and 1920, the S.A.E. reduced the number of types of steel 
tubing from 1,600 to 210 and the number of standards of lock washer from 800 to 16. 
Throughout the initial period of standardization, until the early 1920s, most interest was 
shown by the smaller firms, who had the most to gain.  The larger firms such as Ford, 
Studebaker, Dodge, Willys-Overland, and General Motors tended to ignore the S.A.E. and 
relied instead on internally established standards. (Thompson 1954, pp. 1-11).  In fact, 
something similar has happened in cluster tools in the wake of standardization.   Before the 
development of standards, all tools used their own idiosyncratic valve designs.  Outside 
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The story begins in 1989.19  Commercial cluster tools had been on the 

market for only two or three years, but a number of firms, each considerably 

smaller than Applied Materials, were either in the market or planning to enter 

(Burggraaf 1989).  In March 1989, a group of representatives from several Bay 

Area companies congregated at a motel in Fremont to begin what would become 

a rapid-fire series of meetings.  Present at the first meeting were representatives 

of 11 companies, including the CEOs of four of those companies.  In many ways, 

the cooperation among these firms was a startling change from the individualist 

go-it-alone culture supposedly characteristic of the industry.  From another point 

of view, however, the cooperation was made possible precisely by the cultural 

network of Silicon Valley and its web of personal contacts among engineers and 

marketers in many distinct firms.  Clearly, however, what catalyzed collective 

action was the threat of competition from Applied Materials.  Apart from 

Applied, the cluster tool industry consisted of firms whose capabilities were 

limited, and not even the largest of these was able to offer a multiple-module tool 

                                                                                                                                                 
suppliers would craft each valve to the user's specifications.  The dominant firm in the 
business is VAT of Liechtenstein, which is noted for the quality of its product.  Since the 
promulgation of standards, however, a standard valve has emerged, making valves more a 
commodity and less a specialty item.  American firms like High Vacuum Apparatus (HVA) 
and MDC Vacuum Products have begun to take business away from VAT, and valve prices 
have fallen dramatically.  Another area in which standardization is lowering costs is 
software.  With the development of communications and control standards, an increasing 
number of aspects of the control software can be handled by standard packages provided by 
firms like Thesis, GW Systems, Realtime Performance, and Techware Systems.   

19  This account of the standard-setting process follows Langlois (2000). 
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on its own.  In the end, these firms had to rely on coordination across firm 

boundaries, and standards would help facilitate such coordination. 

The ad hoc group called their would-be standard the Modular Equipment 

Standards Architecture (MESA).  They put forward this mission statement: 

“Develop technically sound, common, non-proprietary interface standards which 

the U.S. equipment industry can utilize to individually and collectively offer the 

best available choice of automated, interchangeable, integrated tools.”20  The 

group worked feverishly over the ensuing weeks to develop a draft standard.  

The first goal was to standardize the mechanical interface of future cluster tools, 

that is, the physical connection between the wafer handler and the modules.  

This included such parameters as the size and shape of the port and the valve 

flanges, their height above the floor, and the reach of the robot arm. 

 

                                                 
20 Talking paper by Jeffrey C. Benzing of Novellus for the Sematech workshop on cluster tools, 

May 2, 1989. 
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Figure 3. Modular cluster tool market, actual and forecast, 
millions of nominal dollars.   

(Source:  The Information Network.) 
 

Although invited, Applied Materials did not participate in the standard-

setting process.  Indeed, at one point Applied suggested its own Precision 5000 

as an alternative standard, a proposal that was never taken seriously for technical 

as well as competitive reasons – the precision 5000 was not a suitably modular 

design.  In the end, however, MESA and Applied were united formally when, at 

a meeting in September 1989, the MESA group voted to join SEMI, becoming 
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reconstituted as MESC.21  As a member of SEMI, Applied was effectively a 

member of MESC and eligible to vote on proposed standards.22   
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Figure 4.  Standards adherents as a competitor to Applied Materials, 2003. 
(Cluster tool sales in millions of dollars.)   

Source:  The Information Network. 
 

Competing development paths. 

Rather than a battle of the standards, the current situation might best be thought 

of as a battle of alternative development paths: the closed system of Applied 

Materials, with its significant internal economies of scale and scope, and the open 

modular system of the competitive fringe, driven by external economies of 

standardization.  The latter has grown to be a significant force:  the market for 

                                                 
21  Among the principal motivations for joining SEMI was a fear of antitrust litigation, perhaps 

instigated by Applied (Langlois 2000). 
22 And when the MESC mechanical interface standard eventually came to a vote in June 1990, 

Applied voted against it (Winkler 1990).  
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modular tools was over $1.5 billion in 2003 (see Figure 3), and the two largest 

SEMI/MESC vendors, Novellus and Lam Research, were the ninth and eleventh 

largest semiconductor equipment firms in the world in that year (Table 2).23  This 

may seem like small potatoes, given that the market for non-modular cluster 

tools was some $7.8 billion in 2003 (InfoNet 2004b, p. 9-16).  But that figure is 

somewhat misleading.  Much of the lithography stage is now performed using 

cluster tools, but these are atmospheric tools (that is, tools for processes not 

involving vacuum or a controlled atmosphere) for which there exist no 

SEMI/MESC standards.  If we look only at mid-process technology, Applied is 

still the clear leader, but the competition seems more real.  As Figure 4 suggests, 

if we consider the entire SEMI/MESC network a competitor to Applied 

Materials, then the modular approach comes in second, ahead of Tokyo Electron.  

Moreover, if we look at specific submarkets, it appear that much of Applied’s 

overall dominance comes from competing seriously in almost all submarkets, not 

necessarily from dominating all those submarkets (Table 3).  For the moment, 

then, both development paths seem to be surviving, and neither is obviously 

driving out the other.   

                                                 
23  In 2003, Novellus had a 48.5 per cent share of the market for modular tools, and Lam a 33.2 

per cent share (InfoNet 2004b, p. 9-14). 
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Why?  Let us pause to think about the basic economics of closed 

proprietary systems versus open modular ones.  The primary benefits of a closed 

system lie in the ease of systemic coordination and reorganization.  When the 

nature of the connections among the elements in a system are changing or 

idiosyncratic to applications, a unified organization can more cheaply coordinate 

and fine tune the connections.  The value of such systemic coordination depends 

on both technological and demand factors.  In some respects, and in some 

technologies, the value of idiosyncratic systemic coordination may be exogenous.  

In the automobile industry, for example, some degree of “integrality” may be 

inherent in the nature of the product (Helper and MacDuffie 2002, p.).  Moreover, 

as Christensen and his coauthors have argued, an integrated organization is 

better able to fine-tune product characteristics to achieve greater functionality in 

CVD PVD Etch Ion implant RTP 

Applied 54.5 Applied 84.3 Applied 26.5 Applied 23.9 Applied 45.3 

Novellus 31.8 Novellus 7.8 TEL 35.7 Varian 34.5 TEL 29.4 

ASM Intl. 8.3 Ulvac 5.9 Lam 29.7 Axcellis 36.1 ASM Intl. 9.3 

Others 5.4 Others 2.1 Others 8.0 Nissin 5.5 Others 16.0 

 
Table 3: 2003 market share in submarkets (percent) 

Source: The Information Network (2004a) 
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an environment in which users eagerly demand such functionality (Christensen, 

Verlinden, and Westerman 2002).   

On the other side of the ledger, an open modular system can more 

effectively direct capabilities toward improving the modules themselves 

(Langlois and Robertson 1992).  Such a system harnesses the division of labor 

and the division of knowledge, allowing organizational units to focus narrowly 

and thus deeply; at the same time, it magnifies the number of potential module 

innovators, and thus can often take advantage of capabilities well beyond those 

even a large unitary organization could marshal.  In this way, an open modular 

system “breaks the boundaries of the firm.”  There are both static and dynamic 

benefits.  At any point in time, a user can “mix and match” components from a  

wider variety of sources to fine-tune the system to his or her taste, and thus reach 

a higher level of utility or tailored functionality than pre-packaged systems could 

offer.  In the semiconductor equipment industry, this is called “best of breed.”  A 

user might mix a CVD module from manufacturer A with an etch module from 

manufacturer B and a wafer handler from manufacturer C, all assembled and 

guaranteed by system integrator D, who might add in some off-the-shelf 

components like valves and controller software.  If, however, manufacturer E 

produces a CVD module that is innovative or otherwise superior in the eyes of 

the user, that module could replace module A in the package.  In this way, the 
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user doesn't have to rely on the capabilities of any single firm, which may not be 

on the cutting edge in all technologies. 

More important, perhaps, are the dynamic benefits.  Over time, an open 

modular system can lead to rapid trial-and-error learning and thus evolve faster 

than a closed system.  Note that, at least in principle, this effect can counter the 

functionality benefits Christensen claims for the closed systems of integrated 

organizations.  It is certainly plausible, if not logically necessary, that a capable 

integrated producer could achieve greater functionality by tweaking the system 

architecture than one could have achieved by picking even the best available 

assortment of modular components within a fixed architecture.  But if the 

components of the open system evolve rapidly enough, an open system can leave 

yesterday’s best integrated system in the dust.  This was certainly the case in 

personal computers.  The IBM PC of 1981 was a modular system that 

contemporary observers considered well below the level of functionality of other 

(mostly closed) systems.  But PC components improved so rapidly that generic 

PCs eventually began to outperform even special-purpose minicomputers and 

workstations.  The importance of this effect will depend on the number of 

potential component innovators, which in turn will depend on the extent of the 

market. 
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My working hypothesis is that, in the cluster-tool world, the forces 

favoring integrality and those favoring modularity are relatively balanced – for 

the moment, at least.   

Applied Materials benefits from a certain degree of “integrality” inherent 

in the process of semiconductor fabrication.  A fab is a tightly integrated and 

balanced system, one requiring the integration of knowledge between the 

manufacturer and the equipment supplier (Weber 2002).  In effect, then, the 

equipment maker must supply not only the equipment itself but also “bundled” 

information and guaranteeing functions.  A tool must fit in with a user's 

production line, and it must work properly and consistently.  When it fails to 

work, it must be fixed promptly; moreover, the user must be confident that it will 

indeed be fixed promptly.  And the user and the supplier must communicate 

information to ensure the continued refinement and improvement of the 

technology. 

A large firm with significant internal capabilities can provide these 

ancillary services.  Such a firm possesses not only the majority of skills necessary 

to fabricate the machinery it sells, it also possesses complementary capabilities in 

repair and customer service, including the ability to gather information to 

improve the product.  Reputation is another important complementary asset, 

since it provides a guarantee to customers that promised ancillary services, 

especially on-site repair, will be reliably provided.  In this respect, a modular 
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system provided by a network of firms would seem to be at a disadvantage. If 

the modular approach is to succeed, the role of the system integrator is crucial. 

A system integrator is an organization that packages the products of a 

number of suppliers — chambers, wafer handler, etc. — and provides the 

necessary ancillary services, including the guaranteeing function.  In the absence 

of standards, the job of the system integrator as coordinator would be more 

difficult, and working with others would require the sharing of proprietary 

information in a way that could generate greater transaction costs.  With 

standards, however, much of the necessary coordination is embodied in the 

standards, and the spillover of proprietary knowledge from one firm to another 

is minimized.  This would increase the chance that the system-integration 

function could be provided through the market.  The integrator would work 

with the customer to tailor a system; would work with suppliers (itself probably 

included) to produce the system; and would provide the necessary service 

guarantees.  This means that the integrator would need to have a reputation of 

value significant enough to act as a hostage (Williamson 1985).  In the parlance of 

the industry, this is called taking ownership of the system. 

In the SEMI/MESC world, it is often a lead equipment maker who acts as 

system integrator. And, in practice, this usually means Novellus or Lam.  In 

addition, users – manufacturers themselves – are often effectively the systems 

integrators.  This is especially true of large, highly capable firms like Texas 
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Instruments and IBM.  What has not happened, however, is the rise of 

independent third-party systems integrators, a development some had hoped for 

early on.24  

So far, then, the need for close coordination with manufacturers, as well as 

the often idiosyncratic problems of fine tuning in the fab, have limited the 

advantages of standards in cluster tools – relative, at least, to those in, say,  

personal computers or software, where the benefits of modular innovation have 

wildly outstripped those of systemic integration.   

Growth in the extent of the market brings with it experience that can 

increase internal capabilities, and thus the scope of the firm, in the manner Edith 

Penrose (1959) suggested.  As in the case of the personal computer (Langlois 

1992), industry-wide open standards in cluster tools emerged in a low-capability 

environment – few firms were capable of producing a complex system without 

help from others.  Rochester-based CVC Products (since acquired by Veeco) was 

one of the early leaders in the use of MESC standards to assemble cluster tools 

using very little of its own capabilities  and relying on a panoply of vendors.  In 

1992, they announced a MESC-compatible tool integrating components from 

seven other companies.  By 1994, however, the company had done so much 

internal development in hardware and software that it could offer a tool for 

                                                 
24  One suggestion in the early days of standard-setting was that aerospace firms might take on 

the role of systems integration (Newboe 1990). 
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which it failed to provide only the wafer-handling robotics and the module 

controllers (InfoNet 2004b, p. 3-16).  This sort of capability building went on 

within the larger players like Novellus and Lam as well. 

At the same time, however, outsourcing has become the rule in the 

industry.  A startling difference between Applied Materials and MESC-

compatible competitors like Novellus and Lam is the extent to which the latter 

outsource the manufacture of the modules they do produce.  In 2001, Lam was 

an integrated manufacturer with 4,300 employees in 13 buildings.  Today it 

employs half as many workers in only four buildings (InfoNet 2004a, p. 4-3).  In 

its 2003 10-K filing, Novellus puts it this way: “We do all system design, 

assembly and testing in-house, and outsource the manufacture of major 

subassemblies. This strategy allows us to minimize our fixed costs and capital 

expenditures and gives us the flexibility to increase capacity as needed.  

Outsourcing also allows us to focus on product differentiation through system 

design and quality control and helps to ensure that our subsystems incorporate 

the latest third-party technologies in robotics, gas panels and microcomputers.”25   

In part, outsourcing is a strategy to deal with the highly cyclical character 

of the industry.  Applied may be large enough to weather downturns, but 

smaller firms adapt by transforming fixed into variable costs through 

outsourcing, which gives flexibility to decrease capacity as well as increase it.  

                                                 
25  Novellus 2003 10-K filing, p. 9.  See also Lam Research 2003 10-K filing, p. 6-7. 

http://www.novellus.com/assets/finance/ar2003/2003_10K.pdf
http://www.shareholder.com/Common/Edgar/707549/891618-03-4913/03-00.pdf
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Nonetheless, such outsourcing is a general trend in industry driven by growth in 

the extent of the market (Langlois 2003).  Indeed, it is in this sense that systems 

integration is emerging in the industry: not by independent third-parties 

appearing suddenly to coordinate among market participants but rather through 

integrated firms retaining – and even deepening – their capabilities in system 

design, service, and technological coordination, while hiving off manufacturing 

operations to more specialized firms (Pavitt 2003).  
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