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Abstract
In applied work economists often seek to relate a given response variable �

to some causal parameter ��� associated with it. This parameter usually repre-
sents a summarization based on some explanatory variables of the distribution of
� , such as a regression function, and treating it as a conditional expectation is
central to its identification and estimation. However, the interpretation of ��� as
a conditional expectation breaks down if some or all of the explanatory variables
are endogenous. This is not a problem when � � is modelled as a parametric func-
tion of explanatory variables because it is well known how instrumental variables
techniques can be used to identify and estimate ��� . In contrast, handling endoge-
nous regressors in nonparametric models, where ��� is regarded as fully unknown,
presents dicult theoretical and practical challenges. In this paper we consider
an endogenous nonparametric model based on a conditional moment restriction.
We investigate identification related properties of this model when the unknown
function � � belongs to a linear space. We also investigate underidentification of
��� along with the identification of its linear functionals. Several examples are
provided in order to develop intuition about identification and estimation for en-
dogenous nonparametric regression and related models.
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Keywords: Endogeneity, Identification, Instrumental variables, Nonparamet-
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1. Introduction

Models with endogenous regressors arise frequently in microeconometrics. For example, sup-

pose we want to estimate the cost function of a competitive firm; i.e., we want to estimate the model

y = µ∗(p, q) + ε, where y is the observed cost of production, µ∗ the firms cost function, (p, q) the

vector of factor prices and output, and ε an unobserved error term. Since the firm is assumed to be

a price taker in its input markets, it is reasonable to assume that the factor prices are exogenously

set and are uncorrelated with ε. On the other hand, since an inefficient or high cost firm will, ceteris

paribus, tend to produce less output than an efficient firm, q may be correlated with ε. Hence, q is

endogenous. Similarly, endogenous regressors may also arise in production function estimation. For

instance, suppose we want to estimate the model y = µ∗(l, k) + ε, where y is the firms output, µ∗ the

production function, and (l, k) the vector of labor and capital factor inputs. In some cases it may be

reasonable to believe that the firms usage of certain inputs (say labor) may depend upon the unob-

served quality of management. In that case, such factors will be endogenous. Endogeneity can also

be encountered in estimating wage equations of the form y = µ∗(s, c) + ε, where y is log of wage rate,

s the years of schooling, and c denotes agent characteristics such as experience and ethnicity. Since

years of schooling are correlated with unobservable factors such as ability and family background, s

is endogenous. Another classic example of endogeneity is due to simultaneity. For instance, suppose

we want to estimate the market demand for a certain good given by y = µ∗(p, d) + ε, where y is the

quantity demanded in equilibrium, p the equilibrium price, d a vector of demand shifters, and µ∗ the

market demand function. Since prices and quantities are determined simultaneously in equilibrium,

p is endogenous. Several additional examples of regression models with endogenous regressors can be

found in econometrics texts; see, e.g., Wooldridge (2001).

These models can be written generically as follows: Let y denote a response variable and

x a vector of explanatory variables. Suppose that, corresponding to y, there exists an unknown

function µ∗(x) (we temporarily suppress the dependence of µ∗ on y for pedagogical convenience) and

an unobservable random variable ε such that y = µ∗(x)+ε. The parameter of interest in this model is

µ∗ and its interpretation in terms of the distribution of (y, x) depends upon the assumptions regarding

the joint distribution of x and ε; e.g., if E(ε|x) = 0 w.p.1 then µ∗(x) = E(y|x) w.p.1. In this paper

we investigate models defined by more general conditions on the distribution of (x, ε). In particular,

we allow some or all of the explanatory variables to be endogenous, i.e., correlated with ε, so that the

mean independence of ε and x does not hold.

In the parametric case, i.e., when µ∗ is known up to a finite dimensional parameter, it is well

known how to handle endogeneity. Basically, if we have instrumental variables w that suffice to identify

µ∗, then we can use 2SLS, if µ∗ is linear, or the more efficient GMM to estimate µ∗. For instance,

in the cost function example described above, the size of the market served by the firm can serve as

an instrument for q; in the production function example we could take the wage paid by the firm
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as an instrument for l if the former is exogenously set; when estimating the wage equation, mothers

education can be used to instrument for years of schooling; and, in the market demand example,

variables that shift the market supply function but are uncorrelated with ε, such as weather or other

exogenous supply shocks, can serve as instruments for p in the demand equation.

Recently there has been a surge of interest in studying nonparametric (i.e., where the functional

form of µ∗ is completely unknown) models with endogenous regressors; see, e.g., Darolles, Florens,

and Renault (2002), Ai and Chen (2003), Blundell and Powell (2003), Newey and Powell (2003), and

the references therein. In endogenous nonparametric regression models it is typically assumed that

µ∗ lies in L2(x), the set of functions of x that are square integrable with respect to the distribution

of x, and the instruments w satisfy the conditional moment restriction E(ε|w) = 0 w.p.1. However,

in this paper we allow the parameter space for µ∗ to be different from L2(x) (see Section 2 for the

motivation). Hence, our results are applicable to any endogenous nonparametric linear model and

not just to the regression models described above. Apart from this, the main contributions of our

paper are as follows: (i) We develop the properties of the function that maps the reduced form into

the structural form in a very general setting under minimal assumptions. For instance, we show

that it is a closed map (i.e., its graph is closed) although it may not be continuous. While lack of

continuity of this mapping has been noted in earlier papers, the result that it is closed and further

characterization of its continuity properties as done in Lemma 2.4 seem to be new to the literature.

(ii) Newey and Powell (2003) characterize identification of µ∗ in terms of the completeness of the

conditional distribution of x given w. But, in the absence of any parametric assumptions on the

conditional distribution of x given w, it is not clear how completeness can be verified in practice. In

fact, as Blundell and Powell (2003) point out, the existing literature in this area basically assumes

that µ∗ is identified and focuses on estimating it. Since failure of identification is not easily detected

in nonparametric models (in Section 3 we provide some interesting examples showing that µ∗ can be

unidentified in relatively simple designs), we investigate what happens if the identification condition

for µ∗ fails to hold or cannot be easily checked by showing how to determine the “identifiable part” of

µ∗ by projecting onto an appropriately defined subspace of the parameter space, something that does

not seem to have been done earlier in the literature. (iii) In Section 4 we examine the identification

of linear functionals of µ∗ when µ∗ itself may not be identified. We relate identification of µ∗ to the

identification of its linear functionals by showing that µ∗ is identified if and only if all bounded linear

functionals of µ∗ are identified. To the best of our knowledge, the results in this section are also new

to the literature.

We do not focus on estimation in this paper. In addition to the papers mentioned earlier,

readers interested in estimating endogenous nonparametric models should see, e.g., Pinkse (2000),

Das (2001), Linton, Mammen, Nielsen, and Tanggaard (2001), Carrasco, Florens, and Renault (2002),

Florens (2003), Hall and Horowitz (2003), Newey, Powell, and Vella (2003), and the references therein.

Additional works related to this literature include Li (1984) and Roehrig (1988). Note that our
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identification analysis is global in nature because the nonparametric models we consider are linear in

µ∗. We hope our results will motivate other researchers to study local properties of nonlinear models

of the kind considered by Blundell and Powell (2003) and Newey and Powell (2003).

2. Identification in a general setting

The introduction was motivated by looking at endogenous nonparametric regression models of

the form y = µ∗(x)+ε, where µ∗ ∈ L2(x) and E(ε|w) = 0 w.p.1. But in many cases the parameter space

for µ∗ can be a linear function space different than L2(x). For instance, suppose that x = (x1, x2)

and µ∗ is additive in the components1 of x; i.e., µ∗(x) = µ∗1(x1) + µ∗2(x2), where µ∗j lies in L2(xj)

for j = 1, 2. Notice that once µ∗ is identified, we can recover the components up to an additive

constant by marginal integration; i.e.,
∫
supp(x2) µ∗(x1, x2) pdf(x2) dx2 = µ∗1(x1)+Eµ∗2(x2) and a similar

operation can be carried out to recover µ∗2. An alternative model may be based on the assumption

that µ∗(x) = x′1θ
∗ + µ∗2(x2), where θ∗ is a finite-dimensional parameter and µ∗2 ∈ L2(x2). This leads

to an endogenous version of the partially linear model proposed by Engle, Granger, Rice, and Weiss

(1986) and Robinson (1988). Sometimes we may have information regarding the differentiability of

µ∗ which we want to incorporate into the model; in this case, we might assume that µ∗ is an element

of a Sobolev space. We could also allow for µ∗ to have certain shape restrictions. In particular, since

we assume that µ∗ belongs to a linear space, shape restrictions such as homogeneity and symmetry

are permissible for µ∗. These variations clearly illustrate the advantage of framing our problem in

a general setting. So we now frame our problem in a general Hilbert space setting. The geometric

nature of Hilbert spaces allows us to derive a lot of mileage from a few relatively simple concepts.

Let y denote the response variable which is assumed to be an element of U , a separable Hilbert

space with inner product 〈·, ·〉 and induced norm || · ||. Also, let M denote a known linear subspace

of U (note that M is not assumed to be closed). Assume that, corresponding to y, there exists an

element µ∗y ∈ M. The vector µ∗y is a summarization of the distribution of y and may be viewed as

the parameter of interest. If y − µ∗y is orthogonal to M, then µ∗y is simply the orthogonal projection

of y onto M. Here we assume instead that there exists a known linear subspace of U , denoted by W,

such that 〈y − µ∗y, w〉 = 0 for all w ∈ W; i.e., y − µ∗y is orthogonal to W, which we write as

y − µ∗y ⊥ W. (2.1)

We call M the “model space” and W the “instrument space”. Y denotes the set of all y ∈ U
for which the model holds; i.e., for each y ∈ Y there exists a µ∗y ∈ M such that (2.1) holds. Since

there is a one-to-one correspondence between random variables and distribution functions, Y can also

be interpreted as the set of all distributions for which (2.1) holds. Note that since Y always includes

M, it is nonempty. Also, continuity of the inner product implies that whenever (2.1) holds, y − µ∗y is

orthogonal to the closure of W. Therefore, W can be assumed to be closed without loss of generality.

1A good discussion of these models, though without any endogeneity, can be found in Hastie and Tibshirani (1990).
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Clearly, the endogenous nonparametric regression models described in the introduction are a

special case of (2.1) by letting M = L2(x), W = L2(w), and Y the set of random variables of the

form y = µ∗y(x) + ε, where µ∗y ∈M and E(ε|w) = 0 w.p.1.

It is easy to see that µ∗y is identified, i.e., uniquely defined, if and only if the following condition

holds.

Condition (I). If m ∈M satisfies m ⊥ W, then m = 0.

Henceforth, we refer to Condition (I) as the “identification condition”. Let PW denote orthog-

onal projection from U onto W using the inner product 〈·, ·〉. Then the identification condition can

be alternatively stated as follows: If m ∈M satisfies PWm = 0, then m = 0.

Example 2.1 (Linear regression). Let U be the familiar Hilbert space of random variables with finite

second moments equipped with the usual inner product 〈u, v〉 = E{uv}. Also, x (the s × 1 vector of

explanatory variables) and w (the d × 1 vector of instrumental variables) are random vectors whose

coordinates are elements of U . Moreover, M (resp. W) is the linear space spanned by the coordinates

of x (resp. w). Note that in this example M and W are both finite dimensional subspaces of U . By

(2.1), for a given y ∈ U there exists a linear function µ∗y(x) = x′θ∗y such that 〈y − x′θ∗y, w′α〉 = 0 for

all α ∈ Rd; i.e., E{w(y − x′θ∗y)} = 0. Condition (I) states that if 〈x′θ∗y, w′α〉 = 0 for all α ∈ Rd, then

θ∗y = 0. Hence, µ∗y or, equivalently, θ∗y are uniquely defined if and only if Ewx′ has full column rank.

Obviously, the order condition d ≥ s is necessary for Ewx′ to have full column rank. ¤

Example 2.2 (Nonparametric regression). Again, U is the Hilbert space of random variables with

finite second moments equipped the usual inner product and (x,w) are random vectors whose com-

ponents are elements of U . But, unlike the previous example, M = L2(x) and W = L2(w) are

now infinite dimensional linear subspaces of U consisting of square integrable functions. By (2.1),

for a given y in U there exists a function µ∗y in L2(x) such that E{[y − µ∗y(x)]g(w)} = 0 holds for

all g ∈ L2(w). Condition (I) states that if a function f ∈ L2(x) satisfies E{f(x)g(w)} = 0 for all

g ∈ L2(w), then f = 0 w.p.12.; i.e., if E{f(x)|w} = 0 w.p.1 for any f in L2(x), then f = 0 w.p.1.

But this corresponds to the completeness of pdf(x|w). Therefore, µ∗y is uniquely defined if and only

if the conditional distribution of x|w is complete, a result obtained earlier by Florens, Mouchart, and

Rolin (1990, Chapter 5) and Newey and Powell (2003). To get some intuition behind the notion of

completeness, observe that if x and w are independent, then completeness fails (of course, if w is

independent of the regressors then it is not a good instrument and cannot be expected to help identify

µ∗y). On the other extreme, if x is fully predictable by w then completeness is satisfied trivially, and

the endogeneity and identification problems disappear altogether. In fact, we can show that:

Lemma 2.1. The conditional distribution of x|w is complete if and only if for each function f(x) such

that Ef(x) = 0 and varf(x) > 0, there exists a function g(w) such that f(x) and g(w) are correlated.

2Since L2(x) and L2(w) are equivalence classes of functions, equality statements in L2(x) and L2(w) hold w.p.1.
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Hence, in the context of nonparametric regression we can think of completeness as a measure of the

correlation between the model space L2(x) and the instrument space L2(w). ¤

Let us assume that Condition (I) holds for the remainder of Section 2. Hence, for each y ∈ Y
there exists a unique µ∗y ∈ M such that y − µ∗y ⊥ W. It follows that Y is a linear subspace of U and

the map y 7→ µ∗y is a linear transformation on Y. Therefore, from now on we write V y for µ∗y so that

V : Y → M denotes a linear map such that µ∗y = V y. Employing well known terminology, V is just

the function that maps the reduced form into the structural form. Hence, a clear description of the

properties of V is central to understanding the identification and estimation problems in nonparametric

linear models with endogenous regressors.

We now study the properties of V . So define W0 = {w ∈ W : w = PWm for some m ∈ M}.
Since it is straightforward to show thatW0 is the smallest linear subspace ofW satisfying Condition (I),

we may viewW0 as the “minimal” instrument space. Let y ∈ Y. Since V y ∈M, by definition ofW0 we

know that PWV y ∈ W0. But, letting I denote the identity operator, we can write y = V y + (I −V )y,

where V y ∈ M and (I − V )y ⊥ W. Hence, PWy = PWV y ∈ W0. Furthermore, since y − PWy ⊥ W
and W0 ⊆ W, we have y−PWy ⊥ W0. This shows that when applied to elements of Y, the projection

PW has the same properties as orthogonal projection on W0. Next, let P̄W : M → W0 denote the

restriction of PW to M. P̄W is a continuous linear mapping fromM to W0 with inverse3 P̄−1
W . Clearly,

P̄−1
W is also a linear map. Therefore, we can characterize V as

V = P̄−1
W PW . (2.2)

The next example describes how V looks in some familiar settings.

Example 2.3. In Example 2.1, W is the linear space spanned by the coordinates of w. Hence, PW
corresponds to the best linear predictor given w; i.e., (PWy)(w) = (Eyw′)(Eww′)−1w. It is easy to show

that (P̄−1
W w)(x) = (Ewx′){(Exw′)(Eww′)−1(Ewx′)}−1x. Therefore, the map V : Y → M is given by

(V y)(x) = (P̄−1
W PWy)(x) = (Eyw′)(Eww′)−1(Ewx′){(Exw′)(Eww′)−1(Ewx′)}−1x. But since (V y)(x)

can be written as x′θ∗y, it follows that θ∗y here is just the population version of the usual 2SLS estimator.

By contrast, W in Example 2.2 is the infinite dimensional space L2(w). Hence, PW is the best

prediction operator (PWy)(w) = E(y|w). Therefore, in Example 2.2 we have V y = P̄−1
W E(y|w). ¤

Before describing additional properties of V , in Lemma 2.2 we propose a series based approach

for determining V . As illustrated by the examples given below, this approach may also be useful

as the basis of a practical computational method for estimating V . However, as noted earlier, a

full consideration of estimation issues is beyond the scope of the current paper. Instead, the reader

3Since PW is bounded, its restriction to M is also bounded and, hence, continuous. Now let m1 and m2 denote

elements of M and wj = P̄Wmj . Suppose w1 = w2. Then P̄W(m1 − m2) = 0. Hence, m1 − m2 ⊥ W. It follows

from Condition (I) that m1 = m2 so that P̄W is one-to-one and, by definition, the range of P̄W is W0. Therefore, since

P̄W : M→W0 is one-to-one and onto, it is has an inverse P̄−1
W : W0 →M.
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is referred to Pinkse (2000), Darolles, Florens, and Renault (2002), Ai and Chen (2003), Hall and

Horowitz (2003), and Newey and Powell (2003) for series estimation of endogenous nonparametric

models.

Lemma 2.2. Let m0,m1,m2, . . . be a basis for M such that 〈mi, PWmj〉 = 0 for i 6= j. Then,

P̄−1
W w =

∞∑

j=0

〈mj , w〉
〈mj , PWmj〉mj for any w ∈ W0 and V y =

∞∑

j=0

〈mj , PWy〉
〈mj , PWmj〉mj for any y ∈ Y.

This result in similar in spirit to the eigenvector based decomposition of Darolles, Florens, and

Renault (2002), although we use a different basis in our representation. It demonstrates that if µ∗y is

identified then it can be explicitly characterized in the population by a series representation using a

special set of basis vectors (if M = W so that endogeneity disappears, then V y is just the projection

onto M as expected). The basis functions needed in Lemma 2.2 can be constructed from an arbitrary

basis by using the well known Gram-Schmidt procedure as follows: Let d0, d1, d2, . . . be a basis for

M. Define m0 = d0 and let

mj = dj −
j−1∑

k=0

〈dj , PWmk〉
〈mk, PWmk〉mk for j = 1, 2, 3, . . .. (2.3)

Then m0,m1,m2, . . . is a basis for M satisfying 〈mi, PWmj〉 = 0 for i 6= j.

The following example illustrates the usefulness of Lemma 2.2.

Example 2.4. Let x, w, and ε be real-valued random variables such that x and ε are correlated,

E(ε|w) = 0 w.p.1, and (x,w) has a bivariate normal distribution with mean zero and variance
[

1 ρ
ρ 1

]

where ρ ∈ (−1, 1) \ {0}. Suppose y = µ∗y(x) + ε, where µ∗y is unknown and Eµ∗y
2(x) < ∞. Since

x|w d∼ N(wρ, 1 − ρ2), the conditional distribution of x given w is complete. Hence, µ∗y is identified.

Now let φ be the standard normal pdf and

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, . . . , Hj(x) = (−1)j+2 φ(j)(x)
φ(x)

, . . .

denote Hermite polynomials which are orthogonal with respect to the usual inner product on L2(x).

From Granger and Newbold (1976, Page 202) we know that if [ x
w ] d∼ N([ 0

0 ] ,
[

1 ρ
ρ 1

]
), then E{Hj(x)|w} =

ρjHj(w). This result ensures that the Hermite basis satisfies the requirement in Lemma 2.24. It, plus

the facts that EH2
j (x) = j! and E{Hj(x)E[Hj(x)|w]} = ρ2jj!, shows that we can write µ∗y explicitly as

µ∗y(x) =
∞∑

j=0

E{yHj(w)}
j!ρj

Hj(x). (2.4)

There are some interesting consequences of (2.4). For instance, if E(y|w) happens to be a

polynomial of degree p, then µ∗y will also be a polynomial of degree p because E{wpHj(w)} = 0 for

4Basis vectors that satisfy Lemma 2.2 for more general bivariate distributions can be constructed by using some of

the results discussed in Buja (1990).
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all j > p. As as particular example, suppose that E(y|w) = a + bw + cw2. Then it is easily seen that

µ∗y(x) = a− c/ρ2 + bx/ρ + cx2/ρ2. It is also clear from (2.4) that an estimator for µ∗y can be based on

the truncated series for V y. This is discussed in the next example. ¤

Example 2.5 (Example 2.4 contd.). As mentioned earlier, an estimator for µ∗y can be obtained by

truncating the series in (2.4). Suppose we have a random sample (y1, x1, w1), . . . , (yn, xn, wn) from

the distribution of (y, x, w). Let γ̂j denote the sample analog of γj = E{yHj(w)} based on these

observations; i.e., γ̂j =
∑n

i=1 yiHj(wi)/n. By (2.4), an estimator of µ∗y is given by

µ̂n(x) =
kn∑

j=0

γ̂jHj(x)
j!ρj

,

where kn is a function of the sample size such that kn ↑ ∞ as n ↑ ∞. In this example we show that

µ̂n is mean-square consistent and derive its rate of convergence. So, suppose for convenience that

w 7→ E(y|w) and w 7→ var(y|w) are bounded. Then, as shown in the appendix, for some α > 0 the

mean integrated squared error (MISE) of µ̂n is given by

E
∫

R
{µ̂n(x)− µ∗y(x)}2φ(x) dx = O(

ρ−2knkn

n
+ k−α

n ). (2.5)

Although (2.5) holds for a stylized setup, it is very informative; e.g., it is clear that the MISE

is asymptotically negligible if kn ↑ ∞ sufficiently slowly. Hence, µ̂n is mean-square consistent for µ∗y,
though its rate of convergence is slow. It converges even more slowly if the instrument is “weak”; i.e.,

|ρ| is small. In fact, since the MISE converges to zero if and only if kn log ρ−2 + log kn − log n ↓ −∞,

it follows that kn must be O(log n) or smaller. Therefore, even in this simple setting where the joint

normality of regressors and instruments is known and imposed in constructing an estimator, the best

attainable rate of decrease for the MISE is only O({log n}−α). This suggests that rates of convergence

that are powers of 1/ log n, rather than 1/n, are relevant for endogenous nonparametric regression

models when the distribution of (x,w) is unknown. Rates better than O({log n}−α) can be obtained

by imposing additional restrictions on µ∗y; e.g., Darolles, Florens, and Renault (2002, Theorem 4.2)

and Hall and Horowitz (2003, Theorem 4.1) achieve faster rates by making the eigenvalues of certain

integral operators decay to zero at a fast enough rate, thereby further restricting µ∗y implicitly. ¤

Example 2.6 (Endogenous nonparametric additive regression). Let y = µ∗1(x) + µ∗2(z) + ε, where µ∗1
and µ∗2 are unknown functions such that Eµ∗1

2(x) +Eµ∗2
2(z) < ∞ and E(ε|w, z) = 0; i.e., x is the only

endogenous regressor. In this example, the model space is L2(x) + L2(z) and the instrument space

is L2(w, z). Assume that (x, z, w) is trivariate normal with mean zero and positive definite variance-

covariance matrix Ω =
[

1 ρxz ρxw
ρxz 1 ρzw
ρxw ρzw 1

]
. Since the conditional distribution of x given (w, z) is normal

with mean depending on (w, z) and the family of one-dimensional Gaussian distributions with varying

mean is complete, µ∗1(x)+µ∗2(z) is identified. We now use the approach of Lemma 2.2 to recover µ∗1 and

µ∗2. So let µ∗(x, z) = µ∗1(x)+µ∗2(z). Note that µ∗(x, z) =
∑∞

j=0 αjHj(x)+
∑∞

j=0 βjHj(z) for constants
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{αj}∞j=0 and {βj}∞j=0. But since E{ε|w} = 0 and E{ε|z} = 0, we have E{yHj(w)} = αjρ
j
xwj! + βjj!

and E{yHj(z)} = αjρ
j
xzj! + βjj!. Solving these simultaneous equations for each j, it follows that

µ∗(x, z) = α0+β0+
∞∑

j=1

E{yHj(w)} − ρj
zwE{yHj(z)}

j!(ρj
xw − ρj

xzρ
j
zw)

Hj(x)+
∞∑

j=1

ρj
xwE{yHj(z)} − ρj

xzE{yHj(w)}
j!(ρj

xw − ρj
xzρ

j
zw)

Hj(z).

Therefore, using the fact that EHj(x) = 0 and EHj(z) = 0 for j ≥ 1,

µ∗1(x) = Ey +
∞∑

j=1

E{yHj(w)} − ρj
zwE{yHj(z)}

j!(ρj
xw − ρj

xzρ
j
zw)

Hj(x)

and

µ∗2(z) = Ey +
∞∑

j=1

ρj
xwE{yHj(z)} − ρj

xzE{yHj(w)}
j!(ρj

xw − ρj
xzρ

j
zw)

Hj(z).

Hence, µ∗1 and µ∗2 are identified. ¤

Next, we consider an iterative scheme for determining V 5. The advantage of this approach is

that we do not have to explicitly calculate the inverse operator P̄−1
W . We only need PW and PM,

where the latter denotes orthogonal projection onto the closure of M. In contrast, the series approach

of Lemma 2.2 did not require any knowledge of PM.

Lemma 2.3. Fix w ∈ W0, and consider the equation P̄Wm = w for m ∈ M. Let m0 denote

its solution and define m1 = PMw. If there exists a constant a 6= 0 and an m∗ ∈ M such that

mn+1 = (I − aPMP̄W)mn + aPMw converges to m∗ as n ↑ ∞, then m∗ = m0.

This result, which is related to the Landweber-Fridman procedure described in Kress (1999,

Chapter 15) and Carrasco, Florens, and Renault (2002), shows that if the sequence mn converges, then

it converges to m0. Therefore, given y, we can obtain V y by applying this procedure to w = PWy.

Since mn = a
∑n

j=0(I−aPMP̄W)jPMw, convergence in Lemma 2.3 is ensured if there exists a non-zero

constant a such that the partial sum
∑n

j=0(I − aPMP̄W)jm converges pointwise for each m ∈ M.

A well known sufficient condition for this to happen is that sup{m∈M:‖m‖=1} ‖(I − aPMP̄W)m‖ < 1.

Of course, if M = W so that there is no endogeneity, then m1 = PMy and there are no further

adjustments to m1.

Example 2.7. The iterative procedure of Lemma 2.3 also works for Example 2.4. To see this,

let a = 1 and note that E(y|w) =
∑∞

j=0 βjHj(w), where βj = E{yHj(w)}/j!. Hence, mn(x) =∑∞
j=0 βjρ

j{1+(1−ρ2j)+(1−ρ2j)2 + . . .+(1−ρ2j)n−1}Hj(x), and by (2.4) it follows that
∫
R{mn(x)−∑∞

j=0 βjHj(x)/ρj}2φ(x) dx → 0 as n ↑ ∞; i.e., mn converges in mean-square to µ∗y. ¤

Before ending this section, we comment briefly on the pervasiveness of “ill-posed” endogenous

nonparametric models. Recall that Condition (I) guarantees that for each y ∈ Y the vector µ∗y is

5See Petryshyn (1963) for a detailed treatment of recursive methods of this type.
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uniquely defined, i.e., V : y 7→ µ∗y is a function from Y into M. But Condition (I) is not strong

enough to ensure that this function is continuous6; i.e., the identification condition by itself is not

strong enough to ensure that the problem is well-posed. However, it can be shown that V is a closed

linear operator. To see this, let y1, y2, . . . denote a sequence in Y such that yn → y ∈ U as n ↑ ∞ and

suppose that V yn → m ∈ M as n ↑ ∞. To show that V is closed, it suffices to show that y ∈ Y and

m = V y. Note that, for each n = 1, 2, . . ., yn − V yn ⊥ W and, since yn − V yn → y −m as n ↑ ∞,

y −m ⊥ W. Hence, by definition of Y and V , y ∈ Y and m = V y. The next result characterizes the

continuity of V .

Lemma 2.4. The following statements are equivalent: (i) V is continuous on Y; (ii) Y is closed;

(iii) If m1,m2, . . . is a sequence in M such that PWmn → 0 as n ↑ ∞, then mn → 0 as n ↑ ∞;

(iv) W0 is closed; (v) There exists a closed linear subspace Y0 of Y such that W0 ⊆ Y0.

The restrictive nature of this lemma reveals that well-posed endogenous nonparametric models

are an exception rather than the rule; e.g., even the simple Gaussian setting of Example 2.4 is not

sufficient to make the problem there well-posed. To see this, let fn(x) = Hn(x)/
√

n! denote the

normalized nth Hermite polynomial. It is then easy to verify that E{fn(x)|w} converges to zero in

mean-square whereas fn does not. Therefore, (iii) does not hold and, hence, V is not continuous. Of

course, if M is finite dimensional (as in parametric models, or, in nonparametric models where the

regressors are discrete random variables with finite support7), then (iii) holds and V is continuous.

Similarly, if W is finite dimensional then W0 will be finite-dimensional and, hence, closed implying

that V is continuous. But these are clearly very special cases. A practical consequence of ill-posedness

is that some type of “regularization” is needed in estimation procedures to produce estimators with

good asymptotic properties. For instance, a truncation-based regularization ensures convergence of

the estimator described in Example 2.5. For more about the different regularization schemes used in

the literature, see, e.g., Wahba (1990, Chapter 8), Kress (1999, Chapter 15), Carrasco, Florens, and

Renault (2002), Loubes and Vanhems (2003), and the references therein.

3. Underidentification

In this section, we investigate the case where µ∗y in (2.1) fails to be uniquely defined. As men-

tioned earlier in Example 2.2, Newey and Powell (2003) and others have characterized identification

6Discontinuity of V means that slight perturbations in the response variable can lead to unbounded changes in µ∗y,

the parameter of interest associated with it. This lack of stability makes precise the sense in which some endogenous

nonparametric models can be called “ill-posed”. Note that sometimes a statistical problem is said to be ill-posed because

of data issues; e.g., classic nonparametric regression itself can be called ill-posed because we cannot estimate the graph

of an unknown function using only a finite amount of data. However, the notion of ill-posedness described here has

nothing to do with sample information but is inherent to the model.
7See, e.g., Blundell and Powell (2003) and Florens and Malavolti (2003).
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of the endogenous nonparametric regression model in terms of completeness of the conditional distri-

bution of x given w. They also point out that it is sufficient to restrict pdf(x|w) to the class of full

rank exponential densities for it to be complete. However, Examples 3.2 and 3.3 illustrate that this

sufficient condition can fail to hold in relatively simple cases. Furthermore, if the distribution of x|w
is not assumed to be parametric, completeness can be very hard to verify. Hence, it is important to

know what happens when completeness fails or cannot be checked. We now focus on this issue.

So let M0 = {m ∈ M : m ⊥ W} be the set of all “identification-destroying” perturbations of

µ∗y. From Condition (I) it follows that µ∗y is identified if and only if M0 = {0}. Note that M0 is a

closed linear subspace of M. The properties of M0 play an important role in the identification of µ∗y.

Example 3.1 (Underidentification in linear regression). We maintain the setup of Example 2.1. For

linear IV regression it is easily seen that M0 = {x′θ : (Ewx′)θ = 0 for some θ ∈ Rs}. Hence, the

identification condition fails to hold, i.e., M0 6= {0}, if Ewx′ is not of full column rank. ¤

Example 3.2 (Underidentification in nonparametric regression). Let y = µ∗y(x) + ε, where µ∗y ∈
L2(x) is unknown. The regressor is endogenous but we have an instrument w satisfying E(ε|w) = 0

w.p.1. Suppose that x = w + v, where w, v
iid∼ Uniform[−1/2, 1/2]. Hence, M0 = {f ∈ L2(x) :

E[f(x)|w] = 0 for a.a. w ∈ [−1/2, 1/2]}. Since E{f(x)|w} =
∫ w+1/2
w−1/2 f(u)du, it is straightforward to

show that E{f(x)|w} = 0 holds for a.a. w ∈ [−1/2, 1/2] if and only if f is periodic in the sense that

f(x) = f(1 + x) for a.a. x ∈ [−1, 0] and
∫ 0
−1 f(x) dx = 0. Thus, M0 can be explicitly characterized as

M0 = {f ∈ L2(x) : f(x) = f(1+x) for a.a. x ∈ [−1, 0] and
∫ 0
−1 f(x) dx = 0}. Since M0 is clearly not

equal to {0}, Condition (I) does not hold. Therefore, µ∗y is not uniquely defined and, hence, cannot

be estimated even for the simple design given in this example. ¤

Example 3.3 (Underidentification in nonparametric additive regression). Let y = µ∗1(x) + µ∗2(z) + ε,

where µ∗1 and µ∗2 are unknown functions L2(x) and L2(z) respectively, and E(ε|w) = 0; i.e., both

x and z are endogenous but we only have one instrument w. Obviously, here the model space is

L2(x)+L2(z) but the instrument space is L2(w). As in Example 2.6, assume that (x, z, w) are jointly

normal with mean zero and variance Ω. Since the conditional distribution of x, z|w is not complete,

it follows that µ∗1(x) + µ∗2(z) is not identified. In fact, it can be shown that M0 = Q 6= {0}, where

Q = span{Q0(x, z), Q1(x, z), . . . , Qj(x, z), . . .} and Qj(x, z) = ρj
zwHj(x)− ρj

xwHj(z)8. ¤

Suppose that a µ∗y satisfying (2.1) is not uniquely defined. Loosely speaking, this means that

the model space is “too large”; i.e., it contains more than one element satisfying (2.1). Hence, in

8Since E{Qj(x, z)|w} = 0, Qj ∈ M0 for each j; i.e., Q ⊆ M0. Next, let m0 ∈ M0. Then m0(x, z) = f(x) + g(z)

for some f ∈ L2(x) and g ∈ L2(z) such that E{f(x) + g(z)|w} = 0; i.e., E{f(x)|w} = −E{g(z)|w}. Hence, writing

f(x) =
P∞

j=0 αjHj(x) and g(z) =
P∞

j=0 βjHj(z), it follows that
P∞

j=0 αjρ
j
xwHj(w) = −P∞

j=0 βjρ
j
zwHj(w) if and

only if
P∞

j=0{αjρ
j
xw + βjρ

j
zw}Hj(w) = 0. By the completeness of Hermite polynomials in L2(w), this implies that

αjρ
j
xw + βjρ

j
zw = 0 for each j. Therefore, f(x) + g(z) = −P∞

j=0 βjQj(x, z)/ρj
xw ∈ Q; i.e., M0 ⊆ Q.
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order to obtain identifiability, we may choose a smaller model space. This approach is analogous to

eliminating redundant regressors in an underidentified linear regression model. We now formalize this

intuition. For a given y ∈ Y, define My = {m ∈ M : y −m ⊥ W}. Identification holds when My

consists of a single element. Otherwise, My is a collection of elements that cannot be distinguished

based on (2.1). A nice property of My is that each of its elements has the same projection onto M⊥
0 ,

the orthogonal complement of M0. Hence, M⊥
0 is a natural choice for the reduced model space9;

i.e., if µ∗∗y is the orthogonal projection of an arbitrarily chosen element of My onto M⊥
0 , then µ∗∗y

can be regarded as the “identifiable part” of µ∗y. In technical terms, when Condition (I) does not

hold the “true parameter” of the model is, in effect, an equivalence class of elements of M, which we

have denoted by the symbol My. This class of true parameters may be described in terms of their

common features as follows: Since M⊥
0 = (I − PM0)M, each my ∈My may be decomposed into two

components PM0my and PM⊥
0
my. But since PM⊥

0
my is the same for all my ∈ My, each equivalence

class My may be described by a single element µ∗∗y , which we refer to as the identifiable part of µ∗y.
We may take this canonical element to be µ∗∗y = PM⊥

0
My. It is easy to show that µ∗∗y is an element of

My
10. The remaining elements of My are those m ∈M such that PM⊥

0
m = PM⊥

0
µ∗∗y ; i.e., all m ∈M

of the form µ∗∗y +M0.

Example 3.4 (Example 3.1 contd.). Suppose that Ewx′ is not of full column rank so the identification

condition fails to hold. Here, My = {x′θ : (Ewx′)θ = Ewy}. Since PM0(x
′θ) = x′θ − x′Aθ, where

A = (Exx′)−1(Exw′){(Ewx′)(Exx′)−1(Exw′)}−1(Ewx′), we have PM⊥
0
(x′θ) = x′Aθ. Hence, we can

only identify linear functions of the form x′Aθ. Of course, if the identification condition holds, i.e.,

Ewx′ is of full column rank, then A reduces to the identity matrix and My = {x′θ∗} with θ∗ as defined

in Example 2.3. ¤

Example 3.5 (Example 3.2 contd.). The identifiable part of µ∗y is given by projecting My onto M⊥
0 ,

where My = {f ∈ L2(x) :
∫ w+1/2
w−1/2 f(u)du = E(y|w) for a.a. w ∈ [−1/2, 1/2]}. Recall that x has the

triangular distribution on [−1, 1]; i.e., the pdf of x is given by h(x) = 1 + x for −1 ≤ x ≤ 0 and

9There is an analogy to M⊥
0 in the specification testing literature. Suppose we want to test the null hypothesis

E(y|x) = x′θ against the alternative that it is false. Consider the alternative E(y|x) = x′θ + δ(x), where δ denotes a

deviation from the null. It is obvious that no test will be able to reject the null if δ is a linear function of x. The only

detectable perturbations are those that are orthogonal to linear functions; i.e., those satisfying E{xδ(x)} = 0.
10Let my ∈ My be arbitrary. Then y − µ∗∗y = y − PM⊥

0
my = y −my + PM0my. But y −my ⊥ W by definition of

My, and PM0my ⊥ W because PM0my ∈M0. Therefore, y − µ∗∗y ⊥ W. Since µ∗∗y ∈M, it follows that µ∗∗y ∈My.
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h(x) = 1− x for 0 ≤ x ≤ 1. It can be shown that M⊥
0 = B, where11

B = {f ∈ L2(x) : f(x)h(x) = −f(x + 1)h(x + 1) + c for a.a. x ∈ [−1, 0] and some constant c}.

Hence, the identifiable part of µ∗y is a function f satisfying f(x)h(x) = −f(x + 1)h(x + 1) + c for a.a.

x ∈ [−1, 0] and some constant c. ¤

Example 3.6 (Example 3.3 contd.). Now let us determine the identifiable part of the underidentified

model in Example 3.3. It can be shown that M⊥
0 = A, where A = span{1, A1(x, z), . . . , Aj(x, z), . . .}

and Aj(x, z) = (ρj
xw − ρj

xzρ
j
zw)Hj(x) + (ρj

zw − ρj
xzρ

j
xw)Hj(z)12. Hence, we can identify only those

additive functions whose Hermite representation is of the form c +
∑∞

j=1 γjAj(x, z), where c denotes

a constant. For example, suppose that ρxw = ρzw; i.e., the instrument has the same correlation with

each regressor. Then M⊥
0 consists of functions of the form c +

∑∞
j=0 γjHj(x) +

∑∞
j=0 γjHj(z); i.e.,

only elements of L2(x) + L2(z) of the form c + f(x) + f(z) are identified. ¤

As mentioned earlier, underidentification may be viewed as a consequence of the fact that the

model space M is too big. Hence, in order to obtain identifiability, we may choose a smaller model

space. A natural choice for this reduced model space is M⊥
0 . But in order to use M⊥

0 in place of

M, we must verify that it satisfies two conditions. The first is that for each y ∈ Y there exists a

µ∗∗y ∈ M⊥
0 such that y − µ∗∗y ⊥ W. The second is that M⊥

0 satisfies Condition (I). It is easy to see

that both these conditions are satisfied: Fix y ∈ Y. Then by (2.1), there exists µy ∈ M such that

y − µy ⊥ W. Let µ∗∗y = (I − PM0)µy = PM⊥
0
µy. Then y − µ∗∗y = y − µy + PM0µy. Since PM0µy is

an element of M0 and, hence, orthogonal to W, it follows that y − µ∗∗y ⊥ W. This shows that M⊥
0

satisfies the first requirement. Next, let m denote an element of M⊥
0 that is orthogonal to W. By

definition, there exists m1 ∈ M such that m = (I − PM0)m1. Since m ⊥ W, for any w ∈ W we

have 0 = 〈(I − PM0)m1, w〉 = 〈m1, (I − PM0)w〉 = 〈m1, w〉. It follows that m1 ⊥ W and, hence, that

m = (I − PM0)m1 = 0. Therefore, for m ∈ M⊥
0 , m ⊥ W implies that m = 0, proving that M⊥

0 also

satisfies the second requirement.

11Showing B ⊆M⊥
0 is easy. Next, by the projection theorem,

proj(g|M0)(x) =

8
<
:

g(x)h(x) + g(x + 1)h(x + 1)− Eg(x) if −1 ≤ x ≤ 0,

g(x)h(x) + g(x− 1)h(x− 1)− Eg(x) if 0 < x ≤ 1.

Now let g ∈M⊥
0 . Since g is an element of M⊥

0 , its projection onto M0 is the zero function. Hence, using the expression

for proj(g|M0), it follows that g ∈ B; i.e., M⊥
0 ⊆ B. Therefore, M⊥

0 = B.
12Recall that M0 = span{Qj(x, z)}. Now let Ak ∈ A. Since E{Ak(x, z)Qj(x, z)} = 0 for all j, Ak ∈M⊥

0 . Therefore,

A ⊆ M⊥
0 . Next, let m1 ∈ M⊥

0 . Then m1(x, z) = f(x) + g(z) for some f ∈ L2(x) and g ∈ L2(z). But since m1

is orthogonal to M0 by definition, E{f(x) + g(z)}Qk(x, z) = 0 for all k. Hence, writing f(x) =
P∞

j=0 αjHj(x) and

g(z) =
P∞

j=0 βjHj(z), we have
P∞

j=0 αjE{Hj(x)Qk(x, z)} +
P∞

j=0 βjE{Hj(z)Qk(x, z)} = 0 for k = 0, 1, . . .. Thus

(ρj
xzρj

xw − ρj
zw)αj + βj(ρ

j
xw − ρj

xzρj
zw) = 0 for j ≥ 1, and f(x) + g(z) = α0 + β0 +

P∞
j=1 βjAj(x, z)/(ρj

zw − ρj
xzρj

xw). It

follows that m1 ∈ A; i.e., M⊥
0 ⊆ A.
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Note that in order to describe µ∗∗y , we can use M⊥
0 in place of M in the theory developed in

Section 2. Since Condition (I) is satisfied by M⊥
0 , all of the previous results hold with respect to this

choice and µ∗∗y = V y, where V is now based on M⊥
0 .

4. Identification of bounded linear functionals

Economists are often interested in estimating real-valued functions of conditional expectations.

For example, letting y denote the market demand for a certain good and x the price, Newey and

McFadden (1994) consider estimating
∫
D E(y|x) dx, the approximate change in consumer surplus for

a given price change on interval D. In this section we consider an endogenous version of their problem

by characterizing the identification of bounded linear functionals of µ∗y when the latter itself may not

be identified (obviously, if µ∗y is uniquely defined then so is ρ(µ∗y)). The results of Ai and Chen (2003)

can be used to estimate linear functionals of µ∗y when the latter is identified.

So let ρ : M → R denote a continuous linear functional on M, where a possibly non-unique

µ∗y ∈ M satisfies y − µ∗y ⊥ W; i.e., we let (2.1) hold though we do not assume that Condition (I)

necessarily holds. We now introduce the condition under which ρ(µ∗y) is uniquely defined.

Condition (I-F). If m ∈M satisfies m ⊥ W, then ρ(m) = 0.

As shown below, Condition (I-F) is necessary and sufficient for ρ(µ∗y) to be identified.

Theorem 4.1. ρ(µ∗y) is identified if and only if Condition (I-F) holds.

The next example illustrates the usefulness of this result.

Example 4.1 (Identification of expectation functionals). Let y = µ∗y(x) + ε, where µ∗y ∈ L2(x)

is unknown. The regressors are endogenous but we have instruments satisfying E(ε|w) = 0 w.p.1.

Assume that the conditional distribution of x given w is not complete. Hence, µ∗y is not identified.

Now consider the expectation functional ρ(µ∗y) = E{µ∗y(x)ψ(x)}, where ψ is a known weight function

satisfying Eψ2(x) < ∞. Theorem 4.1 reveals that

ρ(µ∗y) = E{µ∗y(x)ψ(x)} is identified if and only if ψ ∈M⊥
0 . (4.1)

The case ψ(x) = 1 is a special case of (4.1) because M⊥
0 contains all constant functions (in fact,

since Eµ∗y(x) = Ey, it is obvious that µ∗y 7→ Eµ∗y(x) is identified irrespective of whether µ∗y is identified

or not). From (4.1) we can immediately see that in applications where µ∗y is not identified certain

expectation functionals of µ∗y may still be identified. Of course, if µ∗y is identified to begin with, then

M0 = {0} and M⊥
0 = L2(x); hence, ρ(µ∗y) is identified for all square integrable weight functions.

We can also use (4.1) to characterize the identification of bounded linear functionals of the form

µ∗y 7→
∫
Rs µ∗y(x)ψ(x) dx. In particular, it is easily seen that µ∗y 7→

∫
Rs µ∗y(x)ψ(x) dx is identified if and

only if ψ/h lies in M⊥
0 , where h denotes the unknown Lebesgue density of x. Note that for µ∗y 7→∫

Rs µ∗y(x)ψ(x) dx to be a bounded linear functional on L2(x) it is implicitly understood that the random
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vector x is continuously distributed and
∫
Rs ψ2(x)/h(x) dx < ∞. Of course, µ∗y 7→ E{µ∗y(x)ψ(x)} is

bounded on L2(x) even when some components of x are discrete. ¤

Finally, we show that Condition (I) holds if and only if Condition (I-F) holds for all bounded

linear functionals of µ∗y. Hence, identification of µ∗y can also be characterized as follows.

Theorem 4.2. µ∗y is identified if and only if all bounded linear functionals of µ∗y are identified.

For endogenous nonparametric regression, this result provides a direct link between identifi-

cation of µ∗y and its expectation functionals by revealing that µ∗y is identified if and only if all its

expectation functionals are identified; i.e., µ∗y is identified if and only if E{µ∗y(x)ψ(x)} is identified for

all ψ ∈ L2(x).

5. Linear moment conditions and instrumental variables

We now formulate (2.1) in terms of moment conditions generated by linear operators and also

provide an example to illustrate the usefulness of this characterization. Although this formulation

may seem different from the manner in which (2.1) is stated, we show that the two representations

are in fact logically equivalent. So let y denote an element of U and let M be a known linear subspace

of U . Suppose that corresponding to y is an element of M, denoted by µ∗y, defined as follows: “There

exists a linear subspace of U , denoted by V, and a continuous linear operator T : U → V such that

T (y − µ∗y) = 0”. Let Y denote the set of y ∈ U for which this model holds; i.e., for each y ∈ Y there

exists µ∗y ∈ M such that T (y − µ∗y) = 0. Note that since M ⊆ Y, the domain of T may be taken to

be Y.

Condition (I-M). If m ∈M satisfies Tm = 0, then m = 0.

Condition (I-M) is necessary and sufficient for µ∗y to be uniquely defined (the proof is straight-

forward and, hence, is omitted). We say that (Y,M) is a “moment-condition” model if there is a

linear subspace V of U and a continuous linear function T : Y → V such that for each y ∈ Y there

exists m ∈ M satisfying T (y − m) = 0 and Condition (I-M) holds. We call T the “identification

function”. Similarly, we say that (Y,M) is an “instrumental-variables” model if there is a closed

linear subspace W of U such that for each y ∈ Y there exists m ∈ M satisfying y − m ⊥ W and

Condition (I) holds. In fact, it can be easily shown that (Y,M) is a moment-condition model if and

only if it is an instrumental-variables model.

The following example illustrates a situation where the nature of the available information

makes it easier to write an endogenous nonparametric regression model as a moment-condition model.

Example 5.1. Let y = µ∗y(x)+ ε, where x ∈ Rs for s > 1 and µ∗y ∈ L2(x) is unknown. The regressors

are correlated with the error term such that the conditional distribution of ε given x satisfies the

index restriction E{ε|x} = E{ε|h(x)} w.p.1 for some known function h with dimh(x) < s. This,

e.g., is related to the exclusion restriction assumption maintained in Florens, Heckman, Meghir, and
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Vytlacil (2002). Let Tε = E{ε|x}−E{ε|h(x)}. Our model has content if the linear moment condition

T (y − µ∗y) = 0 holds for some µ∗y ∈ L2(x). For µ∗y to be uniquely defined, by Condition (I-M) we

need that µ∗y(x) = E{µ∗y(x)|h(x)} w.p.1 only for µ∗y(x) = 0 w.p.1. This reveals that µ∗y’s of the form

µ∗y(x) = f(h(x)) are not identifiable. Therefore, letting M denote the set of all functions in L2(x)

that are not functions of h(x), it follows that (y,M) is a moment-condition model with identification

function T . Next, we show how to write (y,M) as an instrumental-variables model. So let T0 be the

null space of T ; i.e., T0 is the set of all random variables ε such that E{ε|x} = E{ε|h(x)} w.p.1. Since

(y,M) is a moment-condition model with identification function T , by definition there exists a unique

µ∗y ∈ M such that y − µ∗y ∈ T0. It follows that (y,M) is also an instrumental-variables model with

instrument space T ⊥0 , where T ⊥0 = {v ∈ L2(x) : v ⊥ L2(h(x))}13. ¤

6. Conclusion

In this paper we investigate some identification issues in nonparametric linear models with

endogenous regressors. Our results suggest that identification in such models can fail to hold for even

relatively simple designs. Therefore, if researchers are not careful, simply assuming identification and

then proceeding to estimation can lead to statistical inference that may be seriously misleading. Since

lack of identification here is not easily detected, we show how to determine the identifiable part of

the structural function when it is underidentified by orthogonally projecting onto an appropriately

defined subspace of the model space. We also examine the connection between identification of the

unknown structural function and identification of its linear functionals and show that the two are

closely related.

Appendix A. Proofs

Proof of (2.5). By the orthogonality of Hermite polynomials,
∫

R
{µ̂n(x)− µ∗y(x)}2φ(x) dx =

kn∑

j=0

(γ̂j − γj)2

j!ρ2j
+

∞∑

j=kn+1

γ2
j

j!ρ2j
.

Hence,

MISE = E
∫

R
{µ̂n(x)− µ∗y(x)}2φ(x) dx ≤ ρ−2kn

kn∑

j=0

E(γ̂j − γj)2

j!
+

∞∑

j=kn+1

γ2
j

j!ρ2j
.

13DefineW = {v ∈ L2(x) : v ⊥ L2(h(x))} and let v and ε denote arbitrary elements ofW and T0, respectively. Then by

the properties of ε and v, E{v(x)ε} = E{v(x)E[ε|x]} = E{v(x)E[ε|h(x)]} = 0; i.e., W ⊥ T0, implying thatW ⊆ T ⊥0 . Next,

let u ∈ T ⊥0 . Since the random variable a(x) = E{u|h(x)} satisfies E{a(x)|x} = E{a(x)|h(x)}, we obtain that E{u|h(x)}
is an element of T0. Hence, u ⊥ E{u|h(x)}, which implies that E{u|h(x)} = 0 w.p.1. Therefore, u ⊥ L2(h(x)). Now

write u = u1 + u2, where u1 ∈ L2(x) and u2 ∈ L⊥2 (x). Since E{u2|x} = 0 w.p.1 and E{u2|h(x)} = E{E[u2|x]|h(x)} = 0

w.p.1, it follows that E{u2|x} = E{u2|h(x)} w.p.1; i.e., u2 ∈ T0. But since u ∈ T ⊥0 , 0 = E{uu2} = E{u2
2} implies that

u2 = 0 w.p.1. Hence, u = u1 ∈ L2(x). Thus u ∈ L2(x) and u ⊥ L2(h(x)); i.e., u ∈ W. Since u was chosen arbitrarily in

T ⊥0 , we conclude that T ⊥0 ⊆ W.
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But since var(yHj(w)) = E{var(y|w)H2
j (w)} + var{E(y|w)Hj(w)} and the maps w 7→ E(y|w) and

w 7→ var(y|w) are bounded by assumption,

var(yHj(w)) ≤ E{var(y|w)H2
j (w)}+ E{E2(y|w)H2

j (w)} ≤ cEH2
j (w) = cj!,

where c is a generic constant. Thus, E(γ̂j − γj)2 = var(yHj(w))/n ≤ cj!/n. It follows that the MISE

is majorized by cρ−2knkn/n +
∑∞

j=kn+1 γ2
j /j!ρ2j . But

∑∞
j=kn+1 γ2

j /j!ρ2j ≤ ck−α
n for some α > 0 under

some smoothness conditions on µ∗y; see, e.g., Milne (1929, Corollary I). The desired result follows. ¤

Proof of Lemma 2.1. Let S denote the statement “For each function f(x) such that Ef(x) = 0 and

varf(x) > 0, there exists a function g(w) such that f(x) and g(w) are correlated”. First, suppose

that S is not true. Hence, there exists a non-zero function f(x) satisfying Ef(x) = 0 such that

E{f(x)g(w)} = 0 for all g(w). But this implies that E{f(x)|w} = 0 w.p.1; i.e., pdf(x|w) is not

complete. Next, suppose that the conditional distribution of x|w is not complete. Hence, there exists

a function f(x) such that E{f(x)|w} = 0 w.p.1 but f(x) 6= 0; i.e., varf(x) > 0. Clearly, this implies

that f(x) is uncorrelated with all functions of w. The desired result follows. ¤

Proof of Lemma 2.2. We first consider the series expansion for V y. So let y ∈ Y. Hence, there

exists a unique [because Condition (I) is assumed to hold] µ∗y ∈M such that y−µ∗y ⊥ W. This implies

that PWy − PWµ∗y = 0. Since µ∗y ∈ M, we can write µ∗y =
∑∞

j=0 αjmj for some constants α0, α1, . . ..

Hence, PWµ∗y =
∑∞

j=0 αjPWmj , and using the fact that 〈mi, PWmj〉 = 0 for i 6= j, it follows that

〈mi, PWµ∗y〉 = αi〈mi, PWmi〉. Hence, αi = 〈mi, PWy〉/〈mi, PWmi〉 since PWy = PWµ∗y. Therefore,

V y = µ∗y =
∑∞

i=0{〈mi, PWy〉/〈mi, PWmi〉}mi. Next, we consider the series for P̄−1
W . So let w̃ be any

element of W0, and let m̃ = P̄−1
W w̃. Note that PW P̄−1

W w̃ = w̃ by definition of P̄−1
W . Since m̃ ∈M and

M is contained in Y, by the previous result

V m̃ =
∞∑

j=0

〈mj , PWm̃〉
〈mj , PWmj〉mj =

∞∑

j=0

〈mj , PW P̄−1
W w̃〉

〈mj , PWmj〉 mj =
∞∑

j=0

〈mj , w̃〉
〈mj , PWmj〉mj .

But by (2.2), V m̃ = P̄−1
W PWm̃ = P̄−1

W PW P̄−1
W w̃ = P̄−1

W w̃. The desired result follows. ¤

Proof of Lemma 2.3. Note that mn+1 − mn = aPMP̄W(m0 − mn). If limn↑∞mn exists, then

mn+1 − mn → 0 as n ↑ ∞ so that PMP̄W(mn −m0) → 0 as n ↑ ∞. Since PMP̄W(mn − m∗) → 0

as n ↑ ∞, it follows that PMP̄W(m0 − m∗) = 0. Let m = m0 − m∗; then PWm ⊥ M. Hence,

〈PWm,m〉 = 〈PWm,PWm〉 = 0 so that PWm = 0. It follows from Condition (I) that m = 0, i.e., that

m∗ = m0, proving the result. ¤

Proof of Lemma 2.4. We show that (i) ⇒ (iii) ⇒ (ii) ⇒ (i) and (i) ⇒ (iv) ⇒ (v) ⇒ (i).

First, suppose V is continuous. Let m1, m2, . . . be a sequence inM such that limn↑∞ PWmn = 0

and let yn = PWmn. Note that for each n, yn − mn = PWmn − mn ⊥ W so that yn ∈ Y. Hence,

mn = V yn. Since yn → 0 as n ↑ ∞, it follows that mn → 0. Therefore, (iii) holds.
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Next, assume that (iii) holds. Let y1, y2, . . . denote a sequence in Y such that limn↑∞ yn = y

for some y ∈ U . We need to show that y ∈ Y. Observe that since PWV (yn−y) = PW(yn−y) by (2.2)

and PW is continuous, it follows that PW(yn− y) → 0 as n ↑ ∞. But as V yn−V y is in M, by (iii) we

have V yn − V y → 0 as n ↑ ∞. This shows that yn − V yn − (y− V y) → 0 as n ↑ ∞. Since yn ∈ Y, we

know that yn − V yn ⊥ W for each n. Thus, by the continuity of the inner product, 〈y − V y, w〉 = 0

for all w ∈ W. Hence, y ∈ Y and Y is closed.

Next, suppose that Y is closed. Then since V is a closed linear operator with domain Y,

continuity of V follows by the closed graph theorem; see, e.g., Kreyszig (1978).

Now, let (i) hold. This implies that Y is closed. Let w1, w2, . . . denote a sequence in W0

with limit w ∈ W and, for each n = 1, 2, . . ., let mn ∈ M satisfy wn = PWmn. Since wn − mn =

PWmn −mn ⊥ W, it follows that wn ∈ Y and mn = V wn. Thus w ∈ Y because Y is closed. Next,

limn↑∞ V wn = V w by continuity of V . Hence, limn↑∞ PW(mn − V w) = limn↑∞wn − PWV w = 0, so

that wn → PWV w as n ↑ ∞. Since V w ∈M, we know that PWV w ∈ W0. Hence, W0 is closed.

Next, assume that W0 is closed. Since W0 ⊆ Y, the result follows by taking Y0 = W0.

Finally, suppose that (v) holds. Then the restriction of V to Y0 is closed and, since Y0 is

closed, that restriction is continuous by the closed graph theorem. Let m1,m2, . . . denote a sequence

in M such that PWmn → 0 as n ↑ ∞ and let wn = PWmn so that w1, w2, . . . is a sequence in W0

such that wn → 0 as n ↑ ∞. Note that wn − mn = PWmn − mn ⊥ W for each n, implying that

PW(wn −mn) = 0; i.e., PWwn = P̄Wmn since P̄W is the restriction of PW to M. Hence, mn = V wn

by (2.2). Since V is continuous on Y0 and W0 ⊆ Y0, it follows that limn↑∞mn = V limn↑∞wn = 0.

Thus (iii) holds. But we have already shown that (iii) implies (i). The desired result follows. ¤

Proof of Theorem 4.1. ρ(µ∗y) is identified if and only if all µ∗y ∈M for which y−µ∗y ⊥ W yield the

same value of ρ(µ∗y). Suppose that Condition (I-F) holds and that m1,m2 are elements ofM satisfying

y−mj ⊥ W for j = 1, 2. Then m1−m2 ⊥ W so, by Condition (I-F), ρ(m1−m2) = ρ(m1)−ρ(m2) = 0.

Hence, ρ(µ∗y) is identified. Next, suppose that all m for which y − m ⊥ W yield the same value of

ρ(m). Suppose y −m1 ⊥ W and m ∈ M satisfies m ⊥ W. Then y − (m1 + m) ⊥ W. Since ρ(µ∗y) is

identified, ρ(m1 + m) = ρ(m1) + ρ(m) = ρ(m1) so that ρ(m) = 0. Hence, Condition (I-F) holds. ¤

Proof of Theorem 4.2. Suppose Condition (I) holds and m ∈ M satisfies m ⊥ W. Then, by

Condition (I), m = 0 so that ρ(m) = 0 for any linear functional ρ. Next, suppose that Condition (I-F)

holds for any continuous linear functional ρ and let m ∈ M satisfy m ⊥ W. Consider the bounded

linear functional ρ(m1) = 〈m,m1〉, where m1 ∈ M. Since Condition (I-F) holds, it follows that

〈m,m〉 = 0. But this implies that m = 0. Hence, Condition (I) holds. ¤
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