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Abstract

Using the directional distance function we study a crostigeof 110 coun-
tries to examine the efficiency of management of the traddwdtween pollution
and income. The DEA model is reformulated to permit revetisposability’ of
the bad output. Further, we interpret the optimal solutibthe multiplier form
of the DEA model as an iso-inefficiency line. This permits agreasure the
shadow cost of the bad output for a country that is in the ioterather than on
the frontier of the production possibilities set. We alsonpare the relative en-
vironmental performance of countries in terms of emissidensity adjusted for
technical efficiency. Only 10

Keywords: Data Envelopment Analysis, directional distance fungtpmilution-
income tradeoff, shadow price.



EFFICIENCY IN MANAGING THE ENVIRONMENT AND THE
OPPORTUNITY COST OF POLLUTION ABATEMENT

In recent years, a lot of attention has been devoted to the importance of improving
global environmental quality and restraining the process of global warming. White mos
share a concern regarding the ecological impact of global warming and its economic
consequences, there is at the same time awareness and concern regarding the economi
costs that an effort to improve environmental quality might entail for different wesint
In 1992, the Framework Convention on Climate Change (FCCC) represented for the first
time a voluntary commitment from nations (Annex | countries i.e., industrialized
countries) to curb global warming. This was followed by the Kyoto Protocol of 1997, a
key aspect of which was to stipulate that the Annex | countries will reduce the&@sis
of greenhouse gases (GHGSs) by 5% of their respective 1990 levels by 2008-2012, thereby
assigning “common but differentiated responsibility” for each country.

In a recent study, Nordhaus and Boyer (2000) contend that the Kyoto Protocol is
not properly grounded in economics or environmental policy. They consider several
alternative policy approaches and through comprehensive analysis they conclude that
although in the early years the overall abatement level under the Kyoto Protooskis cl
to that under an ‘optimal program’ that they suggest, in the long run the emissions are
actually higher under the Protocol approach than under their ‘optimal program’. They
attribute this to two major shortcomings with the Kyoto Protocol approach: (i) Sicbe e
country’s emission limit is based on historical levels, it gives a major wiridfal
countries which historically had inefficient energy systems; and (ii) To@&vol limits
the emissions for only a group of countries but does not do so for the non-Annex |
countries. This omission is significant since many of the developing countries will
experience more rapid increases in emissions and will likely account for the maj
contributions to global emissions in the future as compared to the industrialized
countries.

While cross-country comparison is not relevant for achieving the goals set by the
Kyoto Protocol, we believe that efficient management of the tradeoffs betweetiopoll

and income requires each country to learn from the best practices of other countries



around the world. In this paper we use Data Envelopment Analysis (DEA) to carry out a
comprehensive study of a cross section of 110 countries and construct a best practice
‘meta’ frontier. Each country is then compared to this best practice frontieiragsits
efficiency in achieving the optimal balance between pollution reduction and growth in
income.

In the existing literature, cross country studies on emissions have followed three
main streams. One stream focuses on the relationship between emissions andgper capi
GDP following the environmental Kuznets curve (EKC) theory, after Kuznets (1955).
Schurr et al. (1960) proposed that an inverted U-shaped relationship exists between
energy use and economic output in the U.S. A large body of literature has been devoted
to investigating this topic ever since. The studies in this area address two mémngues
— (i) is there an inverted U-shaped relationship between income and emissions® (i) i
what is the income level at which the turning point occurs? In general, researateers ha
found that the inverted U-shaped curve existddoal pollutants(SG;, NOy, and CO) but
most studies have not found this in casglobal pollutantssuch as C@ This is because
local pollutants have a direct impact on the population and have, therefore, been
regulated. Further, the income elasticity of environmental demand is genegakty
case of local pollutants. Even in cases when the EKC holds, the literature does not
provide a consensus view as to the turning point. (see Borghesi, 1999 for a survey of this
literature and criticisms of the EKC theory).

Another group of studies have undertaken an index decomposition approach to
identify the contribution of explanatory factors beside growth in economic output, such
as changes in fuel consumption, share of fossil fuels in energy use, aggregatgd energ
intensity, sectoral fuel share, fuel emission factors, sectoral energgitgigoopulation
and so on, to the changes in emissions over time for each country. Recent studies that
have employed this approach in cross-country comparisons include Ang and Zhang
(1999), Greening et al. (1998), Luukkanen and Kaivo-oja (2000), Schipper et al. (1997),
and Sun and Malaska (1998).

! Kuznets (1955) was the first to observe an ingedeshape relationship between income inequalityan
country’s aggregate income.



While the EKC literature explores the relationship between changes in the leve
of pollution concomitant with the growth in GDP, the index decomposition literature
focuses on the sources of pollution intensity. A third stream attempts to account for the
good output (GDP) as well as the bad output (pollution), along with resource utilization
within the analytical framework. Production of the desirable output (GDP) in an economy
leads to the production of the undesirable output (emissions). In general, a nation’s
pollution abatement efforts entail economic costs by limiting economic growth,smd al
by diverting investment from productive purposes to abatement purp6sethe other
hand there are benefits from such efforts in terms of reduced damages from pollution.
Papers in this strand of the literature have utilized the directional distanterfunc
approach developed by Chambers et al. (1996). Chung et al. (1997) construct a
Malmquist-Luenberger productivity index to isolate the contributions of technicageha
and technical efficiency change to productivity growth in the Swedish paper and pulp
mills which generate both good and bad outpitare et al. (2001) and Weber and
Domazlicky (2001) employ the Malmquist-Luenberger index to analyze the
manufacturing productivity growth across the states of the U.S., taking into account the
emissions that are produced in the process. In an interstate analysis of U.Suagyricul
Fare et al. (2006) use directional distance functions to derive estimates of production
inefficiency and shadow prices for polluting outputs. A few papers have used the
Malmquist-Luenberger approach in the context of a global cross-country analgsis. Je
and Sickles (2004) analyze productivity growth in OECD and Asian countries over the
period 1980 to 1990, taking into account the production of both GDP apdr@i€sions.
Kumar (2006) examines environmentally sensitive total factor productivity growtt i
developed and developing countries over the period 1971 to 1992 accounting for both
GDP and C@emissions.

Our study extends the existing literature in several ways, both methodological a
empirical. First, we reformulate the DEA model to permit what we callréhetse
disposability of the bad output. Second, we interpret the optimal solution of the dual or

2 porter and van der Linde (1995) argue that enviremtal protection, properly pursued, can be ackieve
without any economic costs. Their viewpoint, howewas been strongly criticized (see Palmer et al.,
1995).

% In an earlier paper Fare et al. (1989) apply giaygderbolic distance function to obtain efficiency
measures for US paper mills in the presence of siratde outputs.



multiplier form of the relevant DEA model as &o-inefficiencyline. This permits us to
measure the shadow cost of the bad output for a country that is in the interior, rather than
on the frontier of the production possibilities set. In our empirical application, wezanaly

a bigger dataset of 110 countries as compared to most studies in the literatweuthat f
mainly on cross-country comparison of OECD countries. This extended coverage is of
special significance in light of the growing importance of countries like IndaziBand
China in the world economic scene. Apart from obtaining measures of technical
efficiency for each country we compute and compare the opportunity cost of pollution
reduction in the form of lost GDP, both for a 1% reduction in each country’s pollution as
well as for a common target reduction in the absolute amount of pollution equal to 1% of
the pollution in the U.S. We also compare the relative environmental performance of
countries in terms of emission intensity adjusted for technical efficiency.

Our empirical analysis shows that only 10% of the countries in the sample are on
the frontier. Also, there is considerable inter-country variation in the imputed oppprtunit
cost of either a 1% decrease from their actual @@ission levels or of a target reduction
of a specific absolute amount of gf@duction. We also find that differences in technical
efficiency contribute to a large extent to differences in the observed leve®®,of C
intensity.

The rest of the paper is organized as follows. Section 2 provides the
methodological background for the nonparametric analysis. Section 3 develops the DEA
models for measuring the directional distance function and the Nerlove-Luenberger
measure of technical efficiency. Section 4 presents the findings from thecahpiri

application and section 5 is the conclusion.

2. The Production Technology

Consider an m-output, n-input technology defined by the production possibility set

T ={(x, y): ycan be produced fromy} (2)
Assume further that the output bundle can be partitiongd=a(g), b) whereg is the sub-
vector ofgoodor desirable outputs whileis the sub-vector dfad or undesirable
outputs. Following the convention in the literature, we assume that all inputs aye freel

disposable and that the production possibility set is convex.



Further, thegoodoutputs are freely disposable. However, the bad outputs are not freely
disposable although they are weakly disposable together with the good outputs. These
assumptions can be formally stated as follows.
(A1) If (<, g,b) T andx>>’, then (X}, g,b) 7T,
(A2) If () go,bo) T and(x*, g, by) T, then(bC+(1-2)x A go+(1-A)gu,Abe+(1-A)by) T
forall0<s1 <1
(A3). If (X, ;,b) JT andg: < g, then (x, g,b) Z7T. This implies that the good output
is strongly disposable.
(A4). If (X, o,bp) 7T, then(x, kg,kky) /7T, for all 0<k <1. Thus the two outputs are
together weakly disposable. Note that the bad outmdgtistrongly disposable
A new assumption that we make in this paper is:
(A5) If (x, g, k) JTandby,> ko, then (X, g, R) 7/ T. This may be characterized as
“reverse disposabilityof the bad output.

This assumption oféverse disposabilityof the bad output is essentially similar
to the assumption of free disposability of the good output. After all, if a lower level of the
desirable output could be associated with the same level of the bad output, a higher level
of the bad output could also be generated along side the same level of the good output.
Suppose that the good output is mega-watts of electricity generated and the bad output is
pollutants emitted into the atmosphere. If a firm manages its pollution control device
poorly, it is possible that the pollution level goes up without any increase in power
generated.

Under assumptions (A1-A5), the production possibility set constructed from a

sample of observed input output bundbésg, b) (=1,2,.....N)will be:

T :{(x;g,b):XZZijj;g <Sk(QA,0,):b2k(QAb); DA =10sksLA, 20(] :],2,...,N)}.
i j j i

(2)

For any given input bundbé€, the corresponding output set is

...(2a)



For a 1-input, 2-output (1 good and one bad) example, consider the following production

possibility set
T :{(x;g,b):%zsx/;}. 3)

Then, forx equal to 3, we have the output set

P(x=3) ={(g,b): % < /30}. (3)
It is easy to verify that for this example, wheneamry(g, b) /P (x=3), (kg, kb)7P(x=3)
for anyk /7(0,1).
Further the good and bad outputs are “null jointthe sense thatcan be reduced to

zero only ifg is also zero. This assumptionrefverse disposabilitgf the bad output

clearly holds for the example shown above.

3. TheDirectional Distance Function and Nerlove-L uenberger Efficiency
Chambers, Chung, and Fare (1996) introduceditleetional distance functiobhased on
Luenberger’s (1992enefit functiorto obtain a measure of technical efficiency based

the potential for increasing outputs while redudmguts simultaneously. Consider some
input-output bundlgx®, y° and a reference input-output bung#t€, z¥  Then, with
reference to the production possibility setthe directional distance function can be
defined as:

D(X°,y% z*,z) =max B: (x° + Bz*,y° + fzY)OT. (4)
Clearly, the directional distance function evaldad any specific input-output bundle
will depend on(z*,z” ps well as on the reference technology. The arijtrehosen
bundle(z*, z¥ )defines the direction along which the observed hyritlit is an interior

point, is projected on to the efficient frontiertbk production possibility set. In the
present context’ = (go, bv). Suppose that we chooggo be the null vector whilg’ =

(90, -ho). Then the Directional distance function is

D(X°, o, by; 2%, 2") =max B: (x°; L+ B)g,. (L~ B)by) OT. ®)
Alternatively,
D(x°,9o,by; 2%, 2") =max B: ((1+ B)g,, L- B)b,) D P(X°). (5a)



The relevant DEA LP problem is

max [

st k(ZN:)l,-ngZ L+ B)o:

k(ZN:Ajbjjs (L-B)by; (6)

J

ZN:A.xi <x°;
1

N
> A,=150<ksLA 20.
1

Defining the weightg4 = ki; we may rewrite this problem as

max [

N
S.t. Z,ujgj_ﬁgoZgo;
1

Y b, + o, <b, ; @)

D u, =k 0sk<Lu =0

1

If we assumed constant returns to scale, the rexpaint that tha;s add up to unity
would be dropped. In that case, beyond non-neggtivere would be no further
restrictions on thgys. As a result, the variabkecould be dropped and the input
constraints could be replaced by

Douxh < xC.

1

The relevant CRS DEA problem would be

max S

N
S.t. &O_Zﬂjgj < =0os (8)
1



The dual of this LP problem is

minw%° + pp, by — PeGo
st wX+pb—pgg >0; (=1.2,....N) 9)

B + Po bo = 1;

W= 0; pg, P > 0.

Note that the objective function of this dual pexblhas a simple interpretation. It is the
excess of the total cost consisting of the shadust af the inputs and also the shadow
cost of the undesired output over the shadow vailee desirable output. By
construction, it has a lower bound of zero. Thati@as realized only when the optimal

value ofgin the primal problem is zero. In that case, theadundlggo, o) lies on the

boundary ofP(xX). Of particular interest is the relative price oéthad output

p, =2, (10)
P,

Where(p;, p, )is the vector of the optimal values of the shadowes of the good and

the bad output. It shows the required increasberguantity of the good output that
would exactly neutralize the detrimental effecaoharginal increase in the quantity of
the bad output without changing the efficiencyha firm. Alternatively, it is the
opportunity cost of a marginal decrease in thedagggut measured by the allowable

decrease in the good output.

4. The Empirical Application

In this paper we analyze cross section data pangio 110 countries from the
World Resources 2005 data book. The model inclodesgood output (GDP) and one
bad output (C@), along with two inputs: fossil fuels (FF) and rAfmssil fuels (NFF)

10



consumed. All inputs and output quantities are mmeasper capitd.GDP per capita is in
purchasing power parity adjusted 2002 internatialeélars. Carbon dioxide emission
(CO,) is measured in metric tons of emission per peis@900. Both fossil fuels (FF)
and non-fossil fuels (NFF) are measured in kiloggarhoil equivalent consumed per
person in 20071 The summary statistics of the data are reportéhble 1. Not
surprisingly, the country with the lowest per cagBDP, Tanzania, is one of the four
countries with the lowest level of G@mission. The other three countries tied with
Tanzania at the minimum level of G@&mission are Congo Democratic Republic,
Mozambique, and Nepal, ranked respectively"&9?, and 16' from the bottom in
terms of per capita GDP. At the other extreme, Kititvas the maximum level of GO
emission per capita. The lowest and the highesidenf fossil fuels consumption per
capita are found in Congo Democratic Republic ang&pore, respectively. Three
Middle Eastern countries, Oman, Saudi Arabia, and/&it, reported zero consumption
of non-fossil fuels. At the other end, Iceland ladével of non-fossil fuel consumption
that was about 17 times the average per capitauogotson across all countries in this
data set. In fact, the share of fossil fuels taltenergy consumption was 27.1% in
Iceland compared to 79.5% for the World as a whole.

Table 2 reports the COntensity (in metric tons per $ GDP), which is a
commonly used measure of the efficiency with whaatountry produces its GDP in an
environmentally friendly manner. The energy intgnas well as the fossil fuel intensity
(both measured in kgoe per $ GDP) are also repéoteshch country. As is to be
expected, the correlation between Qensity and fossil fuel intensity is much higher
(0.9702) than the correlation coefficient betweddy, @itensity and overall energy
intensity (0.6594). The average gitensity for our sample was 0.000502 but ranged
from a high of 0.00295 for Uzbekistan to a low d@0724 for Nepal. The average £0
intensity for the Annex | countries in our samplasi.000287, whereas for the non-

Annex | countries it was 0.000444.

4 Measuring the outputs and inputs per capita obsitite need for including labor as an additionaliin
Further, we assume that the level of energy upeoigortional to the use of capital. This permitsas
exclude capital as a separate input from the model.

® For an explanation of data construction see p&@eof World Resources 2005.

® See page 206 of World Resources 2005.

" See page 202 of World Resources 2005.

11



The main results from the DEA modeks @iso shown in Table 2. The column
B lists the optimal values of the output-orientegtdiional distance function showing
the proportion by which the good output (GDP peited could be expanded while at the
same time the bad output (€@mission per capita) be reduced for the individual
countries in the sample. It takes the value 0 focduntries (namely, Paraguay, Congo
Democratic Republic, Algeria, Nepal, Morocco, Baugsh, Ireland, Costa Rica, Oman,
Mozambique, and Cameroon). All of these countriesoperating at full efficiency in the
sense that it is not possible to increase GDP gygitacand reduce pollution at the same
time. Ireland is the only country from the develdpeorld that makes this list. Among
the rest, Oman is an oil exporting country from eldle East and the others are all
developing economies with moderate to low GDP peita. Compared with the U.S.
(ranked at the 7 position in the overall list), Ireland has a sorhenhigher GDP and a
substantially lower rate of G&mission (only 55% of the emission rate of the.)) jser
capita. The case of Oman is also interesting inithe found to be efficient even though
its entire energy consumption comes from fossilduBy contrast, Saudi Arabia also
uses only fossil fuels but it has a lower per @@DP and nearly one-third higher €O

emissions than Oman. The valueffshows that it should be possible for Saudi Arabia

to simultaneously reduce emissions and increasegpita GDP by about 13%. Most of
the countries in the efficient list are low on aaléenergy intensity of GDP (Bangladesh,
Morocco, Costa Rica, Uruguay, and Ireland) or ifdas! intensity of GDP (Congo

Democratic Republic, Mozambique, Nepal, Cameromst&Rica, and Bangladesh).
Out of the 110 countries in the sample, 70 havara values of” in excess of
0.33. This implies that it should be possible facte of these countries to simultaneously

increase per capita GDP and lower &issions by at least 33%. In fagt, exceeds

50% for 48 countries. Surprisingly, India and Chivi¢h lower values ofg” are more
efficient than New Zealand, Belgium, and Finlanda@ng the developed nations of the
West, Canada performs the worst with a valugcdis high as 0.66. In fact, the U.S.

barely outperforms countries like Pakistan anddndliot surprisingly, the worst five
performers (Bulgaria, Tajikistan, Russian Federgtldzbekistan, and Ukraine) are all

from the former Soviet Bloc.
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For the 99 countries with the values pfgreater than zero, there is no immediate

trade off between pollution reduction and produdingher output. For each of these

countries, there is room to increase GDP and re@@seemissionsimultaneously.
Consider the case of Japan for a specific exariijple value of3” (from problem (8)

above) for Japan was 0.3192. This implies thdtousd be possible to increase per capita
GDP and, at the same time, reduce, @@issions by 31.92 per cent. This amounts to an
increase in GDP per capita by 8598.29 dollars atelcaease in C£emissions per capita
by 3.06432 tons without any increase in the inpDtsce such potential increase in GDP
and decrease in pollution have been achieved,wathef decrease in pollution without
increase in the inputs would require a decreas&Di.

The columngy andp, show the shadow prices of the good output (peitaap
GDP) and the bad output (per capita &issions), respectively. The relative shadow
price of CQ emissions is shown in the colunpy. Because actual per capita GDP is
expressed in international dollarpy, is an opportunity cost of a marginal decrease in
emissions per capita expressed in dollars. Themdoshprices and the implied
opportunity cost of pollution abatement in the faiMGDP reduction are really
applicable only at the optimal projection of théuat outputs (good and bad) on to the
frontier of the production possibility set. It shduibe recognized, however, that
eliminating technical inefficiencies could involugajor adjustment costs and may be
difficult to achieve in the short run. Thus, thdiopl projection serves more as a
benchmark for improvement than as an achievableigale short term. Even when a
country is inefficient and the observed output Bariés in the interior of the output set
of its observed input bundlet the existing level of (in)efficiendye relative shadow
price does provide a measure of the opportunity @ba marginal reduction in pollution.
Note that by standard duality results relatingdapgmal solutions of the primal and dual
LP problems (8) and (9),

5,8* _ * 5,8* -
o Py andm— pg'

(11)

8 Based on several case studies, Porter and varirdir (1995) argue that companies may be able to
reduce pollution and at the same time increase tlenpetitiveness by removing resource inefficiesci
and realizing potential technological improvemegar findings at the country level also suggests th
most countries in our sample could experience aataoh in pollution along with increase in GDP to a
certain extent before facing a tradeoff betweenwuegoals.

13



with 8" andx’ held constant,

% dy + % dg, = p,dh, - p,dg, =0. (12)
Hence, along thiso-inefficiencycurve, 8 =w' x° + pybg - p, 9,

dg, = 2 db,. (13)

This last expression defines the minimum reduatiatiie good output that would be
required in order to reduce the bad output by dlsan@ountdby, unless there is an
improvement in technical efficiency. In this senisé the opportunity cost of lowering
the bad output bghy.

We now look at the individual shadow prices of G&fl CQ emissions and also
the relative shadow prices of G@r the different countries in our sample reporited
Table 2. The shadow price of GDR)(was positive for each and every observation in
the data. However, the shadow pripgg(and hence the relative priag,) of CO, was
zero for 7 of the 110 countries. Five of these Wntoes were on the frontier with the

value of 8" equal to 0. For every countjyhat was efficient, the optimal solution of the
primal problem (8) hags” equal to 0 and the correspondiﬂ*g equal to 1 with all other

variables taking the value 0. Thus, they all exiitbprimal degeneracyit is well known
that in such cases, the optimal values of the darghbles will be non-unique even when
they are non-zero and cannot be interpreted aoshpdces (Ali 1994, Gal 1988)

Thus, we cannot say anything about the opportwaisy of pollution abatement in the
case of the 11 countries that showed no techmedificiency. This is true even for
countries like Algeria, Bangladesh, Oman, Mozaméjgnd Cameroon, all of which had
strictly positive values of both of the dual vated For the two countries that were
inefficient but had zero shadow prices of {#nissions (Peru and Uruguay), the
pollution constraint was non-binding at the optirsalution. This implies that they would
be able to reduce pollution without sacrificing GD¥’to the extent of the respective

slacks in the constraint. For the remaining 99 taes), both shadow prices are positive

° A parametric specification (e.g. Fare et al. 208f6the distance function could minimize, althoungt
entirely eliminate, the incidence of zero shadoiggs.

14



and the relative shadow price of €@bes represent the (marginal) opportunity cost of
pollution abatement.

It may be noted in this context, that Jeon an#l&c(2004) did explicitly
recognize that the shadow prices were valid onlyrfantier observations and there could
be significant adjustment cost of projecting auakbbservation on to the frontier. In an
attempt to circumvent this problem, they focusely on the shadow prices of the OECD
countries in their sample, the bulk of which thewyrid to be close to the frontier. By
contrast, our approach allows us to measure aedoir@t the shadow price of GO
emission of countries without projecting them te ftontier.

A simple interpretation of the relative price obgemission is that it represents
the minimum reduction in GDP per capita necessarjolvering per capita emissions by
1 metric ton. Alternatively, it shows the amountvayich per capita GDP would have to
rise to justify an increase in per capita emissiong ton, unless the country can increase
its efficiency. By this measure, a 1-ton decreaseé@, emission in the U.S. would
require a decrease in per capita GDP by $3140.@&tends a similar decline in pollution
in India would require a sacrifice in per capita BDf $7940.03. But this line of
reasoning fails to consider the fact that a 1-teange is less than a 5% change from the
observed level of emission in the U.S. By contriass,a 100% change in the case of
India. Instead of considering the same absoluteuataf change in emissions across
different countries, it would be more meaningfuttmsider the opportunity cost of the
same percentage change from the observed levelnistion. In Table 3 we compare the
opportunity costs (in the form of foregone GDP ga&pita) of a 1% reduction in GO
emission per capita for a sample of 12 countrié& dolumn PC_C&reports the actual
levels of emission per capita in the selected astThe columnACQO,) shows the
actual quantities of C{xhat constitute 1% of the respective observed gomdevels.

Note that 1% of actual emission per capita in th®. s 0.202 metric ton. In the case of
China it is only 0.027 ton and for India it is eMemwer (0.01 ton). The final column
(OC_GDP) shows the opportunity cost of a 1% redunci CQ emission expressed as
the percentage of the actual per capita GDP iretheantries. In the U.S, Brazil, China,
and Korea a 1% decrease (increase) in emissiocapéa would be offset by about 1.8%

decrease (increase) in per capita GDP. For Canaé&aehange in emission would

15



warrant a 4.5% change in GDP. For the Russian B&dera 1% decrease or increase in
emission would be offset by a 4% change in GDRénsiame direction. For Germany
(1.18%), Japan (1.12%), Argentina (1.05%), and Niexi.36%) the opportunity cost in
terms of GDP change is much lower.

It is sometimes argued that developed industagibns like the U.S. would have
to bear the bulk of the cost of pollution abatent@mtdause a 1% reduction from their
existing levels of emission would imply a much krgbsolute levebdf reduction. After
all, CG; pollution is a global phenomenon and a specif@angity of emission whether
from the U.S. or from China would in the end hdve $ame impact on the global
environment. In Table 4 we evaluate the opporturitst of the same target level of
pollution abatement to different countries. Notattthe countries differ in the levels of
per capita emission as well as their populatioessi¥Ve selected a target level of
reduction in total quantity of emission equal to @fthe total emission level observed in
the U.S. in 2000. A per capita Ge&mission level of 20.2 tons and a 2000 populaina
of 283 millions yields a total emission figure Q¥ $56.6 million metric tons in the U.S. in
the year 2000. Hence, a 1% emission reduction eag@litargeted level of reduction of
57.166 million metric tons. The same absolute arhotireduction is a much lower per
capita reduction in countries with large populatsires like China and India compared to
countries like Canada or Argentina where the pdmiriasize is much smaller. Because of
differences in the population sizes, the same amaiusi7.166 ton reduction in total GO
emission translates into a 1.844 ton redugtiencapitain Canada but only a 0.0566 ton
reductionper capitain India (see column (7)). The columhCO,_%’ shows the implied
reduction as percentage of the actual emissionsusd&'éhe country specific shadow
relative price of C@reduction to figure out the implied opportunitystof this reduction
for each of the selected countries. The final calu®C_GDP’ shows the resulting
decline in GDP per capita that would be neededieae this absolute reduction in total
emission in the individual countries. As can bendeem the last column in Table 4, a
1% decrease in per capita emission in the U.S.avaduire a 1.774% reduction in GDP
per capita. But the same amount of emission redluetill cost 49.66% reduction in per
capita GDP in Canada, 41.119% loss of GDP in SAfriba, 3.075% loss in China, and
16.779% reduction in per capita GDP in India. |tierefore, difficult to argue that a

16



country like the U.S. would have to bear the bulkhe cost of global pollution
abatement.

Because the environmental performance of a coiswften evaluated in terms
of pollution intensity of the output produced,stworthwhile to examine the relative
performance of countries once their actual outst teen projected on to the efficient

frontier. The last column of Table 2 provides teehnical efficiency adjusted GO
intensity (CO,y ). A country’s CQ intensity depends on the composition of its GDP

(which in turn often depends upon its stage of entin development), the available
sources of energy in the form of fossil or non-foleel, and its efficiency in utilizing its
resources in producing the output with the leastatze to the environment. A country
which is low in CQ intensity is often perceived to be environmentafficient. A
different picture of the relative performance ofeanerges when we examine the
technical efficiency adjusted G@tensity. This measure shows the relative pasitib
each country based on its core gfensity i.e., performance that is purged ofeffect
of resource use inefficiency. In this context itrteresting to consider the case of the
Russian Federation and Ukraine. In our sample ttveseountries are ranked 10%nd
107" respectively, in terms of GOntensity, whereas their ranks aré"shd 3%’
respectively, in terms of technical efficiency atgd emission intensity. This implies
that thecore emission intensities of these countries are nbigts relative to other
countries. It is primarily the resource utilizatiorefficiency that leads to such poor
environmental performance of these countries. Eoisample the rank correlation
between the unadjusted and adjusted emission itiesnwas 0.5632 implying that in
addition tocore emission intensity, differences in technical ireéncy is an important
determinant of the environmental performance acrossitries.

The main findings of this study can now be sumpeatias follows:

» For most countries in our sample it would be pdedit» produce a higher level of
GDP and a lower level of pollution from their induindles if they can improve
their technical efficiency.

» Of the eleven countries found to be on the frordgfethe production possibilities
set, Ireland is the only country from the developaxad that makes this list.
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* There is considerable variation across countrigeemopportunity cost of a 1%
reduction in C@emission per capita. In the U.S., Brazil, Chinaj Korea a 1%
decrease in emission per capita would entail ab@% decrease in per capita
GDP whereas in case of Canada and the Russianatiedat would require a
4.5% and 4% reduction in GDP.
* Whereas a 1% decrease in {@the U.S. would cost 1.8% of GDP per capita,
the same absolute volume of €@duction would have an opportunity cost of
43% loss of GDP per capita in Argentina, nearly 58%anada, and 41% in
South Africa. It is therefore, difficult to arguledt the U.S. would have to bear a
disproportionate share of the cost of pollutionu&itn.
* A comparison of the actual and the technical efficy adjusted emission
intensities reveals the important role of variatiortechnical efficiency in
explaining the relative environmental performanta oountry. Selected poor
performing countries like the Russian Federatioth dkraine would improve
significantly in the ranking through better resaucdilization.
5. Conclusion

This paper uses DEA to measure technical effigiefipproduction where GDP
and CQ emissions are the good and the bad output, usenditectional distance
function as the analytical framework. We also detive relative shadow price of the bad
output, measuring the opportunity cost of a maigieduction in CQ emission in the
form of a reduction in GDP per capita. One cavedhat many of the countries found to
be technically efficient are found to be from thed developed parts of the world with
low levels of industrialization. Because the extainénergy use is tied to the use of
capital and therefore to the state of industrifiteincy, their measured level of
efficiency might simply reflect the less develostdte of their economy.
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Table 1: Summary Statistics

Variable

Mean Std Deviation Min Max
GDP 579 36596
(per capita PPP 10420.19 9875.296664 Tanzania Norway
int'l $ 2002)
CO2 0.1 26
(metric tons per 4.891818 4.863652421 * Kuwait
person 2000)
fossil fuel 13.29 7088.79
(per capita kgoe 1712.492 1720.182095 Congo Dem Rep Singapore
2001)
non fossil fuel 0 8602.2
(per capita kgoe 505.581 971.2016737 ** Iceland

2001)

* Congo Democratic Republic, Mozambique, Nepal, Zaria

** Kuwait, Oman, Saudi Arabia
Source: World Resources, 2005.
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Table 3: Opportunity cost of 1% pollution reduction for selected countries

1) 2) 3) 4) (5) (6)
No Country PC CO, PC_GDP ACO, OC _GDP
1 | United States 20.2 35746 0.202 1.7744
2 | Canada 16.9 29484 0.169 4,5512
3 | Germany 10.2 27102 0.102 1.1818
4 | Russian Federation 10.6 8269 0.106 4.0252
5 | Japan 9.6 26937 0.096 1.1191
6 | Argentina 3.7 11083 0.037 1.0483
7 | Brazil 1.9 7752 0.019 1.9461
8 | China 2.7 4577 0.027 1.8523
9 | India 1 2681 0.01 2.9616
10 | Korea 10 17161 0.1 1.8298
11 | Mexico 3.9 8972 0.039 1.3649
12 | South Africa 7.8 10152 0.078 2.4126

Note: For each country, column (3) and (4) replogtper capita C£emission in metric tons (2000) and
per capita GDP in PPP International $ (2002) resgelg. Column (5) reports in metric tons the egalent
of a 1% reduction in per capita G&mission. Column (6) reports the opportunity cdst €% reduction in

per capita C@emission in terms of forgone per capita GDP in %.
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Table 4: Opportunity cost of atarget pollution reduction amount for selected

countries
1) (2) 3) (4) (5) (6) (7) (8) )
Target

No | Country PC_CO, | Pop Total CO, | GDP APC CO, | ACO, % OC_GDP
1| U.S. 20.2 283 5716.6 35746 0.202 1 1.77443
2 | Canada 16.9 31 523.9 29484 | 1.8440645 10.91162 49.66059
3 | Germany 10.2 82 836.4 27102 | 0.6971463 6.83477 8.07714
4 | Russian Fed. 10.6 145 1537 8269 | 0.3942483 3.71932 14.97104
5 | Japan 9.6 127 1219.2 26937 0.450126 4.68881 5.24711
6 | Argentina 3.7 37 136.9 11083 | 1.5450270 41.75749 43.77377
7 | Brazil 1.9 170 323 7752 | 0.3362706 17.69845 34.44271
8 | China 2.7 | 1275 3442.5 4577 | 0.0448361 1.6606 3.07597
9 | India 1| 1009 1009 2681 | 0.0566561 5.66561 16.77923

10 | Korea 10 47 470 17161 | 1.2162979 12.16298 22.25525

11 | Mexico 3.9 99 386.1 8972 | 0.5774343 14.80601 20.20917

12 | South Africa 7.8 43 335.4 10152 | 1.3294419 17.04413 41.11998

Notes: Column (3) reports the per capita,@dnission in metric tons (2000). Column (4) anduowi (5)

report the population in 2000 in millions and th&at CQ, emission in millions metric tons (2000)

respectively. Column (6) reports the per capita GDPPP International $ (2002). Column (7) shows a
57.16 million metric tons reduction is equal to Wpar capita amount emission reduction for eacthef
other countries. Column (8) shows a 1% reductioanmissions in the U.S. (i.e., 57.16 million metoos)
is equal to what % per capita emission reductioreézh of the other countries. Column (9) shows the
opportunity cost in terms of % of per capita GDRtthach country would have to forego in order thupe
emissions by 57.16 million metric tons.
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