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Abstract
In an auction with a buy price, the seller provides bidders with an option to

end the auction early by accepting a transaction at a posted price. The ”Buy-
It-Now” option on eBay is a leading example of an auction witha buy price.
This paper develops a model of an auction with a buy price in which bidders
use the auction’s reserve price and buy price to formulate a reference price. The
model both explains why a revenue-maximizing seller would want to augment
her auction with a buy price and demonstrates that the sellersets a higher reserve
price when she can affect the bidders’ reference price through the auction’s reserve
price and buy price than when she can affect the bidders’ reference price through
the auction’s reserve price only. Introducing a small reference-price effect can
shrink the range of buy prices bidders are willing to exercise. The comparative
statics properties of bidding behavior are in sharp contrast to equilibrium behavior
in other models where the existence and size of the auction’sbuy price have no
effect on bidding behavior.
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1 Introduction

The proliferation of auctions on the internet brought with it the emergence of a hybrid

market institution in which an auction and a posted price coexist, an auction with a buy

price. In auctions with a buy price (such prices are called “Buy-It-Now” on eBay, “Buy

Price” on Yahoo!, and “Take-It” on Amazon), the seller provides bidders with an option to

end the auction early by accepting a transaction at the posted price. Bidders, of course,

can reject the buy price in favor of participating in the auction. The buy price at eBay, the

industry leader in online auctions, is a “temporary” buy price in that it disappears once a

bidder places a bid on the item for sale. Other buy prices, such as the ones present on Yahoo!

and Amazon, are “permanent” buy prices in that they are available to bidders through the

auction’s entire duration and thus place an upper bound on the seller’s revenue.

Despite the relative novelty of this market institution, auctions with a buy price are

economically significant and popular among buyers and sellers in online auctions. The recent

sales figures from eBay in Table 1 make clear the economic importance of auctions with a buy

price.1 Recent quarterly sales at eBay range between $10.6 and $14.4 billion, and buy price

transactions account for a share of between 32% and 41% of these quarterly sales. Sellers

choose to augment their auction with a buy price in between 30% and 60% of online auctions

depending upon the product category, and, among those auctions with a buy price, between

10% and 40% end with a transaction at the buy price; see, for example, the figures cited by

Hof (2001), Kane (2002), Durham et al. (2004), Wang et al. (2004), Mathews and Katzman

(2006), Anderson et al. (2007a, 2007b), Popkowski Leszczyc et al. (2007), and Reynolds and

Wooders (2007). At first glance, the popularity of augmenting auctions with a buy price

appears to be something of a puzzle given that sellers typically prefer auctions over posted

prices for selling goods when the market price is uncertain (Milgrom, 1989; Wang, 1993).

To address this puzzle, we develop and study a model of an auction with a temporary

buy price where bidders use the auction’s reserve price and buy price to formulate a reference

price. In the standard analysis of auctions, bidders evaluate alternatives on the basis of the

difference between their valuation and their payment. In contrast, bidders with reference-

dependent preferences assess alternatives in relation to some fixed standard, a reference

point (Kahneman & Tversky, 1979; Tversky & Kahneman, 1991; Köszegi & Rabin, 2006;

Rosenkrantz & Schmitz, 2007). Thus, when bidders have reference-dependent preferences,

the auction’s reserve price and buy price can serve as signals of value to bidders. Further,

when an auction’s buy price signals value to bidders, sellers might be willing to augment

their auctions with buy prices even if bidders are unlikely to exercise the option. Numerous

1The data in Table 1 are available online at http://investor.ebay.com/index.cfm.
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Table 1: eBay Quarterly Sales Data for 2005Q1-2007Q3

Quarter Gross Merchandise Volume Fixed-Price Share
2005Q1 $10.6 billion N/A
2005Q2 $10.8 billion N/A
2005Q3 $10.8 billion 32%
2005Q4 $12.0 billion 34%
2006Q1 $12.5 billion 34%
2006Q2 $12.8 billion 35%
2006Q3 $12.6 billion 37%
2006Q4 $14.4 billion 38%
2007Q1 $14.2 billion 39%
2007Q2 $14.4 billion 39%
2007Q3 $14.3 billion 41%

studies establish that consumers utilize reference prices to guide their purchasing behavior in

mundane transactions; for reviews of this literature, see Kalyanaram and Winer (1995) and

Mazumdar et al. (2005). With the rapid growth in auctions on the internet, it is likely that

bidder decision making also features reference-dependence. Recent results of laboratory and

field experiments by Ariely and Simonson (2003), Häubl and Popkowski Leszczyc (2003),

Kamins et al. (2004), and Suter and Hardesty (2005) indicate that bidders utilize auctions’

reserve prices to formulate their reference price and the results of studies by Dodonova

and Khoroshilov (2004) and Popkowski Leszczyc et al. (2007) indicate that bidders use

auctions’ buy prices to formulate their reference price. Thus, studying a model of bidders

with reference-dependent preferences in auction with a buy price seems warranted and is one

way in which we can gain insight into bidder and seller behavior in this market institution.

We model an auction with a buy price as a two-stage game and ask the following

questions: 1. How do bidders behave regarding accepting or rejecting a transaction at the

buy price in the first stage? 2. How do bidders with reference-dependent preferences bid in

the second stage auction? 3. How should a revenue-maximizing seller set her auction’s buy

price and reserve price when she anticipates bidders’ equilibrium behavior? We establish the

existence and uniqueness of equilibrium in our model of an auction with a buy price, and find

that bidders’ use of the auction’s buy price in formulating their reference price provides a

rationale for why a revenue-maximizing seller would want to augment her auction with a buy

price. We also note how bidders’ equilibrium behavior differs from behavior in the standard

model where bidders have reference-free preferences. In particular, we describe situations in

which introducing a small reference-price effect can shrink the range of buy prices bidders

are willing to exercise in equilibrium, and we establish comparative statics properties of
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equilibrium bidding behavior that illustrates a sharp contrast between our model and other

models of auctions with a buy price where the existence and size of the auction’s buy price

have no effect on bidders’ behavior in the second stage auction (Mathews & Katzman, 2006;

Seifert, 2006; Ivanova-Stenzel & Kröger, 2007; Reynolds & Wooders, 2007).

There is a growing theoretical literature that seeks to understand under what conditions

a revenue-maximizing seller would benefit from augmenting her auction with a buy price.

Models in this literature feature either English ascending or second-price sealed-bid auctions,

and all fall within the symmetric independent private values framework in which bidders’

valuations are private information and are drawn from some common distribution. Emerging

from this literature are four rationales for augmenting an auction with a buy price: 1. Bidder

or seller risk-aversion; 2. Bidder or seller impatience; 3. Bidder transaction costs; and 4.

Seller competition and bidders with multi-unit demands.

Budish and Takeyama (2001) study a two-bidder, two-type model, and find that a

risk-neutral seller stands to gain by augmenting her auction with a (permanent) buy price

when bidders are risk-averse. The buy price option acts as a form of insurance for risk-averse

bidders, and thus they are willing to pay a premium for an auction with such an option.

Hidvégi et al. (2006) generalize these results to a model with n bidders and a continuum of

types, and Seifert (2006) and Ivanova-Stenzel and Kröger (2007) generalize the model for

the case of a temporary buy price and obtain similar results. Reynolds and Wooders (2007)

compare the performance of auctions with permanent and temporary buy prices for risk-

neutral sellers facing risk-averse sellers and outline the conditions under which the two types

of auctions with a buy price are revenue-equivalent and under which bidders prefer one type

of auction over the other. Mathews (2003) and Mathews and Katzman (2006) investigate a

risk-averse seller facing risk-neutral bidders in an auction with a temporary buy price and

find that such a seller can gain from augmenting her auction with a buy price. Again, the

buy price option acts as a form of insurance for risk-averse sellers by lowering the variability

of their expected revenue.

While bidder or seller risk-aversion are to date the most frequently studied rationales

for auctions with a buy price, the literature offers a number of complementary explanations

for this hybrid market institution. Mathews (2004) studies a continuous time auction with

a temporary buy price in which either the seller or the bidders are impatient and finds that

a patient seller facing impatient bidders can improve her expected revenue by augmenting

her auction with a buy price. An impatient seller facing patient bidders can improve her

discounted expected revenue in a similar fashion. Wang et al. (2004) find that if bidders face

transaction costs from participating in the auction, a seller can gain from adding a temporary
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buy price to her auction. Bidders are willing to pay a premium for such an option since it

enables them to enact a transaction upon arriving at the auction and thus to avoid costly

participation in the auction. Kirkegaard and Overgaard (2007) study a two-seller model

in which the sellers compete in sequence and bidders have two-unit demands and find that

the first seller can improve her expected revenue by offering a temporary buy price. In

a model with a a set of types that is not connected, Bose and Daripa (2006) find that a

second-price sealed-bid auction with a temporary buy price implements the seller’s optimal

selling mechanism. Such a hybrid mechanism is optimal for the seller because it enables

her to segment her market and price discriminate among the relatively higher and highest

valuation bidders in a way in which she cannot with either a pure auction or posted price

selling.

Two features of the theoretical literature on auctions with a buy price deserve further

comment. First, in the absence of discounting, transaction costs, or competing sellers and

multi-unit demands, a result recurring in the literature is that a risk-neutral seller facing

risk-neutral bidders cannot improve her expected revenue by augmenting her auction with

a buy price (Budish & Takeyama, 2001; Hidvégi et al., 2006; Mathews & Katzman, 2006;

Seifert, 2006; Ivanova-Stenzel & Kröger, 2007; Reynolds & Wooders, 2007). Second, without

exception, the existence or size of a temporary buy price does not affect the bidders’ behavior

in the auction (Mathews, 2003, 2004; Wang et al., 2004; Mathews & Katzman, 2006; Seifert,

2006; Ivanova-Stenzel & Kröger, 2007; Reynolds & Wooders, 2007). That is, bidders will

bid according to their dominant strategy should they reject the buy price option and reach

the auction irrespective of the existence or magnitude of the auction’s buy price (or reserve

price).

The model we develop and study in this paper contrasts with this literature in at least

two respects. First, bidders and the seller are risk-neutral, and bidders’ use of the buy price

in formulating their reference price provides the seller with a rationale for augmenting her

auction with a buy price. Second, because bidders use both the auction’s reserve price and

buy price to formulate their reference price, changes in these auction prices affect bidding

behavior in a predictable way. The comparative statics properties of bidding behavior our

model generates accords well with evidence from the laboratory and from the field that

bidding behavior in second-price sealed-bid (and open English) auctions is consistent with

bidders having reference-dependent preferences with a reference price that depends upon

either the auction’s reserve price, its buy price, or both prices. The results of studies by

Ariely and Simonson (2003), Häubl and Popkowski Leszczyc (2003), Kamins et al. (2004),

and Suter and Hardesty (2005) indicate that bidders use auctions’ reserve prices to formu-
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late their reference price and bid more aggressively in auctions with higher reserve prices.

Dodonova and Khoroshilov (2004) and Popkowski Leszczyc et al. (2007) find that auctions

with higher buy prices cause bidders to bid more aggressively and have higher closing prices

even when the bidders do not exercise the auction’s buy price option. List and Shogren

(1999), Nunes and Boatwright (2004), Bernard (2005), Dholakia and Simonson (2005), Cor-

rigan and Rousu (2006), and Drichoutis et al. (2007) find evidence that bidders use other

posted prices (e.g., closing prices of earlier or adjacent auctions) to formulate their reference

price. Thus, this paper contributes to the literature by identifying an additional rationale

for a seller to augment her auction with a buy price and produces bidding behavior that is

consistent with behavior observed in the laboratory and the field but that other models of

auctions with a buy price cannot explain.

The remainder of the paper is organized as follows. Section 2 contains our model of

an auction with a buy price as well as an analysis of bidders’ equilibrium behavior regarding

acceptance of the buy price and bidding in the auction. Section 3 contains an analysis of

how a risk-neutral seller would design her auction. Section 4 contains concluding remarks.

2 An Auction with a Buy Price

In an auction with a buy price, a seller offers bidders the opportunity to end the auction

early by accepting a posted price offer. Throughout this paper, we will refer to such an offer

as a buy price, though it goes by different names depending upon the auction in which it

appears.2 Buy prices in auctions differ in their duration, with “temporary” buy prices only

existing as long as no bidder has yet placed a bid (as on the site of industry leader, eBay)

and with “permanent” buy prices lasting the entire duration of the auction (as on the sites

of Yahoo! and Amazon). In this paper, we study an auction with a temporary buy price.

Consider an auction with a buy price with n ≥ 2 bidders where a seller offers a one

unit of an indivisible good at a buy price B∗ and, if no bidder accepts the buy price, holds

a second-price sealed-bid auction.3 The auction’s minimum acceptable bid is a reserve price

r set by the seller. We require that B∗ ≥ r so that the seller either sells her item by posting

a price (B∗ = r) or by augmenting her auction with a buy price (B∗ > r).

2Examples of buy prices in auctions are the “Buy-It-Now” price on eBay, the “Buy Price” on Yahoo!,
and the “Take-It” price on Amazon.

3Auctions with buy prices are typically open English auctions, but second-price sealed-bid auctions are
strategically equivalent to open English auctions. Further, because of the prevalence of late bidding and
the use of proxy bidding, where a bidder enters a secret maximum bid and a computer bids just enough to
win as long as the bidder’s maximum bid exceeds her rivals’ proxy bids, these open English auctions further
resemble second-price sealed-bid auctions.
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The model that we study is within the symmetric independent private values frame-

work: bidders’ valuations vi are independent draws from the common distribution F that is

continuous on its support [v, v] with v > v ≥ 0 and a density f that is finite on its support

and bounded away from zero. The number of bidders, the seller’s buy price and reserve price,

and the distribution of values are common knowledge, though each bidder’s own valuation

is private information.

The formulation of the bidders’ preferences is a novel feature of the analysis. In partic-

ular, we assume that bidders have reference-dependent preferences (Kahneman & Tversky,

1979; Tversky & Kahneman, 1991; Köszegi & Rabin, 2006; Rosenkrantz & Schmitz, 2007). In

the standard analysis of auctions, bidders evaluate alternatives on the basis of the difference

between their valuation and their payment. In contrast, bidders with reference-dependent

preferences assess alternatives in relation to some fixed standard, a reference point. In partic-

ular, we assume that bidders use the auction’s reserve price and its buy price in formulating

their reference price. If bidder i wins the item and pays x, her payoff is

vi − x− ε(x− ρ),

and is zero otherwise. The reference price is ρ and ε is a small positive number. The standard

reference-free preferences in auction theory have ε = 0. To preserve ex ante symmetry, we

assume that all bidders have the same reference price

ρ = λr + (1− λ)B∗,

with λ ∈ (0, 1). Thus, each bidder’s reference price is a convex combination of the auction’s

reserve price and its buy price.4

An auction with a buy price is a two-stage game. In the first stage, bidders simulta-

neously and noncooperatively decide whether or not to accept the buy price. If at least one

bidder accepts the buy price, the game ends and the seller completes a transaction with the

successful bidder at the buy price; the seller breaks ties at random if more than one bidder

accepts the buy price. If no bidder accepts the buy price, they move to the second stage

where they compete for the good by submitting bids to a second-price sealed-bid auction.

Since the buy price is temporary, a bidder’s decision to reject it is irreversible.

4Rosenkrantz and Schmitz (2007) introduced reference-dependent preferences into auction theory in their
study of bidder behavior and a seller’s design of first- and second-price sealed-bid auctions. They assume
that bidders formulate their reference price as a convex combination of the auction’s reserve price and some
exogenous price x; that is, the bidders’ reference price is ρ = λr+(1−λ)x. Our model follows the Rosenkrantz
and Schmitz (2007) formulation closely, but we replace x with B∗, the auction’s buy price.
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A bidder’s strategy consists of a rule of whether or not to exercise the buy price and

a bid in the auction. Since a bidder’s decision regarding the buy price depends upon her

expectations regarding the auction, we solve the model by backward induction and analyze

the auction in the second stage first.

2.1 Stage Two: A Second-Price Sealed-Bid Auction

If no bidder accepts the buy price B∗ in the first stage, they then compete for the item by

submitting bids to a second-price sealed-bid auction with a reserve price r. If bidder i wins

the auction, she receives a payoff of

vi −max
j 6=i
{bj} − ε(max

j 6=i
{bj} − ρ),

and zero otherwise. That is, a winning bidder has the highest bid but pays the amount of

the second-highest bid tendered in the auction.

A symmetric equilibrium features bidders using the same bid function β(vi) in the

auction. As in the standard second-price sealed-bid auction with reference-free preferences,

bidders have a dominant bidding strategy. All proofs appear in the paper’s Appendix.

Proposition 1. In the second-price sealed-bid auction, a bidder of type vi has a weakly

dominant strategy to bid

β(vi) =
vi + ερ

1 + ε
(1)

if vi ≥ v = (1 + ε)r − ερ, and to not participate in the auction otherwise.

Note that the bidding behavior in Proposition 1 differs from the well-known result

that bidders have a weakly dominant strategy to reveal their valuation truthfully in their

bids in a second-price sealed-bid auction (Vickrey, 1961). Bids differ from valuations in this

model due to bidders’ reference-dependent preferences; clearly, if ε = 0, we would have the

standard result of β(vi) = vi in equation (1). Nonetheless, the equilibrium bidding behavior

in Proposition 1 has an intuitive interpretation. In a second-price sealed-bid auction, a

bidder bids up until the point where she would receive a payoff of zero if she had to pay

her bid, a payment that occurs only in the event of ties, an event with probability zero in

equilibrium. Bidding in this way maximizes the probability of winning without risking a

negative payoff in the event where a bidder would have to pay her bid.

Note that the critical valuation v = (1 + ε)r − ερ for participating in the auction is a
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function of both the auction’s buy price and its reserve price.5 Note also that

∂v

∂B∗
= −ε(1− λ) < 0

and
∂v

∂r
= 1 + ε− ελ > 0.

That is, all else equal, a higher buy price has the effect of encouraging bidders to forgo

purchasing the item at the buy price and to participate in the auction, while a higher reserve

price has the effect of discouraging relatively low valuation bidders from participating in the

auction. For ease of notation in the analysis that follows, we omit the functional relationship

between v and B∗ and r except when doing so would cause unnecessary confusion.

A few features of the equilibrium bid function in equation (1) deserve mention. First,

note that β(vi) ≷ vi if ρ ≷ vi, and so we could observe underbidding relative to the standard

model with reference-free preferences (ε = 0) if a bidder’s reference price is less than her

valuation. Alternatively, we could observe bids that exceed valuations if a bidder’s reference

price exceeds her valuation; in such cases, the auction’s buy price must form part of the

bidders’ reference price, that is, we must have λ 6= 1. Second, β(vi) is increasing in both B∗

and r. If bidders use the auction’s buy price and reserve price to formulate their reference

price, increases in these prices cause bidders to bid more aggressively in the auction. That

is, if ε > 0 and λ ∈ (0, 1),
∂β(vi)

∂B∗
=
ε(1− λ)

1 + ε
> 0

and
∂β(vi)

∂r
=

ελ

1 + ε
> 0.

If ε = 0, bidders’ preferences are reference-free and their bids are independent of the auction’s

buy price and reserve price. If ε > 0 and λ = 0, bidders use only the auction’s buy price

to formulate their reference price, and their bids are independent of the auction’s reserve

price but are increasing in the auction’s buy price. If ε > 0 and λ = 1, bidders use only the

auction’s reserve price to formulate their reference price, and their bids are independent of

the auction’s buy price but are increasing in the auction’s reserve price. Finally, if bidders

use the auction’s buy price and reserve price to formulate their reference price, the strength

of the reference-price effect moderates the effects of the buy price and reserve price on bids.

5Since B∗ ≥ r, a bidder that is indifferent between participating in the auction and not is indifferent
between participating in the auction and purchasing the item at the buy price if B∗ = r and strictly prefers
participating in the auction to purchasing the item at the buy price if B∗ > r.
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That is, if ε > 0 and λ ∈ (0, 1),

∂2β(vi)

∂ε∂B∗
=
ε(1− λ)

(1 + ε)2
> 0

and
∂2β(vi)

∂ε∂r
=

ελ

(1 + ε)2
> 0.

The weight bidders place on the auction’s reserve price in formulating their reference price

also has a moderating role since

∂2β(vi)

∂λ∂B∗
=
−ε

1 + ε
< 0

and
∂2β(vi)

∂λ∂r
=

ε

1 + ε
> 0.

We record these properties in the following corollary.

Corollary 1. If ε > 0 and λ ∈ (0, 1), the equilibrium bid function in equation (1) is increas-

ing in both the auction’s buy price and its reserve price. The strength of the reference-price

effect and the weight bidders place on the auction’s reserve price in formulating their reference

price moderate the effects of the buy price and reserve price on bids.

This result is in sharp contrast to existing models of auctions with buy prices in which

the existence of a temporary buy price does not affect bidding behavior in the auction; see,

for example, Mathews (2002, 2003, 2004), Wang et al. (2004), Mathews and Katzman (2006),

Seifert (2006), Ivanova-Stenzel and Kröger (2007), and Reynolds and Wooders (2007). Thus,

the content of Corollary 1 provides the basis for an empirical test of our model of bidders

with reference-dependent preferences in an auction with a buy price and differentiates it

from existing models of auctions with buy prices.

Further, the content of Corollary 1 accords well with evidence from the laboratory and

from the field that bidding behavior in second-price sealed-bid (and open English) auctions

is consistent with bidders having reference-dependent preferences with a reference price that

depends upon either the auction’s reserve price, its buy price, or both prices. The results of

studies by Ariely and Simonson (2003), Häubl and Popkowski Leszczyc (2003), Kamins et al.

(2004), and Suter and Hardesty (2005) indicate that bidders use auctions’ reserve prices to

formulate their reference price and bid more aggressively in auctions with higher reserve

prices. Dodonova and Khoroshilov (2004) and Popkowski Leszczyc et al. (2007) find that

auctions with higher buy prices cause bidders to bid more aggressively and lead to higher

10



closing prices even when the bidders do not exercise the buy price option. Thus, as Corollary

1 indicates, our model produces bidding behavior that is consistent with behavior observed

in the laboratory and the field but that other models of auctions with a buy price cannot

explain.

2.2 Stage One: The Buy Price

In the first stage, bidders observe the buy price B∗ ≥ r set by the seller. Each bidder

must decide whether or not to exercise the buy price option knowing how she will bid

if she proceeds to the auction in the second stage. When making their decision, bidders

compare the expected payoff from transacting at the buy price with the expected payoff

from competing in the second stage auction.

In analyzing bidders’ first stage decisions regarding the buy price, we are searching

for the existence of a symmetric equilibrium of the following form: (i) each bidder accepts

the buy price if and only if her valuation exceeds some critical valuation v∗ and rejects it

otherwise and (ii) submits a bid of β(vi) = vi+ερ
1+ε

in the auction in the second stage. For the

critical valuation v∗ to form part of each bidder’s equilibrium strategy, we need each bidder

to use v∗ to evaluate the buy price given her rivals’ use of v∗, and we need bidder i’s expected

payoff from exercising the buy price option to exceed her expected payoff from competing in

the auction if vi > v∗ and the reverse if vi < v∗.

For a bidder with vi ≥ v, the expected payoff from exercising the buy price option

given that her rivals use the same critical valuation v∗ to evaluate the buy price is

πB(vi, v
∗) =

n−1∑
k=0

(
n− 1

k

)
F (v∗)n−k−1(1− F (v∗))k

1

1 + k
(vi −B∗ − ε(B∗ − ρ))

=

(
1− F (v∗)n

n(1− F (v∗))

)
(vi −B∗ − ε(B∗ − ρ)) (2)

(where the second line of the equation follows from applying Newton’s Binomial Formula).

In her expected payoff from exercising the buy price, k is the number of rival bidders that

bidder i expects to have valuations greater than v∗ and, thus, to exercise the buy price

simultaneously. In our calculation of the expected payoff from exercising the buy price

option, we account for the fact that the seller breaks ties at random if more than one bidder

opts to transact at the buy price. Examining equation (2) reveals that only a bidder of type

vi ≥ ṽ = B∗ + ελ(B∗− r) ≥ B∗ would ever consider exercising the buy price option because

a bidder of type vi < ṽ would earn receive a negative payoff from exercising the option.

Further, note that ṽ ≥ v, and thus there could exist bidders who find participating in the
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auction worthwhile but who would not exercise the auction’s buy price.

On the other hand, for a bidder with vi ≥ v, the expected payoff from forgoing the buy

price option and bidding in the auction is

πA(vi, v
∗) = (vi − r − ε(r − ρ))F (v)n−1

+

ˆ min{vi,v
∗}

v

(
vi −

x+ ερ

1 + ε
− ε

(
x+ ερ

1 + ε
− ρ
))

(n− 1)F (x)n−2f(x)dx

= (vi − r − ε(r − ρ))F (v)n−1 +

ˆ min{vi,v
∗}

v

(vi − x)(n− 1)F (x)n−2f(x)dx

= (vi −min{vi, v∗})F (min{vi, v∗})n−1 +

ˆ min{vi,v
∗}

v

F (x)n−1dx (3)

(where the final equality follows from integration by parts). The valuation of bidder i’s

strongest rival is x and, since the bidders’ valuations are independent draws from F, x has

distribution F (x)n−1 and density (n− 1)F (x)n−2f(x). When bidder i opts to compete in the

auction, all of her rivals might have valuations below v and so she might pay the reserve

price with probability F (v)n−1. If bidder i has to compete against a rival with a valuation

exceeding v, she expects to pay the bid of her strongest rival, β(x) = x+ερ
1+ε

. Bidder i, of

course, formulates her expectations conditional on the event of winning, and this is costless

to her as she pays nothing if she is a losing bidder.

Following Mathews and Katzman (2006), define as B(vi, r) the buy price that makes

a bidder of type vi indifferent between exercising the buy price option in the first stage and

competing in the auction in the second stage. This threshold buy price B(vi, r) solves

ˆ vi

v(B(vi,r))

F (x)n−1dx =

(
1− F (vi)

n

n(1− F (vi))

)
(vi −B(vi, r)− ε(B(vi, r)− ρ)). (4)

Equation (4) expresses the equality of expected auction payoffs and expected payoffs from

exercising the buy price option for a bidder of type vi, and thus defines this bidder’s indif-

ference between participating in the second-price sealed-bid auction with reserve r in the

second stage and forgoing the auction by exercising the buy price option of B(vi, r) in the

first stage. When we rearrange terms in equation (4), the equation

B(vi, r) =
vi + ελr

1 + ελ
−
(

n(1− F (vi))

(1− F (vi)n)(1 + ελ)

) ˆ vi

v(B(vi,r))

F (x)n−1dx (5)
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defines B(vi, r) implicitly.6 In Lemma 1 in the Appendix, we demonstrate that B(vi, r) is

increasing in vi and in r. Define as the critical valuation v∗ the unique v ∈ [v, v] such that

B(v∗, r) = B∗ and define v∗ = v if B(v, r) < B∗ for all v ∈ [v, v].

Proposition 2. There exists a symmetric equilibrium in which a bidder of type vi accepts

the buy price if and only if

B∗ < B(vi, r)

and submits a bid of

β(vi) =
vi + ερ

1 + ε

in the auction. This is the unique symmetric equilibrium.

We can demonstrate the existence of a symmetric equilibrium by using an intermediate

value argument, and the uniqueness of the symmetric equilibrium follows from the fact that

B(vi, r) is increasing in vi.

A few important features of B(vi, r) become apparent when we examine equation (5),

the equation that defines B(vi, r) implicitly. First, B(v, r) = r. We can interpret this in

one of two ways. A buy price of r makes a bidder of type v indifferent between exercising

the buy price option and participating in the auction (with reserve price r) in equilibrium.

Equivalently, if a seller sets a buy price of r, all bidders with valuations exceeding v will

exercise the buy price option in equilibrium. Second, B(v, r) = limvi→v B(vi, r) is the buy

price that makes a bidder of type v indifferent between exercising the buy price option and

participating in the auction in equilibrium. If a seller sets a buy price B∗ > B(v, r), no bidder

will opt for the buy price in equilibrium, and all bidders will instead choose to participate

in the auction. The equation

B(v, r) =
v + ελr

1 + ελ
−
(

1

1 + ελ

) ˆ v

v(B(v,r))

F (x)n−1dx (6)

defines B(v, r) implicitly. Third, although B(vi, r) is increasing in vi and in r, its comparative

statics with respect to the number of bidders (n), the strength of the reference point effect

6Other authors investigating auctions with buy prices obtain explicit expressions for the threshold buy
price in their models. This is because the bidders in these models have reference-free preferences. In contrast,
due to the reference-dependent preferences bidders have in our model, B(vi, r) becomes embedded in the
lower bound of the of the integral on the right-hand side of equation (5). If instead we had bidders with
reference-free preferences (ε = 0), we would have a threshold buy price of

B(vi, r) = vi −
(
n(1− F (vi))
1− F (vi)n

)ˆ vi

r

F (x)n−1dx

which is precisely the expression for the threshold buy price in Mathews and Katzman (2006, p. 602).
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(ε), and the weight bidders place on the auction’s reserve price in formulating their reference

price (λ) are ambiguous. Finally, if bidders use only the auction’s buy price to formulate

their reference price, introducing a small reference-price effect causes B(vi, r) to decrease.

Proposition 3. Introducing a small reference-price effect causes a bidder’s threshold buy

price to decrease, that is,
dB(vi, r)

dε

∣∣∣∣
ε=0

< 0,

if λ = 0.

If bidders use only the auction’s buy price to formulate their reference price, then a

transaction at the auction’s buy price creates no extra gain for a bidder beyond the pay-

off from the difference between her valuation and her payment. Thus, when we introduce

a small reference-price effect, bidders’ threshold buy prices decrease and the range of buy

prices any bidder is willing to exercise shrinks; that is, the threshold buy price shifts below

the threshold buy price in a model where bidders have reference-free preferences as in, for

example, Mathews and Katzman (2006), Seifert (2006), Ivanova-Stenzel and Kröger (2007)

and Reynolds and Wooders (2007). If, instead, bidders use both the auction’s buy price and

its reserve price to formulate their reference price–in other words, if λ ∈ (0, 1)–introducing a

small reference-price effect has an ambiguous effect on bidders’ threshold buy prices. Exam-

ple 1 below suggests that, for λ ∈ (0, 1), small changes in the strength of the reference-price

effect causes threshold buy prices to increase for relatively low valuation bidders and to

decrease for relatively high valuation bidders.

Solving equation (5) for an explicit B(vi, r) is unnecessary for the analysis in this

paper because only the shape of B(vi, r) matters for our present purposes. Nonetheless, in

the following example, we present an explicit expression for the B(vi, r) that solves equation

(5).

Example 1. An explicit solution for B(vi, r). Consider the case of n = 2 bidders whose

valuations are distributed according to the Uniform distribution on [0, 1]. In this case, F (vi) =

vi, f(vi) = 1, and equation (5) becomes

B(vi, r) =
vi + ελr

1 + ελ
−
(

2(1− vi)
(1− v2

i )(1 + ελ)

) ˆ vi

v(B(vi,r))

xdx. (7)
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Figure 1: Threshold Buy Price for ε = 0.01, λ = 0.5, and r = {0.05, 0.1, 0.25, 0.5}

The B(vi, r) that solves equation (7) is

B(vi, r) =
1 + vi + 2εr + 2ε2r + ελ− 2ελr + ελvi − 4ε2λr + 2ε2λ2r

2ε2(λ− 1)2

−
√

4εr(1 + ε)(1− λ) + (1 + ελ)2 + (vi + ελvi)2+

vi(2 + 4εr(1 + ε)(1− λ) + 4ελ− 2ε2(2− 4λ+ λ2))

2ε2(λ− 1)2
.

Figure 1 contains a graph of this threshold buy price for ε = 0.01, λ = 0.5, and r =

{0.05, 0.1, 0.25, 0.5}. The threshold buy price is concave and increasing in vi for a given

r, and shifts upward as r increases. Figure 2 contains a graph of this threshold buy price for

ε = {0.01, 0.1, 0.25, 0.5}, λ = 0.5, and r = 0.5. As Figure 2 makes clear, for a given r and λ,

the threshold buy price rotates clockwise as the strength of the reference-price effect increases.

Thus, as the strength of the reference-price effect increases, the threshold buy prices of rela-

tively low valuation bidders increase while those of relatively high valuation bidders decrease.

Relatively low valuation bidders have a small probability of winning the second stage auction,

and so when the strength of the reference-price effect increases, they are willing to exercise

a larger range of of buy prices and thus forgo the second stage auction they have a relatively

small likelihood of winning. The opposite is true of relatively high valuation bidders.
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Figure 2: Threshold Buy Price for ε = {0.01, 0.1, 0.25, 0.5}, λ = 0.5, and r = 0.5

3 The Seller’s Choice of B∗ and r

How will a seller set her auction’s buy price and reserve price when she anticipates bidders’

equilibrium behavior? In particular, will a seller set a buy price so high that no bidder will

accept it with positive probability in equilibrium? In models of auctions with a temporary

buy price with risk-neutral bidders and a risk-neutral seller, a seller maximizes her revenue by

setting a buy price so high that no bidder will accept the buy price with positive probability

in equilibrium and instead will opt to compete in the auction (Mathews & Katzman, 2006;

Seifert, 2006; Ivanova-Stenzel & Kröger, 2007; Reynolds & Wooders, 2007). That is, a seller

will set B∗ > B(v, r). The argument behind this result is relatively straightforward. The

optimal auction–in the sense of Myerson (1981) and Riley and Samuelson (1981)–features a

reserve price r0 that satisfies

r0 =
1− F (r0)

f(r0)

and in which the seller allocates the good efficiently if it sells. In an auction with a buy

price, the seller can implement the optimal auction by setting a reserve price to maximize

her expected revenue and ensure the efficient allocation of the good if it sells by setting a

buy price so high that no bidder will accept it with positive probability in equilibrium.

In our model, a seller would set a relatively high buy price, but would set a buy

price that some bidder type would accept with positive probability in equilibrium. This
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result clearly contrasts with the finding that a risk-neutral seller facing risk-neutral bidders

would set a buy price so high that no bidder would accept it with positive probability

in equilibrium. Bidders are susceptible to the effects of a reference price, and a seller,

anticipating this sensitivity, would set a high buy price to increase the bidders’ reference

prices and to encourage aggressive bidding in the second stage auction. Recall that, according

to Proposition 1, the bid function

β(vi) =
vi + ερ

1 + ε

describes the equilibrium bidding behavior of a bidder of type vi in the second stage auction.

Note that this bid function is linear and increasing in the reference price ρ and, with ρ =

λr + (1− λ)B∗, is linear and increasing in the buy price B∗. The seller, however, would not

set a buy price so high that all bidder types would reject it in equilibrium. In particular, the

seller would set a buy price such that v∗ < v, and thus the probability that some bidders

exercise the buy price option in equilibrium is positive. The seller sets a buy price in this

way to ensure a large payment if a bidder of type vi > v∗ exercises the buy price in the first

stage and to encourage all bidder types to bid aggressively in the second stage auction if it

occurs.

Note that a seller does not know bidders’ types, but does know the distribution of

types and anticipates equilibrium behavior regarding the exercise of the buy price option

and bidding in equilibrium. As is standard in the auction theory literature, we assume

that the seller has no value for the item she sells and that her objective is to maximize

her expected revenue from selling the item in an auction with a buy price. If the highest

valuation bidder has a valuation below v∗, then the seller can expect a payment of the reserve

price r if only one bidder participates in the auction (i.e., if the second-highest valuation

is below v) and can expect bidders to compete if the second-highest valuation is above v.

If, however, the highest valuation bidder has a valuation above v∗, the seller can expect a

payment of B∗ = B(v∗, r) since at least one bidder exercises the buy price option. When a

seller anticipates bidders of type vi > v∗ to exercise the buy price option in the first stage as

we described in Proposition 2 and bidders of type vi to bid in the second stage according to

the bid function β(vi) in Proposition 1, her expected revenue takes the form

R(v∗, r) =

ˆ v∗

v

(ˆ v

v

rh(y|x)dy +

ˆ x

v

(
y + ερ

1 + ε

)
h(y|x)dy

)
g(x)dx+

ˆ v

v∗
B(v∗, r)g(x)dx. (8)

We denote the highest valuation as x, the the second-highest valuation as y, the density
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of x as g(x), and the density of y conditional on x as h(y|x). Because the n bidders’

valuations are n independent draws from the distribution F, g(x) = nF (x)n−1f(x) and

h(y|x) = (n−1)F (y)n−2f(y)
F (x)n−1 .

We can rewrite the seller’s expected revenue as

R(v∗, r) =

ˆ v∗

v

(ˆ v

v

r(n− 1)F (y)n−2f(y)dy +

ˆ x

v

(
y + ερ

1 + ε

)
(n− 1)F (y)n−2f(y)dy

)
nf(x)dx

+

ˆ v

v∗
B(v∗, r)nF (x)n−1f(x)dx

= rnF (v)n−1(F (v∗)− F (v)) +

ˆ v∗

v

ˆ x

v

(
y + ερ

1 + ε

)
n(n− 1)F (y)n−2f(y)dyf(x)dx

+B(v∗, r)(1− F (v∗)n)

= rnF (v)n−1(F (v∗)− F (v)) +

ˆ v∗

v

(
y + ερ

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+B(v∗, r)(1− F (v∗)n)

(where the final equality follows from exchanging the order of integration in the double

integral). We can analyze the seller’s choice of the buy price and reserve price as a choice of

v∗ and r, respectively, because B(v∗, r) is increasing in v∗.

The following first derivatives of the expected revenue function characterize the seller’s

expected revenue-maximizing choices of v∗ and r:

∂R(v∗, r)

∂v∗
= rnF (v)n−1

(
f(v∗) + f(v)ε(1− λ)

∂B(v∗, r)

∂v∗

)
(9)

+

ˆ v∗

v

(
ε(1− λ)∂B(v∗,r)

∂v∗

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+

ˆ v∗

v

(
y + ερ

1 + ε

)
n(n− 1)F (y)n−2f(y)f(v∗)dy

+
∂B(v∗, r)

∂v∗
(1− F (v∗)n)−B(v∗, r)nF (v∗)n−1f(v∗)
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and

∂R(v∗, r)

∂r
= nF (v)n−1(F (v∗)− F (v)) (10)

−rnF (v)n−1f(v)

(
1 + ε− ελ− ε(1− λ)

∂B(v∗, r)

∂r

)
+

ˆ v∗

v

(
ελ+ ε(1− λ)∂B(v∗,r)

∂r

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+
∂B(v∗, r)

∂r
(1− F (v∗)n).

Analyzing equation (9) yields the following result.

Theorem 1. Given bidders’ equilibrium strategies, a risk-neutral seller maximizes her ex-

pected revenue by setting some v∗ < v and thus by posting a buy price of B(v∗, r) < B(v, r),

a buy price that some bidder types would exercise with positive probability in equilibrium.

Recall that a bidder of type vi exercises the buy price option in equilibrium if and only

if B(v∗, r) < B(vi, r) (equivalently, if and only if vi > v∗). Thus, the probability that at least

one bidder exercises the buy price option in equilibrium is the probability that at least one

bidder is of type vi > v∗, an event with probability 1− F (v∗)n since the bidders’ valuations

are n independent draws from F. Clearly, 1− F (v∗)n > 0 as long as v∗ < v.

A seller will also set a buy price such that B∗ > r. We can demonstrate this by

evaluating equation (9) at v∗ = v, a buy price of B∗ = r. Note that

∂R(v∗, r)

∂v∗

∣∣∣∣
v∗=v

=
(
rnF (v)n−1f(v)ε(1− λ)

) ∂B(v∗, r)

∂v∗

∣∣∣∣
v∗=v

+
(
1− F (v)n

) ∂B(v∗, r)

∂v∗

∣∣∣∣
v∗=v

> 0,

and thus B∗ > r for all r ∈ [v, v). The fact that B∗ > r illustrates that a seller in this model

does not want to sell her good at a posted price of r, but instead prefers to augment her

auction with a buy price.

When bidders formulate their reference price using both the auction’s reserve price and

its buy price, the seller sets a higher reserve price than she would set when she can affect the

bidders’ reference price through the auction’s reserve price only. That is, the reserve price

a seller sets in our model exceeds the one she would set in the model of Rosenkrantz and

Schmitz (2007) where bidders use the auction’s reserve price and some exogenous price x to
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formulate their reference price. Let rx denote the expected revenue-maximizing reserve price

a seller would set if the bidders’ reference price were ρ = λr + (1− λ)x with λ ∈ (0, 1).

Theorem 2. Given bidders’ equilibrium strategies and the formulation of their reference

price as a convex combination of the auction’s reserve price and buy price, a risk-neutral

seller maximizes her expected revenue by setting r > rx and thus by setting a reserve price

that exceeds the reserve price she would set if the bidders’ reference price were a convex combi-

nation of the auction’s reserve price and some exogenous price holding bidders’ participation

decisions fixed.

To get a sense of the result in Theorem 2, hold the bidders’ participation condition

v and the seller’s choice of v∗ fixed, and note that under these conditions rx satisfies the

first-order condition

nF (v)n−1(F (v∗)− F (v)) − rxnF (v)n−1f(v)(1 + ε− ελ)

+

ˆ v∗

v

(
ελ

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy = 0.

When we evaluate equation (10) at r = rx, we have

∂R(v∗, r)

∂r

∣∣∣∣
r=rx

= nF (v)n−1(F (v∗)− F (v))

−rxnF (v)n−1f(v)

(
1 + ε− ελ− ε(1− λ)

∂B(v∗, rx)

∂r

)
+

ˆ v∗

v

(
ελ+ ε(1− λ)∂B(v∗,rx)

∂r

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+
∂B(v∗, rx)

∂r
(1− F (v∗)n)

> nF (v)n−1(F (v∗)− F (v))− rxnF (v)n−1f(v)(1 + ε− ελ)

+

ˆ v∗

v

(
ελ

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

= 0

(where the inequality follows from the fact that B(vi, r) is increasing in r). Thus, we have
∂R(v∗,r)

∂r

∣∣∣
r=rx

> 0, which implies that the seller will set r > rx. Holding fixed v and v∗, when

we move from a world in which the seller can affect the bidders’ reference price through her

auction’s reserve price only to a world in which she can affect the bidders’ reference price

through her auction’s reserve price (direct effect) and buy price (indirect effect), the seller
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gains an added benefit from setting a higher reserve price, and thus we see that r > rx. Of

course, the seller’s choice of v∗ does change when ρ = λr + (1 − λ)x, and this change in v∗

could eliminate any extra benefit to the seller from setting a higher reserve price, but the

proof of Theorem 2 accounts for this and reveals otherwise.7

4 Conclusion

We study a model of an auction with a temporary buy price in which bidders have reference-

dependent preferences and utilize the auction’s reserve price and buy price to formulate their

reference price. After establishing the existence and uniqueness of equilibrium in the model,

we find that bidders’ reference-dependence provides a seller with a rationale for augmenting

her auction with a buy price even when both the bidders and the seller are risk-neutral.

Further, we find that when the bidders’ reference price depends upon both the auction’s

reserve price and its buy price, the seller sets a higher reserve price than when she can

affect the bidders’ reference price through the auction’s reserve price only. We also note how

bidders’ equilibrium behavior differs from behavior in the standard model by demonstrating

that introducing a small reference-price effect shrinks the range of buy prices bidders are

willing to exercise when they use the auction’s buy price as their reference price. The

comparative statics properties of equilibrium bidding behavior in the model contrast with

other models of auctions with a buy price where the existence and size of the auction’s buy

price have no effect on bidding behavior. Further, that the auction’s reserve price and buy

price affect equilibrium bidding behavior in a predictable way accords well with evidence

from the laboratory and from the field that bidders have reference-dependent preferences

and utilize auctions’ reserve prices, buy prices, and other posted prices (e.g., closing prices

of earlier or adjacent auctions) to formulate their reference price.

There are a number of other interesting avenues for further research. The model we

study in this paper could be generalized to account for bidders with heterogeneous reference

prices (or strength of the reference-price effect) or for bidders that arrive to an auction at

different times and who thus might not observe the auction’s buy price if another bidder chose

to submit a bid. One could easily extend the present model to auctions with a permanent

buy price and study how bidders’ behavior differs from the equilibrium behavior Hidvégi

7Theorem 1 establishes that v∗ < v, but when ρ = λr+ (1− λ)x, the result from Mathews and Katzman
(2006, Theorem 1) implies that v∗ = v. The proof of Theorem 2 accounts for the fact that a seller would
set v∗ = v when she can affect the bidders’ reference price through her auction’s reserve price only and still
finds that the seller would increase her auction’s reserve price when she can affect the bidders’ reference price
through her auction’s reserve price and buy price.
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et al. (2006) and Reynolds and Wooders (2007) describe. Finally, more laboratory and field

experiments like those of Grebe et al. (2006), Seifert (2006), Shahriar and Wooders (2006),

and Popkowski Leszczyc et al. (2007) can provide insights into bidder and seller behavior in

auctions with a buy price.
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Appendix

Proof of Proposition 1. The critical valuation v for participation has the expression v =

(1 + ε)r − ερ because the minimum price a bidder can expect to pay in the auction is the

reserve price r, and thus a bidder with valuation v is just indifferent between participating

in the auction and paying the reserve price and not participating in the auction.

Suppose that all bidders with vi ≥ v bid according to the proposed equilibrium strategy

in equation (1), and suppose that bidder i considers a unilateral deviation to some b̃ < β(vi).

Let x denote the amount of the highest rival bid that bidder i faces and suppose that the

seller breaks ties at random. If x ≤ b̃ < β(vi), bidder i now risks losing the auction but

her payment does not change. If b̃ < β(vi) ≤ x, bidder i now loses the auction. Finally,

if b̃ ≤ x < β(vi), bidder i now risks losing what would have been a profitable opportunity.

Therefore, bidder i has no incentive to deviate unilaterally to some b̃ < β(vi) when the other

bidders play their equilibrium strategies. We can demonstrate with an analogous argument

that bidder i has no incentive to deviate unilaterally to some b̃ > β(vi) when the other

bidders play their equilibrium strategies.

Lemma 1. B(vi, r) is increasing in vi and in r.

Proof of Lemma 1. Recall that the equation

B(vi, r) =
vi + ελr

1 + ελ
−
(

n(1− F (vi))

(1− F (vi)n)(1 + ελ)

) ˆ vi

v(B(vi,r))

F (x)n−1dx

defines B(vi, r) implicitly. From implicit differentiation, it follows that

dB(vi, r)

dvi
=

(
1−nF (vi)

n−1+(n−1)F (vi)
n

(1−F (vi)n)(1+ελ)

)
+
(
nf(vi)(1+ελ)(1−nF (vi)

n−1+(n−1)F (vi)
n)

[(1−F (vi)n)(1+ελ)]2

) ´ vi

v
F (x)n−1dx

1 +
(
n(1−F (vi))F (v)n−1ε(1−λ)

(1−F (vi)n)(1+ελ)

)
> 0

because 1−nF (vi)
n−1 +(n−1)F (vi)

n > 0 as long as F (vi) < 1. From implicit differentiation,

it also follows that

dB(vi, r)

dr
=

ελ+
(
n(1−F (vi))F (v)n−1(1+ε−ελ)

1−F (vi)n

)
1 + ελ+

(
n(1−F (vi))F (v)n−1ε(1−λ)

1−F (vi)n

) > 0.

Proof of Proposition 2. Consider bidders in an auction with a buy price B∗ and a reserve
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price r. We will show that if all other bidders accept the buy price if and only if their

valuations exceed the critical valuation v∗, a bidder of type vi will prefer to do the same.

Recall that the critical valuation v∗ satisfies B(v∗, r) = B∗ and that the equation

B(vi, r) =
vi + ελr

1 + ελ
−
(

n(1− F (vi))

(1− F (vi)n)(1 + ελ)

) ˆ vi

v(B(vi,r))

F (x)n−1dx

defines B(vi, r) implicitly.

When all other bidders follow the equilibrium strategy, a bidder of type vi’s expected

payoff from forgoing the buy price and competing in the auction is

πA(vi, v
∗) = (vi − r − ε(r − ρ))F (v)n−1

+

ˆ min{vi,v
∗}

v

(
vi −

x+ ερ

1 + ε
− ε

(
x+ ερ

1 + ε
− ρ
))

(n− 1)F (x)n−2f(x)dx

= (vi − r − ε(r − ρ))F (v)n−1 +

ˆ min{vi,v
∗}

v

(vi − x)(n− 1)F (x)n−2f(x)dx

= (vi −min{vi, v∗})F (min{vi, v∗})n−1 +

ˆ min{vi,v
∗}

v

F (x)n−1dx

(where the final equality follows from integration by parts).

On the other hand, when all other bidders follow the equilibrium strategy, a bidder of

type vi’s expected payoff from exercising the buy price option is

πB(vi, v
∗) =

n−1∑
k=0

(
n− 1

k

)
F (v∗)n−k−1(1− F (v∗))k

1

1 + k
(vi −B∗ − ε(B∗ − ρ))

=

(
1− F (v∗)n

n(1− F (v∗))

)
(vi −B∗ − ε(B∗ − ρ)).

We can write Newton’s Binomial Formula as
∑n

i=0

(
n
i

)
xn−iyi = (x+ y)n, from which follows∑n−1

k=0

(
n−1
k

)
xn−k−1yk

1+k
= (x+y)n−xn

ny
. When we define x = F (v∗) and y = 1 − F (v∗), we obtain

the desired result.

A necessary condition for equilibrium is for a bidder of type v∗ to be indifferent between

competing in the auction and exercising the buy price B∗; that is, we must have πA(v∗, v∗) =

πB(v∗, v∗). The equality of expected payoffs for a bidder of type v∗ implies that

ˆ v∗

v

F (x)n−1dx =

(
1− F (v∗)n

n(1− F (v∗))

)
(v∗ −B∗ − ε(B∗ − ρ)),
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which in turn implies that

B∗ =
v∗ + ελr

1 + ελ
−
(

n(1− F (v∗))

(1− F (v∗)n)(1 + ελ)

) ˆ v∗

v(B∗)

F (x)n−1dx.

With B(vi, r) = vi+ελr
1+ελ

−
(

n(1−F (vi))
(1−F (vi)n)(1+ελ)

) ´ vi

v(B(vi,r))
F (x)n−1dx, the condition holds for B∗ =

B(v∗, r).

Note that dπA(vi,v
∗)

dvi
= F (min{vi, v∗})n−1 ≤ F (v∗)n−1 and that dπB(vi,v

∗)
dvi

= 1−F (v∗)n

n(1−F (v∗))
.

Therefore,

dπA(vi, v
∗)

dvi
− dπB(vi, v

∗)

dvi
≤ F (v∗)n−1 − 1− F (v∗)n

n(1− F (v∗))

=
−(1− nF (v∗)n−1 + (n− 1)F (v∗)n)

n(1− F (v∗))
< 0

because 1−nF (v∗)n−1 +(n−1)F (v∗)n > 0 as long as F (v∗) < 1, and so dπB(vi,v
∗)

dvi
> dπA(vi,v

∗)
dvi

.

Since πA(vi, v
∗) = πB(vi, v

∗) at vi = v∗, we must have πA(vi, v
∗) > πB(vi, v

∗) for vi < v∗ and

πB(vi, v
∗) > πA(vi, v

∗) for vi > v∗.

To see that this symmetric equilibrium is unique, note that becauseB(vi, r) is increasing

in vi (by Lemma 1), the existence of some v̂ 6= v∗ satisfying B(v̂, r) = B∗ would lead to a

contradiction.

Proof of Proposition 3. Recall that the equation

B(vi, r) =
vi + ελr

1 + ελ
−
(

n(1− F (vi))

(1− F (vi)n)(1 + ελ)

) ˆ vi

v(B(vi,r))

F (x)n−1dx

defines B(vi, r) implicitly. From implicit differentiation, it follows that

dB(vi, r)

dε
=
−
(

(vi−r)λ
(1+ελ)2

)
+
(

n(1−F (vi))λ
(1−F (vi)n)(1+ελ)2

) ´ vi

v
F (x)n−1dx+

(
n(1−F (vi))

(1−F (vi)n)(1+ελ)

)
F (v)n−1(r − ρ)

1 +
(
n(1−F (vi))F (v)n−1ε(1−λ)

(1−F (vi)n)(1+ελ)

) ,

and

dB(vi, r)

dε

∣∣∣∣
ε=0

= −(vi−r)λ+

(
n(1− F (vi))λ

1− F (vi)n

) ˆ vi

r

F (x)n−1dx+

(
n(1− F (vi))

1− F (vi)n

)
F (r)n−1(r−ρ),
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which is ambiguous in sign. However, for λ = 0, we have

dB(vi, r)

dε

∣∣∣∣
ε=0,λ=0

=

(
n(1− F (vi))

1− F (vi)n

)
F (r)n−1(r −B(vi, r)) < 0.

Thus, when λ = 0, introducing a small reference-price effect causes bidders’ threshold buy

prices to decrease and the range of buy prices any bidder is willing to exercise shrinks.

Proof of Theorem 1. Recall that the following first derivatives of the expected revenue func-

tion characterize the seller’s expected revenue-maximizing choices of v∗ and r:

∂R(v∗, r)

∂v∗
= rnF (v)n−1

(
f(v∗) + f(v)ε(1− λ)

∂B(v∗, r)

∂v∗

)
+

ˆ v∗

v

(
ε(1− λ)∂B(v∗,r)

∂v∗

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+

ˆ v∗

v

(
y + ερ

1 + ε

)
n(n− 1)F (y)n−2f(y)f(v∗)dy

+
∂B(v∗, r)

∂v∗
(1− F (v∗)n)−B(v∗, r)nF (v∗)n−1f(v∗)

and

∂R(v∗, r)

∂r
= nF (v)n−1(F (v∗)− F (v))

−rnF (v)n−1f(v)

(
1 + ε− ελ− ε(1− λ)

∂B(v∗, r)

∂r

)
+

ˆ v∗

v

(
ελ+ ε(1− λ)∂B(v∗,r)

∂r

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+
∂B(v∗, r)

∂r
(1− F (v∗)n).

We can demonstrate the desirability of setting v∗ < v by showing that while ∂R(v∗,r)
∂v∗

∣∣∣
v∗=v

= 0

for all r ∈ [v, v), ∂2R(v∗,r)
∂v∗2

∣∣∣
v∗=v

> 0 for all r ∈ [v, v).

26



Note that

∂R(v∗, r)

∂v∗

∣∣∣∣
v∗=v

= rnF (v)n−1

(
f(v) + f(v)ε(1− λ)

∂B(v∗, r)

∂v∗

∣∣∣∣
v∗=v

)

+

ˆ v

v

ε(1− λ) ∂B(v∗,r)
∂v∗

∣∣∣
v∗=v

1 + ε

n(n− 1)F (y)n−2f(y)(1− F (y))dy

+

ˆ v

v

(
y + ερ

1 + ε

)
n(n− 1)F (y)n−2f(y)f(v)dy +B(v, r)nf(v)

= rnF (v)n−1f(v) +

ˆ v

v

(
y + ερ

1 + ε

)
n(n− 1)F (y)n−2f(y)f(v)dy

+B(v, r)nf(v)

since ∂B(v∗,r)
∂v∗

∣∣∣
v∗=v

= 0. When r = v, v = v, B(v, v) = v, and, thus, ∂R(v∗,r)
∂v∗

∣∣∣
v∗=v

= 0.

Further, note that

∂

∂r

(
∂R(v∗, r)

∂v∗

∣∣∣∣
v∗=v

)
= nF (v)n−1f(v)

+

(
ελ+ ε(1− λ)∂B(v,r)

∂r

1 + ε

)
(1− F (v)n−1)nf(v)

−∂B(v, r)

∂r
nf(v)

= 0

since ∂B(v,r)
∂r

=
ελ+F (v)n−1(1+ε−ελ)

1+ελ+F (v)n−1ε(1−λ)
.

Therefore, we must have ∂R(v∗,r)
∂v∗

∣∣∣
v∗=v

= 0 for all r ∈ [v, v) since ∂R(v∗,r)
∂v∗

∣∣∣
v∗=v

= 0 is

independent of r and is zero for r = v.

The seller’s expected revenue, however, attains a maximum at some v∗ < v because
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∂2R(v∗,r)
∂v∗2

∣∣∣
v∗=v

> 0 for all r ∈ [v, v). To see this, note that

∂2R(v∗, r)

∂v∗2
= −rn(n− 1)F (v)n−2

(
f(v)ε(1− λ)

∂B(v∗, r)

∂v∗

)2

+rnF (v)n−1

(
f ′(v∗)− f ′(v)

(
ε(1− λ)

∂B(v∗, r)

∂v∗

)2

+ f(v)ε(1− λ)
∂2B(v∗, r)

∂v∗2

)
+

ˆ v∗

v

(
ε(1− λ)∂

2B(v∗,r)
∂v∗2

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+2

ˆ v∗

v

(
ε(1− λ)∂B(v∗,r)

∂v∗

1 + ε

)
n(n− 1)F (y)n−2f(y)f(v∗)dy

+

(
(ε(1− λ)∂B(v∗,r)

∂v∗
)2

1 + ε

)
n(n− 1)F (v)n−2f(v)(F (v∗)− F (v))

+

ˆ v∗

v

(
y + ερ

1 + ε

)
n(n− 1)F (y)n−2f(y)f ′(v∗)dy

+

(
v∗ + ερ

1 + ε

)
n(n− 1)F (v∗)n−2f(v∗)2 +

∂2B(v∗, r)

∂v∗2
(1− F (v∗)n)

−2
∂B(v∗, r)

∂v∗
nF (v∗)n−1f(v∗)−B(v∗, r)n(n− 1)F (v∗)n−2f(v∗)2

−B(v∗, r)nF (v∗)n−1f ′(v∗),

and, for v∗ = v, we have

∂2R(v∗, r)

∂v∗2

∣∣∣∣
v∗=v

= rnF (v)n−1f ′(v) +

ˆ v

v

(
y + ερ

1 + ε

)
n(n− 1)F (y)n−2f(y)f ′(v)dy

+

(
v + ερ

1 + ε

)
n(n− 1)f(v)2 −B(v, r)n(n− 1)f(v)2 −B(v, r)nf ′(v)

since ∂B(v∗,r)
∂v∗

∣∣∣
v∗=v

= 0 and ∂2B(v∗,r)
∂v∗2

∣∣∣
v∗=v

= 0. When r = v, v = v, B(v, v) = v, and, thus,

∂2R(v∗,r)
∂v∗2

∣∣∣
v∗=v

= 0.
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Further, note that

∂

∂r

(
∂2R(v∗, r)

∂v∗2

∣∣∣∣
v∗=v

)
= nF (v)n−1f ′(v) +

(
ελ+ ε(1− λ)∂B(v,r)

∂r

1 + ε

)
n(1− F (v)n−1)f ′(v)

+

(
ελ+ ε(1− λ)∂B(v,r)

∂r

1 + ε

)
n(n− 1)f(v)2

−∂B(v, r)

∂r
n(n− 1)f(v)2 − ∂B(v, r)

∂r
nf ′(v)

=
−F (v)n−1n(n− 1)f(v)2

1 + ελ+ F (v)n−1ε(1− λ)

< 0

with the second equality following from the fact that ∂B(v,r)
∂r

=
ελ+F (v)n−1(1+ε−ελ)

1+ελ+F (v)n−1ε(1−λ)
.

Therefore, we must have ∂2R(v∗,r)
∂v∗2

∣∣∣
v∗=v

> 0 for r ∈ [v, v) since ∂2R(v∗,r)
∂v∗2

∣∣∣
v∗=v

is decreasing

in r and is zero for r = v.

At v∗ = v, ∂R(v∗,r)
∂v∗

= 0 irrespective of the seller’s choice of r. However, because
∂2R(v∗,r)
∂v∗2

∣∣∣
v∗=v

> 0 for r ∈ [v, v), there is some v∗ < v that maximizes the seller’s expected

revenue.

Proof of Theorem 2. Recall that the following first derivative of the expected revenue func-

tion characterize the seller’s expected revenue-maximizing choice of r:

∂R(v∗, r)

∂r
= nF (v)n−1(F (v∗)− F (v))

−rnF (v)n−1f(v)

(
1 + ε− ελ− ε(1− λ)

∂B(v∗, r)

∂r

)
+

ˆ v∗

v

(
ελ+ ε(1− λ)∂B(v∗,r)

∂r

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+
∂B(v∗, r)

∂r
(1− F (v∗)n).

Recall also that when ρ = λr+(1−λ)x, the result of Mathews and Katzman (2006, Theorem

1) establishes that the seller sets v∗ = v and sets a reserve price rx that satisfies the first-order

condition

nF (v)n−1(1− F (v)) − rxnF (v)n−1f(v)(1 + ε− ελ)

+

ˆ v

v

(
ελ

1 + ε

)
n(n− 1)F (y)n−2f(y)(1− F (y))dy = 0.
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We can demonstrate that r > rx by showing that ∂R(v∗,r)
∂r

∣∣∣
r=rx

> 0.

Holding v fixed,

∂R(v∗, r)

∂r

∣∣∣∣
r=rx

= nF (v)n−1(F (v∗)− F (v))

−rxnF (v)n−1f(v)

(
1 + ε− ελ− ε(1− λ)

∂B(v∗, rx)

∂r

)
+

ˆ v∗

v

(
ελ+ ε(1− λ)∂B(v∗,rx)

∂r

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+
∂B(v∗, rx)

∂r
(1− F (v∗)n).

Since B(vi, r) is increasing in r (by Lemma 1),

∂R(v∗, r)

∂r

∣∣∣∣
r=rx

> nF (v)n−1(F (v∗)− F (v))− rxnF (v)n−1f(v)(1 + ε− ελ) (11)

+

ˆ v∗

v

(
ελ+ ε(1− λ)∂B(v∗,rx)

∂r

1 + ε

)
n(n− 1)F (y)n−2f(y)(F (v∗)− F (y))dy

+
∂B(v∗, rx)

∂r
(1− F (v∗)n).

Note that

rxnF (v)n−1f(v)(1 + ε− ελ) = nF (v)n−1(1− F (v))

+

ˆ v

v

(
ελ

1 + ε

)
n(n− 1)F (y)n−2f(y)(1− F (y))dy

and that (from Lemma 1)

dB(v∗, rx)

dr
=

ελ+
(
n(1−F (v∗))F (v)n−1(1+ε−ελ)

1−F (v∗)n

)
1 + ελ+

(
n(1−F (v∗))F (v)n−1ε(1−λ)

1−F (v∗)n

) .
Substituting for rxnF (v)n−1f(v)(1 + ε− ελ) and dB(v∗,rx)

dr
in equation (11) reveals that

∂R(v∗, r)

∂r

∣∣∣∣
r=rx

>

F (v){G(v)}ε(1− λ){(1− F (v∗))nF (v)n(1 + ε(1− λ)) + (1− F (v∗)n)F (v)ελ}
(1 + ε)F (v){(1− F (v∗))nF (v)nε(1− λ) + (1− F (v∗)n)F (v)(1 + ελ)}

,
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where G(v) ≡ 1− nF (v)n−1 + (n− 1)F (v)n. Because 1 − nF (v)n−1 + (n − 1)F (v)n > 0 as

long as F (v) < 1, ∂R(v∗,r)
∂r

∣∣∣
r=rx

> 0, and thus r > rx.
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