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Abstract
This study examines the effect of the Great Moderation on therelationship be-

tween U.S. output growth and its volatility over the period 1947 to 2006. First, we
consider the possible effects of structural change in the volatility process. In so do-
ing, we employ GARCH-M and ARCH-M specifications of the process describing
output growth rate and its volatility with and without a one-time structural break
in volatility. Second, our data analyses and empirical results suggest no significant
relationship between the output growth rate and its volatility, favoring the tradi-
tional wisdom of dichotomy in macroeconomics. Moreover, the evidence shows
that the time-varying variance falls sharply or even disappears once we incorpo-
rate a one-time structural break in the unconditional variance of output starting
1982 or 1984. That is, the integrated GARCH effect proves spurious. Finally, a
joint test of a trend change and a one-time shift in the volatility process finds that
the one-time shift dominates.

Journal of Economic Literature Classification: C32; E32; O40

Keywords: Great Moderation, economic growth and volatility, structural change
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1. Introduction 

Macroeconomic volatility declined substantially during the past 20 years. Kim and Nelson (1999), 

McConnell and Perez-Quiros (2000), Blanchard and Simon (2001), Stock and Watson (2003), and 

Ahmed, Levin, and Wilson (2004), among others, document this Great Moderation in the volatility 

of U.S. GDP growth. Moreover, the current Federal Reserve Board Chairman Bernanke (2004) 

also addressed this issue. Most research focuses on the causes of the Great Moderation such as 

good policies, structural change, good luck, or output composition shifts.1 This paper empirically 

investigates the effect of the Great Moderation on the relationship between the output growth rate 

and its volatility.2

Macroeconomists have long focused on business cycles and economic growth. Recently, 

increasing attention considers the relationship between business cycle volatility and the long-run 

trend in growth. Alternative models give rise to negative, positive, or independent relationships 

between the output growth rate and its volatility. For example, the misperceptions theory, proposed 

originally by Friedman (1968), Phelps (1969), and Lucas (1972), argues that output fluctuations 

around its natural rate reflect price misperceptions due to monetary shocks, whilst the long-run 

                                                 
1 Good policies refer to better management of the economy by monetary policy makers. Structural change refers to 
better inventory management. Good luck refers to the reduction in economic shocks (e.g., oil price shocks). Output 
composition shifts refer to the fall in the volatility of output components, such as consumption and investment. 
Bernanke (2004) uses a lower-bound frontier on inflation and output volatilities to organize his thinking. Inefficient 
monetary policy or inventory management leaves the economy above the frontier, whereas changes in the volatility of 
random shocks will shift the lower-bound frontier. Stock and Watson (2003) attribute the Great Moderation to good 
luck, implying that the frontier shifted toward the origin. Bernanke (2004) argues that a substantial portion of the Great 
Moderation reflects better monetary policy, implying a movement toward the frontier. The distinction proves 
important, because if Stock and Watson (2003) are correct, then good luck can turn into bad luck and the frontier can 
shift back to a more unfavorable trade-off. If Bernanke (2004) is correct, then maintaining good policy can continue 
the benefits of the Great Moderation. Finally, Blanchard and Simon (2001) and Eggers and Ioannides (2006) find that 
most of the decline reflects a decline in the volatility of consumption, investment, and/or manufacturing output. 
2 At least two interpretations can explain the decline in output growth-rate volatility. For example, McConnell and 
Perez-Quiros (2000) invoke a step decrease sometime in the mid-1980s. Blanchard and Simon (2001) detect a trend 
decline, temporarily interrupted in the 1970s and early 1980s. This study generally follows the approach of a step 
decrease and then investigates its effect on the relationship between the output growth rate and its volatility. Section 4, 
however, does consider the relative effect of a trend decline against a one-time shift in volatility. 
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growth rate of potential output reflects technology and other real factors. The standard dichotomy 

in macroeconomics implies no relationship between the output growth rate and its volatility.  

Bernanke (1983) and Pindyck (1991) demonstrate that irreversibility makes investment 

especially sensitive to various forms of risk. Output volatility generates risk about future demand 

that impedes investment, leading to a negative relationship between output volatility and growth. 

Martin and Rogers (1997) argue that learning-by-doing generates growth whereby production 

complements productivity-improving activities and stabilization policy can positively affect 

human capital accumulation and growth. One natural conclusion, therefore, implies that short-run 

economic instability can prove detrimental to human capital accumulation and growth (Martin and 

Rogers, 2000).  

In contrast, Black (1987) argues that technology comes with varying levels of risk and 

expected returns that associate with the degree of specialization. More specialization means more 

output volatility. Investment occurs in specialized technologies only if expected returns 

sufficiently compensate for associated risk. Thus, when high expected return technologies emerge, 

high output volatility and high growth coexist. Mirman (1971) argues that higher output volatility 

leads to higher precautionary saving, implying a positive relationship between output volatility 

and growth. Bean (1990) and Saint-Paul (1993) show that the opportunity cost of 

productivity-improving activities falls in recessions, implying that higher output volatility may 

positively affect growth. According to Blackburn (1999), a relative increase in the volatility of 

shocks increases the pace of knowledge accumulation and, hence, growth, implying a positive 

relation between output variability and long-term growth.  

In a simple stochastic growth model, Blackburn and Galindev (2003) illustrate that 

different mechanisms of endogenous technological change can lead to different implications for 
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the relationship between output variability and growth. Generally, the relationship more likely 

exhibits a positive correlation, if internal learning drives technological change through deliberate 

actions that substitute for production activities. The relationship exhibits a negative correlation, if 

external learning drives technological change through non-deliberate actions that complement 

production activity. Blackburn and Pelloni (2004) predict that real shocks generate a positive 

correlation between output variability and growth and nominal shocks produce a negative 

relationship.  

The statistical evidence also exhibits ambiguity. The empirical literature employs two 

approaches. Using cross-country data, Kormendi and Meguire (1985) and Grier and Tullock (1989) 

find a positive relationship between growth and its standard deviation, but Ramey and Ramey 

(1995), Miller (1996), Martin and Rogers (2000), and Kneller and Young (2001) report a negative 

relationship. More recently, Rafferty (2005) discovers that unexpected volatility reduces growth 

and expected volatility increases it, while the combined effect of expected and unexpected 

volatility reduces it.  

Applying generalized autoregressive conditional heteroskedasticity in mean (GARCH-M) 

models, Caporale and McKiernan (1996, 1998) find a positive relationship between output 

volatility and growth for the U.K. and the U.S., whereas Fountas and Karanasos (2006) find a 

positive relationship for Germany and Japan. Speight (1999), Grier and Perry (2000), and Fountas 

and Karanasos (2006), however, conclude that no relationship exists in the U.K and the U.S. In 

contrast, Macri and Sinha (2000) and Henry and Olekalns (2002) discover a negative link between 

volatility and growth for Australia and the U.S.  

The lack of robust evidence on the relationship between the output growth rate and its 

volatility motivates our analysis. While many empirical studies employ post-war data, no one 
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explicitly considers the effect of the Great Moderation on this relationship.3 The volatility of U.S. 

GDP growth fell by more than half since the early to mid-1980s. Although no agreement exists on 

the causes of the Great Moderation, the reduced volatility implies that empirical models for output 

growth over periods that span the break may experience model misspecification.  

In addition to considering the relationship between the output growth rate and its volatility, 

we first consider the possibility that structural change affects the process generating the volatility 

of output growth. Deibold (1986) first raised the concern that structural changes may confound 

persistence estimation in GARCH models. He notes that Engle and Bollerslev’s (1986) integrated 

GARCH (IGARCH) may result from instability of the constant term of the conditional variance, 

that is, nonstationarity of the unconditional variance. Neglecting such changes can lead to 

spuriously measured persistence; the sum of the estimated autoregressive parameters of the 

conditional variance is heavily biased towards one. Lamoreux and Lastrapes (1990) explore 

Diebold’s conjecture and provide confirming evidence that not accounting for discrete shifts in 

unconditional variance, the misspecification of the GARCH model, can bias upward GARCH 

estimates of persistence in variance and, thus, vitiates the usefulness of GARCH when the degree 

of persistence proves important. The longer the sample period is, the higher the probability is that 

such changes will occur. Including dummy variables to account for such shifts diminishes the 

degree of GARCH persistence. More recently, Mikosch and Stărică (2004) argue theoretically that 

the IGARCH model makes sense when non-stationary data reflect changes in the unconditional 

variance. Hillebrand (2005) shows that in the presence of neglected parameter change-points, even 

                                                 
3 Grier and Tullock (1989), using pooled cross-section data on 113 countries between 1950 and 1980, investigate 
empirical regularities in post-war economic growth. They find significant time-period dummy variables or a trend 
variable in their mean growth models for OECD countries and conclude the average growth rate, holding other 
variables constant, rises in the post-1961 period. Similarly, Caporale and McKiernan (1998) include two dummies for 
periods of the Great Depression and World War II in their mean equation over long sample period from 1870 to 1993. 
This paper focuses on structural changes in the variance equation. 
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a single deterministic change-point, GARCH inappropriately measures volatility persistence. 

Before carrying out GARCH estimations, we perform a thorough change-point study of the data to 

avoid the spurious effect of almost-integration.  

The identification of change points will occur endogenously in the data generating process. 

We employ Inclán and Tiao’s (1994) iterated cumulative sums of squares (ICSS) algorithm to 

detect sudden changes in the variance of output growth, as well as the time point and magnitude of 

each detected change in the variance.4 The algorithm finds one change point at 1982:1, two-year 

earlier than that of 1984:1 in McConnell and Perez-Quiros (2000). Most analysts argue that the 

break date occurs some time in the early to mid-1980s, but the exact timing of the decline remains 

controversial. For example, Blanchard and Simon (2001) analyze the large decline in U.S. output 

volatility starting in 1982:1.  

This paper employs GARCH-M and ARCH-M models to examine the effect of the Great 

Moderation on the volatility-growth relationship over the period 1947:1 to 2006:4 with the break 

date of 1982:1. Our empirical results show strong evidence of IGARCH effects and no evidence of 

significant links between volatility and growth for the U.S. Moreover, the time-varying variance 

falls sharply or even disappears once we allow for the structural break in the unconditional 

variance of output growth. That is, the IGARCH effect proves spurious due to the Great 

Moderation. These results prove robust to the alternative break 1984:1. Section 2 discusses the 

data and the Great Moderation in output volatility. Section 3 presents the methodology and the 

empirical results. Section 4 considers additional evidence. Finally, Section 5 concludes.  

 

                                                 
4 Aggarwal, Inclán, and Leal (1999) apply this algorithm to identify the points of sudden changes in the variance of 
returns in ten emerging stock markets, in addition to Hong Kong, Singapore, Germany, Japan, the U.K., and the U.S. 
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2. Data and the Great Moderation 

Output growth rates ( ) equal the percentage change in the logarithm of seasonally adjusted 

quarterly real GDP ( ), measured in billions of chained 2000 dollars, that come from the U.S. 

Bureau of Economic Analysis (BEA) over the period 1947:1 to 2006:2. A rather dramatic 

reduction in output volatility in the most recent two decades relative to the previous four produces 

the most striking observation. McConnell and Perez-Quiros (2000), applying tests of Andrews 

(1993) and Andrews and Ploberger (1994), detect a unique break in the variance of the growth rate 

in 1984:1 for the sample 1953:2 to 1999:2 with no break in the mean growth rate. This paper 

extends the data from 1947:1 to 2006:2. 

ty

tY

As discussed earlier, the methodology used in this study to detect structural changes in the 

variance employs the ICSS algorithm described by Inclán and Tiao (1994). The analysis assumes 

that the time series of output growth displays a stationary variance over an initial period, and then 

a sudden change in variance occurs. The variance then exhibits stationarity again for a time, until 

the next sudden change. The process repeats through time, yielding a time series of observations 

with an unknown number of changes in the variance.  

Let{ }tε  denote a series of independent observations from a normal distribution with mean 

zero and unconditional variance . When N variance changes occur in T observations, 

 equal the set of change points. Let C

2
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squared observations from the start of the series to the kth point in time (i.e., , k = 
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in variance occur over the sample period, the  statistic oscillates around zero. If one or more 

sudden variance changes exist in the series, then the  values drift either up or down from zero. 
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Critical values based on the distribution on  under the null hypothesis of homogeneous 

variance provide upper and lower boundaries to detect a significant change in variance with a 

known level of probability. When the maximum of the absolute value of  exceeds the critical 

value, we reject the null hypothesis of no changes. Let  equal the value of k for which max

kD

kD

*k k kD  

occurs. If maxk kDT 2/  exceeds the predetermined boundary, then k provides an estimate of the 

change point. The factor 2/T  standardizes the distribution. Under the null,  asymptotically 

behaves as a Brownian bridge. The critical value of 1.36 defines the 95

kD

th percentile of the 

asymptotic distribution of maxk kDT 2/ . Therefore, upper and lower boundaries occur at ±1.36 

in the  plot. Exceeding these boundaries marks a significant change in variance of output. To 

examine multiple change points, the ICSS algorithm successively evaluates  at different parts 

of the series, dividing consecutively after finding a possible change point. 

kD

kD

The procedure identifies one, and only one, change point at 1982:1. That is, the shift lasts 

to the end of our sample period with no breaks in other periods. Figure 1 plots the series of real 

GDP and its growth rate and marks the break with a gray area. We further conduct structural 

stability tests for the unconditional mean and variance of the growth rate by splitting the sample 

into two sub-periods: 1947:1 to 1981:4 and 1982:1 to 2006:2. For the unconditional mean, a Wald 

statistic tests for the equality of means for two different samples, while a variance-ratio statistic 

tests for the equality of the unconditional variances.  

Table 1 reports descriptive statistics for the data and the results of the structural stability 

tests. The mean growth rate in each sub-sample nearly equals the 0.8358 percent growth rate 

average for the full 60-year sample. The Wald statistics, distributed as , that test for structural 

change in the mean between the samples cannot reject the null hypothesis of equality of means. In 

)1(2χ
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contrast, a clear decline in the standard deviation of the growth rate occurs, equaling 1.1844 

percent a quarter in the pre-1982 period and 0.6094 percent in the post-1982 period, a decline of 49 

percent. The p-values for the variance-ratio F-test significantly reject the null of variance equality 

between the samples. Economists call the substantial drop in the variance of output in the 

post-1982 period as the Great Moderation. Skewness statistics support symmetric distributions for 

the full and pre-1982 sample periods, but not the post-1982 period. Kurtosis statistics suggest that 

the full and post-1982 sample series exhibit leptokurticity with fat tails. Consequently, 

Jarque-Bera tests reject normality for these two samples, but cannot reject normal distributions in 

the pre-1982 sub-sample. The Ljung-Box Q-statistics (LB Q), testing for autocorrelation of up to 6 

lags, indicate serial correlation in growth for all three periods. The Lagrange Multiplier statistics 

(LM) test for ARCH effects (Engle, 1982) up to 6 lags, suggesting a time-varying variance in 

output growth for the full and post-1982 sample periods and no heteroskedasticity in the pre-1982 

period. The ADF unit-root test implies that the growth rate exhibits stationarity for each of the 

three samples.  

Useful information emerges that can assist in the model building and verification stages. 

First, the evidence of autocorrelation suggests an autoregressive moving-average (ARMA) model 

for the mean growth equation to capture temporal dependence and to generate white-noise 

residuals for all the three periods. Second, the emergence of a time-varying variance argues for 

GARCH-M and ARCH-M models to examine the effect of volatility on growth. The robustness of 

this conclusion to the Great Moderation, however, requires the allowance for a one-time shift in 

the unconditional variance. Third, no hetroskedasticity in the pre-1982 sub-period suggests the use 

of other volatility measures such as a moving-sample standard deviation to examine the effect for 

the sub-sample. Fourth, and most importantly, the significant decline in the variance combined 
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with no change of the mean growth rate in the post-1982 sub-period may imply a weak relationship 

between volatility and growth.  

3. Methodology and Empirical Results 

We first construct an ARMA model for the growth series to remove any linear dependence in the 

data, and then add output volatility as an explanatory variable in the mean equation. Based on 

Schwarz Criterion (SC), an AR(2) process proves adequate to capture growth dynamics and 

produces white-noise residuals for all the three-sample periods. The mean growth equation equals 

the following: 

ttttt yayaay ελσ ++++= −− 22110 ,      (1) 

where the growth rate )ln(ln100 1−−×≡ ttt YYy ,  equals the natural logarithm of real GDP, tYln

tε  equals the white-noise random error; and tσ  equals a measure of output volatility. The estimate 

of λ  may exceed or fall below zero and prove significant or insignificant. 

We, now, derive an operational measure for output volatility. The descriptive statistics 

show that ARCH effects emerge in the full and post-1982 sample periods. The GARCH(1,1) 

specification proves adequate to represent most financial and economic time series (Bollerslev et 

al., 1994). For example, Caporale and McKiernan (1996), Speight (1999), Grier and Perry (2000), 

Henry and Olekalns (2002), and Fountas and Karanasos (2006) apply this process to parameterize 

the time varying conditional variance of output growth. Caporale and McKiernan (1998) and 

Macri and Sinha (2000), however, use ARCH(1) to examine the time-dependence of the 

conditional variance. To provide more evidence, we employ both GARCH(1,1) and ARCH(2) 

models to account for periods of high- and low-output volatility for our samples as follows: 

2
11

2
110

2
−− ++= ttt σβεαασ , and      (2) 

2
22

2
110

2
−− ++= ttt εαεαασ ,       (3) 
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where equations (2) and (3) equal the GARCH(1,1) and ARCH(2) specifications, and  equals 

the conditional variance of the growth rate, given information available at time t-1. The presence 

of the square root of , 

2
tσ

2
tσ tσ , in the mean equation of the growth rate makes equations (1) and (2) 

or (3) a GARCH-M or an ARCH-M model (Engle et al., 1987). The conditions that 0≥iα , 0≥iβ , 

and 111 <+ βα  in the GARCH model or 1 2 1α α+ <   in the ARCH model ensure positive and 

stable conditional variances of tε . The sums, 11 βα +  or 21 αα + , measure the persistence of 

shocks to the conditional variances. Evidence of an integrated GARCH (IGARCH), or in general, 

evidence of high persistence proves analogous to a unit root in the mean of a stochastic process. 

This persistence may result from occasional level shifts in volatility. If 1β  (or 2α ) equals zero, the 

process reduces to an ARCH(1). When 1α  and 1β  (or 2α ) both equal zero, the variance equals a 

constant. We estimate each of the models using maximum likelihood under normality and using 

the Berndt et al. (1974) (BHHH) algorithm.  

For the pre-1982 sub-period, since we do not find time-varying variance, we also construct 

a moving-sample standard deviation to measure output volatility for 1947:1 to 1981:4 as follows: 

5.0

1

2
21 ])ln(ln)1[( ∑

=
−+−++ −=

m

i
ititmt YY

m
σ ,     (4) 

where we select m = 4, 8, and 12 as the orders of the moving average. The choice of the 

moving-average order does not affect the results, however. 

Table 2 reports the estimation results of our GARCH-M and ARCH-M models for the full 

sample with standard errors in parentheses, p-values in brackets, and statistics for the standardized 

residuals. In the mean equation, AR(2) estimates verify significance at the 5-percent level, lending 

support to the autoregressive specification. The coefficient of the conditional standard deviation 

(λ ) possesses no statistical significance. Each estimate in the variance equation exceeds zero. The 
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volatility persistence of 0.9961 in the GARCH and 0.6837 in the ARCH process, however, proves 

high. The likelihood ratio (LR) tests for  in the GARCH and  in the ARCH 

process, respectively, do not reject the null hypothesis of an IGARCH effect at the 5-percent level. 

It does reject the IGARCH effect for the ARCH process, however, at nearly 10-percent level. The 

fitted models adequately capture the time-series properties of the data in that the Ljung-Box 

Q-statistics for standardized residuals (LB Q ) and standardized squared residuals (LB ), up to 6 

lags, do not detect remaining autocorrelation and conditional heteroskedasticity. The standardized 

residuals exhibit symmetric distributions, but with significant excess kurtosis. Thus, they do not 

exhibit the characteristics of a normal distribution, as observed in Table 1.  

111 =+ βα 121 =+ αα

2Q

The insignificant estimate of the conditional standard deviation (λ ) in the mean equation 

implies no relationship between output growth and its volatility. This result conforms to 

Friedman’s (1968), Phelp’s (1969), and Lucas’s (1972) misperceptions hypothesis and the 

previous empirical findings, using GARCH-M models, of Grier and Perry (2000) and Fountas and 

Karanasos (2006) for the U.S. and Speight (1999) for the U.K. This finding, however, proves 

inconsistent with the discovery of a positive relationship by Caporale and McKiernan (1996, 1998) 

for the U.K. the U.S., and by Fountas and Karanasos (2006) for Germany and Japan, as well as the 

discovery by Macri and Sinha (2000) and Henry and Olekaln (2002) of a negative relationship for 

Australia and the U.S. 

Although different countries, sample periods, data frequencies, or econometric models 

may lead to different findings, two issues emerge from the empirical results. First, existing 

research efforts do not limit the phenomenon of the Great Moderation to U.S. output only. Mills 

and Wang (2003) and Summers (2005) find structural breaks in the volatility of the output growth 

rate for the G7 countries and Australia, although the break occurs at different times. The 
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well-documented moderation in the volatility of GDP growth in the U.S. and other developed 

nations suggests that the finding of (G)ARCH-M effects and volatility persistence may prove 

spurious, since researchers fail to account for the structural change in the variance.5 Lastrapes 

(1989) shows that changes in the unconditional variance should receive consideration when 

specifying ARCH models. In his study, for instance, the persistence of volatility in exchange rates 

decreases after accounting for three U.S. monetary policy regime shifts between 1976 and 1986, 

diminishing the likelihood of integration-in-variance. Tzavalis and Wickens (1995) find strong 

evidence of a high degree of persistence in the volatility of the term premium of bonds. Once they 

allow for the monetary regime shift between 1979 and 1982, the high persistence in the 

GARCH(1,1)-M model disappears. Poterba and Summers (1986) note that the degree of 

persistence in variance of a variable importantly affects the relationship between the variable and 

its volatility, for example, stock returns and their volatility. 

Second, the significant statistical property of excess kurtosis provides a cautionary note. 

Kurtosis for the standardized residuals (i.e., tε / tσ ) generally falls below that for the unconditional 

standard deviation (see Tables 1 and 2). According to the distributional assumptions in the 

(G)ARCH specification, the standardized residuals should reflect a normal distribution, if the 

(G)ARCH model totally accounts for the leptokurtic unconditional distribution. The sample 

kurtosis in Table 2 for the standardized residuals indicates that (G)ARCH accounts for some, but 

                                                 
5 Employing the GARCH-M modeling approach, Caporale and McKiernan (1998) and Fountas and Karanasos (2006) 
use annual real GNP or IP (industrial production) data from the mid-1800s to the 1990s for the U.S. Japan, and 
Germany; Macri and Sinha (2000) use Australian quarterly GDP index and IP from the late-1950s to the end of 1999; 
Henry and Olekalns (2002) use U.S. quarterly real GNP from 1947 to 1998; Caporale and McKiernan (1996), Speight 
(1999), and Grier and Perry (2000) use monthly IP from 1948 to the mid-1990s for the U.K. and the U.S. to examine 
the relationship between output growth and its volatility. The longer the sample period is, the more likely structural 
changes in variance occur. Only Caporale and McKiernan (1996) create a dummy variable equaling several periods of 
high volatility in their GARCH process. None of other studies consider possible structural changes in variance. 
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not all, of the leptokurtosis for the output growth rate.6 Blanchard and Simon (2001) note that the 

distribution of output growth exhibits excess kurtosis (or skewness), if large and infrequent shocks 

occur. This suggests that the evidence of excess kurtosis may also reflect the Great Moderation. 

Thus, we expect to resolve the two puzzles by modeling the non-stationarity variance 

arising from the Great Moderation. First, the high persistence of output volatility decreases after 

accounting for the Great Moderation, diminishing the likelihood of biasing the sum of the 

estimated autoregressive parameters toward one. Second, leptokurtosis in the unconditional 

distribution of output growth vanishes after adjustment for (G)ARCH with conditional normality. 

To consider the effect of the Great Moderation on the variance of output in the GARCH-M 

specification, we include a dummy variable in the conditional variance equation, which equals 

unity after 1982:1; zero otherwise. To provide more evidence regarding the effect of the Great 

Moderation, we also estimate the variance process with the break date 1984:1.  

Table 3 reports the new estimates, showing that the structural dummy proves highly 

significant in the variance equation in all four cases. The substantial and significant increase of the 

value of the maximum log-likelihood indicates that including the dummy in the (G)ARCH 

equation provides a superior specification. The log-likelihood ratio test statistics (i.e., χ2(1) = 

24.77 for the GARCH-M or χ2(1) = 41.64 for the ARCH-M) prove significant at the 1-percent 

level. Based on the log-likelihood values, the two models perform almost equally well. The 

Ljung-Box Q-statistics of the standardized residuals and the squared standardized residuals show 

                                                 
6 As a general rule, empirical studies report the first- and second-order serial correlation in the standardized residuals 
of the GARCH estimation based on Ljung-Box diagnostic statistics, but lack skewness, excess kurtosis, and normality 
tests in most research. We argue that the higher moments of the standardized residuals provide important diagnostic 
information regarding accurate model specification and the true data generating process. Speight (1999) reports excess 
kurtosis and significant Jarque-Bera statistic after GARCH adjustment. Other studies pay no attention to the behavior 
of kurtosis before and after GARCH estimation.   
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no evidence of autocorrelation and heteroskedasticity, providing further support for these 

specifications. The coefficients of skewness and excess kurtosis prove insignificant at the 

5-percent level.7 And, thus, the standardized residuals conform to a normal distribution. All results 

prove robust to the choice of the alternative break at 1984:1, as shown in Table 3.8

The estimate of λ  remains insignificant. That is, no relationship exists between growth 

and volatility measured by the two GARCH-M models with two different break dates. Two 

important consequences emerge by allowing for a structural change in the conditional variance. 

First, a large decline occurs in the estimated degree of persistence in the conditional variance. Each 

estimate in the variance equation in Table 3 falls below that in the model without the dummy in 

Table 2. The highly significant LR statistic in Table 3 proves no IGARCH effect. In addition, the 

estimates of 1α  and 1β  or 1α  and 2α  not only fall in size but also become insignificant in the 

specification that includes the post-1984 dummy variable. The dummy variable replaces the 

(G)ARCH effects. Second, a strong interaction emerges between the dummy variable and the 

excess kurtosis, which previously proved significant (see Tables 1 and 2). This interaction now 

proves insignificant. These results suggest that the statistical evidence for time-varying variance 

and for excess kurtosis in the growth rate may reflect a shift in the unconditional variance caused 

by the Great Moderation. Figures 2-5 plot the conditional variances with and without a dummy for 

the four models, respectively. The solid line includes the dummy variable while the dashed line 

                                                 
7 Blanchard and Simon (2001) calculate skewness and excess kurtosis statistics for the error term from their estimated 
rolling first-order autoregressive process, finding significant skewness and excess kurtosis only around the early 
1980s recession. These results match our findings. That is, by incorporating a one-time shift in either 1982:1 or 1984:1 
in the GARCH and ARCH variance equations, we observe insignificant skewness and excess kurtosis. 
8 We also examine descriptive statistics for the data in the pre- and post-1984 subsamples. The same conclusions 
emerge as when the break equals 1982:1 (see Table 1). The Wald statistic cannot reject the null of equality of means 
between samples and the variance ratio rejects the null of variance equality between the samples. One minor difference 
does occur, however. No ARCH effects exist in either the pre- and the post-1984 periods. To save space, we do not 
report detailed statistics. 
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excludes the dummy variable. One common characteristic appears in the four Figures -- a clear 

shift in the variance. The high volatility appears in the period before 1982 or 1984.  

The structural break for the Great Moderation in 1982:1 (or 1984:1) suggests that we 

divide the sample into pre- and post-1982 (or post-1984) groups to estimate the relationship 

between the growth rate and its volatility separately for each period. Since the descriptive statistics 

indicate no time-varying variance in the growth series for three sub-samples (pre- and post-1984 

and pre-1982), we construct a moving-sample standard deviation to proxy for output volatility and 

use OLS to estimate the relationship. For the post-1982 period, higher-order ARCH tests yield 

insignificant results in Table 1, suggesting the appropriateness of a simple ARCH(1) model. 9 

Table 4 presents the results. For the two periods 1947:1 to 1981:4 and 1947:1 to 1983:4, the 

coefficient of the autoregressive term at lag two proves insignificant. Thus, we report the 

estimation results for an autoregressive model with only one lag. The Ljung-Box diagnostic 

statistics show no evidence of first- and second-order autocorrelation in the residuals for the four 

sub-samples and the residuals reflect a normal distribution. The insignificant estimate of λ  again 

verifies our earlier finding that no relationship exists between the growth rate and its volatility in 

the U.S.10  

4. Further Evidence 

This section considers two additional tests. First, we examine the possibility that the output growth 

                                                 
9 We also experimented with a GARCH(1,1) model, but a negative and insignificant estimate appears in the variance 
equation, violating the non-negativity assumption. 
10 One referee notes that some inherent limitations may exist in GARCH-M models for examining the relationship 
between growth and volatility. Particularly, the GARCH-M models usually employ high-frequency data. We use 
quarterly data. But, the GDP growth in Figure 1 exhibits volatility clusters. That is, certain time periods experience 
high volatility while other periods experience low volatility. This basic characteristic of the data suggests applying the 
methodology to measure volatility and its effect on growth. Our approach focuses mainly on modeling the 
non-stationarity variance arising from the Great Moderation. In Table 4, the full sample splits and neither the 
moving-sample standard deviation nor the ARCH process produces a significant effect on growth. 
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rate affects its volatility, exploring whether an endogeneity bias exists in the GARCH and ARCH 

processes. Second, we study whether a trend decrease in the volatility of output growth provides a 

better specification than the one-time shift considered above. The first test follows the analysis of 

Fountas and Karanasos (2006) while the second test addresses the conclusion of Blanchard and 

Simon (2001). 

Fountas and Karanasos (2006) recently find, using annual industrial production data from 

1860 to 1999, that the output growth rate volatility exhibits no effect on the growth rate, but the 

output growth rate affects its volatility negatively in the U.S. and a bidirectional causality between 

output growth and its volatility in Germany. The causal relationship between the output growth 

rate and its volatility suggests that the GARCH-M approach suffers from an endogeneity bias. 

Fountas and Karanasos (2006) include lagged growth in the conditional variance equation (the 

level effect) to test for the effect of growth on volatility in their GARCH(1,1)-M model. Following 

this specification, Table 5 reports the GARCH(1,1)-M estimation results, where we consider this 

level effect. The insignificance of λ  continues, even while the lagged growth estimate (δ ) proves 

significant in the variance equation for either break date, 1982:1 or 1984:1. All other estimates and 

diagnostic statistics close mirror those in the models without this level effect. The findings that the 

output growth rate does not depend on changes in its volatility and that the output growth rate does 

affect its volatility negatively prove consistent with evidence in Fountas and Karanasos (2006), 

although they employ the long series of annual output data and we use quarterly data. 

Blanchard and Simon (2001) argue that a trend decline in the volatility of output growth 

provides a better explanation of output growth volatility than does the one-time shift. Tables 6 and 

7 present the evidence. Table 6 introduces a time trend in specifications of the GARCH and ARCH 

processes, but without a one-time shift dummy variable. The coefficient of the time trend proves 
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negative for both specifications, although only significantly negative at the five-percent level in 

the ARCH process. All other coefficients and diagnostic statistics closely mirror those in the 

models estimated without the time trend or the one-time shift dummy variable (see Table 2). One 

exception exists; the LR statistics now prove significant at the five-percent level when the time 

trend appears, which rejects the null hypothesis of an IGARCH. Furthermore, although the 

volatility persistence falls substantially with the time trend, excess kurtosis remains. Thus, the time 

trend captures some, but not all, of the time-varying property of the variance. Finally, the volatility 

measure remains insignificant in the growth rate equation, matching the results of Tables 2 and 3. 

Table 7 includes the time trend and the one-time shift dummy variable together in the 

GARCH and ARCH processes. In all four models, the coefficient of the time trend proves 

insignificant. Moreover, the coefficient of the one-time shift dummy variable proves significantly 

negative in each specification. All remaining coefficients and diagnostic statistics nearly match 

those in Table 3, including the insignificant coefficient of the variance measure in the growth rate 

equation. 

In summary, the one-time shift dummy variable dominates the time trend across our 

various tests. That is, based on the log-likelihood value, the corresponding specifications in Tables 

3 and 7 do not exhibit significant differences, whereas the corresponding specifications in Tables 2 

and 6 do exhibit significant differences with those in Tables 3 and 7. 

5. Conclusion 

This paper examines the effect of the Great Moderation on the relationship between quarterly real 

GDP growth rate and its volatility in the U.S. over the period 1947:1 to 2006:2. We begin by 

considering the possible effects, if any, of structural change on the volatility process. Our initial 

results, based on either a GARCH-M or an ARCH-M model of the conditional variance of the 
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residuals, find strong evidence of volatility persistence and excess kurtosis in the growth rate. 

Subsequent analysis reveals that this conclusion does not remain robust to a one-time shift in 

output variability due to the Great Moderation. First, the findings of a time-varying variance 

measured by the GARCH-M or ARCH-M model disappear in the specifications that include the 

post-1984 dummy variable. That is, the GARCH effect proves spurious. In any case, no 

GARCH-M effect emerges. Second, excess kurtosis vanishes in the specifications that include 

either the 1982 or the 1984 dummy variable in either the GARCH or the ARCH process. Both the 

data analysis and the OLS estimates generally suggest no relationship between U.S. output 

volatility and growth, favoring macroeconomic models that dichotomize the determination of 

output volatility and growth. In sum, our results add to the conclusion that the relationship between 

the output growth rate and its volatility in the U.S. proves weak, at best. 

The independence between the output growth and its volatility needs careful interpretation. 

Endogenous growth theory, for example, does not imply any importance for the second moment. 

Blackburn and Galindev (2003) and Blackburn and Pelloni (2004) model the link between the 

mean and variance of the output growth rate explicitly. Different mechanisms of endogenous 

technological change and nominal or real shocks can lead to positive or negative relationship 

between growth and volatility. In his model, Blackburn (1999) shows for a linear endogenous 

learning function, the effect of the output growth-rate volatility on the output growth rate equals 

zero. A concave (convex) learning function generates a negative (positive) effect. That is, an 

independent relationship may exist with or without the Great Moderation. The discrepancy of our 

findings from those in previous studies highlights the sensitivity of the results to the country 

considered, the time period examined, the frequency of the data, and the methodology employed. 

This apparent inconclusiveness warrants further investigation of the relationship between growth 
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and its volatility. Moreover, since studies generally focus on developed countries, additional 

analysis from developing countries may prove illuminating. For example, the Asian newly 

industrializing countries may provide totally different scenarios because of their high growth rates. 
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Table 1: Descriptive Statistics for Quarterly Growth of Real GDP 
 1947:1－2006:2 1947:1－1981:4 1982:1－2006:2 

Sample size 237 139 98 
Mean 0.8358 0.8700 0.7872 
Standard deviation 0.9872 1.1844 0.6094 
Skewness 
 

-0.0773 
(0.1591) 

-0.0858 
(0.2077) 

-0.5931* 
(0.2474) 

Excess kurtosis 
 

1.3124* 
(0.3184) 

0.3723 
(0.4155) 

2.2179* 
(0.4948) 

Jarque-Bera 
 

17.246* 
[0.0001] 

0.9739 
[0.6144] 

25.8337* 
[0.0000] 

LB Q(1) 26.0163* 13.0015* 13.9116* 

LB Q(3) 34.154* 16.8830* 34.0089* 

LB Q(6) 45.754* 25.1725* 38.7083* 

LM (1) 
 

3.3967** 
[0.0653] 

0.0439 
[0.8338] 

5.7063* 
[0.0169] 

LM (3) 
 

8.1946* 
[0.0421] 

1.7582 
[0.6240] 

6.2496 
[0.1000] 

LM (6) 
 

12.407* 
[0.0534] 

4.1906 
[0.6508] 

4.2203 
[0.6468] 

ADF(n) -10.888(0)* -8.4126(0)* -4.4736(1)* 
Structural stability test for unconditional mean 

 0H : full-sample＝pre-1982

1H : full-sample≠ pre-1982 
0H : full-sample＝post-1982

1H : full-sample≠ post-1982 
0H : pre-1982＝post-1982

1H : pre-1982≠ post-1982
Wald test -0.2871 0.5460 0.7024 
Structural stability test for unconditional variance 

 0H : full-sample＝pre-1982

1H : full-sample pre-1982 <
0H : full-sample＝post-1982

1H : full-sample post-1982 >
0H : pre-1982＝post-1982

1H : pre-1982 post-1982>
F test 0.6947 

[0.0072] 
2.6242 

[0.0000] 
3.7772 

[0.0000] 
Note:  Standard errors appear in parentheses; p-values appear in brackets. The measures of skewness and kurtosis 

are normally distributed as  and , respectively, where T equals the number of 

observations.  equals a Ljung-Box statistic testing for autocorrelations in growth up to k lags. LM 
(k) equals the Lagrange multiplier test for conditional heteroskedasticity, distributed asymptotically as . 
ADF(n) equals the augmented Dickey-Fuller unit-root test with lags n selected by the SC. The Wald statistic 

 tests for structural change in the mean between the samples  i and  j, distributed as 

. The F statistic equals the variance-ratio test between the samples i and j , asymptotically distributed as 
 and df denotes degrees of freedom. 

)/6,0( TN )/24,0( TN

)(kQLB

)(2 kχ

)/()ˆˆ( 222 jSDiSDji +− µµ

)1(2χ

),( jdfidfF

*  denotes 5-percent significance level. 
**  denotes 10-percent significance level. 
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Table 2: GARCH-M Results without Structural Break 
tttt yayaaty ελσ ++++= −− 22110 ; and 

2
11

2
110

2
−− ++= ttt σβεαασ  

0a  1a  2a  λ  0α  1α  1β   
0.4267* 
(0.1648) 

0.2371* 
(0.0692) 

0.2002* 
(0.0725) 

0.0911 
(0.1960) 

0.0106 
(0.0123) 

0.1606* 
(0.0492) 

0.8355* 
 (0.0434) 

 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR 
1.6828 

 [0.6407] 
4.2863 

 [0.6379] 
0.7517 

[0.8609] 
6.7173 

[0.3477] 
0.1388 

[0.3870] 
0.8898* 
[0.0059] 

8.5442* 
 [0.0139] 

0.0213 
[0.8839] 

Maximum log-likelihood function value: -76.5102 
 ARCH-M Results without Structural Break 

tttt yayaaty ελσ ++++= −− 22110 ; and 
2

22
2

110
2

−− ++= ttt εαεαασ  

0a  1a  2a  λ  0α  1α  2α   
0.3891** 
(0.2247) 

0.3223* 
(0.0755) 

0.1611* 
(0.0651) 

0.1130 
(0.2497) 

0.3661* 
(0.0564) 

0.3107* 
(0.0883) 

0.3730* 
 (0.1190) 

 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR 
2.6000 

 [0.4575] 
5.8491 

 [0.4403] 
1.0033 

[0.8004] 
8.7188 

[0.1904] 
-0.0293 
[0.8551] 

1.2352* 
[0.0001] 

15.0378* 
 [0.0005] 

2.6977 
[0.1005] 

Maximum log-likelihood function value: -85.6076 
Note:  Standard errors appear in parentheses; p-values appear in brackets; LB  and LB  equal 

Ljung-Box Q-statistics testing for standardized residuals and squared standardized residuals for 
autocorrelations up to k lags. LR equals the likelihood ratio statistic following a distribution 
with one degree of freedom that tests for  or . 

)(kQ )(2 kQ

2χ

111 =+ βα 121 =+ αα

* denotes 5-percent significance level. 
** denotes 10-percent significance level. 
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Table 3: GARCH-M Results with Structural Break, 1982:1 
tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummyttt γσβεαασ +++= −−
2

11
2

110
2 , where Dummy = 1 for t ≧  1982:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  1β  γ  

0.4427* 
(0.1361) 

0.2634* 
(0.0694) 

0.1757* 
(0.0726) 

0.0519 
(0.1633) 

0.3948* 
(0.1958) 

0.0801 
(0.0692) 

0.6271* 
 (0.1767) 

-0.3322* 
(0.1651) 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR 
2.4247 

 [0.4890] 
5.4342 

 [0.4894] 
0.8279 

[0.8427] 
4.9614 

[0.5487] 
0.0944 

[0.5560] 
0.1846 

[0.5684] 
0.6862 

 [0.7095] 
17.5179* 
[0.0000] 

Maximum log-likelihood function value: -64.1225 
 ARCM-M Results with Structural Break, 1982:1 

tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummyttt γεαεαασ +++= −−
2

22
2

110
2 , where Dummy = 1 for t ≧  1982:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  2α  γ  

0.4644* 
(0.1366) 

0.2880* 
(0.0751) 

0.1559* 
(0.0714) 

0.0254 
(0.1619) 

0.9886* 
(0.1843) 

0.1891* 
(0.0844) 

0.0959 
 (0.1125) 

-0.8191* 
(0.1754) 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR 
2.3699 

 [0.4992] 
5.3571 

 [0.4988] 
0.7853 

[0.8529] 
4.2135 

[0.6478] 
0.1307 

[0.6967] 
0.1385 

[0.4153] 
0.8607 

 [0.6502] 
18.1591* 
[0.0000] 

Maximum log-likelihood function value: -64.7860 

  GARCH-M Results with Structural Break, 1984:1 
tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummyttt γσβεαασ +++= −−
2

11
2

110
2 , where Dummy = 1 for t ≧  1984:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  1β  γ  

0.4396* 
(0.1296) 

0.2365* 
(0.0728) 

0.1888* 
(0.0671) 

0.0516 
(0.1621) 

1.0989* 
(0.5406) 

0.1025 
(0.0893) 

0.0737 
 (0.4186) 

-0.9326* 
(0.4615) 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR 
2.0877 

 [0.5543] 
4.0421 

 [0.6709] 
1.2643 

[0.7376] 
6.3881 

[0.3811] 
0.0652 

[0.6830] 
0.2646 

[0.4115] 
0.8633 

 [0.6494] 
26.3497* 
[0.0000] 

Maximum log-likelihood function value: -62.2568 
ARCH-M Results with Structural Break, 1984:1 

tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummyttt γεαεαασ +++= −−
2

22
2

110
2 , where Dummy = 1 for t ≧  1984:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  2α  γ  

0.4360* 
(0.1369) 

0.2592* 
(0.0706) 

0.1806* 
(0.0746) 

0.0533 
(0.1618) 

1.0628* 
(0.1946) 

0.0913 
(0.0821) 

0.0823 
 (0.1073) 

-0.8914* 
(0.1828) 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR 
2.6621 

 [0.4467] 
5.0311 

 [0.5398] 
0.4254 

[0.9349] 
5.1444 

[0.5254] 
0.0759 

[0.6360] 
0.1963 

[0.5441] 
0.6057 

 [0.7386] 
22.1019* 
[0.0000] 

Maximum log-likelihood function value: -62.7772 
Note:  Standard errors appear in parentheses; p-values appear in brackets; LB  and LB  equal 

Ljung-Box Q-statistics, testing for standardized residuals and squared standardized residuals for 
autocorrelations up to k lags. LR equals the likelihood ratio statistic, following a distribution 
with one degree of freedom that tests for  or . 

)(kQ )(2 kQ

2χ

111 =+ βα 121 =+ αα

* denotes 5-percent significance level. 
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Table 4: Sub-Sample Results with Structural Break, 1982:1 
tttt yayaaty ελσ ++++= −− 22110 ; and 

5.02
21

1 ])ln(ln)[( ∑
−+−+

−
+ −=

ititmt YYmσ , where m=8. 

AR(1): 1947:1－1981:4 

0a  1a  λ       
 0.8160* 
(0.4157) 

 0.3089* 
(0.0900) 

-0.2937 
(0.6735) 

     

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera  
2.3929 

[0.4949] 
4.4391 

[0.6174] 
4.0181 

[0.2595] 
5.2361 

[0.5139] 
0.0609 

[0.7806] 
0.7565** 
[0.0891] 

3.1319 
[0.2088] 

 
 
 

AR(2)-ARCH-M estimation: 1982:1－2006:2 

tttt yayaaty ελσ ++++= −− 22110 ; and 
2

110
2

−+= tt εαασ  

0a  1a  2a  λ  0α  1α    
 0.6398* 
(0.2474) 

0.1717 
(0.1113) 

 0.2881* 
(0.0973) 

-0.4121 
(0.5470) 

 0.1578* 
(0.0373) 

  0.3386**
(0.1821) 

  

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera  
1.8017 

[0.6145] 
2.4284 

[0.8763] 
0.8315 

[0.8419] 
2.6803 

[0.8477] 
0.2668 

[0.2882] 
-0.1686 
[0.7423] 

1.2793 
[0.5274] 

 

 Sub-Sample Results with Structural Break, 1984:1 
tttt yayaaty ελσ ++++= −− 22110 ; and 

5.02
21

1 ])ln(ln)[( ∑
−+−+

−
+ −=

ititmt YYmσ , where m=8. 

AR(1): 1947:1－1983:4 

0a  1a  λ       
 0.8244* 
(0.4033) 

 0.3401* 
(0.0839) 

-0.3740 
(0.6578) 

     

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera  
1.9239 

[0.5883] 
4.6216 

[0.6417] 
2.1934 

[0.5333] 
2.6126 

[0.8566] 
0.0358 

[0.8655] 
0.6570 

[0.1260] 
2.2728 

[0.3209] 
 

 

AR(2): 1984:1－2006:2 

0a  1a  2a  λ      
 0.4893* 
(0.1825) 

  0.1907** 
(0.1039) 

 0.3931* 
(0.1066) 

-0.4156 
(0.5190) 

    

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera  
2.2561 

[0.5218] 
2.5491 

[0.8636] 
2.6447 

[0.4503] 
6.0366 

[0.4193] 
-0.0174 
[0.9479] 

0.0461 
[0.9327] 

0.0121 
[0.9939] 

 
 

Note:  Standard errors appear in parentheses; p-values appear in brackets; LB  and LB  equal 
Ljung-Box Q-statistics, testing for residuals (standardized residuals) and squared residuals 
(squared standardized residuals) for autocorrelations up to k lags. 

)(kQ )(2 kQ

* denotes 5-percent significance level. 
** denotes 10-percent significance level. 
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Table 5: GARCH-M Results with the Level Effect and Structural Break, 1982:1  
tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummyytttt γδσβεαασ ++++= −−− 1
2

11
2

110
2 , where Dummy = 1 for t ≧  1982:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  1β  γ  δ  
0.3948* 
(0.1544) 

0.2325* 
(0.0726) 

0.1978* 
(0.0727) 

0.1066 
(0.1633) 

0.4156* 
(0.1685) 

0.0805 
(0.0690) 

0.6532* 
(0.1477) 

-0.2784* 
(0.1255) 

-0.0907**
(0.0478) 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR  
2.2408 

[0.5239] 
4.7920 

[0.5707] 
0.7720 

[0.8561] 
4.7959 

[0.5702] 
0.0759 

[0.6358] 
0.0103 

[0.9746] 
0.2281 

[0.8921] 
18.5340* 
[0.0000] 

 

Maximum log-likelihood function value: -61.5242 
  GARCH-M Results with the Level Effect and Structural Break, 1984:1  

tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummyytttt γδσβεαασ ++++= −−− 1
2

11
2

110
2 , where Dummy = 1 for t ≧  1984:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  1β  γ  δ  
0.3737* 
(0.1517) 

0.2112* 
(0.0741) 

0.1914* 
(0.0721) 

0.1583 
(0.1600) 

0.6903* 
(0.3448) 

0.0953 
(0.0796) 

0.4373 
(0.2850) 

-0.4708** 
(0.2672) 

-0.1391*
(0.0643) 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR  
2.4636 

[0.4819] 
4.6720 

[0.5865] 
0.5555 

[0.9065] 
4.3049 

[0.6354] 
0.0395 

[0.8051] 
0.0011 

[0.9972] 
0.0616 

[0.9696] 
17.7487* 
[0.0000] 

 

Maximum log-likelihood function value: -60.5848 
Note:  Standard errors appear in parentheses; p-values appear in brackets; LB  and LB  equal 

Ljung-Box Q-statistics, testing for standardized residuals and squared standardized residuals for 
autocorrelations up to k lags. LR equals the likelihood ratio statistic following a  distribution with 
one degree of freedom that tests for  or . 

)(kQ )(2 kQ

2χ

111 =+ βα 121 =+ αα

* denotes 5-percent significance level. 
** denotes 10-percent significance level. 
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Table 6: GARCH-M Results with Time Trend 
tttt yayaaty ελσ ++++= −− 22110 ; and 

tttt ϖσβεαασ +++= −−
2

11
2

110
2  

0a  1a  2a  λ  0α  1α  1β  ϖ  
0.4497* 
(0.1469) 

0.2448* 
(0.0738) 

0.1716* 
(0.0725) 

0.0765 
(0.1686) 

0.2833* 
(0.1917) 

0.1170** 
(0.0633) 

0.7077* 
(0.1331) 

-0.0011 
(0.0007) 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR 
1.6637 

[0.6450] 
4.3703 

[0.6266] 
1.2280 

[0.7462] 
5.1846 

[0.5203] 
0.1258 

[0.4328] 
0.8619* 
[0.0077] 

7.9283* 
[0.0189] 

6.1271* 
[0.0133] 

Maximum log-likelihood function value: -71.6664 
 ARCH-M Results with Time Trend 

tttt yayaaty ελσ ++++= −− 22110 ; and 
tttt ϖεαεαασ +++= −−

2
22

2
110

2  

0a  1a  2a  λ  0α  1α  2α  ϖ  
0.4202* 
(0.1484) 

0.2885* 
(0.0706) 

0.1595* 
(0.0799) 

0.0828 
(0.1659) 

1.1111* 
(0.1944) 

0.1144 
(0.0753) 

0.2047* 
(0.0979) 

-0.0043* 
(0.0008) 

LB (3) Q LB (6) Q LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR 
2.0563 

[0.5608] 
4.7750 

[0.5729] 
0.4943 

[0.9201] 
4.1656 

[0.6542] 
0.0708 

[0.6588] 
0.7629* 
[0.0184] 

5.9219* 
[0.0517] 

13.6673* 
[0.0002] 

Maximum log-likelihood function value: -70.4836 
Note:  Standard errors appear in parentheses; p-values appear in brackets; LB  and LB  equal 

Ljung-Box Q-statistics testing for standardized residuals and squared standardized residuals for 
autocorrelations up to k lags. LR equals the likelihood ratio statistic following a distribution 
with one degree of freedom that tests for  or . 

)(kQ )(2 kQ

2χ

111 =+ βα 121 =+ αα

* denotes 5-percent significance level. 
** denotes 10-percent significance level. 

 

 

 30



Table 7: GARCH-M Results with Time Trend and Structural Break, 1982:1 
tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummytttt γϖσβεαασ ++++= −−
2

11
2

110
2 , where Dummy = 1 for t ≧  1982:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  1β  ϖ  γ  

0.4427* 
(0.1371) 

0.2634* 
(0.0696) 

0.1756* 
(0.0729) 

0.0519 
(0.1638) 

0.3963* 
(0.2106) 

0.0802 
(0.0697) 

0.6263* 
(0.1795) 

-0.0000 
(0.0004) 

-0.3318* 
(0.1674) 

LB Q (3) LB Q (6) LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR  
2.4190 

[0.4901] 
5.4276 

[0.4902] 
0.8264 

[0.8431] 
4.9524 

[0.5499] 
0.0945 

[0.5555] 
0.1848 

[0.5679] 
0.6878 

[0.7089] 
17.4906* 
[0.0000] 

 

Maximum log-likelihood function value: -64.1224 
 ARCH-M Results with Time Trend and Structural Break, 1982:1 

tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummytttt γϖεαεαασ ++++= −−
2

22
2

110
2 , where Dummy = 1 for t ≧  1982:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  2α  ϖ  γ  

0.4582* 
(0.1379) 

0.2878* 
(0.0745) 

0.1562* 
(0.0725) 

0.0327 
(0.1626) 

1.0336* 
(0.2189) 

0.1757* 
(0.0885) 

0.0982 
(0.1110) 

-0.0005 
(0.0011) 

-0.7598* 
(0.2104) 

LB Q (3) LB Q (6) LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR  
2.2990 

[0.5127] 
5.2517 

[0.5119] 
0.7697 

[0.8566] 
4.1941 

[0.6504] 
0.1232 

[0.4422] 
0.1582 

[0.6249] 
0.8441 

[0.6556] 
18.3301* 
[0.0000] 

 

Maximum log-likelihood function value: -64.6902 
 GARCH-M Results with Time Trend and Structural Break, 1984:1 

tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummytttt γϖσβεαασ ++++= −−
2

11
2

110
2 , where Dummy = 1 for t ≧  1984:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  1β  ϖ  γ  

0.4432* 
(0.1301) 

0.2361* 
(0.0731) 

0.1889* 
(0.0673) 

0.0476 
(0.1618) 

1.0756* 
(0.5134) 

0.1058 
(0.0910) 

0.0747 
(0.4091) 

0.0002 
(0.0011) 

-0.9623* 
(0.4950) 

LB Q (3) LB Q (6) LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR  
2.1568 

[0.5404] 
4.0880 

[0.6647] 
1.2042 

[0.7519] 
6.4179 

[0.3780] 
0.0653 

[0.6827] 
0.2568 

[0.4254] 
0.8232 

[0.6625] 
26.1636* 
[0.0000] 

 

Maximum log-likelihood function value: -62.2309 
ARCH-M Results with Time Trend and Structural Break, 1984:1 

tttt yayaaty ελσ ++++= −− 22110 ; and 

Dummytttt γϖεαεαασ ++++= −−
2

22
2

110
2 , where Dummy = 1 for t ≧  1984:1; 0 otherwise. 

0a  1a  2a  λ  0α  1α  2α  ϖ  γ  

0.4374* 
(0.1377) 

0.2589* 
(0.0708) 

0.1808* 
(0.0750) 

0.0515 
(0.1619) 

1.0512* 
(0.2188) 

0.0935 
(0.0838) 

0.0809 
(0.1075) 

0.0001 
(0.0011) 

-0.9106* 
(0.2268) 

LB Q (3) LB Q (6) LB (3) 2Q LB (6)2Q Skewness Kurtosis Jarque-Bera LR  
2.7064 

[0.4391] 
5.0671 

[0.5352] 
0.4301 

[0.9339] 
5.1829 

[0.5205] 
0.0756 

[0.6374] 
0.1906 

[0.5558] 
0.5823 

[0.7473] 
22.0962* 
[0.0000] 

 

Maximum log-likelihood function value: -62.7692 
Note:  Standard errors appear in parentheses; p-values appear in brackets; LB  and LB  equal 

Ljung-Box Q-statistics, testing for standardized residuals and squared standardized residuals for 
autocorrelations up to k lags. LR equals the likelihood ratio statistic, following a distribution 
with one degree of freedom that tests for  or . 

)(kQ )(2 kQ

2χ

111 =+ βα 121 =+ αα

* denotes 5-percent significance level. 
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Figure 1. Real GDP and GDP Growth Rate 
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Figure 2. GARCH Variance with (Solid Line) and without (Dashed Line) Dummy. 

0

1

2

3

4

5

6

1 9 5 0 1 9 5 5 1 9 6 0 1 9 6 5 1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5

1 9 8 2 :1

 

Figure 3. ARCH Variance with (Solid Line) and without (Dashed Line) Dummy. 
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Figure 4. GARCH Variance with (Solid Line) and without (Dashed Line) Dummy. 
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Figure 5. ARCH Variance with (Solid Line) and without (Dashed Line) Dummy. 
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