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Abstract
We use data from the National Longitudinal Study of Adolescent Health (Add

Health) to examine the effects of classmate characteristics on economic and social
outcomes of students. The unique structure of the Add Healthallows us to esti-
mate these effects using comparisons across cohorts withinschools, and to exam-
ine a wider range of outcomes than other studies that have used this identification
strategy. This strategy yields variation in cohort composition that is uncorrelated
with student observables suggesting that our estimates arenot biased by the selec-
tion of students into schools or grades based on classmate characteristics. We find
that increases in the percent of classmates whose mother is college educated has
significant, desirable effects on educational attainment and substance use. We do
not find much evidence that the percent of classmates who are black or Hispanic
has significant effects on individual outcomes, on average.Additional analyses
suggest, however, that an increase in the percent black or Hispanic may increase
dropout rates among black students and post-high school idleness among males.
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I.  Introduction 

 Social scientists have long been interested in determining whether the characteristics of 

one’s schoolmates influence important economic and social outcomes.  Policy developments 

over the last 10 to 15 years have heightened interest in this question.  Changes in the law 

governing racial desegregation efforts and the growth of the school choice movement have led 

many local school districts to replace student assignment policies focused on promoting racial 

integration with policies designed to expand parents’ discretion over what school their child 

attends.   Several studies suggest that such policy changes may increase the isolation of minority 

students and the stratification of schools by measures such as parental education and academic 

achievement.1  Whether or not such changes can be expected to exacerbate social and economic 

inequalities depends on how the student composition of a school influences individual outcomes. 

 The fundamental problem facing studies of schoolmate or peer effects is that individual 

children or their parents choose the students’ peers.  In higher education, several studies 

including Carrell, Fullerton and West (2008), Foster (2006), Kremer and Levy (2008), Li and Li 

(In press), Lyle (2007), Sacerdote (2001), Siegfried and Gleason (2006), Stinebrickner and 

Stinebrickner (2006), and Zimmerman (2003), use the random assignment of students to 

residential facilities to test for peer effects. For primary education in the United States, the 

opportunities to exploit random assignment to investigate peer effects has been much more 

limited.  In the only examples of which we are aware, Whitmore (2005) and Cascio and 

                                                 
1 Since 1990, school segregation has declined more slowly than neighborhood segregation, and the isolation of black 
students in many areas has increased (Clotfelter, 2004; Vigdor & Ludwig, 2007).  Clotfelter, Ladd, and Vigdor 
(2006) provide evidence that federal court rulings during the period have contributed to these trends.  Several 
studies, including but not limited to Bifulco, Ladd, and Ross (In press), Cullen, Jacob, and Levitt (2005), and 
Hastings, Kane, and Staiger (2006), indicate that students with college educated parents and high achievers are more 
likely than others to use expanded choice of schools to avoid concentrations of educationally disadvantaged students 
and to enroll in schools with other educationally advantaged students.  Brunner, Imazeki, and Ross (In Press) find 
that voting patterns for a school choice program in California were consistent with increases in school segregation. 
As a result many different types of school choice programs can be expected to increase stratification of schools. 
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Schanzenbach (2007) both use random assignment in Tennessee’s project STAR to examine 

variation in the gender and age composition, respectively.2   

 In a recent innovation introduced by Hoxby (2000b), variation in student composition 

across cohorts within schools has been used to identify the effect of peers under the assumption 

that parents and their children are not able to sort across schools based on differences between 

the demographic composition of the child’s cohort and the average composition of the school.  

Recent studies applying this approach include Angrist and Lang (2004), Friesen and Krauth 

(2008), Gould, Lavy, and Passerman (2004), Hanushek, Kain, and Rivkin (2002), Hoxby (2000a, 

2000b), Lavy and Schlosser (2007), Lavy, Passerman, and Schlosser (2008).  However, because 

this approach requires data on multiple cohorts from the same schools, studies that use it have 

had to rely on state and local administrative data sets which provide information on only a small 

set of outcomes, usually limited to student test scores.  As a result our knowledge of the effects 

of student composition on individual outcomes is still quite limited. 

 In this study, we use data from the National Longitudinal Study of Adolescent Health 

(Add Health) to extend this line of research on the effects of school composition.  The Add 

Health is a longitudinal survey program that collects information on a wide range of individual 

outcomes beginning during the teenage years.  The study sample includes students from multiple 

cohorts in a nationally representative set of schools.  These aspects of the Add-Health allow us to 

use comparisons across cohorts within schools by controlling for school fixed effects and trends 

to estimate the effect of classmate characteristics on a much wider range of outcomes than have 

previous studies. 

                                                 
2 Also see Boozer and Cacciola (2001) who examine the effect of randomly assigned new entrants to STAR classes 
on student performance exploiting the empirical observation that these students appear to be lower in quality in 
order to detect the influence of peers.  In a developing country context, see Duflo, Dupas, and Kremer (2008). 
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 Our analysis focuses on the effects of the percent minority and the percent with a college 

educated mother among the students in one’s school cohort.  Distinguishing the effects of school 

racial composition from social class composition is potentially important.  Analysis by Reardon, 

Yun, and Kurlaender (2006) demonstrate that policies to promote integration by social class 

might not significantly reduce racial integration, and vice versa.  Estimates of the distinct effects 

of racial composition and social class composition can inform choices about policy priorities. 

 Several diagnostic analyses support our use of across cohort variation in student 

composition to identify the effect of peers on student outcomes.  First, we run simulations to 

examine how much within school variation in cohort composition would be expected if students 

were assigned randomly to school-specific cohorts, and compare this amount of variation to the 

amount we actually find in our sample.3  The results of this comparison indicate that the amount 

of variation across cohorts within schools that we observe in our sample is quite consistent with 

random assignment.  Second, as suggested by Schlosser and Lavy (2007), we conduct balancing 

tests which examine whether across cohort variation in peer composition can explain 

predetermined student attributes; if not, these tests imply that students have not sorted on their 

observables across cohorts within schools.  Third, following Hoxby (2000b), we run placebo 

tests in which we replace the actual cohort composition measures for each student with measures 

of the composition of a randomly selected cohort from the same school. In both the balancing 

and placebo tests, we find no evidence of systematic relationships above what would be expected 

due to type I error, suggesting that our estimates are not biased by either differences in students 

across cohorts within schools or by school characteristics which might be correlated with cohort 

composition measures.  Finally, we find that after removing school fixed effects and trends, the 

residuals of share minority and share of students whose mother has a college degree are 
                                                 
3 We thank Joe Altonji for this suggestion. 
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uncorrelated.  This result provides further confirmation that unobserved factors that influence 

within school variation in both cohort composition and student outcomes are not confounding 

our effect estimates. 

 Our results indicate that a having a higher percentage of classmates4 with a college 

educated mother decreases the likelihood of dropping out of high school, increases the likelihood 

of attending college, and reduces the likelihood of smoking cigarettes in high school and using 

marijuana after high school.  In addition, a higher share of minority classmates is associated with 

a higher likelihood of using marijuana in high school and a lower likelihood of binge drinking.  

The number of significant findings far exceed what might be expected based on type I error 

rates.  We also decompose the sample by race/ethnicity, parent education level, and gender.  

While these later results are somewhat weak statistically, the findings are suggestive that having 

a higher percentage of classmates with college educated mothers decreases the likelihood of 

dropping out primarily among white and Hispanics.  Analyses also suggest that the effects of 

classmates with college educated mothers on educational attainment are large and significant for 

males, but negligible and insignificant for females. A higher share of minority classmates also 

appears to increase dropout rates among black students and increase rates of post-high school 

idleness among males.     

The paper is organized as follows.  Section II briefly reviews the prior research on the 

effects of student composition.  Section III describes the data we use, section IV explains our 

identification strategy, and Section V provides evidence on the validity of this strategy.  Section 

VI presents our primary results, and Section VII presents extensions that investigate differences 

                                                 
4 Throughout this paper we will use the term “classmates” to refer to the students in an individual’s school specific 
cohort. 
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in the effects of cohort composition across subgroups.  Section VIII concludes by considering the 

policy implications of our findings.      

II. Prior Research 

 Early empirical work on the effects of classmate characteristics focused on the effects of 

racially desegregated schools.  These studies primarily examined outcomes related to academic 

achievement and racial attitudes and focused largely on the short-run effects of deliberately 

moving students to less racially segregated schools.  Comprehensive reviews of this early 

research suggest that the results of desegregation were quite mixed, with some evidence of small, 

positive effects on the academic achievement of black students and little evidence of consistently 

positive effects on racial attitudes (Cook, 1984; Schofield, 1995).  Much of this literature is 

based on comparisons of students who attended desegregated schools with students who 

remained in segregated schools, and has been criticized for failing to adequately control for 

unobserved differences between these two groups of students.  Also, Hanushek, Kain, and 

Rivkin (2002) point out that desegregation efforts were often accompanied by conflict and 

resistance, and thus, estimates of the short run effects of desegregation might be contaminated by 

factors related to the desegregation process. 

 More recent research has focused on the relationship between student composition and 

outcomes rather than on the effects of specific desegregation efforts.5  This more recent research 

has used two different approaches.  The first approach uses arguably exogenous variation across 

                                                 
5 Some recent studies have examined the effects of desegregation.  Using variation in the timing of court ordered 
desegregation, Guryan (2004) finds that desegregation plans in the 1970s decreased black dropout rates and Ludwig, 
Lutz & Weiner (2007) find that desegregation decreased homicide victimization rates for both blacks and whites. 
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schools in student composition to identify effects and the other uses variation across cohorts 

within schools.6   

Any study that draws on variation in student composition across schools must address the 

fact that the composition of students in a school influences parents’ decisions about whether or 

not to enroll their child.  As a result, students in integrated schools are likely to differ from 

students in less integrated schools in difficult to observe ways, and these differences are likely to 

confound estimates of the effect of student composition.  Vigdor and Nechyba (in press) 

illustrate the potential bias using data from North Carolina.  They find evidence of strong peer 

effects using methods that compare students with high and low achieving classmates, but no 

evidence of peer effects using comparisons that exploit arguably exogenous changes in school 

composition associated with administrative redistricting. 

 To address the nonrandom choice of schools, several studies have tried to use measures 

of racial composition or segregation from higher levels of aggregation to instrument for school 

racial composition.  Rivkin (2000) uses district level variation in exposure to whites, and finds 

that racial composition has no effects on test scores, educational attainment or earnings.7  

Boozer, Krueger, and Wolken (1992) use variation across time and states in school racial 

composition, and find that high white enrollment shares are associated with higher educational 

and occupational attainment.  Evans, Oates, and Schwab (1992) use metropolitan level measures 

of socioeconomic well-being as instruments, and find no relationship between the percent of 

economically disadvantaged schoolmates and either teenage pregnancy or drop-out rates.  Cutler 

and Glaeser (1997) and Card and Rothstein (2007) also draw on metropolitan level variation and 

                                                 
6 Most studies avoid examining variation in composition across classrooms due to concerns of non-random 
assignment of students into classrooms.  See Vigdor and Nechyba (2004) and Zabel (2008) for examples of attempts 
to examine peer effects within the classroom. 
7 Rivkin’s effect estimates control for the academic achievement gains made by students in the school, which of 
course is one of the mechanisms through which school peers can influence student outcomes.     
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find that residential segregation by race is associated with lower high school graduation rates, 

lower wages, and higher rates of single parenthood for blacks and a larger black-white test score 

gap, respectively. 

 Although these analyses do not require exogenous selection into schools, they are subject 

to potential biases related to unobserved differences in students across districts, metropolitan 

areas, or states.  Another limitation of studies that use metropolitan level variation is that they 

often cannot distinguish between peer effects in schools and the effects of processes that occur in 

the broader urban environment.  Card and Rothstein (2007), for instance, find that more 

segregated metropolitan areas have larger black-white test score gaps.  However, after 

controlling for residential segregation, school segregation is unrelated to their measure of the test 

score gap, and they cannot conclusively distinguish the effects of school segregation from the 

effects of residential segregation.8    

 A second approach to estimating the effect of classmate characteristics exploits variation 

across cohorts within schools.  These studies use data drawn from state or local administrative 

sources to estimate models that control for school-by-grade fixed effects.  Such models arguably 

isolate idiosyncratic variation in student composition across cohorts within a school.  Focusing 

on within school variation reduces concerns about nonrandom selection across schools and also 

helps to isolate the effects of student composition from any aspects of school quality that are 

constant across cohorts.    

                                                 
8 A recent study by Friesen and Krauth (2007) makes efforts to address both of these limitations.  Using data from 
Alberta, Canada, they examine the relationship between segregation across schools within a community and the 
variance in high school test scores.  To control for the possibility that unobserved heterogeneity among students 
within a community causes higher levels segregation, they focus on the relationship between changes in the level of 
segregation and changes in test score variance between sixth and ninth grade, and use plausibly exogenous sources 
of variation in changes in the level of segregation.  They find that increases in sorting by parent education level 
increases variance in test scores, but increases in ethnic and income segregation does not influence test score 
variance. 
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Hoxby (2000b) pioneered this approach using data from Texas, and finds that elementary 

students have lower test scores when they are in cohorts with a larger share of black students, 

and that the negative effects are larger for black students than other students.9  Hanushek, Kain, 

and Rivkin (2002), using similar data and methods, find that the negative effects of percent black 

on test scores are significantly higher for high ability black students than either low ability black 

students or students from other ethnic groups.  Angrist and Lang (2002) use data from the Boston 

area’s Metco program, which allows minority students from Boston to attend schools in 

suburban districts.  In contrast to the Texas studies, they find only small effects of an increased 

share of Metco students on the test scores of non-Metco students--effects that are limited to 

minority girls.10  Other studies have used the cross cohort approach to examine the effect of other 

classmate characteristics.  Using data from Israel, Lavy and Schlosser (2007) find significant 

effects of variation in gender composition on student test scores and Lavy, Schlosser, and 

Passerman (2007) find significant effects of peer ability.  Friesen and Krauth (2008) find that the 

home language spoken by peers influences academic performance in British Columbia. 

 The composition of students in one’s school or class might influence individual choices 

and outcomes through a variety of mechanisms.  First, schools with concentrations of 

disadvantaged students might have difficulty garnering educational resources.11  A second set of 

mechanisms work through group dynamics, including teacher expectations and motivation, 

student achievement norms and motivation, pace of instruction, and levels of classroom 

                                                 
9 Hoxby (2000a) uses this approach to examine the impact of class size on student performance. 
10 The Metco students who transferred into suburban schools were a select sample of Boston students, and their 
effects on group dynamics, may not be typical, which might account for differences between the Metco and Texas 
findings. 
11 Several studies indicate that schools with concentrations of minority and poor students are less able to attract and 
retain highly qualified teachers (Betts, Reuben, & Dannenberg, 2000; Clotfelter, Ladd, & Vigdor, 2005; Lankford, 
Loeb, & Wyckoff, 2002).   
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disruption.  In addition, students from different family backgrounds might bring to school 

different attitudes towards behaviors such as the use of alcohol or illicit drugs influencing school 

norms.  Finally, school composition might influence the opportunity to make the personal 

contacts or to develop the modes of behavior that that are crucial for gaining access to jobs and 

educational opportunities (Clotfelter, 2004; Wells, 1995).  Unlike studies that use across school 

variation, cohort studies only capture mechanisms that can operate through one time (cohort 

specific) changes in student composition.  Naturally, group dynamics and student attitudes can 

change from cohort to cohort and be captured in cohort studies, while other mechanism such as 

school resources and culture, selection of teachers into schools, and community engagement are 

less likely to be represented. 

 Our study employs this cross cohort approach, and thus plausibly addresses biases 

associated with self-selection into schools and provides estimates of the effects of classmate 

characteristics that are clearly distinguished from the effects of residential segregation and other 

metropolitan level processes.  Unlike the studies that have used metropolitan level variation, 

which have focused on a broad range of outcomes, previous studies that have used the cross-

cohort approach have been limited to estimating effects on test scores.  We, however, are able to 

estimate the effects of classmate characteristics on a broad range of outcomes including post high 

school outcomes like college attendance or employment.  Our study is also the first to conduct 

this type of analysis on a nationally representative sample of students.   

III.  Data 

 The data for this study come from the restricted version of the National Longitudinal 

Study of Adolescent Health (Add Health).  The Add Health is a school-based, longitudinal study 

of the health-related behaviors of adolescents and their outcomes in young adulthood. Beginning 



 

10 

with an in-school questionnaire administered to a nationally representative sample of students in 

grades 7 through 12 in 1994-95 (Wave 1), the study follows up with a series of in-home 

interviews of students approximately one year (Wave 2) and then six years later (Wave 3).  Other 

sources of data include questionnaires for parents, siblings, fellow students, and school 

administrators. By design, the Add Health survey included a sample stratified by region, 

urbanicity, school type, ethnic mix, and size.12   

 Over 20,000 individuals completed the full, Wave 1 survey.  However, because we are 

interested primarily in post-high school outcomes, we drop the 6,000 students who were not in 

grades 9-12 (grades 10-12 for three year high schools) during Wave 1 and approximately 80 

additional students who report still being in high school during Wave 3.  The remaining students 

range from 20 to 24 years old at the time of the Wave 3 survey.  In addition, we drop 

approximately 4,500 individuals who were not followed through Wave 3, and, because our 

identification strategy depends upon having multiple cohorts within schools, we drop 500 

students who are in schools that do not have a 10th, 11th, and 12th grade.  Finally, we drop 

approximately 150 students who did not identify themselves as either white, black, Hispanic, or 

Asian and 60 students in grades with fewer than 10 sample students.  The samples restrictions 

leave an analysis sample of approximately 9,500 students in 75 high schools, although the 

sample varies slightly by the outcome of interest.   

 Among these various sample edits, the approximately 4,500 individuals who were 

dropped because they were not followed through Wave 3 are of particular concern.  If within- 

school variation in cohort composition is systematically related to the probability of non-

response in Wave 3, then our estimates of the effects of cohort composition could be biased.  To 

test this possibility, we regressed an indicator of whether or not a student was followed through 
                                                 
12 See Udry 2003 for full description of the Add Health data set.   
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Wave 3 on our cohort composition measures, the set of control variables described below, school 

fixed effects, and school specific trends.  The results indicate that the cohort composition 

measures are not related to probability of non-response in Wave 3, and thus, dropping non-

responders should not introduce any bias into our effect estimates. 

We create our cohort-level variables by using the items from the in-school sample of Add 

Health at Wave 1.  The in-school survey was administered to over 90,000 students and asked a 

limited amount of information, including race/ethnicity and maternal education, for (in principle) 

a census of students in each sampled school.  This feature of the Add Health allows us to reduce 

the error in our aggregate measures of classmate characteristics.   

 Table 1 provides descriptive statistics for all of the variables that we use in the analyses 

that follow.  The variables include those we use as outcome measures, our key cohort 

composition variables, a set of baseline controls that include grade fixed effects and student 

attributes directly related to the cohort variables, an extended set of controls that are unlikely to 

be influenced by school experiences plus a test score as a measure of ability and an additional set 

of family variables.  Table 2 provides means and standard deviations for the outcome variables 

and our cohort composition variables for different racial groups and for groups defined by the 

level of mother’s education.   

 Black students, Hispanic students, and students with lower levels of parental education do 

worse on several outcome measures.  Each has relatively high dropout rates, low rates of college 

attendance, low test score levels and high rates of idleness.  Black and Hispanic students also 

attend schools with relatively high percentages of minority students, and Hispanic students and 

students with lower levels of parental education attend schools with low percentages of college 

educated mothers.  The key task of the analyses that follow is to determine whether any of these 
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relatively poor outcomes of students from disadvantaged groups might be attributed to the 

relatively high share of their classmates who are black or Hispanic or whose mother’s lack a 

college education.  White students, for their part, are more likely to report that they smoke, use 

marijuana and binge drink than are other groups, and we are also interested in whether any of 

those differences might be attributed to the group dynamics fostered by a higher percentage of 

white classmates.   

IV.  Identification Strategy  

To avoid issues of selection across schools and to isolate the effect of classmate 

characteristics from other aspects of school quality, our identification strategy relies on variation 

across cohorts within schools.  To implement this strategy we estimate regressions of the 

following form: 

E M
isc c s s isc sc sc iscy c x P Pα β δ φ ϕ γ ε= + + + + + +  

iscy is an outcome measure for individual i from school s and cohort c; cα is cohort or grade 

specific effect; sβ is a school fixed effect; csδ  is a school-specific time or cohort trend where c 

takes the value of 0 for the oldest cohort and increases by 1 for each successive cohort;13 iscx  is a 

vector of student level covariates; EscP  is the percent of students in school s and cohort c with a 

college educated mother; MscP  is the percent of students in school s and cohort c who are either 

black or Hispanic; and iscε  is a random error term which might be correlated across observations 

from the same school.14 

                                                 
13 All students are observed at the same points in time, so referring to these are school-specific cohort or grade 
trends is more accurate than referring to them as time trends.  However, in studies that use administrative data  
variation across cohorts is often referred as variation within schools over time, and so we use the two terms 
interchangeably. 
14 Thus, for all our regressions we compute standard errors that are robust to any type of clustering within schools. 
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 We examine several different outcome measures including whether or not the individual 

has dropped out of high school, has attended college, is idle (i.e. neither working nor attending 

school), uses cigarettes, uses marijuana or engages in binge drinking.  Each of these variables is 

measured using Wave 3 of the Add Health and thus represent post-high school outcomes.  We 

also examine the individual’s post-high school PVT test score as a measure of cognitive ability15 

and indicators of cigarette use, marijuana uses and binge drinking from Wave 1 when the 

individuals are still in high school.   

 Students from different cohorts are in different grades during the initial wave of the Add 

Health, and thus we include a cohort specific effect, cα , to control for these differences in age 

during the initial Wave 1 interview.  Including school fixed effects, sβ , ensures the estimation of 

classmate effects is based on comparisons across cohorts within a school, and controls for 

unobserved differences in average student characteristics across schools as well as for aspects of 

school quality that are constant across cohorts within a school.   

 Although school fixed effects provide powerful controls for selection across schools, 

differences in peer characteristics across cohorts within a school might be systematically 

correlated with unobserved variables that affect achievement.  Schools that show systematic 

trends in peer characteristics are of particular concern.  For instance, parents might be able to 

discern when the share minority in a school is increasing over time, and as a result, students from 

older cohorts who select into the school might differ in systematic, but unobserved ways from 

students in younger cohorts.  Similarly, the quality of teachers who can be attracted and retained 

to teach younger cohorts might differ from those who can be attracted and retained to teach the 
                                                 
15 The Add Health Picture Vocabulary Test (AHPVT) is a computerized, abridged version of the Peabody Picture 
Vocabulary Test-Revised (PPVT-R). The AHPVT is a test of hearing vocabulary, designed for persons aged 2 1/2 to 
40 years old who can see and hear reasonably well and who understand standard English to some degree. The test 
scores are standardized by age.  Some psychologists interpret PVT scores as a measure of verbal IQ.  Information on 
the test is provided online at http://www.cpc.unc.edu/projects/addhealth/files/w3cdbk/w3doc.zip. 
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older cohorts.  In either case, unobserved differences in student and teacher quality across 

cohorts within the same school could be correlated with differences in the share minority, and 

would confound estimates of the effect of share minority on outcomes.  To address this concern 

we control for school specific linear trends, csδ .  As a result our effect estimates are based on 

the correlation between deviations from the school specific trend in a cohort’s student 

composition and deviations from school specific trends in student outcomes. 

 The cohort fixed effects together with the school specific linear trends also help address 

another problem created by the structure of our data.  Unlike school administrative data, we do 

not observe multiple cohorts passing through the same grade, but rather observe all cohorts at the 

same time in different grades.  Therefore, we cannot explicitly control for school-grade fixed 

effects, and systematic changes in cohort variables across grades might be correlated with 

differences in outcomes across grades.  For example, because minorities and those whose parents 

have less education are more likely to drop out sometime between grades 9 and 12, the cohorts 

that are in later grades during Wave 1 will have lower percentages of minority and higher 

percentages of students with college educated mothers than cohorts in earlier grades during 

Wave 1.  Also, because the least motivated students are more likely to dropout as they age, 

students in the later grades during Wave 1 might be systematically different than students in the 

earlier grades on unobserved characteristics that influence outcomes.  The average effect of any 

systematic, unobserved differences between older cohorts and younger cohorts that arise because 

of this type of attrition will be controlled for by the cohort fixed effects.  Because the effects of 

dropouts on cohort composition and on unobserved student characteristics are likely to be larger 

in some schools than others, however, cohort fixed effects may not be sufficient to eliminate 

potential biases.  If we assume, however, that the effects of dropouts or other grade specific 
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effects on cohort composition and on unobserved student characteristics are approximately linear 

in grades in most schools, then school specific trends will break any correlation between the two 

variables, and thus minimize any potential biases.  While this limitation of our data requires 

more assumptions than traditional applications of the cohort approach, it does not impact the 

validity of our diagnostics for instrument exogeneity, and therefore simply requires us to lean 

more heavily on those diagnostics.  

 Deviations from school trends in student composition, which are difficult for parents and 

students to predict, are unlikely to influence their decision to attend a school, and thus, such 

deviations from trend are arguably idiosyncratic.  Nonetheless, race and parents’ education are 

likely to be correlated with several other factors that influence outcomes.  Thus, even if 

deviations from school trends in cohort composition are truly idiosyncratic, the students in 

cohorts with higher than predicted percentages of minority students or college educated parents 

will differ from students in other cohorts in systematic and potentially important ways.  

Including individual controls for race and parent education will prevent these systematic 

differences from confounding our effect estimates.  Also, even if deviations from school trends 

in student composition do not influence a student’s initial decision to attend a school, students 

might systematically opt out of a school that they find unsatisfactory after their initial 

experience, potentially introducing a source of omitted variable bias into our school trend model.  

Thus, we include a full set of controls for individual student characteristics measured during 

Wave 1, iscx .  To ensure that our results do not hinge on judgments about which individual 

controls to include, we estimate models with three different specifications ofiscx .   
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Our baseline model only includes controls for the individual students variables directly 

related to the school cohort variables:  race/ethnicity16  and years of education for the parent who 

responded to the parent survey.17  A second set of models include additional controls for clearly 

exogenous student characteristics including gender, age, whether or not the responding parent 

reports being born in the U.S., number of years the family has lived in the U.S.,18 a dummy 

variable indicating whether the parent information was reported or imputed, plus the student’s 

PVT test score during Wave 1 which, while potentially influenced by cohort composition, is our 

best available proxy for a student’s underlying cognitive ability.19  A third set of models adds an 

extended set of family background variables including log of family income, a single parent 

family indicator, an indicator of whether or not a student lives with both biological parents, the 

number of older siblings, and indicators of whether the student reports having discussed school 

or grades with a parent in the last month, whether one of the student’s parents report being a 

member of a parent/teacher organization, and whether the responding parent reports that he/she 

or the student’s other biological parent has alcoholism.  All these variables are measured during 

Wave 1.  These variables provide powerful protection against any potential omitted variables 

                                                 
16 We include mutually exclusive and exhaustive categories of race and ethnicity, including non-Hispanic white, 
non-Hispanic black, Hispanic, and Asian.  Students who reported being multirace were designated as black if the 
races were white and black, and designated as Asian if the races were Asian and white. 
17 Years of education of survey respondent is used since it is our most error free measure of parental education 
levels.  In principle, we might have included dummy variables for mother’s educational attainment paralleling the 
construction of the mother’s education cohort variable.  Models controlling for those variables instead of parental 
education yield results that are very similar to the estimates presented in the paper. 
18 As reported by the student, the variable is set equal to the age of the parent if the student was born in the U.S. 
19 With the exception of the model for Wave 3 test scores (where estimates are insignificant anyway), the estimates 
on cohort variables are nearly identical whether or not the set of controls for student attributes includes Wave 1 test 
scores. While including test score has no substantive effects on our estimates, in principle, including this variable 
changes the interpretation of our estimates slightly.  The baseline models can be interpreted as estimating the total 
effect of changes in classmate characteristics that operate through dynamics that vary across cohorts within the 
school.  The models that include the Wave 1 test score give us estimates of the effects of classmate characteristics 
that operate through dynamics that vary across cohorts within a school and independently of any effects on cognitive 
development through Wave 1.   
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bias.  Many of them, however, might be influenced by a student’s experiences in school and by 

the student’s behavior, and thus we do not include them in our baseline models. 

 Our variables of interest are measures of student composition for each cohort within each 

school.  We focus on the percent disadvantaged minority, which is the percent black plus the 

percent Hispanic, in the school specific cohort, M
scP , and the percent of students in the cohort 

who have a college educated mother, E
scP .  The racial composition of schools has been a leading 

policy concern dating back to the Supreme Court’s landmark ruling in Brown v. Board of 

Education (1954), and much of the literature on the effects of student composition has focused 

on racial composition.20  It is also important, however, to focus on segregation by other family 

background characteristics, and particularly parental education.  Evidence from a wide range of 

school choice programs indicates that students whose parents have higher levels of education are 

more likely than other parents to use expanded schooling options to avoid schools with 

concentrations of disadvantaged students and to attend schools with higher levels of 

achievement.  Thus, the growth of student assignment policies that emphasize parental choice is 

likely to increase stratification of schools by levels of parental education.  Also, it is important to 

distinguish the effects of racial composition from class composition because policies to decrease 

segregation by class will not necessarily decrease segregation by race, and vice-versa. 

 As mentioned above, some of the mechanisms through which student composition might 

influence individual outcomes are constant across cohorts within schools.  For instance, a 

school’s ability to garner resources is likely to be determined largely by the composition of the 

school as a whole and may not vary across cohorts within the school.  Similarly, teacher 

                                                 
20 We also ran models that use percent black rather than percent black or Hispanic.  In most cases, the estimated 
effects of percent black were similar to the estimated effects of percent black or Hispanic.  An important exception 
for  models predicting marijuana use in high school is noted below. 
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expectations and motivation might be influenced as much by the composition of preceding 

cohorts as by the composition of the current cohort.   By relying on within school variation in 

cohort composition, however, our estimates will miss any effect that the student composition of 

the school as a whole has on student outcomes.  Thus, we will interpret our estimates as the 

effects of cohort composition that operate through the mechanisms of cohort specific group 

dynamics, holding other aspects of school quality constant.  It is important to realize that this 

effect may be only part of the total effect that school composition has on student outcomes.  

 In order to interpret our estimates as the effects that operate through cohort specific group 

dynamics, the variation in cohort composition that we use to derive our estimates must be 

uncorrelated with other aspects of school quality related to teachers, resources or other factors 

within schools.  School fixed effects and trends should ensure that this condition is met.  To 

verify this assumption, we run a placebo test for each of our regressions.  Following Hoxby 

(2000b), our placebo test replaces the measures of student composition for student i’s actual 

cohort with the same measures for a randomly selected younger or older cohort from the same 

school.  The composition of a cohort other than a student’s own should not have any causal 

effect on the student.  Thus, if controlling for school fixed effects and trends successfully breaks 

the correlation between the composition of a student’s cohort and other aspects of school quality, 

then the composition of other cohorts in the same school should not show any effect on student 

outcomes in these placebo regressions.21 

V.  Evidence on the Identification Strategy 

   As Lavy and Schlosser (2007) point out in a similar analysis of gender composition 

effects, the success of our identification strategy rests on two things.  First, in order to obtain 

                                                 
21 This placebo test also helps to diagnose small sample bias.  Our data consists of 75 schools with four cohorts each, 
and we use two degrees of freedom per school to estimate school specific trends.  If we have any results driven by 
small sample bias, these should show up in the placebo regressions as well. 
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precise estimates, we need sufficient variation in our cohort composition measures after 

controlling for school fixed effects and trends.  Second, in order to make causal interpretations of 

our effect estimates plausible, deviations from school specific trends in student composition must 

be uncorrelated with differences in student characteristics across cohorts.  In this section we 

investigate whether or not these conditions are met. 

 Table 3 examines the extent of variation in cohort composition that is left after removing 

school fixed effects and trends.  As we would expect, most of the variation in our student 

composition measures is across schools rather than within schools.  Removing school fixed 

effects and trends reduces the standard deviations in the percent of students with college 

educated mothers by nearly 80 percent and the standard deviation in percent black or Hispanic 

by more than 90 percent.  Thus, our effect estimates are based on small, marginal changes in 

student composition, and cannot tell us about the effects of moving an individual student across 

schools with very different student compositions.   

 Table 3 does, however, suggest that we have sufficient variation to estimate the effects of 

small changes in cohort composition with reasonable precision.  The precision of our estimates 

depends on our sample size and on the absolute magnitude of the variation we use.  The variation 

in our data in the percent of mothers with college and the percent black or Hispanic after 

removing school fixed effects and trends is 20 to 80 percent greater than the within school 

variation in gender composition reported by Lavy and Schlosser (2007), which was enough 

variation for those authors to obtain statistically significant estimates of gender composition 

effects.  It is fortunate that we have greater within school variation in our student composition 

measures than Lavy and Schlosser, because our data has roughly one-third as many schools and 

thus fewer school-specific-cohorts than they do, which reduces the precision of our estimates. 
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 Our identification strategy assumes that variation in student composition across cohorts 

within a school is generated randomly.  To test whether the amount of variation observed in 

Table 3 is consistent with random assignment of students across school specific cohorts we ran a 

series of simulations.  In each simulation, we randomly match students in our sample to the 

school and grade specific slots in our sample, and use the resulting distribution of students across 

schools and cohorts to compute standard deviations for the cohort composition variables.  Across 

50 simulations of this kind, the average standard deviation for percent of students with college 

educated mothers in the same school and cohort was 0.029 and for percent of black or Hispanic 

the average standard deviation was 0.025, which are quite similar to the standard deviations of 

0.031 and 0.025 reported in Table 3.22  These results indicate that the amount of variation across 

cohorts within schools that we observe in our sample is quite consistent with random assignment 

of students.         

Further, any systematic selection process that might generate variation in cohort 

composition measures would be expected to have similar effects on the percent minority and the 

percent of students with college educated mothers.  Thus, variation across schools in race and 

parent education are often highly correlated.  Our identification strategy, however, assumes 

exogenous variation in student composition across cohorts within a school, after controlling for 

school specific trends.  Thus, we expect the variation in percent of students with college 

educated parents and the variation in the percent black or Hispanic isolated by our regressions to 

be uncorrelated.  Therefore, the correlation between the residuals of our two cohort composition 

measures, after removing school fixed effects and trends, provides another, informal test of our 

                                                 
22 The standard deviation around the mean standard deviation for percent with college educated mothers was 0.002 
and for percent minority was 0.001 placing the actual standard deviations well within the 95% confidence intervals.   
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key identifying assumption.  The correlation between these residuals is -0.01, which confirms the 

expectations associated with exogenous cohort variation.  

Another informal test of our key identifying assumption can be conducted by checking 

whether deviations from school specific trends in our cohort composition measures are correlated 

with deviations from school specific trends for a variety of student background characteristics 

(balancing tests).  If these deviations are uncorrelated, the analysis supports the premise that 

school trends capture any systematic selection (due to either sorting or attrition) on student 

observables.  Further, if one uses the degree of selection on observables as a guide to the degree 

of selection on unobservables as suggested by Altonji, Elder and Tabor (2005), null results on 

the balancing tests would support the assumption that our model specification identifies variation 

in cohort composition unrelated to unobservables that determine student outcomes.23 

 We performed this check by regressing different student background characteristics on 

our measures of cohort composition controlling for cohort fixed effects, school fixed effects, 

school trends, the student’s race and the education level of the student’s mother.  If deviations 

from school trends in parent education levels and student composition are truly idiosyncratic, 

then once we control for the student’s own race and parent’s education level, any correlation 

between deviations from school trends in the cohort composition variables and deviations from 

school trends in other student background characteristics should be removed.   

 Table 4 presents the results of these balancing tests.  The results of 11 separate 

regressions and a total of 22 coefficient estimates are presented.  In the absence of any 

systematic selection of students, we would expect two to three of these coefficients to be 

significantly different than zero at the 0.10 confidence level and one to be statistically significant 

                                                 
23 Similar logic has been used in recent studies of neighborhood effects by Grinblatt, Keloharju, and Ikaheimo 
(2008) and Bayer, Ross, and Topa (In press) that document no sorting on unobservables over space conditional on 
their models. 



 

22 

at the 0.05 level due merely to chance.  On the whole the results from our t-tests are equivocal.  

Four coefficients are significantly different than zero at the 0.10 level, which is more than we 

would expect, but none are significantly different from zero at the 0.05 level, which is less than 

we would expect.  Tests using t-statistics from the same regression, however, are not 

independent.  More telling are F-tests for the joint significance of the two cohort variables in 

each regression.  Only one of the eleven F-statistics reported is significantly different than zero at 

the 10 percent level and that one has a p-value very close to 0.10.  One rejection of the null at the 

0.10 level in eleven tests is just what we would expect if the variation of cohort composition 

measures were in fact idiosyncratic. The balancing tests, then, provide general evidence that 

school specific trends are sufficient to isolate variation in cohort composition that is unrelated to 

student observables, and thus, there is little reason to suspect that differences in unobserved 

student characteristics across cohorts within a school are biasing our effect estimates. 

 Despite our appeal to type I error, one might be concerned about the specific rejections of 

the null hypothesis in our balancing tests.   To address this concern we estimate models with and 

without the variables examined in the balancing test.  The first specification includes only the 

covariates also used as controls in our balancing tests, the second specification adds a substantial 

number of controls including three of the controls that fail the balancing test at the 0.10 level, 

and the third specification includes all remaining covariates including one additional variable 

that failed the balancing tests.  If our identification strategy is working, adding these control 

variables should have no influence on the estimated coefficients for our cohort composition 

variables.  Again following the intuition behind Altonji, Elder and Tabor (2005), the impact of 

including observable student attributes on peer effect estimates likely provide a good indication 
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of the potential bias from unobservables, and so if adding observable controls has little impact on 

estimates it is reasonable to presume that there is little bias from student unobservables. 

VI.  Primary Results 

 Table 5 presents estimates of the effects of our cohort composition variables on ten 

different outcomes.  All of the estimates presented in Table 5 are from regressions that include 

controls for cohort fixed effects, school fixed effects, and school trends.  For each outcome, we 

present estimates from regressions that include the baseline set of student covariates listed above, 

the baseline set of covariates plus extended covariates that include the Wave 1 PVT test score, 

and the extended set of covariates plus a set of additional family background controls.  The 

estimates on our cohort composition variables are quite stable across each specification of 

student covariates.  The robustness of our estimates with respect to choice of student covariates 

provides additional support for the results of the balancing tests presented in Table 4.    

As seen in Table 5, the percent of students in the cohort with a college educated mother 

shows significant effects on the decisions to drop out of high school, to attend college, to smoke 

during high school, and to use marijuana post-high school.  Most would consider the direction of 

these significant effects desirable.  The point estimates imply that a 1 percentage point increase 

in the percent of students whose parents are college educated is associated with a decrease in the 

likelihood of dropping out of about 0.3 percentage points, an increase in the likelihood of 

attending college of between 0.4 to 0.5 percentage points, and decreases in the likelihoods of 

smoking during high school and of using marijuana after high school of about 0.4 percentage 

points each.24  

                                                 
24 We also estimated alternative versions of these regressions using the average years of mother’s education in the 
cohort instead of percent of students with a college educated mother.  For all of our findings, the point estimates on 
this variable were in the same direction and implied effects of a similar magnitude as the coefficient on percent with 
college educated mothers.  However, the level of statistical significance fell for drop-out and college attendance.  In 
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 To help think about the magnitude of these effect estimates, we can estimate how much 

reducing disparities in exposure to classmates with college educated mothers would reduce 

disparities in dropout and college attendance rates. The figures in Table 2 indicate that the 

percent of college educated mothers among the classmates of students whose own parents are 

college graduates is 11.1 percentage points higher than that of students whose own mothers have 

no college experience.  Also, among individuals in our sample, those whose own parents are 

college educated are 12.3 percentage points less likely to drop out of high school than students 

whose mothers do not have any college.  The effect estimates in Table 5 imply that reducing the 

gap in exposure to classmates with college educated mothers by half (5.5 percentage points), 

would decrease the gap in dropout rates nearly 14 percent (from 12.3 to 10.6 percentage points).  

Similar calculations indicate that reducing the gap in exposure to classmates with college 

educated mothers by half, would decrease the gap in college attendance between individuals 

whose own parents are college graduates and individuals whose own parents have no college by 

nearly 7 percent (from 34.7 to 32.2 percentage points).  

 Higher shares of students who are black or Hispanic in a cohort are associated with a 

greater likelihood of using marijuana in high school and a smaller likelihood of binge drinking 

after high school.  A one percentage point increase in the percent minority is associated with an 

increase in the likelihood of using marijuana during high school of about 0.4 percentage points 

and a decrease in binge drinking after high school of more than 0.5 percentage points.   That 

increases in the percent minority increase marijuana use is somewhat surprising given that black 

students are less likely than whites to report using marijuana in high school (see Table 2).  

Hispanic students, however, report a higher rate of marijuana use than other groups during the 

                                                                                                                                                             
addition, higher average years of mother’s education is associated with significantly lower likelihood of using 
marijuana in high school while the estimates based on percent of college educated mothers are small and statistically 
insignificant on this outcome.   
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high school years, and when we estimate the effect of percent black and percent Hispanic in 

separate regressions, we find that the estimated effect is more than three times larger for percent 

Hispanic than for percent black, and is only significant for percent Hispanic (results not shown).  

Just as noteworthy as these significant effects on substance use, the estimated effects of minority 

share on educational attainment, post-high school test scores, and idleness are small and 

statistically insignificant.       

 In general, then, the results in Table 5 suggest that the percent of classmates whose 

mother’s are college educated can have significant effects on educational attainment, and both 

percent of college educated mothers and the share of classmates who are black or Hispanic can 

have significant effects on substance use.  Higher levels of parent education among one’s 

classmates generally have desirable effects, while higher levels of minorities have mixed effects.  

Interestingly, the level of parental education in one’s cohort has no lasting influence on cognitive 

development as indicated by the PVT test score, and thus, the potentially important effects of 

school cohort composition on individuals would be missed by studies focused solely on test 

score measures.   

 Table 6 presents the results of our placebo tests, which are coefficient estimates from 

regressions that replace the actual cohort composition measures for a student with the 

composition measures for another randomly selected cohort in the same school.  Across the 10 

outcomes, 30 regressions and 60 coefficient estimates presented in Table 5, only two coefficients 

are significantly different than zero at the 0.10 level or lower, only one of these is significant at 

the 0.05 level, well less than the number of significant coefficients that we would expect to 

emerge by chance.  Both significant coefficients are on the percent black plus percent Hispanic 

variable in models that have post-high school binge drinking as the outcome.  Therefore, with 
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two cohort variables and ten outcomes, significance only occurs for one variable on one outcome 

with the finding ranging between insignificant and significant at the 0.05 level across the three 

specifications.  These results stand in stark contrast with the causal estimates in Table 5 where 

out of 10 outcome variables the estimated effects for two different outcomes are significant near 

or above the 0.01 level across the three specifications, estimated effects on three additional 

outcomes are significant at the 0.05 level, and estimated effects on one more outcome is 

significant at the 0.10 level. 

The negative and statistically significant coefficients on percent black plus percent 

Hispanic in the post-high school binge drinking placebo regressions is not unexpected.  Recall 

that the variables in the regressions in Tables 5 and 6 are deviations from school specific trends, 

and thus, since we cannot randomly assign a cohort to itself, we expect a negative correlation 

between the actual cohort composition measures used in Table 5 and the cohort compositions of 

randomly selected different cohorts from the same school used in Table 6.  This correlation 

combined with the strong, positive relationship between the percent black or Hispanic in the 

student’s actual cohort and post-high school binge drinking (see last row of Table 5) is the most 

likely explanation for the smaller, negative coefficient with marginal statistical significance in 

our placebo regression.25  Overall, then, the results in Table 6 provide strong evidence that the 

estimated effects of the actual cohort composition measures presented in Table 5 are not biased 

by selection across schools or omitted school characteristics.  

By definition, exceptionally large deviations from school trends are unlikely to arise by 

chance, and one might suspect that non-random factors that cause large changes in cohort 

                                                 
25 Bayer, Ross, and Topa (2008) find a similar small sample bias whey then test whether block average attributes 
correlate with the attributes of individual residents because each individual is excluded from calculation of the block 
means for their own block.  Bayer, Ross, and Topa obtain consistent estimates of the correlation by sampling only 
one person from each block, but they have thousands of blocks in their sample.  In our application, this strategy 
would provide a placebo test with very low power due to the smaller number of within school cohorts. 
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compositions within a school can simultaneously cause changes in the unobserved characteristics 

of students in the school.  For instance, if the district a school is located in adopts a school choice 

program sometime between when the twelfth graders and the ninth graders in our sample entered 

high school, that could simultaneously cause differences in student composition and unobserved 

student “quality” across cohorts within a school.  To test the sensitivity of our results to the 

inclusion of cases with large deviations of individual cohort compositions from school trends, we 

identified cases of large deviations, dropped them from our sample, and reestimated our 

regressions.  The results from these alternative regressions were very similar to the results in 

Table 5.26 

VII.  Results by Subgroups    

 In this section we examine whether the effects of cohort composition vary across 

racial/ethnic groups, groups based on mother’s education, and student gender. Admittedly, the 

estimates based on these subsamples are fairly noisy. Taking the results presented in Tables 7 

through 9 as a whole, we find four rejections at the 5 percent level or better and a total of eight 

rejections at the 10 percent level or better out of 60 tests. We would expect three and six 

rejections at the 5 percent and 10 percent levels, respectively, based just on type I error.  

Therefore, these findings should be interpreted as suggestive.  

 First, we estimated our regression models separately for black students, white students, 

Hispanic students, and Asian students.27  The results of these regressions are presented in Table 

                                                 
26 Specifically, we regressed the student’s cohort composition measures on a set of school fixed effects and trends, 
and if the residual from this regression for a particular observation was more than three times the standard deviation 
of all such residuals, we dropped that observation.   Generally, the significant effect estimates became slightly larger 
and slightly less precise when cases of large deviations were dropped.  In no cases, did the results of inference tests 
change.   
27 Differences in the effects of marginal changes in student composition across different types of schools is also 
potentially interesting.  However, with only 75 schools in our sample and relatively small amounts of variation 
across cohorts within schools, the power we have to distinguish differences in effects across school types is limited.  
We did run estimates in which we split the sample in half and into thirds based on the percent of college educated 



 

28 

7.  These results are from models with the cohort composition variables entered singly, and thus 

each coefficient reported in Table 7 is from a separate regression.  Each regression includes 

controls for cohort fixed effects, school fixed effects, and school trends as well as the full set of 

individual and family covariates.28  The last column presents the results of a Wald test for the 

joint null hypotheses that the coefficients are equal.29 

   As indicated in the top panel of Table 7, the effects of cohort composition on the decision 

to drop out vary considerably across ethnic and racial groups.  On average, across all groups, the 

level of parent education among one’s classmates has a negative, statistically significant effect 

on the likelihood of dropping out (see Table 5).  In Table 7, we see that this negative effect is 

driven by moderate effects on whites and large effects on Hispanic students, and the Wald test 

rejects equality at nearly the 1 percent level.  The point estimates in the top panel of Table 7 

indicate that a 1.0 point increase in the percent of students with a college educated mother 

reduces dropout rates among Hispanics by nearly 1.6 percentage points, much more than for 

white and Asian students.  This result is important given the high dropout rates among Hispanics.  

While just missing statistical significance at the 10 percent level, differences in the 

effects of cohort racial composition on the dropout rates are sizable and potentially important.  

While an increase in the percent black or Hispanic does not have a significant effect on the 

likelihood of dropping out on average, a 1.0 percent increase in the percent minority increases 

the likelihood of dropping out among black students by 0.8 percentage points, a result which is 

substantively large and statistically significant.  This result is consistent with findings from 

                                                                                                                                                             
mothers or percent disadvantaged minority in the school.  Given the imprecision of our estimates, however, we 
typically could not reject the null hypotheses of no differences in effects across schools. 
28 Because our identification strategy successfully eliminates any correlation between percent with college educated 
mothers and percent black or Hispanic, entering the two variables jointly or singly provides very similar results.    
Using different specifications of the student covariates also did not substantially change the estimated effects. 
29 We ran placebo tests for each separate sample using the same procedure that we used for the pooled sample.  The 
placebo regressions confirm that that the estimated effects of the actual cohort composition measures presented in 
Tables 8 and 9 are not biased by omitted school characteristics. 
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Guryan (2004) that desegregation efforts in the 1970’s decreased drop rates among African 

Americans.30  The estimated impact of exposure to minorities on Hispanic drop out rates is 

statistically insignificant, but the magnitude of the effect is similar to the substantial negative 

effect on black students while literally no effect is observed for whites or Asians. 

 The estimated effects of classmate characteristics on smoking and marijuana use also 

vary significantly across racial/ethnic groups.  In general these differences highlight the fact that 

even when classmate composition measures do not show any effects on average, they can have 

significant effects on subgroups.  For instance, although an increase in the percent black or 

Hispanic does not have significant effects on smoking on average (see Table 5), it does 

significantly decrease the likelihood of post-high school smoking among Asians.  In general, 

however, while the effects of peers on smoking and marijuana use appear to be concentrated 

among Asians and Hispanics, the differences across groups in the effects of classmate 

composition on these outcomes are difficult to explain.    

 We also estimated the same set of regressions presented in Table 7 for four different 

groups defined by the mother’s level of education.  The results are presented in Table 8.  The 

only statistically significant differences in effects between groups is that an increase in the 

percent of students with college educated mothers increases rates of idleness of students whose 

own mothers do not have a college education and decreases rates of idleness among those whose 

mothers have at least some college.  Perhaps, when more of their classmates come from educated 

families, an accelerated pace of instruction or difficulties competing academically discourage 

                                                 
30 Guryan reports that implementation of desegregation plans in the 1970s increased black exposure to whites an 
average of 15 points and estimates that these efforts decreased black dropout rates 2 to 3 percentage points.  The 
estimate in Table 7 implies that a 15 percent increase in black exposure to whites would decrease black dropout rates 
several times more than Guryan estimates.  The estimate in Table 7, however, is fairly imprecise.  For instance, the 
hypothesis that a 15 percent increase in exposure to whites would reduce black dropout rates by 2 percent is well 
within the 95 percent confidence interval of the estimate in Table 7.  Also, given that our estimates are based on 
relatively small changes in percent minority, predicting the impacts of a 15 percent increase in exposure requires 
extrapolation well beyond the variation available in our data. 
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children with less educated parents, undermining their cognitive development or their 

aspirations.    

 Finally, Table 9 presents the results from estimating our models separately for males and 

females.  The upper portion of Table 9 indicates that effects of classmates are stronger for males 

than for females.  The estimated effect of a change in the percent of classmates with college 

educated mothers on dropouts is three times as large for males as for females and the estimated 

effect on college attendance is 16 times as large for males as for females.  Only the latter 

difference is statistically significant.  Perhaps the most interesting result in Table 9 concerns the 

effect of percent black or Hispanic on post-high school idleness.  The estimates from Table 5 

indicate that on average changes in the percent of classmates who are black or Hispanic has no 

influence on rates of idleness.  Here we see, however, that the effect of black or Hispanic 

classmates on the idleness rates for males is significantly different both from the effect on 

females and from zero.  The exceptionally high and growing rates of idleness among black males 

is a growing policy concern (Edelman, Holzer, and Offner, 2006; Mincy, 2006).  Thus, the 

finding that increasing the percentage of minority classmates can significantly affect the rates of 

idleness among males is potentially important. 

 Table 9 also indicates that increases in the percent of classmates with college educated 

mothers significantly increases post-high school smoking among females.  This result suggests 

that while classmates may be more influential in determining educational attainment and 

employment outcomes for males than for females, females might be more susceptible to the 

influence of classmates than are males when it comes to other kinds of choices.  Also, this 

finding suggests that the influence of classmates with college educated parents is not universally 

positive.  
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VIII.  Conclusions 

 Our analyses use data from the Add-Health to estimate the effects of classmate 

characteristics on a range of student choices and outcomes.  The unique structure of the Add-

Health allows us to estimate these effects using comparisons across cohorts within schools, and 

to examine a wider range of outcomes than other studies that have used this identification 

strategy.   

 We find evidence that classmate characteristics do matter for potentially important 

individual outcomes. Most importantly, we find that increases in the percent of students with a 

college educated mother in one’s cohort have several desirable affects on individual outcomes.  

Specifically, higher levels of parent education among one’s classmates is associated with higher 

rates of college attendance and lower rates of dropping out of high school, smoking in high 

school and using marijuana after high school.  Also, additional analyses suggest that increases in 

the average education level of classmates’ parents results in substantial reductions in dropout 

rates among Hispanic students and more moderate reductions among whites.  These are effects 

that would have been missed by studies focusing solely on test scores as outcome measures.    

 We do not find much evidence that the share of students from disadvantaged minority 

groups negatively affects student outcomes, on average.  An increase in the percent of black or 

Hispanic classmates does increase the likelihood of using marijuana in high school, but not post-

high school, and actually decreases rates of binge drinking post-high school.  The percent of 

minority classmates might, however, have important effects for subgroups of students.  Although 

the statistical evidence is weak, increases in the percent black or Hispanic appear associated with 

an increase dropout rates among black students.  Also, an increase in the percent black or 

Hispanic classmates significantly increases rates of post-high school idleness among males.  
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 The primary policy implication of these findings is that programs that decrease 

stratification across schools by parent education are likely to decrease disparities in educational 

attainment.  Likewise, programs that increase stratification of this kind, including many types of 

school choice programs, are likely to exacerbate disparities in educational attainment.  Our 

findings also suggest that programs that decrease the isolation of black students may help to 

decrease dropout rates among black students and decrease rates of idleness among black males.

 A crucial caveat to all our findings is that our estimates only capture the effects of 

classmate characteristics that operate through the mechanisms we have referred to collectively as 

group dynamics.  Any effects that operate through the school’s ability to attract resources are 

missed.  Also, any effects of student composition that operate schoolwide, such as, perhaps, 

effects on teacher expectations, are not captured by our estimates.  Thus, our results might 

underestimate the total effect of classmate characteristics on individual outcomes.  Nonetheless, 

our results provide evidence that classmate characteristics may well play a role in explaining 

disparities in outcomes across groups, and argue that policies that influence the grouping of 

students into schools may, therefore, have important costs and benefits. 
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Table 1: Sample Descriptives 

 N Mean 
Standard 
Deviation 

Outcome Variables    

Drop Out of High School 9398 0.136 0.343 

Attend College 9043 0.586 0.493 

Post High School Test Score 9051 0.144 0.873 

Idleness Post High School 9052 0.130 0.336 

High School Smoking 9350 0.312 0.463 

Post High School Smoking 9361 0.338 0.473 

High School Marijuana Use 9244 0.170 0.376 

Post High School Marijuana Use 9371 0.211 0.408 

High School Binge Drinking 9372 0.345 0.475 

Post High School Binge Drinking 9356 0.517 0.500 
Cohort Variables    

Percent black or Hispanic in cohort 9398 30.4 29.4 

Percent with college educated mother in cohort 9398 28.8 14.0 
Baseline Controls    

Black 9398 0.163 0.370 

Hispanic 9398 0.119 0.323 

Asian 9398 0.048 0.207 

Parent Education 9398 13.62 2.27 

Grade 10 Indicator 9398 0.255 0.436 

Grade 11 Indicator 9398 0.239 0.426 

Grade 12 Indicator 9398 0.256 0.436 
Extended Controls    

Male 9398 0.505 0.500 

Age 9398 16.95 1.25 

Parent Age 9398 42.59 5.82 

Parent Native Born 9398 0.872 0.302 

Parent Years in US 9398 35.70 13.09 

Parent Information Missing 9398 0.335 0.472 

PVT Score  8953 0.180 0.926 

Additional Family Controls    

Log Family Income 9398 0.358 0.209 

Single Parent 9398 0.264 0.405 

Live with Both Parents 9398 0.573 0.456 

Number Older Siblings 9385 0.834 1.179 

Talk about School with Parents 9398 0.638 0.464 

Parent Involvement 9398 0.310 0.426 

Parent Alcoholic 9398 0.149 0.328 
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Table 2: Student Outcomes and Cohort Composition, b y Race and Mother's Educational 

Attainment 

 White Students Black Students 
Hispanic 
Students Asian Students 

Drop Out of High School 0.121 (0.326) 0.159 (0.366) 0.206 (0.404) 0.097 (0.296) 

Attend College 0.607 (0.488) 0.519 (0.500) 0.489 (0.500) 0.764 (0.425) 

Post High School Test Score 0.344 (0.682) -0.399 (1.024) -0.184 (1.103) -0.028 (1.003) 

Idleness Post High School 0.116 (0.320) 0.194 (0.395) 0.140 (0.347) 0.100 (0.300) 

High School Smoking 0.370 (0.483) 0.155 (0.362) 0.237 (0.425) 0.202 (0.402) 

Post High School Smoking 0.390 (0.488) 0.204 (0.403) 0.260 (0.439) 0.254 (0.435) 

High School Marijuana Use 0.173 (0.379) 0.160 (0.367) 0.180 (0.384) 0.132 (0.338) 

Post High School Marijuana Use 0.229 (0.420) 0.181 (0.385) 0.184 (0.387) 0.131 (0.338) 

High School Binge Drinking 0.389 (0.487) 0.200 (0.400) 0.350 (0.477) 0.211 (0.408) 

Post High School Binge Drinking 0.599 (0.490) 0.253 (0.435) 0.460 (0.498) 0.390 (0.488) 

Percent black or Hispanic in 
cohort 

17.0 (17.9) 62.6 (29.1) 57.9 (29.7) 41.7 (23.0) 

Percent with college educated 
mother in cohort 

28.5 (13.8) 29.6 (14.0) 26.4 (13.1) 37.2 (14.9) 

Sample Size 4920 1921 1701 856 

 
High School 

Drop-Out 
High School 

Graduate Some College 
College    

Graduate 

Drop Out of High School 0.250 (0.433) 0.143 (0.350) 0.127 (0.264) 0.057 (0.232) 

Attend College 0.356 (0.479) 0.518 (0.500) 0.620 (0.485) 0.808 (0.394) 

Post High School Test Score -0.297 (1.026) 0.111 (0.793) 0.240 (0.835) 0.398 (0.792) 

Idleness Post High School 0.185 (0.388) 0.139 (0.346) 0.126 (0.332) 0.085 (0.278) 

High School Smoking 0.290 (0.454) 0.341 (0.474) 0.317 (0.465) 0.278 (0.448) 

Post High School Smoking 0.295 (0.456) 0.376 (0.484) 0.347 (0.476) 0.303 (0.460) 

High School Marijuana Use 0.160 (0.367) 0.172 (0.378) 0.179 (0.384) 0.165 (0.371) 

Post High School Marijuana Use 0.147 (0.354) 0.214 (0.410) 0.229 (0.420) 0.235 (0.424) 

High School Binge Drinking 0.333 (0.471) 0.343 (0.475) 0.373 (0.484) 0.330 (0.470) 

Post High School Binge Drinking 0.377 (0.485) 0.528 (0.499) 0.528 (0.499) 0.583 (0.493) 

Percent black or Hispanic in 
cohort 

44.0 (32.9) 27.2 (28.0) 28.1 (27.7) 28.2 (28.1) 

Percent with college educated 
mother in cohort 

23.4 (10.5) 26.1 (11.8) 29.1 (12.3) 36.3 (17.2) 

Sample Size 1657 3083 2189 2469 
Means and standard deviations in parentheses. 
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Table 3:  Variation in cohort composition measures after removing school fixed effects and trends.  
 Raw cohort variables 
Full Sample N Mean Std Dev Min Max 
     Percent mothers with college 9384 0.302 0.139 0.000 0.877 
     Percent black or Hispanic 9398 0.377 0.312 0.000 1.000 
      
 Residuals after removing school fixed effects and trends 
Full Sample   Mean Std Dev Min Max 
     Percent mothers with college 9384 0.000 0.026 -0.159 0.143 
     Percent black or Hispanic 9398 0.000 0.030 -0.203 0.122 
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Table 4: Balancing tests for cohort composition mea sures 

Dependent Variable 
% black or 
Hispanic 

% with college 
educated mother 

F-
statistic 

Male -0.431* (0.231) -0.151 (0.200) 1.980 

Age (in years) -0.120 (0.312) -0.076 (0.273) 0.113 

Parent's age (in years) -3.918 (4.012) 3.908* (2.044) 2.025 

Parent born in the U.S. -0.174* (0.101) -0.074 (0.085) 1.856 

Missing parent information 0.260 (0.257) -0.105 (0.262) 0.675 

PVT test score 9.923 (6.652) 0.668 (5.497) 1.123 

Log of family income 0.095 (0.094) 0.139 (0.096) 1.655 

Single parent family 0.396 (0.270) 0.007 (0.219) 1.117 

Live w/both biological parents -0.218 (0.247) 0.442* (0.259) 2.396* 

Number of older siblings -0.251 (0.638) -0.167 (0.398) 0.193 

Parent alcoholism reported 0.039 (0.120) -0.113 (0.178) 0.322 

The figures in each row are coefficients from regressions that include in addition 
to the cohort composition measures controls for cohort fixed effects, school fixed 
effects, school trends, the student's race, and the student's mother's years of 
education.  All variables are measured using Wave 1 of the Add Health.  Figures 
in parentheses are standard errors robust to clustering at school level.  The F-
statistics is for the joint effect of percent black or Hispanic and percent with 
college educated mothers.  * designates significantly different from zero at 0.10 or 
an F-Statistics greater than 2.303. 
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Table 5:  Estimated impacts of cohort composition o n student outcomes 

 
Baseline 
Controls 

Baseline +                 
Extended 
Controls 

Baseline + 
Extended 
Controls+ 
Additional 

Family 
Baseline 
Controls 

Baseline +                 
Extended 
Controls 

Baseline + 
Extended 
Controls+ 
Additional 

Family 

 Drop Out of High School Attend College 
% College Educated Mother -0.327** -0.312*** -0.299*** 0.515** 0.504** 0.439** 

 (0.131) (0.106) (0.112) (0.223) (0.210) (0.189) 

% black + % Hispanic 0.080 0.104 0.064 0.034 0.027 0.060 

 (0.188) (0.169) (0.166) (0.296) (0.273) (0.267) 

 Post High School Test Score Idleness Post High School 
% College Educated Mother 0.239 0.210 0.232 0.039 0.020 0.042 

 (0.322) (0.249) (0.257) (0.130) (0.136) (0.137) 

% black + % Hispanic 0.591* 0.342 0.327 0.085 0.123 0.118 

 (0.334) (0.229) (0.222) (0.160) (0.147) (0.150) 

 High School Smoking Post High School Smoking 
% College Educated Mother -0.452* -0.410 -0.399* 0.126 0.215 0.248 

 (0.259) (0.256) (0.235) (0.190) (0.196) (0.197) 

% black + % Hispanic 0.128 0.159 0.136 0.311 0.295 0.269 

 (0.289) (0.279) (0.272) (0.250) (0.237) (0.237) 

 High School Marijuana Use Post High School Marijuana Use 
% College Educated Mother -0.272 -0.240 -0.239 -0.474*** -0.435** -0.422** 

 (0.169) (0.179) (0.170) (0.166) (0.172) (0.169) 

% black + % Hispanic 0.395** 0.428** 0.412** 0.267 0.254 0.218 

 (0.166) (0.173) (0.177) (0.195) (0.205) (0.204) 

 High School Binge Drinking Post High School Binge Drinking 
% College Educated Mother -0.118 -0.184 -0.181 -0.205 -0.096 -0.116 

 (0.258) (0.261) (0.248) (0.213) (0.208) (0.209) 

% black + % Hispanic 0.060 -0.069 -0.085 -0.452 -0.578** -0.599** 

  (0.265) (0.258) (0.251) (0.276) (0.291) (0.294) 

All regressions include controls for cohort fixed effects, school fixed effects, and school trends as well as 
the individual student covariates related to the cohort variables.  Figures in parentheses are standard 
errors robust to clustering at the school level.  * designates significantly different from zero at 0.10, ** 
significantly different than zero at 0.05 level, and *** significantly different from zero at 0.01 level.  
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Table 6: Results of Placebo Regressions 

 
Baseline 
Controls 

Baseline +                 
Extended 
Controls 

Baseline + 
Extended 
Controls+ 
Additional 

Family 
Baseline 
Controls 

Baseline +                 
Extended 
Controls 

Baseline + 
Extended 
Controls+ 
Additional 

Family 

 Drop Out of High School Attend College 
% College Educated Mother -0.043 -0.009 0.003 -0.153 -0.123 -0.144 

 (0.103) (0.103) (0.098) (0.164) (0.168) (0.146) 

% black + % Hispanic -0.068 -0.099 -0.091 -0.191 -0.110 -0.102 

 (0.085) (0.088) (0.087) (0.141) (0.128) (0.129) 

 Post High School Test Score Idleness Post High School 
% College Educated Mother 0.247 0.163 0.156 0.037 0.098 0.098 

 (0.336) (0.213) (0.213) (0.070) (0.072) (0.073) 

% black + % Hispanic -0.030 -0.126 -0.085 0.032 0.011 -0.002 

 (0.221) (0.192) (0.134) (0.080) (0.078) (0.078) 

 High School Smoking Post High School Smoking 
% College Educated Mother -0.120 -0.133 -0.107 0.050 0.018 0.036 

 (0.172) (0.186) (0.172) (0.153) (0.151) (0.160) 

% black + % Hispanic 0.022 0.050 0.047 -0.040 -0.004 -0.009 

 (0.163) (0.170) (0.167) (0.130) (0.143) (0.139) 

 High School Marijuana Use Post High School Marijuana Use 
% College Educated Mother -0.036 -0.053 -0.043 -0.152 -0.135 -0.105 

 (0.111) (0.120) (0.114) (0.159) (0.169) (0.166) 

% black + % Hispanic -0.062 -0.107 -0.105 -0.139 -0.121 -0.117 

 (0.103) (0.101) (0.103) (0.099) (0.105) (0.107) 

 High School Binge Drinking Post High School Binge Drinking 
% College Educated Mother -0.103 -0.012 0.023 0.213 0.138 0.142 

 (0.199) (0.213) (0.192) (0.143) (0.163) (0.163) 

% black + % Hispanic -0.088 -0.034 -0.025 0.158 0.267* 0.285** 

  (0.158) (0.155) (0.158) (0.153) (0.137) (0.138) 

All regressions include controls for cohort fixed effects, school fixed effects, and school trends as well as 
the individual student covariates related to the cohort variables.  Figures in parentheses are standard 
errors robust to clustering at the school level.  * designates significantly different from zero at 0.10, ** 
significantly different than zero at 0.05 level, and *** significantly different from zero at 0.01 level.  
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Table 7:  Estimated impacts of cohort composition o n student outcomes, by race 

 
Black 

Students 
White 

Students 
Hispanic 
Students 

Asian 
Students F-Statistic 

 Drop Out of High School 
% College Educated Mother 0.283 -0.297** -1.648*** -0.222 3.642** 

 
(0.365) (0.128) (0.466) (0.465)  

% black + % Hispanic 0.823** -0.166 0.932 0.100 2.064 

 
(0.393) (0.186) (0.905) (0.292)  

 Attend College 
% College Educated Mother 0.311 0.536** 1.113 -0.197 0.495 

 
(0.577) (0.215) (0.823) (0.782)  

% black + % Hispanic 0.076 0.185 -1.029 0.132 0.465 

 
(0.497) (0.266) (0.994) (0.743)  

 Post High School Test Score 
% College Educated Mother -0.134 0.406 -2.603* -0.675 1.843 

 
(0.570) (0.265) (1.318) (1.845)  

% black + % Hispanic -0.220 0.181 0.956 -0.399 0.295 

 
(0.583) (0.389) (1.222) (1.645)  

 Idleness Post High School 
% College Educated Mother 0.308 0.023 0.072 -0.524 0.341 

 
(0.466) (0.161) (0.456) (0.683)  

% black + % Hispanic 0.921 0.135 0.479 0.981** 1.405 

 
(0.580) (0.163) (0.608) (0.484)  

 High School Smoking 
% College Educated Mother -0.025 -0.573** -0.200 0.241 0.656 

 
(0.355) (0.285) (0.813) (0.817)  

% black + % Hispanic 0.070 0.310 0.314 -1.313 1.148 

 
(0.636) (0.304) (0.512) (0.838)  

 Post High School Smoking 
% College Educated Mother 0.344 0.192 0.809 1.756*** 1.999 

 
(0.552) (0.261) (0.746) (0.599)  

% black + % Hispanic 1.014 0.246 -0.097 -1.437** 2.674** 

 
(0.781) (0.321) (0.858) (0.600)  

 High School Marijuana Use 

% College Educated Mother -0.043 -0.163 -1.576** -1.537*** 3.499** 

 
(0.372) (0.207) (0.704) (0.485)  

% black + % Hispanic 0.469 0.271 1.332* 0.507 0.686 

 
(0.477) (0.169) (0.752) (0.582)  
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 Post High School Marijuana Use 

% College Educated Mother -1.198*** -0.364* -0.655 -0.211 1.362 

 
(0.406) (0.211) (0.651) (0.352)  

% black + % Hispanic -0.510 0.242 1.369*** 0.951* 2.599* 

 
(0.571) (0.260) (0.491) (0.547)  

 High School Binge Drinking 
% College Educated Mother -0.125 -0.190 -0.862 1.207** 2.021 

 
(0.444) (0.304) (0.772) (0.578)  

% black + % Hispanic -0.650 0.019 0.075 -1.531** 1.411 

 
(0.663) (0.331) (0.669) (0.743)  

 Post High School Binge Drinking 
% College Educated Mother -0.703 -0.067 -0.505 0.746 0.864 

 
(0.519) (0.258) (0.699) (0.854)  

% black + % Hispanic -0.862 -0.577 -0.547 -1.269 0.210 

  
(0.728) (0.390) (0.791) (0.855)   

Each figure reported is a coefficient from a separate regression.  All regressions include controls 
for cohort fixed effects, school fixed effects, school trends, and the extended set of individual 
student and additional family covariates.  Figures in parentheses are standard errors robust to 
clustering at the school level. F-statistic is based on a Wald test with three degrees of freedom 
for the joint hypotheses that coefficients obtained using each sample are equal.  * designates 
significantly different from zero at 0.10 or an F statistic greater than 2.084, ** significantly 
different than zero at 0.05 level or an F of 2.605, and *** significantly different from zero at 0.01 
level or an F of 3.782.  
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Table 8:  Estimated impacts of cohort composition o n student outcomes,                                    

by mother's education level 
 Mother's Education  

 
High School 

Drop-Out 
High School 

Graduate 
Some 

College 
College 

Graduate F-Statistic 

 Drop Out of High School 
% College Educated Mother -0.381 -0.534** -0.144 -0.278* 0.359 

 
(0.698) (0.244) (0.363) (0.156)  

% black + % Hispanic 0.877 -0.141 0.004 0.085 0.925 

 
(0.559) (0.261) (0.299) (0.217)  

 Attend College 
% College Educated Mother 0.920* 0.323 0.413 0.395 0.353 

 
(0.514) (0.287) (0.431) (0.346)  

% black + % Hispanic -0.183 0.173 -0.683 0.494 1.215 

 
(0.554) (0.387) (0.430) (0.520)  

 Post High School Test Score 
% College Educated Mother -1.487 0.399 0.183 0.360 1.199 

 
(0.945) (0.425) (0.518) (0.486)  

% black + % Hispanic 0.412 0.231 1.083* -0.382 1.471 

 
(0.889) (0.586) (0.609) (0.380)  

 Idleness Post High School 

% College Educated Mother 0.904 0.443** -0.732** -0.244 3.441** 

 
(0.703) (0.209) (0.361) (0.342)  

% black + % Hispanic 0.326 0.362 0.058 -0.144 0.312 

 
(0.733) (0.318) (0.241) (0.548)  

 High School Smoking 
% College Educated Mother -0.377 -0.538* -0.344 -0.355 0.061 

 
(0.709) (0.308) (0.538) (0.411)  

% black + % Hispanic 0.430 0.231 0.147 0.136 0.060 

 
(0.643) (0.507) (0.348) (0.464)  

 Post High School Smoking 
% College Educated Mother -0.672 0.128 0.126 0.525 0.685 

 
(0.689) (0.509) (0.410) (0.472)  

% black + % Hispanic 0.421 0.602 0.472 -0.212 0.487 

 
(0.616) (0.450) (0.336) (0.555)  
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 High School Marijuana Use 

% College Educated Mother -0.330 -0.180 -0.565 -0.052 0.409 

 
(0.459) (0.372) (0.367) (0.304)  

% black + % Hispanic 1.018** 0.292 0.214 0.317 0.698 

 
(0.474) (0.340) (0.382) (0.348)  

 Post High School Marijuana Use 

% College Educated Mother -0.443 -0.837*** -0.371 -0.049 0.831 

 
(0.508) (0.297) (0.506) (0.422)  

% black + % Hispanic 0.542 -0.106 0.129 0.562 0.338 

 
(0.624) (0.417) (0.400) (0.840)  

 High School Binge Drinking 
% College Educated Mother -0.466 -0.619* 0.437 0.237 1.130 

 
(0.567) (0.338) (0.660) (0.493)  

% black + % Hispanic 0.416 0.019 -0.032 -0.897 0.774 

 
(0.469) (0.609) (0.299) (0.727)  

 Post High School Binge Drinking 
% College Educated Mother -0.157 -0.329 0.164 0.589 0.898 

 
(0.634) (0.330) (0.432) (0.482)  

% black + % Hispanic -1.368** -0.580 -0.008 -1.105* 1.220 

  
(0.669) (0.403) (0.448) (0.655)   

Each figure reported is a coefficient from a separate regression.  All regressions include controls 
for cohort fixed effects, school fixed effects, school trends, and the extended set of individual 
student and additional family covariates.  Figures in parentheses are standard errors robust to 
clustering at the school level. F-statistic is based on a Wald test with three degrees of freedom 
for the joint hypotheses that coefficients obtained using each sample are equal.  * designates 
significantly different from zero at 0.10 or an F statistic greater than 2.084, ** significantly 
different than zero at 0.05 level or an F of 2.605, and *** significantly different from zero at 0.01 
level or an F of 3.782. 
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Table 9:  Estimated impacts of cohort composition o n student outcomes, by gender 

 Males Females t-statistic Males Females t-statistic 

 Drop Out of High School Attend College 
% College Educated Mother -0.487*** -0.166 1.42 0.811*** 0.051 1.67* 

 (0.174) (0.144)  (0.265) (0.370)  

% black + % Hispanic 0.118 -0.056 0.56 -0.282 0.396 1.38 

 (0.252) (0.185)  (0.404) (0.282)  

 Post High School Test Score Idleness Post High School 
% College Educated Mother 0.118 0.200 0.14 -0.202 0.301 1.93* 

 (0.455) (0.337)  (0.173) (0.195)  

% black + % Hispanic 0.276 0.550 0.45 0.505** -0.165 2.09** 

 (0.355) (0.491)  (0.224) (0.230)  

 High School Smoking Post High School Smoking 
% College Educated Mother -0.392 -0.480 0.20 -0.245 0.553** 1.79* 

 (0.295) (0.324)  (0.343) (0.252)  

% black + % Hispanic 0.007 0.107 0.18 0.182 0.194 0.03 

 (0.383) (0.389)  (0.374) (0.284)  

 High School Marijuana Use Post High School Marijuana Use 
% College Educated Mother -0.249 -0.303 0.17 -0.629** -0.227 1.25 

 (0.250) (0.202)  (0.248) (0.205)  

% black + % Hispanic 0.505* 0.301 0.55 0.264 0.089 0.44 

 (0.289) (0.228)  (0.264) (0.292)  

 High School Binge Drinking Post High School Binge Drinking 
% College Educated Mother 0.064 -0.387 1.27 -0.261 -0.000 0.66 

 (0.259) (0.243)  (0.292) (0.268)  

% black + % Hispanic 0.266 0.052 0.48 -0.690** -0.788* 0.18 

  (0.332) (0.220)  (0.291) (0.462)  

All regressions include controls for cohort fixed effects, school fixed effects, and school trends as well as 
the individual student covariates related to the cohort variables.  Figures in parentheses are standard 
errors robust to clustering at the school level.  t-statistics are for the difference between parameter 
estimates for males and females.  * designates significantly different from zero at 0.10, ** significantly 
different than zero at 0.05 level, and *** significantly different from zero at 0.01 level.  
 


