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Abstract
Many datasets used by economists and other social scientists are collected

by stratified sampling. The sampling scheme used to collect the data induces a
probability distribution on the observed sample that differs from the target or un-
derlying distribution for which inference is to be made. If this effect is not taken
into account, subsequent statistical inference can be seriously biased. This paper
shows how to do efficient semiparametric inference in momentrestriction models
when data from the target population is collected by three widely used sampling
schemes variable probability sampling, multinomial sampling, and standard strat-
ified sampling.
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1. Introduction

The process of doing applied research in economics and other social sciences can be

divided into three distinct yet equally important steps. First, a model is written in terms of

the target population for which inference is to be made. Next, data is collected. Finally, the

resulting data is used to draw inference about the target population.

If data is collected by random sampling, so that observations from the target population

have the same chance of being represented in the sample, then there is no distinction between

the target and observed data distributions and statistical inference is straightforward. However,

for administrative convenience or to increase statistical precision by oversampling rare but

informative outcomes, in many applications data is collected by stratified sampling so that

observations from the target population have unequal chances of being selected. Hence, the

sampling scheme used to collect the data induces a probability distribution on the observed

sample that differs from the target or underlying distribution for which inference is to be made.

Subsequent inference can, therefore, be seriously biased if this effect is not taken into account.

In this paper we show how to do efficient inference in models defined via unconditional

moment restrictions when data from the target population is collected by stratified sampling.

Earlier works in the literature, with few exceptions, either make parametric assumptions about

the conditional density of variables in the target population or look at linear regression or

nonlinear discrete response models; see, e.g., DeMets and Halperin (1977), Manski and Lerman

(1977), Holt, Smith, and Winter (1980), Cosslett (1981a, 1981b), Hausman and Wise (1981),

Manski and McFadden (1981), DuMouchel and Duncan (1983), Jewell (1985), Quesenberry

and Jewell (1986), Scott and Wild (1986), Bickel and Ritov (1991), Imbens (1992), Imbens and

Lancaster (1996), and Butler (2000).

Unlike these papers, we treat the density of the target population as being completely

unknown and the class of overidentified models examined here subsumes linear regression and

discrete choice models as special cases; e.g., our ability to handle instrumental variables (IV)

models allows semiparametric inference in Box-Cox type models using stratified datasets, an

important advantage because it is well known that least squares is not consistent for estimating

such models. The unified approach proposed in this paper can deal with different kinds of

sampling schemes and our treatment is general enough to handle stratification based only

on the endogenous variables, or on the exogenous variables alone, or stratification that is

based on a subset of these variables;1 the stratifying variables can be discrete or continuously

distributed. We have taken special care to derive intuitive closed form expressions for the

asymptotic variances of estimators so that standard errors are easily obtained.

Wooldridge (1999, 2001) also leaves the target density completely unspecified and pro-

vides asymptotic theory for M -estimators. However, his model is defined in terms of a set of just
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identified moment conditions whereas we deal with possibly overidentified moment restrictions;

therefore, our model nests his moment conditions as a special case. Since the moment condi-

tions in Wooldridge’s papers are exactly identified, their validity cannot be tested. In contrast,

specification testing under stratification is examined in this paper. For standard stratified sam-

pling, Wooldridge (2001) assumes that the aggregate shares (defined in Section 2.2) are known,

whereas we treat the aggregate shares as unknown parameters but require an additional ran-

dom sample to deal with the consequent lack of identification; see Section 4.1 for details. Qin

(1993) uses data collected by variable probability sampling, along with an independent sample

from the target population, to construct empirical likelihood based confidence intervals for the

population mean of the target population. El-Barmi and Rothmann (1998) generalize Qin’s

treatment to handle nonlinear overidentified models; they also use two independent samples

whereas we only need a single sample to do inference when data is collected by variable prob-

ability sampling. Unlike us, Qin or El-Barmi and Rothmann do not investigate other kinds of

sampling schemes; nor do the latter consider testing the overidentifying restrictions.

2. Stratification in a moment based framework

2.1. The model. Let Z∗ be a d×1 random vector that denotes an observation from the target

population and Θ a subset of Rp such that

Ef∗{g(Z∗, θ∗)} = 0 for some θ∗ ∈ Θ, (2.1)

where g is a q× 1 vector of functions known up to θ∗ such that q ≥ p, i.e., overidentification is

allowed, and f ∗ is the unknown density of Z∗ with respect to a dominating measure µ which

need not be the Lebesgue measure so that Z∗ can have discrete components. The notation Ef∗

indicates that expectation is with respect to f ∗. Henceforth, “vector” means a column vector.

A familiar example of (2.1) is the linear model Y ∗ = X∗′θ∗ + ε∗, where Ef∗{X∗ε∗} = 0;

here, g(Z∗, θ∗) = X∗(Y ∗ −X∗′θ∗) and Z∗ = (Y ∗, X∗)(p+1)×1. Extensions include nonlinear re-

gression or simultaneous equations models. We can also handle conditional moment restrictions

in an IV framework; e.g., if EY ∗|X∗{g̃(Y ∗, X∗, θ∗)|X∗} = 0 w.p.1, where g̃ is a vector of functions

and Y ∗ a vector of endogenous variables, then (2.1) holds with g(Z∗, θ∗) = A(X∗)g̃(Y ∗, X∗, θ∗)
for a conformable matrix of instruments A(X∗). Although it is possible to improve upon IV

estimators, because conditional moment restrictions are stronger than unconditional ones, such

an extension is beyond the scope of this paper; see, e.g., Tripathi (2002).

If data is collected by random sampling, then (2.1) is easily handled; see, e.g., Newey

and McFadden (1994). However, if data is collected by stratified sampling, then the sample

consists of iid observations Z1, . . . , Zn generated from f , the density induced by the sampling

scheme, instead of iid observations from the target density f ∗. Hence, unless proper precautions

are taken, statistical inference using stratified data is about f and not f ∗; e.g., the sample
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average
∑n

j=1 Zj/n is not a consistent estimator of the mean of the target population because∑n
j=1 Zj/n

p−→ Ef{Z} by the weak law of large numbers (throughout the paper, all limits are

taken as the total sample size n ↑ ∞), but Ef{Z} 6= Ef∗{Z∗}.

2.2. Some commonly used sampling schemes. Let the target population be partitioned

into L nonempty disjoint strata C1, . . . ,CL. Depending upon the manner in which the obser-

vations are actually drawn from the strata, we study three general sampling schemes: variable

probability (VP) sampling, multinomial (MN) sampling, and standard stratified (SS) sampling.

Good descriptions of these stratified sampling schemes can be found in Jewell (1985), Cosslett

(1993), Imbens and Lancaster (1996), and Wooldridge (1999).

In VP sampling, typically used when data is collected by telephone surveys, an obser-

vation is first drawn randomly from the target population. If it lies in stratum Cl it is retained

with known probability Pl; if it is discarded, all information about the observation is lost.

Hence, instead of observing a random variable Z∗ drawn from the target density f ∗, we observe

a random variable Z drawn from the density

f(z) =

∑L
l=1 Pl1(z ∈ Cl)f

∗(z)∑L
l=1 PlQ∗

l

def
=

b(z)f ∗(z)

b∗
, (2.2)

where b(z) =
∑L

l=1 Pl1(z ∈ Cl), Q∗
l =

∫
Cl

f ∗(z) dµ, b∗ =
∑L

l=1 PlQ
∗
l , and 1 is the indicator

function. Q∗
l denotes the probability that a randomly chosen observation from the target

population lies in the lth stratum; i.e., the “demand” for the lth stratum. The Q∗
l ’s, popularly

called “aggregate shares”, are unknown parameters of interest and will be estimated along with

the structural parameter θ∗. The parameter b∗ also has a practical interpretation. It is the

probability that an observation from the target population is ultimately retained in the sample.

In MN sampling, the researcher first selects a stratum, say Cl, with known probability

Hl so that H1 + . . . + HL = 1. Then, an observation is drawn randomly from the selected

stratum. Hence, instead of observing Z∗ from the target density f ∗, we observe Z from the

density f(z) =
∑L

l=1(Hl/Q
∗
l )1(z ∈ Cl)f

∗(z).

In SS sampling, used for most large datasets, the number of observations drawn from

each stratum is fixed in advance and data is sampled randomly within each stratum. Suppose

that n observations Z1, . . . , Zn are collected by SS sampling. The density for a single observation

is given by fn(z) =
∑L

l=1(nl/n)1(z ∈ Cl)f
∗(z)/Q∗

l , where nl =
∑n

j=1 1(Zj ∈ Cl) is the number

of observations lying in the lth stratum of the stratified dataset.

Unlike MN sampling, observations collected by SS sampling are independently but not

identically distributed (inid) because in SS sampling the nl’s are treated as nonstochastic

constants whereas in MN sampling they are random variables. Thus statistical inference under

SS sampling should be done conditional on the observed values of the nl’s. This can be achieved

in a simple manner by the following trick: Let K̃ = (K̃1, . . . , K̃L) denote an L × 1 vector of
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unknown parameters in (0, 1)L such that
∑L

l=1 K̃l = 1 and assume, counterfactually, that

observations collected by SS sampling are iid draws from the density

f(z) =
L∑

l=1

K̃l1(z ∈ Cl)f
∗(z)

Q∗
l

def
= b(z,Q∗, K̃)f ∗(z), (2.3)

where b(z,Q∗, K̃) =
∑L

l=1(K̃l/Q
∗
l )1(z ∈ Cl) and Q∗ = (Q∗

1, . . . , Q
∗
L)L×1. In Section 4.3, we

show that estimating K̃ jointly and efficiently with θ∗ and Q∗ leads to asymptotic inference

that is conditional on the number of observations lying in each stratum of the stratified sample.

Therefore, although we work in an artificially created iid environment, because in an iid setting

it is easier to do efficiency bound calculations, apply standard statistical arguments to prove

our results, etc., the results we obtain are identical to those under the inid framework.

Since the densities for MN and SS schemes are observationally equivalent conditional

on the number of observations lying within each stratum, inference for them will be the same

provided we condition on the number of observations lying in each stratum of the stratified

dataset. Therefore, without loss of generality, henceforth we only consider SS sampling.

3. Inference when data is collected by variable probability sampling

In this section we investigate estimating and testing (2.1) when data is collected by VP

sampling. We begin with an example.

Example 3.1 (Linear regression). Let Y ∗ = X∗′θ∗ + ε∗, where Ef∗{X∗ε∗} = 0. Instead of

Z∗ = (Y ∗, X∗) from the target density, we observe Z = (Y, X) from (2.2). The least squares

estimator that ignores stratification, denoted by θ̂LS = (
∑n

j=1 XjX
′
j)
−1

∑n
j=1 XjYj, is not a

consistent estimator of θ∗. To see this, observe that plim(θ̂LS) = (EfXX ′)−1(EfXY )
(2.2)
= θ∗ +

(EfXX ′)−1Ef∗{b(Z∗)X∗ε∗}/b∗. But since Ef∗{X∗ε∗} = 0 does not imply Ef∗{b(Z∗)X∗ε∗} = 0,

it follows that θ̂LS is not consistent for θ∗. Furthermore, since the asymptotic bias depends

upon the distribution of Z∗ and the retention probabilities, the decision to ignore stratification

can only be made on a case by case basis; see, e.g., Imbens and Lancaster (1996). θ̂LS remains

inconsistent even if stratification is based only upon X∗. However, as pointed out by Wooldridge

(1999, 2001) and Tripathi (2002), if the identifying assumption Ef∗{X∗ε∗} = 0 is replaced by

the stronger condition EY ∗|X∗{ε∗|X∗} = 0 w.p.1, then ignoring exogenous stratification does

not affect the consistency of θ̂LS although it will still affect its asymptotic variance. ¤

3.1. Identification. Since we use f to do inference on f ∗, before proceeding any further we

first have to investigate whether f ∗ can be recovered in terms of f . If there is no way of going

from the stratified sample density (loosely speaking, the “reduced form”) to the target density

(the “structural form”), then moment based inference about f ∗ is impossible. In other words,
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we first have to examine whether f ∗ is identified. The density f is of course identified by

definition since it generates the data.

Fortunately, there are no identification issues for VP sampling. As discussed later in

Section 4.1, this is in sharp contrast to SS sampling where ignorance of Q∗ leads to serious

identification problems. All parameters of interest associated with VP sampling are identifiable

from the stratified sample alone; namely, b∗ is identified because b∗ = 1/Ef{1/b(Z)}, the

aggregate shares are identified because, for each l,

Ef{1(Z ∈ Cl)/b(Z)} = Q∗
l Ef{1/b(Z)} ⇐⇒ Q∗

l = Ef{1(Z ∈ Cl)/b(Z)}/Ef{1/b(Z)}, (3.1)

and identification of f ∗ follows from the fact that f ∗(z) = f(z)/[b(z)Ef{b−1(Z)}]. Therefore,

b∗, Q∗, and f ∗ can all be explicitly written in terms of f .

3.2. Efficient estimation. The inference in this paper is based on the empirical likelihood

(EL) approach proposed by Owen (1988), although the results obtained here also hold for the

generalized method of moments (GMM) used widely in econometrics. EL, however, has lately

begun to emerge as a serious contender to GMM; see, e.g., Qin and Lawless (1994), Imbens

(1997), Kitamura (1997, 2001, 2006), Smith (1997, 2005), and Owen (2001). Although EL and

GMM based inference is asymptotically equivalent up to a first order analysis, recent research

by Newey and Smith (2004) has shown that under certain regularity conditions EL has better

second order properties than GMM; e.g., unlike GMM, the second order bias of EL does not

depend upon the number of moment conditions which makes it very attractive for estimating

models with large q, such as panel data models with long time dimension, where GMM is

known to perform poorly in small samples.

Our estimator for θ∗ is easy to motivate: Since Ef∗{g(Z∗, θ∗)} = 0 if and only if

Ef{g(Z, θ∗)/b(Z)} = 0, we can efficiently estimate θ∗ by doing EL on the transformed mo-

ment function g(Z, θ)/b(Z).2 Technically, this is a change of measure result; i.e., since f ∗ can

be expressed in terms of f by inverting the mapping in (2.2), dividing g(Z, θ∗) by b(Z) al-

lows (2.1) to be rewritten in terms of f without loss of information. More intuitively, since

1/b(Z) =
∑L

l=1 1(Z ∈ Cl)/Pl, this transformation represents an “inverse probability” weight-

ing scheme in which oversampled strata are assigned smaller weights than the undersampled

strata, thereby correcting the effects of stratification.

Example 3.2 (Population mean). Since Ef∗{Z∗−θ∗} = 0 if and only if Ef{(Z−θ∗)/b(Z)} = 0,

the EL estimator of the mean of the target population is θ̂ =
∑n

j=1 Zjb
−1(Zj)/

∑n
j=1 b−1(Zj).

This can be written more revealingly as θ̂ =
∑L

l=1 Q̂lZ̄l, where Q̂l = (nl/Pl)/
∑L

l=1(nl/Pl)

estimates the lth aggregate share and Z̄l =
∑n

j=1 Zj1(Zj ∈ Cl)/nl is the lth stratum sample

average. It can be directly shown that n1/2(θ̂ − θ∗) is asymptotically normal with mean zero

and variance b∗2Ef{(Z− θ∗)(Z− θ∗)′/b2(Z)}, which agrees with the result in Theorem 3.1. ¤
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The aggregate shares can be estimated jointly with θ∗ by including additional moment

conditions. In fact, since they add up to one, it suffices to estimate Q∗
−L = (Q∗

1, . . . , Q
∗
L−1)(L−1)×1.

So let β∗ = (θ∗, Q∗
−L)(p+L−1)×1 and s(Z) = (1(Z ∈ C1), . . . ,1(Z ∈ CL−1))(L−1)×1. Following

(3.1), define the (q + L− 1)× 1 transformed moment function

ρ(Z, β) =

[
g(Z, θ)/b(Z)

{s(Z)−Q−L}/b(Z)

]
def
=

[
ρ1(Z, θ)

ρ2(Z,Q−L)

]
, (3.2)

where ρ1(Z, θ) = g(Z, θ)/b(Z) and ρ2(Z,Q−L) = {s(Z) − Q−L}/b(Z). An asymptotically

efficient estimator of β∗ can be obtained by doing EL on (3.2) as follows: For a fixed β,

construct the nonparametric loglikelihood for the observed sample by solving

max
p1,...,pn

n∑
j=1

log pj s.t. pj ≥ 0,
n∑

j=1

pj = 1,
n∑

j=1

ρ(Zj, β)pj = 0.

The solution to this optimization problem is given by p̂j(β) = n−1{1 + λ′(β)ρ(Zj, β)}−1, where

j = 1, . . . , n and λ(β) satisfies
∑n

j=1 ρ(Zj, β)/{1 + λ′(β)ρ(Zj, β)} = 0. Now let

EL(β) =
n∑

j=1

log p̂j(β) = −
n∑

j=1

log{1 + λ′(β)ρ(Zj, β)} − n log n (3.3)

and, for B = Θ× [0, 1]L−1, define the empirical likelihood estimator of β∗ as

β̂ = argmax
β∈B

EL(β).

Let ‖ · ‖ be the Euclidean norm and ∂ρ(Z, β)/∂β the (q + L− 1)× (p + L− 1) Jacobian

matrix. The regularity conditions below ensure that β̂ is consistent and asymptotically normal.

Assumption 3.1. (i) β∗ ∈ B is the unique solution to Ef{ρ(Z, β)} = 0; (ii) B is compact;

(iii) ρ(Z, β) is continuous at each β ∈ B with probability one; (iv) Ef{supβ∈B ‖ρ(Z, β)‖α} < ∞
for some α > 2; (v) Ef{ρ(Z, β∗)ρ′(Z, β∗)} is nonsingular; (vi) β∗ ∈ int(B); (vii) ρ(Z, β) is

continuously differentiable in a neighborhood N of β∗ and Ef{supβ∈N ‖∂ρ(Z, β)/∂β‖} < ∞;

(viii) Ef{∂ρ(Z, β∗)/∂β} is of full column rank.

Newey and Smith (2004, page 226) use (i)–(v) to show the consistency and (vi)–(viii) to

prove the asymptotic normality of EL estimators. In particular, letting D = Ef{∂ρ1(Z, θ∗)/∂θ},
V1 = Ef{ρ1(Z, θ∗)ρ′1(Z, θ∗)}, V2 = Ef{ρ2(Z, Q∗

−L)ρ′2(Z,Q∗
−L)}, Σ12 = Ef{ρ1(Z, θ∗)ρ′2(Z, Q∗

−L)},
MV1 = V −1

1 − V −1
1 D(D′V −1

1 D)−1D′V −1
1 , and 0k1×k2 the k1 × k2 matrix of zeros, we can show

the following result.

Theorem 3.1. Let Assumption 3.1 hold. Then,[
n1/2(θ̂ − θ∗)

n1/2(Q̂−L −Q∗
−L)

]
d−→ N(0(p+L−1)×1,

[
(D′V −1

1 D)−1 −b∗(D′V −1
1 D)−1D′V −1

1 Σ12

−b∗Σ′
12V

−1
1 D(D′V −1

1 D)−1 b∗2(V2 − Σ′
12MV1Σ12)

]
).
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The estimators θ̂ and Q̂−L are asymptotically efficient because it can be shown that

(D′V −1
1 D)−1 and b∗2(V2 − Σ′

12MV1Σ12) coincide with the efficiency bounds for estimating θ∗

and Q∗
−L, respectively. Notice that if b(Z) is constant, so that stratification disappears, then

(D′V −1
1 D)−1 becomes the well known asymptotic variance for estimating θ∗ in the absence of

stratification. Similarly, if there is no auxiliary information, e.g., if g is identically zero or

if there are no overidentifying restrictions, then the asymptotic variance of n1/2(Q̂−L − Q∗
−L)

reduces to b∗2V2. Therefore, imposing the overidentified model leads to an efficiency gain in

estimating the aggregate shares. Theorem 3.1 also reveals that if θ∗ is the only parameter of

interest then it is not necessary to jointly estimate Q∗ in order to obtain an efficient estimator

of θ∗ because, as mentioned at the beginning of Section 3.2, the EL estimator of θ∗ based on

the moment condition Ef{g(Z, θ∗)/b(Z)} = 0 alone will be asymptotically efficient, i.e., have

asymptotic variance (D′V −1
1 D)−1.

Let 1k×1 be the k× 1 vector of ones and Q̂ = (Q̂−L, 1− 1′(L−1)×1Q̂−L)L×1 denote the EL

estimator of Q∗ for the remainder of the paper.

Example 3.3 (Example 3.1 cont.). Since β∗ is just identified, the EL estimators of θ∗ and

Q∗
l are given by θ̂ = {∑n

j=1 XjX
′
j/b(Zj)}−1

∑n
j=1 XjYj/b(Zj) and Q̂l = (nl/Pl)/

∑L
l=1(nl/Pl),

respectively. By Theorem 3.1, n1/2(θ̂ − θ∗) is asymptotically normal with mean zero and vari-

ance covariance matrix {EfXX ′/b(Z)}−1Ef{XX ′(Y −X ′β∗)2/b2(Z)}{EfXX ′/b(Z)}−1, which

resembles the Eicker-White heteroscedasticity consistent asymptotic variance with a correction

for stratification. A little simplification reveals that each n1/2(Q̂l−Q∗
l ) is asymptotically normal

with mean zero and variance b∗{Q∗
l − 2Q∗

l
2 + k̄PlQ

∗
l
2}/Pl, where k̄ =

∑L
l=1(Q

∗
l /Pl). ¤

Let us now see how b∗ can be efficiently estimated. Since b∗ =
∑L

l=1 PlQ
∗
l , its EL

estimator is given by b̂ =
∑L

l=1 PlQ̂l. Hence, using the asymptotic distribution of Q̂−L given in

Theorem 3.1, some straightforward algebra shows that

n1/2(b̂− b∗) = n−1/2

n∑
j=1

{m(Zj)− d̄′MV1ρ1(Zj, θ
∗)}+ op(1),

where m(Z) = b∗{b(Z)− b∗}/b(Z) and d̄ = Ef{m(Z)ρ1(Z, θ∗)}. The next result is immediate.

Theorem 3.2. Let Assumption 3.1 hold. Then,

n1/2(b̂− b∗) d−→ N(0,Ef{m2(Z)} − d̄′MV1 d̄).

Since b̂ is a known linear function of Q̂ and the latter is asymptotically efficient, it fol-

lows that b̂ is also asymptotically efficient. If there is no overidentification, its asymptotic vari-

ance becomes b∗2Ef{[b(Z) − b∗]/b(Z)}2. This makes sense because Q̂l = (nl/Pl)/
∑L

l=1(nl/Pl)

when q = p and, hence, b̂ =
∑L

l=1 PlQ̂l = n/
∑n

j=1{1/b(Zj)} is just the sample analog of
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1/Ef{1/b(Z)}. Using b̂, the asymptotic variances in Theorems 3.1–3.2 and other results can

be estimated in the obvious manner by replacing population means with their sample analogs.

In addition to the aggregate shares, other unconditional probabilities can also be of in-

terest in applied work; e.g., descriptive statistics for the target population, typically reported

unconditionally, can include probabilities; for instance, estimating the proportion of individuals

in the target population with 11 or fewer years of education. Hence, we next consider efficient

estimation of the cumulative distribution function (cdf) F ∗(·) = Prf∗{Z∗ ≤ ·}. See Efromovich

(2004) for some additional cross-disciplinary examples where estimation of F ∗ may be of inter-

est. Efficient estimation of F ∗ may also be relevant if one wants to bootstrap from the target

population. When prior information about the target population is available, merely using a

consistent estimator of F ∗ can lead to poor inference from the bootstrap. Hence, Brown and

Newey (2002) suggest that resampling be done using F̂ ∗, an estimator of F ∗ that incorporates

the stochastic restrictions imposed by the model (2.1). For the sake of completeness, we also

efficiently estimate F (·) = Prf{Z ≤ ·}. Contrasting F̂ ∗ and F̂ (the estimator of F ), a use-

ful diagnostic tool, can reveal the extent of stratification; F̂ ∗ can also be compared with the

empirical distribution but since F̂ takes the model into account, it is more precise.

So let F̂ ∗(ξ) = b̂
∑n

j=1 p̂j(β̂)1(Zj ≤ ξ)/b(Zj) and F̂ (ξ) =
∑n

j=1 p̂j(β̂)1(Zj ≤ ξ), where ξ

is a fixed evaluation point in Rd. The asymptotic distributions of F̂ ∗(ξ) and F̂ (ξ) are given by

the following results.

Theorem 3.3. Let Assumption 3.1 hold. Then,

n1/2{F̂ ∗(ξ)− F ∗(ξ)} d−→ N(0,Ef{m2(Z, ξ)} − d′ξMV1dξ),

where m(Z, ξ) = b∗{1(Z ≤ ξ)− F ∗(ξ)}/b(Z) and dξ = Ef{m(Z, ξ)ρ1(Z, θ∗)}.

Theorem 3.4. Let Assumption 3.1 hold. Then,

n1/2{F̂ (ξ)−F (ξ)} d−→ N(0, F (ξ)[1−F (ξ)]−Ef{1(Z ≤ ξ)ρ′1(Z, θ∗)}MV1Ef{1(Z ≤ ξ)ρ1(Z, θ∗)}).

The asymptotic variances in Theorems 3.3 and 3.4 correspond to the efficiency bounds

for estimating F ∗(ξ) and F (ξ); hence, these estimators are asymptotically efficient. If f ∗ = f ,

i.e., no stratification, then the asymptotic variances become

F (ξ)[1− F (ξ)]−E{1(Z ≤ ξ)g′(Z, θ∗)}{V −1 − V −1D(D′V −1D)−1D′V −1}E{1(Z ≤ ξ)g(Z, θ∗)},
where D = E{∂g(Z, θ∗)/∂θ} and V = E{g(Z, θ∗)g′(Z, θ∗)}, which is the asymptotic variance

for estimating F (ξ) under (2.1) in the absence of stratification (Brown and Newey 1998).

Example 3.4. Suppose we know a priori that Ef∗{g(Z)} = 0, where g is a vector of known

functions. These types of auxiliary information models, which are a special case (2.1), have

been investigated by Imbens and Lancaster (1994), Hellerstein and Imbens (1999), and Nevo
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(2003), although these authors do not consider efficient estimation of Q∗, b∗, F ∗, or F for such

models. The asymptotic distributions for EL estimators of Q∗, b∗, F ∗(ξ), and F (ξ) follow from

Theorems 3.1–3.4 by replacing g(Z, θ∗)/b(Z) with g(Z)/b(Z) and setting D = 0. ¤

3.3. Hypothesis testing. Suppose we want to test the parametric restriction H(θ∗) = 0

against the alternative that it is false, where H is an h × 1 vector of twice continuously

differentiable known functions such that ∂H(θ∗)/∂θ has rank h ≤ p. Since θ̂ is asymptoti-

cally normal, the Wald statistic Ŵ = nH ′(θ̂){[∂H(θ̂)/∂θ](D̂′V̂ −1
1 D̂)−1[∂H(θ̂)/∂θ]′}−1H(θ̂) is

asymptotically χ2
h under the null, where D̂ and V̂1 are consistent estimators of D and V1,

respectively. Alternatively, the test can be based on the objective function itself. Letting

β̄ = argmax{β∈B:H(θ)=0} EL(β) denote the restricted estimator, define the likelihood ratio statis-

tic LR = 2{EL(β̂)−EL(β̄)}. A test for H(θ∗) = 0 can be based upon LR; critical values follow

from Qin and Lawless (1994, Theorem 2) who show that LR
d−→ χ2

h under the null.

Since Ŵ and LR are asymptotically equivalent, the decision to use a particular test

depends upon computational and other considerations; e.g., though both can be inverted to

obtain asymptotically valid confidence regions, LR based regions are invariant to the formula-

tion of the null hypothesis and automatically satisfy natural range restrictions. Furthermore,

unlike Ŵ , the likelihood ratio statistic LR is internally studentized, i.e., it does not require

preliminary estimation of any variance terms. This guarantees that confidence regions based

on LR are also invariant to nonsingular transformations of the moment conditions. Internal

studentization may also lead to better finite sample properties for LR; see, e.g., Fisher, Hall,

Jing, and Wood (1996).

3.4. Specification testing. Assume that q > p. In this section we describe an EL based

specification test of (2.1) against the alternative that it is false. Besides being internally stu-

dentized and invariant to nonsingular and algebraic transformations of the moment conditions,

Kitamura (2001) has shown this test to be optimal in terms of a large deviations criterion.

So let β̂ denote a n1/2-consistent preliminary estimator of β; e.g., β̂ can be the EL estimator

defined previously. The restricted, i.e., under (2.1), EL is ELr =
∑n

j=1 log p̂j(β̂), where p̂j’s are

the EL probabilities; the unrestricted, i.e., when the model is not imposed, nonparametric like-

lihood is ELur = −n log n. Now define ELR = 2(ELur −ELr) = 2
∑n

j=1 log{1 + λ′(β̂)ρ(Zj, β̂)},
where λ(β) was defined earlier in Section 3.2. ELR can be regarded as an analog of the usual

parametric likelihood ratio test statistic; i.e., (2.1) is rejected if ELR is large enough. Critical

values for ELR are easily obtained because ELR
d−→ χ2

q−p under (2.1) by Qin and Lawless (1994,

Corollary 4).
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4. Inference when data is collected by standard stratified sampling

We now consider the estimation and testing of (2.1) using data collected by SS sampling.

As shown subsequently, the major difference between the VP and SS sampling schemes is that

the unknown aggregate shares create a lack of identification for the target density when data

is collected by SS sampling.

4.1. Identification. Although we can write f ∗(z) = f(z)/b(z, Q∗, K̃) by (2.3), we cannot

recover f ∗ in terms of f alone because, unlike VP sampling, data collected by SS sampling

cannot identify the aggregate shares Q∗.3 Therefore, the target density is also unidentified. To

overcome this lack of identification, suppose that in addition to the stratified sample we also

have some additional observations that were collected by random sampling. Since the second

sample is not stratified, we can use it to recover the aggregate shares and, as shown later,

combining the stratified and random samples allows us to completely recover f ∗.
The existence of such additional random samples should not be regarded as being an

overly restrictive requirement. For instance, Manski and Lerman (1977) suggest carrying out

a small random survey to gather a supplementary sample in order to estimate the aggregate

shares. Indeed, some widely used stratified datasets such as the Panel Study of Income Dynam-

ics (PSID) and the National Longitudinal Survey (NLS) automatically provide an additional

random sample that can be used for this purpose.

4.2. Data combination. As in Devereux and Tripathi (2006), the process of combining the

stratified and random samples is modelled as follows. Let Z denote an observation from the

combined sample. Along with Z, we observe a dummy variable R that indicates whether Z

comes from the random or the stratified sample; i.e., R = 1 if Z is from the random sample

and R = 0 if Z belongs to the stratified sample. Hence, for r ∈ {0, 1}, the conditional density

of Z|R = r is given by

fZ|R=r(z) = f ∗(z)r + f(z)(1− r), (4.1)

where f is defined in (2.3). Next, since R is a binary random variable, assume that R
d
=

Bernoulli(κ0), where κ0 ∈ (0, 1) is an unknown nuisance parameter that will be estimated

along with the parameters of interest. Therefore, by (4.1), the joint density of Z and R is

fe(z, r) = κ0f
∗(z)r + (1− κ0)f(z)(1− r). (4.2)

Henceforth, we refer to fe as the density of an observation from the “enriched” sample, i.e.,

the random and stratified samples combined together. fe is a density with respect to the

dominating measure µ⊗ c̄, where c̄ denotes the counting measure on {0, 1}.
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To see how combining the datasets identifies f ∗, note that by (2.3) and (4.2) we have

f ∗(z) =

∫
r∈{0,1} fe(z, r) dc̄

κ0 + (1− κ0)b(z,Q∗, K̃)
. (4.3)

But the aggregate shares are identified from the random sample by the moment conditions

Q∗
l = Efe{1(Z ∈ Cl)|R = 1} ⇐⇒ Efe{1(Z ∈ Cl)−Q∗

l }R = 0 (4.4)

for each l. Similarly, the K̃l’s, which were also assumed to be unknown, are identified from the

stratified sample via the moment conditions

K̃l = Efe{1(Z ∈ Cl)|R = 0} ⇐⇒ Efe{1(Z ∈ Cl)− K̃l}(1−R) = 0, (4.5)

and κ0, which can be loosely described as the probability of randomly sampling from the target

population, is identified via the moment condition

κ0 = Efe{R} ⇐⇒ Efe{R− κ0} = 0. (4.6)

Since (4.4)–(4.6) imply that (4.3) can be written in terms of fe alone, it follows that the target

density can be fully recovered from the enriched density and is, therefore, identified.

For the remainder of Section 4, let n denote the size of the enriched sample. Observations

(Z1, R1), . . . , (Zn, Rn) from the enriched dataset are regarded as iid draws from fe and all limits

are taken as the combined sample size n approaches infinity. In the next section we show how

the enriched dataset can be used to estimate and test (2.1).

We end this section with a brief technical remark: Although the introduction of R

allows the combined sample to be treated as a collection of iid draws from the enriched density

fe, which greatly simplifies the mathematical treatment, it makes
∑n

j=1 Rj, the size of the

randomly sampled dataset, a random variable. However, as shown in Section 4.3, asymptotic

inference about θ∗ is conditional on the observed value of
∑n

j=1 Rj because we estimate θ∗

jointly and efficiently with κ0. Therefore, our results coincide with those obtained in a setting

where the size of the random sample is non-stochastic and observations from the combined

sample are regarded as being independently but not identically distributed.

4.3. Efficient estimation and inference. Recalling that the aggregate shares and the K̃l’s

sum to one, by (4.3) we can express (2.1) in terms of the enriched density as

Efe{g(Z, θ∗)/c(Z, Q∗
−L, K̃−L, κ0)} = 0, (4.7)

where K̃−L = (K̃1, . . . , K̃L−1)(L−1)×1 and c(Z, Q∗
−L, K̃−L, κ0) = κ0 + (1− κ0)b(Z, Q∗, K̃).
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To estimate β∗ = (θ∗, Q∗
−L, K̃−L, κ0)(p+2L−1)×1, use (4.4)–(4.7) to define the (q+2L−1)×1

moment function

ρ(Z, R, β) =




g(Z, θ)/c(Z,Q−L, K−L, κ)

{s(Z)−Q−L}R
{s(Z)−K−L}(1−R)

R− κ




def
=




ρ1(Z, β)

ρ2(Z,R,Q−L)

ρ3(Z, R, K−L)

ρ4(R, κ)


 , (4.8)

where s(Z) was defined earlier in Section 3.2, ρ1(Z, β∗) is the moment function in (4.7),

ρ2(Z, R, Q−L) = {s(Z)−Q−L}R, ρ3(Z, R, K−L) = {s(Z)−K−L}(1−R), and ρ4(R, κ) = R−κ.

Since ρ2, ρ3, and ρ4 just identify (Q∗
−L, K̃−L, κ0), it follows that (2.1) holds if and only if

Efe{ρ(Z, R, β∗)} = 0. Hence, θ∗ can be efficiently estimated from the latter moment condition.

Using notation developed earlier, the EL estimator of β∗ is given by β̂ = argmaxβ∈B EL(β),

where B = Θ × [0, 1]L−1 × [0, 1]L−1 × [0, 1] and the objective function EL(β) is defined as in

(3.3) with the moment function given in (4.8).

We need some additional notation to describe the asymptotic distribution of β̂. So let

Proj{ρ1(Z, β∗)
∣∣1, ρ2(Z,R,Q∗

−L), ρ3(Z, R, K̃−L), ρ4(R, κ0)} denote the orthogonal projection of

ρ1(Z, β∗) onto the span of {1, ρ2(Z,R,Q∗
−L), ρ3(Z,R, K̃−L), ρ4(R, κ0)} using the inner product

〈a, b〉 = Efe{a′b}, and let ε be the residual from this projection; i.e.,

ε = ρ1(Z, β∗)− Proj{ρ1(Z, β∗)
∣∣1, ρ2(Z, R, Q∗

−L), ρ3(Z, R, K̃−L), ρ4(R, κ0)}.
Since ρ2(Z, R, Q∗

−L), ρ3(Z, R, K̃−L), and ρ4(R, κ0) are mean zero and mutually orthogonal,

ε = ρ1(Z, β∗)− Σ12V
−1
2 ρ2(Z,R,Q∗

−L)− Σ13V
−1
3 ρ3(Z,R, K̃−L)− Σ14ρ4(R, κ0)/V4,

where, as in Section 3.2, Σ12 = Efe{ρ1(Z, β∗)ρ′2(Z, R, Q∗
−L)}, Σ13 = Efe{ρ1(Z, β∗)ρ′3(Z, R, K̃−L)},

Σ14 = Efe{ρ1(Z, β∗)ρ4(R, κ0)}, V2 = Efe{ρ2(Z,R,Q∗
−L)ρ′2(Z, R, Q∗

−L)}, V4 = Efe{ρ2
4(R, κ0)},

and V3 = Efe{ρ3(Z, R, K̃−L)ρ′3(Z,R, K̃−L)}.
Next, define J = Σ12V

−1
2 + (1/κ0)Efe{∂ρ1(Z, β∗)/∂Q−L} and V = Efe{vv′}, where v =

ε+Jρ2(Z,R,Q∗
−L). Letting D = Efe{∂ρ1(Z, β∗)/∂θ} and MV = V −1−V −1D(D′V −1D)−1D′V −1,

we have the following result.

Theorem 4.1. Let Assumption 3.1 hold with the moment function ρ(Z, R, β∗) defined in (4.8)

and expectations with respect to fe. Then, n1/2(θ̂ − θ∗), n1/2(Q̂−L − Q∗
−L), n1/2(K̂−L − K̃−L),

and n1/2(κ̂ − κ0) converge jointly in distribution to a (p + 2L − 1) × 1 normal random vector

with mean zero and variance-covariance matrix



(D′V −1D)−1 −(D′V −1D)−1D′V −1JV2/κ0 0p×(L−1) 0p×1

−V2J
′V −1D(D′V −1D)−1/κ0 (V2 − V2J

′MV JV2)/κ
2
0 0(L−1)×(L−1) 0(L−1)×1

0′p×(L−1) 0(L−1)×(L−1) V3/(1− κ0)
2 0(L−1)×1

0′p×1 0′(L−1)×1 0′(L−1)×1 κ0(1− κ0)


 .
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As shown in Appendix B, (D′V −1D)−1 coincides with the efficiency bound for esti-

mating θ∗; hence, θ̂ is asymptotically efficient. Following the proof of Theorem 4.1, we can

also show that θ̂ is asymptotically linear with influence function −(D′V −1D)−1D′V −1v. But

since v is orthogonal to ρ3(Z,R, K̃−L) and ρ4(R, κ0), an application of the Cramér-Wold de-

vice and the central limit theorem immediately reveals that θ̂ is asymptotically independent

of
∑n

j=1 s(Zj)(1− Rj) and
∑n

j=1 Rj. Therefore, as emphasized earlier in Sections 2.2 and 4.2,

inference using the asymptotic distribution of θ̂ is equivalent to inference based on the asymp-

totic distribution of θ̂ conditional on the number of observations lying in each stratum of the

stratified sample and the size of the random sample.

Asymptotic efficiency of Q̂−L is demonstrated in Appendix B; similarly, we can also

show that K̂−L and κ̂ are asymptotically efficient. Since the aggregate shares are estimated

from the random sample alone, the asymptotic variance of n1/2(Q̂−L − Q∗
−L) when there is

no overidentification is given by V2/κ
2
0; as expected, overidentification of θ∗ leads to a better

estimator of Q∗.
Using the definitions of v and ε, it immediately follows that V = Ω + JV2J

′, where

Ω
def
= Efe{εε′} = V1 − Σ12V

−1
2 Σ′

12 − Σ13V
−1
3 Σ′

13 − Σ14Σ
′
14/V4 (4.9)

and V1 = Efe{ρ1(Z, β∗)ρ′1(Z, β∗)}. Hence, the asymptotic variances can be estimated as before

by replacing population expectations with their sample analogs.

For the remainder of the paper, let γ∗ = (Q∗
−L, K̃−L, κ0)(2L−1)×1 and γ̂ = (Q̂−L, K̂−L, κ̂).

Example 4.1 (Population mean). Suppose we want to estimate θ∗, the mean of the target pop-

ulation. Since θ∗ is just identified and
∑n

j=1 1/c(Zj, γ̂) = n,4 we have θ̂ = n−1
∑n

j=1 Zj/c(Zj, γ̂),

where Q̂l =
∑n

j=1 1(Zj ∈ Cl)Rj/
∑n

j=1 Rj is the fraction of observations lying in the lth stratum

of the random sample, K̂l =
∑n

j=1 1(Zj ∈ Cl)(1 − Rj)/
∑n

j=1(1 − Rj) the fraction of observa-

tions in the lth stratum of the stratified sample, and κ̂ =
∑n

j=1 Rj/n the size of the random

sample relative to the enriched sample. As in Example 3.2, a little algebra shows that we can

express θ̂ more intuitively as θ̂ =
∑L

l=1 Q̂lZ̄l. The asymptotic distribution of θ̂ follows from

Theorem 4.1 upon noting that D is the p× p identity matrix. ¤

Example 4.2 (Linear regression). For the model in Example 3.1, assume that Z and R

are drawn from the enriched density fe defined in (4.2). Since θ∗ is again just identified,

θ̂ = {∑n
j=1 XjX

′
j/c(Zj, γ̂)}−1

∑n
j=1 XjYj/c(Zj, γ̂) with Q̂, K̂, and κ̂ as in the previous exam-

ple. By Theorem 4.1, n1/2(θ̂ − θ∗) is asymptotically normal with mean zero and variance

{EfeXX ′/c(Z, γ∗)}−1V Efe{XX ′/c(Z, γ∗)}. ¤

We now show that, even asymptotically, it never makes sense to throw away data and

use only the randomly sampled dataset to estimate θ∗. So let θ̂R denote the EL estimator of
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θ∗ obtained using only the random sample; i.e., θ̂R is based on the moment condition

Efe{g(Z, θ∗)|R = 1} = 0 ⇐⇒ Efe{g(Z, θ∗)R} = 0. (4.10)

The next result demonstrates that θ̂R is asymptotically inefficient relative to θ̂. Therefore, θ∗

should be estimated using the enriched dataset and not just the random sample alone.

Theorem 4.2. Let D∗ = Ef∗{∂g(Z∗, θ∗)/∂θ} and V∗ = Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)}. Then,

(i) n1/2(θ̂R − θ∗) is asymptotically normal with mean zero and variance (D′
∗V

−1
∗ D∗)−1/κ0; and

(ii) (D′
∗V

−1
∗ D∗)−1/κ0 > (D′V −1D)−1, i.e., (D′

∗V
−1
∗ D∗)−1/κ0− (D′V −1D)−1 is positive definite.

The inflation factor 1/κ0 appears in the asymptotic variance of θ̂R because it only makes

use of a fraction of the enriched sample. As stressed earlier, (ii) makes clear the penalty for

throwing away data.

Next, let F̂ ∗(ξ) =
∑n

j=1 p̂j(β̂)1(Zj ≤ ξ)/c(Zj, γ̂) and F̂e(ξ) =
∑n

j=1 p̂j(β̂)1(Zj ≤ ξ)

denote estimators of the target cdf F ∗(ξ) and the enriched cdf Fe(ξ), respectively, where p̂j’s

are the EL probabilities. Also, define Ic(Z, ξ) = {1(Z ≤ ξ)− F ∗(ξ)}/c(Z, γ∗),

u = Ic(Z, ξ)− Proj{Ic(Z, ξ)
∣∣1, ρ2(Z, R, Q∗

−L), ρ3(Z, R, K̃−L), ρ4(R, κ0)},

and J̃ ′ = Efe{Ic(Z, ξ)ρ′2(Z, R,Q∗
−L)}V −1

2 + (1/κ0)Efe{∂Ic(Z, ξ)/∂Q−L}. The asymptotic distri-

butions of F̂ ∗(ξ) and F̂e(ξ) are given below.

Theorem 4.3. Let Assumption 3.1 hold with the moment function ρ(Z, R, β∗) defined in (4.8)

and expectations with respect to fe. Then, letting w = u + J̃ ′ρ2(Z,R,Q∗
−L),

n1/2{F̂ ∗(ξ)− F ∗(ξ)} d−→ N(0,Efe{w2} − Efe{wv′}MVEfe{wv}).

Theorem 4.4. Let Assumption 3.1 hold with the moment function ρ(Z, R, β∗) defined in (4.8)

and expectations with respect to fe. Then,

n1/2{F̂e(ξ)− Fe(ξ)} d−→ N(0, Fe(ξ)[1− Fe(ξ)]− Efe{1(Z ≤ ξ)v′}MVEfe{1(Z ≤ ξ)v}).

Theorems 4.3 and 4.4 again reveal that imposing the overidentified model leads to an

efficiency gain in estimating F ∗ and Fe. The efficiency bounds derived in Appendix B show

that F̂ ∗ and F̂e are asymptotically efficient.

Hypotheses of the form H(θ∗) = 0 can be tested using the Wald or LR statistics as

described in Section 3.3 by basing the test on (4.8); in each case, the test statistic is asymptot-

ically distributed as a χ2
h random variable under the null hypothesis. If q > p, then EL based

specification testing of (2.1) can also be done using (4.8), the details being analogous to those

in Section 3.4; i.e., the test statistic is asymptotically χ2
q−p under (2.1).
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5. Conclusion

This paper develops efficient empirical likelihood based inference for moment restriction

models using stratified datasets. Since the aggregate shares are assumed to be unknown, the

target density is unidentified when data is collected by standard stratified (but not variable

probability) sampling, a problem we overcome by combining the original stratified sample

with an additional random sample in an optimal manner. We show that correcting for the

effects of stratification is straightforward; namely, an appropriate transformation of the moment

conditions ensures that all standard empirical likelihood based inference goes through. No

special software is required to implement the procedures developed in this paper; any computer

package that can do empirical likelihood based estimation and testing will be able to do the

same with stratified data.

Notes

1The word “exogenous” may be an abuse of terminology since there is no conditioning

although, as noted in Section 2.1, our framework does include IV models implied by conditional

moment restrictions. Therefore, the careful reader may want to substitute “stratification based

on explanatory variables” for “exogenous stratification” whenever the latter is encountered.
2The M -estimators in Wooldridge (1999) can be motivated in a similar manner. Sup-

pose that θ∗ is identified as θ∗ = argminθ∈Θ Ef∗{ψ(Z, θ)}, where ψ is a real-valued objec-

tive function. Since Ef∗{ψ(Z, θ)} = b∗Ef{ψ(Z, θ)/b(Z)} and b∗ does not depend upon θ∗,
it follows that θ∗ = argminθ∈Θ Ef{ψ(Z, θ)/b(Z)}. Hence, the M -estimator of θ∗ is given by

θ̂M = argminθ∈Θ

∑n
j=1 ψ(Zj, θ)/b(Zj). A similar argument works for SS sampling when the

aggregate shares are assumed known as in Wooldridge (2001).
3By (2.3), we have Ef{1(Z ∈ Cl)} = K̃l for each l; hence, with SS sampling we can only

recover the sampling fractions, not the aggregate shares, from the stratified sample.
4In the proof of Theorem 4.3 we show that

∑n
j=1 p̂j(β̂)/c(Zj, γ̂) = 1. But when θ∗ is just

identified, p̂j(β) = 1/n for each j and β. Hence,
∑n

j=1 1/c(Zj, γ̂) = n whenever q = p.
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Appendix A. Proofs

We only provide proofs for the results in Section 4 because SS sampling is the hardest

to handle. Results for VP sampling described in Section 3 can be shown in a similar manner.

In addition to the earlier notation, let Q = diag(Q∗
1, . . . , Q

∗
L−1), K = diag(K̃1, . . . , K̃L−1),

and A = diag(α∗1, . . . , α
∗
L−1) be (L−1)×(L−1) diagonal matrices, where α∗l = κ0Q

∗
l +(1−κ0)K̃l,

and Ik×k denote the k × k identity matrix.

Proof of Theorem 4.1. From standard EL theory we know that n1/2(β̂−β∗) is asymptotically

normal with mean zero and variance (D′
fe

V −1
fe

Dfe)
−1, where Dfe = Efe{∂ρ(Z,R, β∗)/∂β} and
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Vfe = Efe{ρ(Z,R, β∗)ρ′(Z, R, β∗)}. Letting Σ = [ Σ12 Σ13 Σ14 ], we can write

Vfe =

[
V1 Σ

Σ′ V−1

]
, where V−1 =




V2 0(L−1)×(L−1) 0(L−1)×1

0(L−1)×(L−1) V3 0(L−1)×1

0′(L−1)×1 0′(L−1)×1 V4


 .

Next, by Lemma C.1 and the partitioned inverse formula,

Dfe =

[
D A

0(2L−1)×p B

]
and V −1

fe
=

[
Ω−1 −Ω−1ΣV −1

−1

−V −1
−1 Σ′Ω−1 V −1

−1 + V −1
−1 Σ′Ω−1ΣV −1

−1

]
.

Hence, some straightforward matrix algebra reveals that

D′
fe

V −1
fe

Dfe =




D′Ω−1D κ0D
′Ω−1J 0p×(L−1) 0p×1

κ0J
′Ω−1D κ2

0(J
′Ω−1J + V −1

2 ) 0(L−1)×(L−1) 0(L−1)×1

0′p×(L−1) 0(L−1)×(L−1) (1− κ0)
2V −1

3 0(L−1)×1

0′p×1 0′(L−1)×1 0′(L−1)×1 1/V4


 .

The desired result now follows by applying the partitioned inverse formula and using Wood-

bury’s formula, see, e.g., Harville (1997, Page 424), to simplify the resulting terms. ¤

Proof of Theorem 4.2. Since θ̂R is based on the moment condition Efe{g(Z, θ∗)R} = 0, we

know that n1/2(θ̂R− θ∗) is asymptotically normal with mean zero and variance (D′
RV −1

R DR)−1,

where DR = Efe{∂g(Z, θ∗)R/∂θ} and VR = Efe{g(Z, θ∗)g′(Z, θ∗)R}. But

DR = κ0Efe{∂g(Z, θ∗)/∂θ|R = 1} (4.1)
= κ0Ef∗{∂g(Z∗, θ∗)/∂θ} = κ0D∗,

and, in a similar manner, VR = κ0V∗. Hence, (D′
RV −1

R DR)−1 = (D′
∗V

−1
∗ D∗)−1/κ0 and (i) follows.

Next, since D∗ = D by (4.3), to prove (ii) it suffices to show that V∗/κ0−V is positive definite.

We proceed as follows. First, using (4.3) to further simplify (C.2), we can show that

Σ12 = Ef∗{g(Z∗, θ∗)s′(Z∗)}{A−1 + (1/α∗L)1(L−1)×11
′
(L−1)×1}V2.

Similarly, we can also show that

Efe{∂ρ1(Z, β∗)/∂Q−L} = (1− κ0)Ef∗{g(Z∗, θ∗)s′(Z∗)}{KQ−1A−1 +
K̃L

Q∗
Lα∗L

1(L−1)×11
′
(L−1)×1}.

Using these results, some straightforward algebra reveals that

J = Ef∗{g(Z∗, θ∗)s′(Z∗)}V −1
2 ,

Σ13 = Ef∗{g(Z∗, θ∗)s′(Z∗)}{A−1 + (1/α∗L)1(L−1)×11
′
(L−1)×1}V3,

Σ14 = V4Ef∗{g(Z∗, θ∗)s′(Z∗)}{A−1 + (1/α∗L)1(L−1)×11
′
(L−1)×1}(Q∗

−L − K̃−L).

Hence, by (4.9), we can write

V = V1 − Ef∗{g(Z∗, θ∗)s′(Z∗)}∆Ef∗{s(Z∗)g′(Z∗, θ∗)}, (A.1)
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where

∆ = {A−1 + (1/α∗L)1(L−1)×11
′
(L−1)×1}{V2 + V3 + V4(Q

∗
−L − K̃−L)(Q∗

−L − K̃−L)′}
× {A−1 + (1/α∗L)1(L−1)×11

′
(L−1)×1} − V −1

2 .

Further calculations show that ∆ can be expressed in a compact manner as

∆ = −κ−1
0 (1− κ0){KQ−1A−1 +

K̃L

Q∗
Lα∗L

1(L−1)×11
′
(L−1)×1}.

Hence, adding and subtracting V∗/κ0 to the right hand side of (A.1) and simplifying the

resulting terms, we obtain that

V = V∗/κ0 − κ−1
0 (1− κ0)

L∑

l=1

(K̃lQ
∗
l /α

∗
l ) varf∗{g(Z∗, θ∗)|Z∗ ∈ Cl}.

Therefore, assuming that varf∗{g(Z∗, θ∗)|Z∗ ∈ Cl} is positive definite for at least one stratum,

the desired result follows since κ0 ∈ (0, 1). ¤

Proof of Theorem 4.3. Since
∑n

j=1 p̂j(β̂)/c(Zj, γ̂) = 1 [because 1/c(Z, γ) − 1 is spanned

by the coordinates of ρ2(Z, R, Q−L), ρ3(Z, R, K−L), ρ4(R, κ);
∑n

j=1 p̂j(β̂)ρ2(Zj, Rj, Q̂−L) = 0,∑n
j=1 p̂j(β̂)ρ3(Zj, Rj, K̂−L) = 0,

∑n
j=1 p̂j(β̂)ρ4(Rj, κ̂) = 0; and the p̂j’s add up to one],

F̂ ∗(ξ)− F ∗(ξ) =
n∑

j=1

p̂j(β̂){1(Zj ≤ ξ)− F ∗(ξ)}/c(Zj, γ̂).

Hence, a Taylor expansion reveals that

n1/2{F̂ ∗(ξ)− F ∗(ξ)} = n1/2

n∑
j=1

p̂j(β̂)Ic(Zj, ξ)

+
n∑

j=1

p̂j(β̂)
∂Ic(Zj, ξ)

∂γ
n1/2(γ̂ − γ∗) + Op(n

−1/2). (A.2)

But by a uniform weak law of large numbers as in Newey and McFadden (1994, Lemma 2.4),

n∑
j=1

p̂j(β̂)
∂Ic(Zj, ξ)

∂γ
= Efe{

∂Ic(Z, ξ)

∂γ
}+ op(1).

Furthermore, since Q̂−L =
∑n

j=1 p̂j(β̂)s(Zj)Rj/
∑n

j=1 p̂j(β̂)Rj, we have

n1/2(Q̂−L −Q∗
−L) = n1/2

n∑
j=1

p̂j(β̂)ρ2(Zj, Rj, Q
∗
−L)/κ0 + op(1).
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Similarly, we can show that

n1/2(K̂−L − K̃−L) = n1/2

n∑
j=1

p̂j(β̂)ρ3(Zj, Rj, K̃−L)/(1− κ0) + op(1)

and n1/2(κ̂ − κ0) = n1/2
∑n

j=1 p̂j(β̂)ρ4(Rj, κ0). Using these results, some algebra shows that

(A.2) can be written as

n1/2{F̂ ∗(ξ)− F ∗(ξ)} = n1/2

n∑
j=1

p̂j(β̂)(wj + δ3j + δ4j) + op(1),

where δ3j = Proj{Ic(Zj, ξ)|1, ρ3(Zj, Rj, K̃−L)}+Efe{∂Ic(Zj, ξ)/∂K−L}ρ3(Zj, Rj, K̃−L)/(1−κ0)

and δ4j = Proj{Ic(Zj, ξ)|1, ρ4(Rj, κ0)}+ Efe{∂Ic(Zj, ξ)/∂κ}ρ4(Rj, κ0). But replacing ρ1(Z, β∗)
in the proof of Lemma C.2 with Ic(Z, ξ), we can show that δ3j and δ4j are identically zero for

each j. Hence, we have that

n1/2{F̂ ∗(ξ)− F ∗(ξ)} = n1/2

n∑
j=1

p̂j(β̂)wj + op(1).

Therefore, the asymptotic distribution of n1/2{F̂ ∗(ξ)− F ∗(ξ)} follows from the proof of Theo-

rem 4.4 upon replacing 1(Zj ≤ ξ)− Fe(ξ) with wj. ¤

Proof of Theorem 4.4. Since n1/2{F̂e(ξ)−Fe(ξ)} = n1/2
∑n

j=1 p̂j(β̂)[1(Zj ≤ ξ)−Fe(ξ)], from

Brown and Newey (2002, Theorem 1) we know that the latter is asymptotically normal with

mean zero and variance

Efe{1(Z ≤ ξ)− Fe(ξ)}2 − Efe{1(Z ≤ ξ)ρ′(Z, R, β∗)}MfeEfe{1(Z ≤ ξ)ρ(Z, R, β∗)}, (A.3)

where Mfe = V −1
fe

− V −1
fe

Dfe(D
′
fe

V −1
fe

Dfe)
−1D′

fe
V −1

fe
. Using expressions for Dfe , V −1

fe
, and

(D′
fe

V −1
fe

Dfe)
−1 in the proof of Theorem 4.1, straightforward calculations show that

Mfe =




MV MV D2/κ0 −MV Σ13V
−1
3 −MV Σ14V

−1
4

D′
2MV /κ0 D′

2MV D2/κ
2
0 −D′

2MV Σ13V
−1
3 /κ0 −D′

2MV Σ14V
−1
4 /κ0

−V −1
3 Σ′

13MV −V −1
3 Σ′

13MV D2/κ0 V −1
3 Σ′

13MV Σ13V
−1
3 V −1

3 Σ′
13MV Σ14V

−1
4

−V −1
4 Σ′

14MV V −1
4 Σ′

14MV D2/κ0 V −1
4 Σ′

14MV Σ13V
−1
3 V −1

4 Σ′
14MV Σ14V

−1
4


 ,

where D2
def
= Efe{∂ρ1(Z, β∗)/∂Q∗

−L} for notational convenience. But since

v =
[
Iq×q D2/κ0 −Σ13V

−1
3 −Σ14/V4

]
ρ(Z,R, β∗),

the second term in (A.3) is equal to Efe{1(Z ≤ ξ)v′}MVEfe{1(Z ≤ ξ)v}. The desired result

follows. ¤
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Appendix B. Efficiency bounds

As in Appendix A, we only obtain efficiency bounds for estimating parameters when data

is collected by SS sampling; bounds for parameters when data is collected by VP sampling can

be shown in a similar manner.

We use the methodology of Severini and Tripathi (2001) to calculate the efficiency

bounds. So, begin by writing the enriched density as fe(z, r) = a2
0(z, r). This ensures that a0

lies in L2(z, r), the set of real-valued functions on Rd × {0, 1} that are square-integrable with

respect to µ ⊗ c̄. Now, suppose that we want to calculate the efficiency bound for estimating

η(a0), a pathwise differentiable functional of a0; see Severini and Tripathi (2001) for technical

definitions and details. We proceed as follows. Let t 7→ at be a curve from an interval containing

zero into the unit ball of L2(z, r) such that at|t=0 = a0. Since the observed loglikelihood for

t in this submodel is log a2
t (z, r), the Fisher information for a single observation is given by

iF = 4
∫
Rd×{0,1} ȧ2(z, r) dµ dc̄, where ȧ denotes the tangent vector to at at t = 0; i.e., ȧ ∈ L2(z, r)

satisfies
∫
Rd×{0,1} a0(z, r)ȧ(z, r) dµ dc̄ = 0. Note that iF is induced by the Fisher inner-product

〈ȧ1, ȧ2〉F = 4
∫
Rd×{0,1} ȧ1(z, r)ȧ2(z, r) dµ dc̄. Thus iF = ‖ȧ‖2

F, where ‖ · ‖F denotes the norm

generated by the Fisher inner-product. Let T denote the collection of tangent vectors, i.e., the

tangent space; namely,

T = {ȧ ∈ L2(z, r) :

∫

Rd×{0,1}
a0(z, r)ȧ(z, r) dµ dc̄ = 0}.

By (4.7), we know that (2.1) is equivalent to Efe{g(Z, θ∗)/c(Z, Q∗
−L, K̃−L, κ0)} = 0q×1.

Hence, we have to incorporate this additional information when calculating the efficiency bound

for estimating η(a0). To do so, let t 7→ θt denote a curve in Rp passing through θ∗ at t = 0

such that, for all t in a neighborhood of zero,

∫

Rd×{0,1}
g(z, θt)a

2
t (z, r)/c(z, Q−L,t, K−L,t, κt) dµ dc̄ = 0q×1 (B.1)

and, following (4.4)–(4.6), Q−L,t, K−L,t, and κt are curves passing through Q∗
−L, K̃−L, and κ0

at t = 0 given by the following moment conditions:

∫

Rd×{0,1}
(s(z)−Q−L,t)ra

2
t (z, r) dµ dc̄ = 0(L−1)×1, (B.2)

∫

Rd×{0,1}
(s(z)−K−L,t)(1− r)a2

t (z, r) dµ dc̄ = 0(L−1)×1, (B.3)

∫

Rd×{0,1}
(r − κt)a

2
t (z, r) dµ dc̄ = 0. (B.4)
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Hence, using (B.1)–(B.4), some algebra shows that the tangent vectors ȧ and θ̇ must satisfy

Dθ̇ + 2

∫

Rd×{0,1}
εa0(z, r)ȧ(z, r) dµ dc̄

+ 2[Σ12V
−1
2 + κ−1

0 Efe{∂ρ1(Z, β∗)/∂Q−L}]
∫

Rd×{0,1}
ρ2(z, r,Q

∗
−L)a0(z, r)ȧ(z, r) dµ dc̄

+ 2[Σ13V
−1
3 + (1− κ0)

−1Efe{∂ρ1(Z, β∗)/∂K−L}]
∫

Rd×{0,1}
ρ3(z, r, K̃−L)a0(z, r)ȧ(z, r) dµ dc̄

+ 2[Σ14/V4 + Efe{∂ρ1(Z, β∗)/∂κ}]
∫

Rd×{0,1}
ρ4(r, κ0)a0(z, r)ȧ(z, r) dµ dc̄

= 0q×1.

Therefore, by Lemma C.2, it follows that

Dθ̇ + 2

∫

Rd×{0,1}
va0(z, r)ȧ(z, r) dµ dc̄ = 0q×1. (B.5)

Let W be a q× q symmetric positive-definite matrix. Premultiplying (B.5) by (D′WD)−1D′W
and solving for θ̇, we obtain that

θ̇ = −2(D′WD)−1D′W
∫

Rd×{0,1}
va0(z, r)ȧ(z, r) dµ dc̄. (B.6)

Finally, substituting (B.6) in (B.5), we get that

(Iq×q −D(D′WD)−1D′W )

∫

Rd×{0,1}
va0(z, r)ȧ(z, r) dµ dc̄ = 0q×1. (B.7)

Note that (B.7) represents the restriction on the tangent space due to the presence of

overidentifying moment restrictions (because if q = p, then (B.7) holds for all ȧ ∈ T and

W ∈ W, where W denotes the set of q× q symmetric positive-definite matrices). Furthermore,

since the map x 7→ D(D′WD)−1D′Wx represents orthogonal projection onto the column space

of D using the weighted inner product 〈x1, x2〉 = x′1Wx2, it follows that (B.7) is satisfied by

only those tangent vectors for which
∫
Rd×{0,1} va0(z, r)ȧ(z, r) dµ dc̄ lies in the column space of

D. Let TW denote the set of tangent vectors that satisfy (B.7); i.e.,

TW = {ȧ ∈ T : (Iq×q −D(D′WD)−1D′W )

∫

Rd×{0,1}
va0(z, r)ȧ(z, r) dµ dc̄ = 0q×1}.

Following Severini and Tripathi (2001), the efficiency bound for estimating η(a0) is

given by supW∈W ‖∇η‖2
W , where ‖∇η‖W = sup{ȧ∈TW :ȧ 6=0} |∇η(ȧ)| and ∇η denotes the pathwise

derivative of η. To calculate the bound we do the following. First, for any W ∈ W, we employ

a guess-and-verify strategy to find an a∗W ∈ T satisfying

∇η(ȧ) = 〈ȧ, a∗W 〉F for all ȧ ∈ TW . (B.8)
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Next, we pick a W ∗ ∈ W such that
∫
Rd×{0,1} va0(z, r)a

∗
W ∗(z, r) dµ dc̄ lies in the column space of

D. This means that a∗W ∗ lies in TW ∗ and we can use this fact to show that ‖∇η‖W ∗ = ‖a∗W ∗‖F.

[By (B.8), a∗W ∗ satisfies ∇η(ȧ) = 〈ȧ, a∗W ∗〉F for all ȧ ∈ TW ∗ . Hence, ‖∇η‖W ∗ ≤ ‖a∗W ∗‖F by

Cauchy-Schwarz. But since a∗W ∗ ∈ TW ∗ , we also have ‖a∗W ∗‖2
F = ∇η(a∗W ∗) ≤ ‖∇η‖W ∗ ‖a∗W ∗‖F;

i.e., ‖∇η‖W ∗ ≥ ‖a∗W ∗‖F.] But as shown in the proofs of Theorems B.1–B.4, the matrix W ∗ is

uniquely determined up to scale. Hence, the efficiency bound for estimating η(a0) under (2.1)

is given by ‖a∗W ∗‖2
F.

We use this procedure in Theorems B.1–B.4 to obtain the efficiency bounds for estimat-

ing θ∗, Q∗
−L, F ∗(ξ), and Fe(ξ). Comparing them with Theorems 4.1–4.4 immediately shows

that the estimators θ̂, Q̂−L, F̂ (ξ), and F̂e(ξ) are asymptotically efficient.

Theorem B.1. The efficiency bound for estimating θ∗ is given by (D′V −1D)−1.

Proof of Theorem B.1. Let ζ ∈ Rp be arbitrary. To obtain the efficiency bound for estimat-

ing η(a0) = ζ ′θ∗, the tangent vectors ȧ and θ̇ must satisfy ∇η(ȧ) = ζ ′θ̇. Hence, by (B.6), for

any W ∈ W we have that

∇η(ȧ) = −2ζ ′(D′WD)−1D′W
∫

Rd×{0,1}
va0(z, r)ȧ(z, r) dµ dc̄.

By (B.8), we have to find a a∗W ∈ T such that∫

Rd×{0,1}
{a∗W (z, r) + 0.5ζ ′(D′WD)−1D′Wva0(z, r)}ȧ(z, r) dµ dc̄ = 0 for all ȧ ∈ TW . (B.9)

We claim that a∗W (z, r) = −0.5ζ ′(D′WD)−1D′Wva0(z, r). It is easily verified that a∗W ∈ T and

satisfies (B.9). Hence, we only have to determine W ∗ such that
∫
Rd×{0,1} va0(z, r)a

∗
W ∗(z, r) dµ dc̄

lies in the column space of D. But since∫

Rd×{0,1}
va0(z, r)a

∗
W (z, r) dµ dc̄ = −0.5V WD(D′WD)−1ζ,

it follows that
∫
Rd×{0,1} va0(z, r)a

∗
W ∗(z, r) dµ dc̄ lies in the column space of D if and only if

V W ∗ ∝ Iq×q. Hence, a∗W ∗(z, r) = −0.5ζ ′(D′V −1D)−1D′V −1va0(z, r), and the efficiency bound

for estimating ζ ′θ∗ is given by

4

∫

Rd×{0,1}
{a∗W ∗(z, r)}2 dµ dc̄ = ζ ′(D′V −1D)−1ζ.

The desired result follows since ζ was arbitrary. ¤

Theorem B.2. The efficiency bound for estimating Q∗
−L is given by (V2 − V2J

′MV JV2)/κ
2
0.

Proof of Theorem B.2. Let φ ∈ RL−1 be arbitrary. Since by (4.4) we can express Q∗
−L in

terms of a0, we have to find the efficiency bound for estimating η(a0) = φ′Q∗
−L. Thus, by (B.2),

∇η(ȧ) = 2

∫

Rd×{0,1}
κ−1

0 φ′ρ2(z, r,Q
∗
−L)a0(z, r)ȧ(z, r) dµ dc̄. (B.10)



MOMENT BASED INFERENCE WITH STRATIFIED DATA 25

Comparing (B.10) with (B.12), we see that the term φ′ρ2(z, r,Q
∗
−L)/κ0 in (B.10) corresponds

to 1(z ≤ ξ) − Fe(ξ) in (B.12). Therefore, the efficiency bound for estimating φ′Q∗
−L is easily

obtained by replacing 1(Z ≤ ξ)− Fe(ξ) in (B.14) with φ′ρ2(Z, R, Q∗
−L)/κ0. The desired result

follows since φ was arbitrary. ¤

Theorem B.3. The efficiency bound for estimating F ∗(ξ) is given by

Efe{w2} − Efe{wv′}MVEfe{wv}.

Proof of Theorem B.3. Since F ∗(ξ) = Ef∗{1(Z∗ ≤ ξ)}, by (4.3) it follows that we can

identify F ∗(ξ) def
= η(a0) via the moment condition

∫

Rd×{0,1}
{ 1(z ≤ ξ)− η(a0)

c(z, Q∗
−L, K̃−L, κ0)

}a2
0(z, r) dµ dc̄ = 0.

Hence, similar to the manner in which we derived (B.5), we can show that

∇η(ȧ) = 2

∫

Rd×{0,1}
wa0(z, r)ȧ(z, r) dµ dc̄. (B.11)

But w in (B.11) corresponds to 1(z ≤ ξ)−Fe(ξ) in (B.12). Therefore, the efficiency bound for

estimating F ∗(ξ) is obtained by replacing 1(Z ≤ ξ)− Fe(ξ) in (B.14) with w. ¤

Theorem B.4. The efficiency bound for estimating Fe(ξ) is given by

Fe(ξ)[1− Fe(ξ)]− Efe{1(Z ≤ ξ)v′}MVEfe{1(Z ≤ ξ)v}.

Proof of Theorem B.4. Since here
∫
Rd×{0,1}{1(z ≤ ξ)− η(a0)}a2

0(z, r) dµ dc̄ = 0,

∇η(ȧ) = 2

∫

Rd×{0,1}
[1(z ≤ ξ)− Fe(ξ)]a0(z, r)ȧ(z, r) dµ dc̄. (B.12)

By (B.8), we have to find a a∗W ∈ T such that
∫

Rd×{0,1}
{a∗W (z, r)− 0.5[1(z ≤ ξ)− Fe(ξ)]a0(z, r)}ȧ(z, r) dµ dc̄ = 0 for all ȧ ∈ TW . (B.13)

Define cξ = Efe{[1(Z ≤ ξ)− Fe(ξ)]v}. We claim that

a∗W (z, r) = 0.5{1(z ≤ ξ)− Fe(ξ)− c′ξV
−1(I −D(D′WD)−1D′W )v}a0(z, r).

Using (B.7), it is easily verified that a∗W satisfies (B.13) and that it lies in T. Next, since
∫

Rd×{0,1}
va0(z, r)a

∗
W (z, r) dµ dc̄ = 0.5V WD(D′WD)−1D′V −1cξ,

it follows that
∫
Rd×{0,1} va0(z, r)a

∗
W ∗(z, r) dµ dc̄ lies in the column space of D if and only if

W ∗ ∝ V −1. Therefore, a∗W ∗(z, r) = 0.5{1(z ≤ ξ) − Fe(ξ) − c∗ξ
′MV v}a0(z, r) and the efficiency
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bound for estimating F ∗(ξ) is given by

4

∫

Rd×{0,1}
{a∗W ∗(z, r)}2 dµ dc̄ = Efe{1(Z ≤ ξ)− Fe(ξ)}2

− Efe{[1(Z ≤ ξ)− Fe(ξ)]v
′}MVEfe{[1(Z ≤ ξ)− Fe(ξ)]v}. (B.14)

The desired result follows since Efe{v} = 0. ¤

Appendix C. Some useful results

Lemma C.1. Let Dfe = Efe{∂ρ(Z, R, β∗)/∂β}. Then

Dfe =

[
D Aq×(2L−1)

0(2L−1)×p B(2L−1)×(2L−1)

]
,

where A =
[
Efe{∂ρ1(Z, β∗)/∂Q−L} −(1− κ0)Σ13V

−1
3 −Σ14/V4

]
and

B =



−κ0I(L−1)×(L−1) 0(L−1)×(L−1) 0(L−1)×1

0(L−1)×(L−1) −(1− κ0)I(L−1)×(L−1) 0(L−1)×1

0′(L−1)×1 0′(L−1)×1 −1


 .

Proof of Lemma C.1. From (4.8) it is immediate that Dfe =
[

D A
0(2L−1)×p B

]
, where

A =
[
Efe{∂ρ1(Z, β∗)/∂Q−L} Efe{∂ρ1(Z, β∗)/∂K−L} Efe{∂ρ1(Z, β∗)/∂κ}

]
.

The desired result now follows by Lemma C.2. ¤

Lemma C.2. (1− κ0)Σ13V
−1
3 + Efe{∂ρ1(Z, β∗)/∂K−L} = 0q×(L−1) and

Σ14/V4 + Efe{∂ρ1(Z, β∗)/∂κ} = 0q×1.

Proof of Lemma C.2. Use the definition of c(Z, γ∗) to observe that

Efe{∂ρ1(Z, β∗)/∂K−L} = −(1− κ0)Efe{
g(Z, θ∗)
c2(Z, γ∗)

∂b(Z, Q∗, K̃)

∂K−L

}.

Doing a little simplifying, we can show that ∂b(Z, Q∗, K̃)/∂K−L = κ0[s(Z)−Q∗
−L]′V −1

2 . Hence,

Efe{∂ρ1(Z, β∗)/∂K−L} = −κ0(1− κ0)Efe{g(Z, θ∗)[s(Z)−Q∗
−L]′/c2(Z, γ∗)}V −1

2 . (C.1)

Now, by (4.3), it is easy to see that

Σ12 = κ0Efe{g(Z, θ∗)[s(Z)−Q∗
−L]′/c2(Z, γ∗)}. (C.2)

Therefore, the first result follows by (C.1), (C.2), and Lemma C.3. For the second result, note

that ∂c(Z, γ∗)/∂κ = [1− c(Z, γ∗)]/(1− κ0). Therefore,

(1−κ0)Efe{∂ρ1(Z, β∗)/∂κ} = −Efe{g(Z, θ∗)[1−c(Z, γ∗)]/c2(Z, γ∗)} = −Efe{g(Z, θ∗)/c2(Z, γ∗)}.
The second result follows since Σ14 = κ0Efe{g(Z, θ∗)/c2(Z, γ∗)} and V4 = κ0(1− κ0). ¤
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Lemma C.3. Σ12V
−1
2 = Σ13V

−1
3 .

Proof of Lemma C.3. Begin by observing that Σ13 = (1 − κ0)Ef{ρ1(Z, β∗)[s(Z) − K̃−L]′},
where f is defined in (2.3). A little algebra shows that

Ef{ρ1(Z, β∗)s′(Z)} = Efe{g(Z, θ∗)[s(Z)−Q∗
−L]′/c2(Z, γ∗)}KQ−1 + Efe{g(Z, θ∗)/c2(Z, γ∗)}K̃ ′

−L

= (Σ12KQ−1 + Σ14K̃
′
−L)/κ0.

Hence, since Ef{ρ1(Z, β∗)} = −Σ14/(1− κ0), we get that

Σ13 = {(1− κ0)Σ12KQ−1 + Σ14K̃
′
−L}/κ0. (C.3)

Next, since ρ′2(Z,R,Q∗
−L)[Q−1A− (α∗L/Q∗

L)I(L−1)×(L−1)]1(L−1)×1 = [c(Z, γ∗)− 1]R, we have

Σ12{Q−1A− (α∗L/Q∗
L)I(L−1)×(L−1)}1(L−1)×1 = −Σ14. (C.4)

Therefore, using (C.4) to substitute for Σ14 in (C.3) and simplifying further, we obtain that

Σ13 = Σ12V
−1
2 V3. The desired result follows. ¤


