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Abstract
This paper proposes asymptotically point optimal tests forparameter instabil-

ity under the feasible circumstance that the researcher haslittle information about
the unstable parameter process and the error distribution.The shape of the un-
stable parameter process is not identified but is asymptotically described by the
Winer process, which is weak enough to cover a wide range of structural breaks
and time varying parameter processes. I first derive a test under known error dis-
tribution, and show that the test is asymptotically equivalent to likelihood ratio
tests for correctly identified unstable parameter processes under suitable condi-
tions. The test is then extended to semiparametric models inwhich the underlying
distribution is unknown but treated as an infinite dimensional nuisance parameter.
An adaptive test is shown to be attainable without further restrictive conditions
on the error distribution, which implies that the semiparametric power envelope is
asymptotically equivalent to that of parametric models.
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1. Introduction

The instability of economic relationships is a common problem and is of central im-

portance in econometric modeling. As a result, there has been substantial literature

on testing whether parameters in a model are unstable. (See the review paper by

Perron (2006).) Two identification problems occur in constructing an efficient test.

The first is that there exists a large variety of ways for parameter to be nonconstant

such as various types of structural breaks and random time varying parameters, de-

spite economic theory provides little knowledge about which specific unstable process

to consider. Accordingly, a test developed for a specific unstable parameter process

generally has risk of misspecifying alternative hypothesis. Attempts to resolve the

problem are done by Nyblom (1989), and Elliott and Müller (2006), which unify both

structural breaks and random parameters in a single framework. However, Nyblom

(1989)’s test is locally most powerful only under the counterfactual assumption that

the initial point of the parameter is known. Elliott and Müller (2006)’s test is optimal

only in linear regression models with Gaussian error distribution. Consequently, it is

substantial to construct an optiaml tests in a more general setup.

Another problem of these tests is that their optimalities are maintained only when

the underlying distribution is known, although it is more likely that the error distri-

bution is incorrectly specified in many data set. The optimal tests work through this

problem by providing distribution-free size property to the test, but at the expense of

losing efficiency. Unfortunately, no work has been devoted to discovering an efficient

parameter instability test under unknown error distribution.

The main contribution of this paper is to propose asymptotically optimal tests under

the feasible assumption that both the unstable parameter process and the underlying

distribution are not identified. I first derive a test under known error distribution,

which is shown to be asymptotically equivalent to likelihood ratio tests for correctly

identified unstable parameter processes under suitable conditions. The conditions are

weak enough to cover a broad set of local unstable processes such as various types of

structural breaks and permanently time varying random parameter processes as long

as they are asymptotically described by the Wiener processes.
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The test is then extended to semiparametric models in which the underlying distri-

bution is unknown but treated as an unknown infinite dimensional nuisance parame-

ter. The suggested test is derived based on the kernel estimate of the score function.

The semiparametric test is adaptive under mild conditions in that the power is asymp-

totically equivalent to the parametric power envelope. Consequently, there is no loss

of asymptotic power by not knowing the true underlying distribution.

Since the seminal work by Bickel (1982), numerous authors have employed adap-

tation in testing problems. Choi, Hall, and Schick (1996) show that the test based

on adaptive estimation is also efficient. Banerjee (2005), and Murphy and der Vaart

(1997) examine the property of likelihood ratio tests in semiparametric models. Beng-

habrit and Hallin (1998), and Hallin and Jurečová (1999) use adaptivity to derive

asymptotically efficient tests in AR model. Shin and So (1999), and Ling (2003) use

it for unit root tests.

Most research has focused on standard testing problems in which the locally asymp-

totic normal (LAN) property of the class of likelihood is involved. However, the LAN

property does not hold in this setup where the parameter of interest is permanently

time varying. Hence, the inference based on LAN is not applicable straightforward

to this set-up.1 Recent research extends the adaptation to such nonstandard settings

as locally asymptotic quadratic (LAQ) likelihood ratio, in which the quadratic term

of the local approximation stays random even in the limit. (See Jeganathan (1995),

and Ling and McAleer (2003) for examples.) Jansson (2008) extends the LAQ to a

unit root testing problem.

The testing problem in this paper is different from typical LAQ because the as-

ymptotic randomness does not come from the Fisher information matrix but from

the random parameter process. The model can be regarded as a weighted average of

LAN where the weight function is determined by the measure of the unstable param-

eter process. One of the main finding in this paper is that this non-standard testing

1Note that LAN holds even in random coefficients model, if the time variation of the coefficient
is temporary. Akharif and Hallin (2003) shows LAN in random coefficient autoregressive (RCAR)
models in which the autoregressive parameters are i.i.d. random sequences. However, it does not
apply to the setup in this paper because the parameter change is permanent. The time variation
of the parameter in this paper can be described as the sum of i.i.d. random process, not as i.i.d.
process itself such as RCAR.
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problem is still amenable to adaptation by using extant semiparametric methods de-

veloped for standard problems. In this sense, this paper provides an example of the

extent to which one can get adaptive tests in models far from LAN.

This paper is organized as follows: Section 2 introduces the model and the hy-

pothesis to be tested. Section 3 studies efficient tests under the assumption that the

underlying distribution is known. Section 4 extends the result of section to semipara-

metric models. Section 5 performs Monte Carlo studies. And Section 6 concludes.

2. The Model and the Breaking Processes

This section defines the model and the test hypothesis. Consider a stochastic

process (y,X) ≡ Z ≡ {Zt : Ω → Rr+1, r ∈ N, t = 1, ..., T} defined on a complete

probability space (Ω, F, P ) where F = {Ft, t = 1, ..., T} and Ft denotes the smallest

σ-algebra that Zt is adapted to, i.e. Ft ≡ σ(Z1, ..., Zt). yt is an endogenous variable

with conditional distribution function Ft(y|Ft−1, Xt) = Pr(Yt ≤ yt|Ft−1, Xt) and the

corresponding conditional density function f(yt|Ft−1, Xt), which is measurable both

under the null and the alternative hypotheses. Xt is a vector of explanatory variables

with the conditional density fX(xt|Ft−1). Consider the model

(2.1) εt =
1

σ(Xt, θT,t, θ0)

(
yt −m(Xt, θT,t, θ

0)
)

where m(·) is a measurable function which is continuous and differentiable with re-

spect to (θT,t, θ
0). m(·) contains various types of linear and nonlinear times series

models but does not consider the nonparametric or partially nonparametric model

because the parameters (θT,t, θ
0) are finite dimensional. εt is an error term with a mo-

ment restriction and a continuous density g(·). Accordingly, the conditional density

of yt is ft(y) = (1/σ(Xt, θT,t, θ
0))g((yt−m(Xt, θT,t, θ

0))/σ(Xt, θT,t, θ
0)). θT,t ∈ Θ ⊆ Rp

is the vector of the parameter of interest, and θ0 ∈ Θ ⊆ Rs is the vector of nuisance

parameters which corresponds to θT,t in the null hypothesis. The objective of this

paper is to test whether the unstable parameter process {θT,t} presents in the model.



4 DONG JIN LEE

Consequently, the parameter vector under the null hypothesis of stability is (θ0), while

it is (θ0 + θT,t) under the alternative hypothesis.2

The alternative hypothesis is not defined in a single form because there exist a

large variety of ways in which θT,t is not stable. Any specific assumption on unstable

θT,t would lead to a different alternative hypothesis resulting in a different testing

problem. Existing instability tests can be categorized into two big streams based on

types of unstable processes: One is the test of structural breaks, and the other is the

test of time varying parameters. Structural break tests consider a model in which

θT,t permanently shift N times in a sample period. For a single break example, the

parameter vector equals (θ0) for t = 1, . . . , τ and (θ0 + θ̄) for t = τ + 1, . . . , T . Time

varying parameter tests posit random process of θT,t. Even within time-varying pa-

rameter approaches there are many possible alternatives based on the distributional

properties of θT,t. However, economic theory generally does not provide enough in-

formation to pick a specific alternative process. Consequently, an alternative process

are often arbitrarily chosen depending on what the researcher has in mind.

Elliott and Müller (2006), and Nyblom (1989) get around the problem by providing

only minimal identifying conditions on the unstable process. Nyblom (1989) assumes

that the unstable processes is martingale. Elliott and Müller (2006) consider any

processes which are asymptotically described by the Wiener processes. Their idea is

that the seemingly different approaches of structural breaks and time varying param-

eters are in fact not distinctive. Both are considered as specific forms of a unified

framework. For example, if we let ∆θT,t have a continuous distribution with prob-

ability p and equal zero with probability (1 − p), then this time varying parameter

process is reduced to a multiple structural break with (T · p) expected breaks. On

the other hand, it becomes a random walk if ∆θT,t is iid normal. However, Nyblom

(1989)’s test is locally most powerful only under the counterfactual assumption that

θ0 is known, and Elliott and Müller (2006)’s optimality is restricted only to linear

regression models with Gaussian error distribution. One of the main finding in this

paper is that Elliott and Müller (2006)’s optimality can be extended to more general

2Additional nuisance parameters can be added into the model without difficulty, which is the case
of partial structural breaks/time varying parameters. It is just a simple application of parametric
submodel case which is discussed in section 4.
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circumstance with nonlinear function and non Gaussian error distribution. Specifi-

cally, I define the alternative hypothesis as the unstable parameter processes {θT,t}
that satisfy the following condition.

Condition 1. i) {T∆θT,t} is uniform mixing with mixing coefficient of size -r/(2r-

2) or strong mixing of size -r/(r-2), r>2

ii) E[∆θT,t] = 0 and E[|T∆θT,t,i|r] < K < ∞ for all t=1,. . . ,T, and i=1,. . . ,k.

iii) {T∆θT,t} is globally covariance stationary with nonsingular long-run covariance

matrix, Ω

Condition 1 is equivalent to the conditions for the heterogeneous mixing functional

central limit theorem (FCLT) in White (2001). Admitting both heteroscedasticity

and dependency makes Condition 1 capture many possible persistent breaking pro-

cesses such as multiple breaks, clustered breaks, regularly occurring breaks, or smooth

changing parameters.(See Elliott and Müller (2006) for details.) Any other conditions

for FCLT could replace them.

Condition 1 is not equivalent to Nyblom (1989)’s martingale process, but it contain

martingales if it satisfies conditions for FCLT (see White (2001) theorem 7.19. ) The

condition is never overlapped with Akharif and Hallin (2003)’s random coefficient

process in that Akharif and Hallin (2003) focus on iid process while Condition 1

includes the sum of iid process, not iid process itself. In addition, Akharif and Hallin

(2003) considers one-sided test, although this paper derives a point optimal test for

a specific value of Ω, which will be discussed in the next section.

Condition 1 also assumes that the alternative hypothesis is local to the null. Since√
TθT,t = 1√

T

∑t
s=1 T∆θT,s is bounded in probability, Condition 1 implicitly consid-

ered
√

T− neighborhood of the null hypothesis.

In addition to Condition 1, I normalize {θT,t} so that the average value of the

unstable process is always the same as that under the stable model. It implies that

the initial value of {θT,t} satisfies 1
T

∑T
t=1 θT,t = 0 Consequently, the test in this set-

up detects permanent variation in the parameter, rather than differences between the

average value of the parameters.

This normalization is also regarded as providing the least favorable hypothesis to

construct an efficient test under unknown θ0. The nuisance parameter θ0 is unknown

in practice and should be replaced by an estimator, which generally causes the loss

of power. One way to deal with the problem is to derive a power envelope under

the least favorable hypothesis and show that the power envelope is asymptotically

sharp. (See Choi, Hall, and Schick (1996) for detailed concept of the least favorable
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hypothesis.) Theorem 2 in the next section shows that this normalization plays the

role of it.

It is implicit in the formulation that (yt, Xt), θT,t, and their distributions may

depend on T, but I suppress the dependency for the purpose of notational convenience.

In order to construct the likelihood ratio, we need additional assumptions on {εt} and

{Xt} as follows.

Condition 2. i) εt is iid and conditionally independent of Xt given Ft−1. The error

distribution {g(εt)} does not depend on θt in the null hypothesis.

ii) θ0 is an interior point of Θ.

iii) Xt has conditional distribution fX(Xt|=t−1) with respect to some σ-finite mea-

sures, {fX(Xt|=t−1)} does not depend on parameters θ0 and θt for all t = 1, . . . , T .

iv) Under H0, {Xt} are mixing with either φ of size -r/2(r-1), r =2 or α of size

-r/(r-2), r> 2.

v) Under H0, E [|Xt,i|r] < ∆ < ∞ for all t = 1, . . . , T and i = 1, . . . , k.

T−1
∑[sT ]

t=1 ṁ(Xt)ṁ(Xt)
′ → sMx uniformly in s where ṁ(·) is the 1st derivative

of m(·) with respect to θt, and Mx = E[ṁ(Xt)ṁ(Xt)
′]. T−1

∑T
t=1 ṁ(Xt)ṁ(Xt)

′

is uniformly positive definite.

The iid condition in Condition 2 i) is crucial in order to obtain optimality. However,

it can be extended to the non iid case in which some finitely parameterized trans-

formation of the data leads back to the iid model such as (non)stationary ARMA

(Akharif and Hallin (2003)), GARCH (Drost and Klaassen (1997), Ling and McAleer

(2003)), and quantile ARCH (Koenker and Zhao (1996)) Models. Moreover, the sug-

gested test would still be correct asymptotic size even though εt is not iid, if the

partial sum of the score function satisfies some asymptotic properties. Condition 2

ii) is the standard maximum likelihood condition. It is also required for the null dis-

tribution to be contiguous to the alternative distribution, which will be used to prove

the optimality of the suggested tests in the following sections. Condition 2 iii) implies

that {Xt} is weakly exogenous in the sense of Engle, Hendry, and Richard (1983). In

such circumstance, fX(·) need not be known in order for one to construct a likelihood

ratio function. Condition 2 iv) and v) are the condition for the heterogeneous CLT

for {Xt}.

3. Asymptotically Optimal Tests in Parametric Models

3.1. The Optimal Test Function. This section derives an asymptotically efficient

test for condition 1 unstable processes under the assumption that the underlying



OPTIMAL PARAMETER INSTABILITY TESTS 7

distribution is known. This paper defines the optimal test based on Neyman-Pearson

lemma so that the likelihood ratio function or its equivalents are defined to be optimal.

The likelihood ratio in this set-up depends on two unknown density functions; the

densities of {θt}, and {εt}. This section focuses on the first part by assuming that the

latter density is known, and the latter part will be considered in the next section. The

test function in this section would not only provide a benchmark for tests under more

realistic distributional assumptions by providing the upper bound of their asymptotic

power envelopes. It is also worthwhile itself in the sense that many researches are

likely to use parametric model by choosing a specific family of error distributions for

various reasons.

I first assume that the global covariance matrix Ω is known so that the test hy-

pothesis would be interpreted as H0 : Ω = 0 against the alternative that Ω would

be a specific known value. Consequently, the suggested test is not a uniformly most

powerful test, but a point optimal test which is optimal for a specific value of Ω. The

case of unknown Ω would be considered later in this section. Under Condition 1 and

2, the density of the data under H0 is

(3.1) f0(y, X) =
T∏

t=1

f(yt|θ0, Xt,=t−1)fX(Xt|=t−1)

The density under the alternative hypothesis is

(3.2) f1(y, X) =

∫ T∏
t=1

f(yt|θ0, θt, Xt,=t−1)fX(Xt|=t−1)dνθ

where νθ is the measure of θ = (θ′1, . . . , θ
′
T )′. If νθ is known, the Neymann-Pearson

Lemma implies that rejecting H0 for a large value of the likelihood ratio statistic,

defined as

(3.3) LRT =

∫ T∏
t=1

f(yt|θt, Xt,=t−1)

f(yt|Xt,=t−1)
dνθ

has the best power against the alternative distribution (3.2). Most optimal tests for

parameter instability are manipulations of (3.3) that make the test feasible and easy

to compute. Since LRT depends on f(y|·) and νθ, the different types of optimal test

statistics might come from the choice of νθ and f(y|·).

The likelihood ratio (3.3) is infeasible to use in practice because νθ is unknown. Even

though νθ is specified, it has an integral in its form which makes the computation
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too complicated to be used in practice. The method proposed in this section resolves

the problem by suggesting another easy-to-compute test function, B̂(Ω), which is

asymptotically equivalent to LRT , but does not depend on νθ other than Ω.

In order to define the feasible optimal test function, I introduce some notations and

definitions. Let ˙̀ = ( ˙̀′
1, . . . ,

˙̀′
T )′ be the first derivative of the log likelihood function

with respect to the parameter of interst, and Jθ = E[ ˙̀t ˙̀′
t]. And let Ω∗ = J

1
2
θ ΩJ

1
2
θ . I

decompose Ω∗ into the orthonormal matrix of its eigenvectors, P, and the diagonal

matrix of the eigenvalues, Λ = diag(a2
1, . . . , a

2
k), such that PΛP ′ = Ω∗ and ai > 0,∀i.

Let IT be the T × T identity matrix, and e be the T × 1 vector of ones. The first

derivative normalized to have unit variance and zero covariance can be written as
˙̀∗(θ) = (IT ⊗ P ′J−1/2

θ ) ˙̀(θ) or ˙̀∗
t (θ) = P ′J−1/2

θ
˙̀
t(θ). Furthermore, define ˙̀∗

i,t(·) be the

ith element of ˙̀∗
t (·) and ζi(·) be the vector of the partial sum of ˙̀∗

i,t(·), i.e. jth element

of ζi(·) is
∑j

t=1
˙̀∗
i,t(·). The test statistic I suggest is

(3.4) B̂(Ω) =
k∑

i=1

ζ ′i(θ̂, Ĵθ̂)
′
[

a2
i

T 2
IT − FMeF

′
]−1

ζi(θ̂, Ĵθ̂)

where Me = IT − 1
T
ee′ , F =




1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 . . . . . . 1




, and θ̂ and Ĵθ̂ are the maximum

likelihood estimators under H0. B̂(Ω) does not have the integral so that the compu-

tation is tractable. Note that B̂(Ω) depends on the distribution of {θt} only through

the eigenvalues of Ω. Consequently, proving the optimality of B̂(Ω) implies that the

the knowledge of the unstable process other than Ω is asymptotically irrelevant under

the suggested conditions.

I now present the outline of the proof of the optimality of B̂(Ω). The proof requires

several steps. First, I focus on the integrand of LRT , denoted by LT , to suggest an

asymptotically equivalent formula. At this time I assume that θ0 is known. Second,

I give an alternative formula which weakly converges to LT . A test function B(Ω) is

then provided based on the alternative of LT . Third, I show that the weak convergency

in the second step is sufficient for the asymptotic equivalence of LRT and B(Ω) both

under H0 and H1. Finally, I replace θ0 by its maximum likelihood estimator to make

B̂(Ω) and show that B̂(Ω) converges in probability to B(Ω).
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3.2. Asymptotic Optimality of the Test Statistic. First, I simplify the integrand

of LRT . Since the integrand can be regarded as the likelihood ratio for specific values

of alternative parameters, θ, a simple and powerful method for simplification is to

use the Taylor expansion of the logarithm of the likelihood. However, it can be

made rigorous under moment or continuity conditions on the 2nd derivative of the

log likelihood that many distributions do not satisfy. Consequently, I impose an

alternative single condition that only involves a first derivative, i.e. the square roots

of f(·) correspond to unit vectors in space of square integrable functions, as follows.

Condition 3. Let ξt(yt|θ0, θt) be the square root of the density, f(yt|·). Under H0,

1) There exists a k× 1 random vector ξ̇θ
t (·|θ0, θt) such that E‖ξ̇θ

t (·|θ0, θt)‖2 < ∞, and

(3.5) E




[(
ξt(·|θ0, h)

ξt(·|θ0, 0)
− 1

)
− h′

ξ̇θ
t (·|θ0, 0)

ξt(·|θ0, 0)

]2

 = o(‖Ωt‖) as Ωt −→ 0, ∀t ≤ T

where Ωt = E[θtθ
′
t].

3

2) Jθ(s) = 1
T

∑[sT ]
t=1 4

ξ̇θ
t (·|θ0,0)ξ̇θ

t (·|θ0,0)′

ξt(·|θ0,0)2
−→ sJθ

for any s ∈ [0, 1] and Jθ(1) is positive definite for all t.

The derivative ξ̇t(·) is called Hellinger derivative, and the score function ˙̀θ =

( ˙̀θ
1(θ

0), . . . , ˙̀θ
T (θ0)), is then defined as ˙̀θ

t (θ
0) = 2

ξ̇θ
t (·|θ0,0)

ξt(·|θ0,0)
. Part (1) of Condition 3,

called differentiability in quadratic mean (DQM), is weak enough to be satisfied by

a wide variety of densities and strong enough to deliver the approximation similar to

the Taylor expansion. Local asymptotic approximation of a likelihood ratio statistic

under Condition 3 is widely developed in standard testing problems (LeCam (1970))

and nonstandard problems (Jeganathan (1995), Ling and McAleer (2003), and Jans-

son (2008)). The set up in this paper is different in that the square of {θt} stays

random even in the large sample. The following lemma shows that the similar qua-

dratic approximation is possible in this set up.

Lemma 1. Let ˙̀θ = ( ˙̀θ
1(θ

0)′, . . . , ˙̀θ
T (θ0)′)′ be the score function based on the Hellinger

derivative and θ = (θ′1, . . . , θ
′
T )′. Under Condition 1 to 3,

(3.6) LT = (1 + op(1))exp

[
˙̀θ′(Me ⊗ Ik)θ − 1

2
θ′(Me ⊗ Jθ)θ

]

3(3.5) is basically a rephrase of traditional DQM with respect to Ωt
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This approximation can be considered as a locally asymptotic quadratic (LAQ)

approximation defined by Jeganathan (1995) in the sense that the quadratic term is

random because of the random {θt}, and the null and the alternative distribution is

contiguous, which is shown in Theorem 1). But it is different from standard concept

of LAQ because the information function Jθ is nonrandom. Accordingly, I denote

(3.6) by LAQ∗.

As a next step, I deal with the main problem that νθ is unknown. I replace {θt} by

another random sequence {θ̃t} and show that LT based on {θ̃t} weakly converges to

the same limit as that of LT of Condition 1 {θt}. The random vector θ̃ = (θ̃′1, . . . , θ̃
′
T )′

is defined as a multivariate random walk process, i.e. T∆θ̃t ∼ iid N(0, Ω). (See

Lemma 6 in the appendix.) Using Lemma 1, it can be shown that, if θ = θ̃, LRT is

asymptotically equivalent to

(3.7) L̃RT =

∫
exp

[
˙̀′(Me ⊗ Ik)θ̃ − 1

2
θ̃′(Me ⊗ Jθ)θ̃

]
dνθ̃

The advantage of replacing {θt} by {θ̃t} is that the integral is easily calculated

because both the integrand L̃T and dνθ̃ are of exponential quadratic form. Through

some matrix manipulations, we get the following lemma.

Lemma 2. Let B(Ω) be defined as (3.9) with replacing ζi with ζ∗i =
∑j

t=1[
˙̀∗
i,t(θ

0)−
1
T

∑T
τ=1

˙̀∗
i,τ (θ

0)]

B(Ω) =
1

2
lnL̃RT + c

where c = −∑k
i=1 log

(
2ai exp[−ai]
1−exp[−2ai]

)
is constant.

Lemma 2 implies that B(Ω) is asymptotically optimal if |L̃RT −LRT | converges to

zero in probability both under H0 and H1. Note that the integrands of LRT and L̃RT

weakly converge to the same limit. Theorem 1 shows that the weak convergency is

enough for the L2 convergence in this set up, using the fact that a weakly converging

uniformly bounded sequence L1 converges.

Let φT (Z|Ω, θ0) be a critical function for any of Condition 1 processes. That is,

φT (Z|Ω, θ0) is a [0, 1] valued function determined by Z. I consider an asymptotically

α-significant test, i.e. limT→∞
∫

φT (Z|Ω, θ0)f0(Z|θ0) dZ = α. The power function

of the test is defined as
∫

φT (Z|Ω, θ0)f1(Z|θ0)dZ. The following theorem gives the

optimality of B(Ω).
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Theorem 1. Let ψT (Z|Ω) be a critical function for B(Ω) and Ψ(Ω) be the asymp-

totic power function of ψT (Z|Ω), i.e. Ψ(Ω) = limT→∞
∫

ψT (Z|Ω)f1(Z|θ0)dZ. Under

Conditions 1 to 3,

limT→∞

∫
φT (Z|Ω)f1(Z|θ0)dZ ≤ Ψ(Ω)

Theorem 1 implies that the powers of optimal tests do not depend on the particular

distributional form of θt other than its global covariance matrix, Ω. It leads to the

following implication: The knowledge of the exact distribution of the unstable process

is asymptotically inappropriate for conducting an optimal test, as long as the process

satisfies Condition 1. As T increases, there is little loss of power by using B(Ω) rather

than tailored LRT .

As a next step, I replace θ0 with its estimator θ̂ in order to make B(Ω) feasible.

It is well known that a test generally loses its power if the true nuisance parameters

are replaced by their estimators. An interesting finding, however, in this paper is

that B(Ω) does not lose any asymptotic power even though the estimators θ̂, and

Ĵ are plugged into B(Ω) as long as the estimator satisfies the following regularity

conditions.

Condition 4. Under the null hypothesis,

(1) T−1/2
∑[sT ]

t=1
˙̀
t(θ

0 + T−1/2δ0) = T−1/2
∑[sT ]

t=1
˙̀
t(θ

0)− sK(θ0)δ0 + op(1)

(2)
√

T (θ̂ − θ0) = Op(1) and Ĵθ = Jθ + op(1)

uniformly for s ∈ (0, 1), and any nonrandom K(θ0), where ‖δ0‖ < M < ∞ .

The following theorem shows that the power envelope driven by B(Ω) is sharp, i.e.

the power envelope can be achieved by a feasible test B̂(Ω).

Theorem 2. Let ψ̂T (Z|Ω) be a critical function for B̂(Ω). Under Condition 1 to 4,

B̂(Ω) = B(Ω) + op(1) under H0 and H1
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Theorem 2 is better understood by considering the least favorable hypothesis. Sup-

pose, instead of knowing the exact value of θ0, we allow for the local perturba-

tion of θ0, i.e. the nuisance parameter under the alternative is now defined as

θ0 + δ0, where δ0 = Op(
1√
T
). This is the standard setup under unknown nui-

sance parameter of which the
√

T−consistent estimators exist, and is analogous to

the case of parametric submodels discussed in the next section. Consider a class

of tests that have limiting size α for all values at
√

T−neighborhood of θ0, i.e.

limT→∞
∫

φ̂T (Z|Ω)f0(Z|θ0 + 1√
T
d0)dZ = α for every d0 where ‖d0‖ < M < ∞, and

φ̂T (Z|Ω) is the critical function of the test. Then the following is the intuition: First,

Consider an arbitrary δ0. The power envelope of the test under the specified δ0 will

be greater than that of any asymptotically similar-size test without the restriction

because the information for statistical inference decreases if one enlarges the model.

Since this argument holds for all types of alternative δ0s, the infimum of the power

envelopes over the class of all alternative δ0s gives an upper bound of the power

envelope of the test under unknown nuisance parameters.

It is well known that the infimum can be achieved geometrically in the standard

testing by projecting the score function of θt, ˙̀ onto the linear subspace V generated

by all possible score function for the nuisance parameter, ˙̀0, which implies that the per-

turbation of θ0 lies on the orthogonal complement of V, i.e. δ0 = −E[ ˙̀0 ˙̀′
0]
−1E[ ˙̀0 ˙̀′]θ

in the local area. The normalization in this paper can be viewed as the special case of

δ0 where δ0 = − 1
T

∑T
t=1 θT,t, which can be shown to be equivalent to the orthogonality

condition above. Theorem 2 implies that the orthogonality still provides the infimum

in such nonstandard testing problem as in this set-up and the power envelope in the

infimum is sharp. The asymptotic null distribution of B̂(Ω) is given in the following

lemma.

Lemma 3. Under Condition 1 to 4, the asymptotic null distribution of B̂(Ω) is

B̂(Ω) −→
k∑

i=1

[aiJi(1)2 + a2
i

∫ 1

0

Ji(s)
2ds +

2ai

1− e−2ai
{e−aiJi(1) + ai

∫ 1

0

e−aisJi(s)ds}2 − {Ji(1) + ai

∫
J i(s)ds}2](3.8)

where Ji(s) = Wi(s)− sWi(1)− ∫ s

0
eλ−s[Wi(λ)−λWi(1)]dλ, and Wi is the ith element

of the independent k × 1 standard Wiener process W .
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Figure 1. Asymptotic power loss of the Point Optimal Test B̂(Ω̂)
note) Powers are plotted from 20,000 draws using 2,000 standard normal steps to approximate
Wiener Processes. Power losses are calculated as the difference between Ψ(Ω̂) and Ψ(Ω). The

average size of the breaks are measured by the eigenvalue of Ω.

Note that B̂(Ω) is derived based on the assumption that Ω is known, which is

unobservable in practice. Consequently, there is no uniformly most powerful test in

this framework. Instead, if we focus on one point in the alternative parameter space,

we can find a most powerful test in the neighborhood of the predetermined point.

Such a test is called a point optimal test. (see King (1988), and Nyblom (1986) for

details.) Following this idea, I choose Ω̂ such that J
1/2
θ Ω̂J

1/2
θ = c2Ik where c = 10 as

Elliott and Müller (2006). Replacing with Ω̂, the point optimal test statistic, B̂(Ω̂),

is given by

(3.9) B̂(Ω̂) =
k∑

i=1

ζ ′i(θ̂, Ĵθ)
′{ c2

T 2
IT − FMeF

′}−1ζi(θ̂, Ĵθ)

Selected asymptotic upper tail percentiles of B̂(Ω̂) are calculated by Elliott and

Müller (2006). In addition to the simplicity, using C also has merit because it enables

B̂(Ω̂) to be invariant with respect to re-parameterizations. Since ˙̀∗
i (θ̂) does not change

to any parameterization and {IT − 100
T 2 FMeF

′} is constant, we immediately observe

that B̂(Ω̂) is invariant to reparameterization. The invariance may be reinterpreted

as meaning that the direction of breaks under the alternative should not affect the

outcome of the test. Figure 1 shows the loss of asymptotic power by using Ω̂ rather

than the true Ω. For both k=1, and k=2, the power loss does not exceed 5 % p in

any levels of Jθ which would imply that the unknown Ω is a minor problem.
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4. Asymptotically Optimal Tests in Semiparametric Models

The optimal test B(Ω) is based on the counterfactual assumption that f(yt|·), or

equivalently g(εt), is correctly specified. This section extends the previous result by

investigating asymptotically efficient tests under unknown g(·) in which g(·) is treated

as an unknown infinite-dimensional nuisance parameter. This relaxation modifies the

model in the previous section into the semiparametric one with a real valued para-

metric component (θ0′ , θ′1, . . . , θ
′
T )′ ∈ Rk(T+1), and a single nonparametric component

g ∈ G which denotes the unknown distribution of the error term, where G is the

collection of all probability measures on the sample space. I first consider the case

where g is known to belong to a specific parametric family of distribution indexed

by a finite dimensional parameter η ∈ Υ, and suggest conditions under which the

asymptotic power envelope is equivalent to Ψ(Ω). The model is then extended to

semiparametric ones in which η is infinite dimensional.

4.1. The Optimal Test with A Finite Dimensional Nuisance Parameter.

The true set of conditional densities of yt is characterized as a parametric family

Pη = {Ft(y|θ, θ0, η) : θ ∈ RkT , θ0 ∈ Rk, η ∈ Rq} with dominating measure µ and

corresponding densities ft(y|η) = dFt(y|η)/dy such that g(εt) = σtf(yt|η). The model

with this parametrization is called a parametric submodel.

The parametric submodel has its own relevancy to empirical analysis as well as

provides a inference on semiparametric analysis. A familiar case is testing partial

structural breaks in which θ are suspected to have structural breaks while η remain

constant. Another case occurs when testing stability of the coefficient of a linear

regression model, in which ε is from a generalized family of distribution, such as

an asymmetric exponential family, where unknown η determines the shape of the

distribution.

In this section, I confine my attention to contiguous alternatives for η. Define a√
T neighborhood of the true nuisance parameter η0 as η = η0 + 1√

T
h for bounded

h ∈ Hθ where Hθ is a Hilbert space. In order to ensure that the asymptotic power

envelope covers the unknown perturbation of the nuisance parameter h, we need an

additional restriction to the test. One widespread way is to confine asymptotically

similar tests φT (Z) which have the invariant asymptotic size regardless of h, i.e. for a
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fixed α > 0, limT→∞
∫

φT (Z)f0(Z|h)dZ ≤ α for every h. This requirement is crucial

and plays the role of restriction to regular estimates in estimation theory. (see Hall

and Mathiason (1990) for details.) Following the way I analyzed the previous section,

my investigation is based on the LAQ∗ of the integrand. The likelihood ratio function

associated with Pη is

(4.1) LRS
T =

∫ T∏
t=1

f(yt|θ0 + θt, η0 + 1√
T
h)

f(yt|θ0, η0)
dνθ

Analogous to the parametric model case, we need a differentiability condition for

f(·|η) as follows.

Condition 3’) Let ξS
t (·|θt, η) be the square root of the error density, f(yt|θt, η) and

b be the (k + 1)× 1 vector. Define θη
t = (θ′t, η)′, and θ0,η = (0′, η0)

′. Under H0,

1) There exists a (k + 1) × 1 random vector ξ̇S
t (·|θη

t ) =
(
ξ̇θ
t
′, ξ̇η

t
′,

)′
such that

Eθ‖ξ̇S
t (·|θη

t )‖2 < ∞ and

E




[(
ξS
t (·|θ0,η+b)

ξS(·|θ0,η)
− 1

)
− b′

ξ̇S
t (·|θ0,η)

ξS
t (·|θ0,η)

]2

 = o(‖η‖+ ‖Ωt‖) as both η and Ωt −→ 0

2) JS(s) = 1
T

∑[sT ]
t=1 4

ξ̇S
t (·|θη

t )ξ̇S
t (·|θt)′

ξS
t (·|θη

t )2
−→ sJS

for some positive definite nonrandom (k + q) × (k + q) matrix function JS and for

any s ∈ [0, 1] and JS(1) is positive definite for all t

{ξ̇S
t (·, θη

t )} is still a function of θ0 but I suppress the dependency for the purpose

of convenience. Lemma 4 gives LAQ∗ of the integrand in LRS
T . For the simplicity, I

assume that h is scalar.

Lemma 4. Let’s define ˙̀η
t = 2

ξ̇η
t (θ0,η)

ξS
t (θ0,η)

, and Jη is the lower right q × q part of JS.

Under Condition 1, 2 and 3’, the integrand of (4.1), denoted by LS
T , is equivalent to

(4.2)

LS
T = (1 + op(1)) exp

[
˙̀θ′(Me ⊗ Ik)θ − 1

2
θ′(Me ⊗ Jθ)θ

]
· exp

[
h√
T

T∑
t=1

˙̀η
t −

h2

2
Jη

]
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Using (4.2), it can be shown that LRS
T is asymptotically equivalent to

(4.3) L̃R
S

T =

∫
exp

[
˙̀θ′(Me ⊗ Ik)θ − 1

2
θ′(Me ⊗ Jθ)θ

]
dνθ · exp

[
h√
T

T∑
t=1

˙̀η
t −

h2

2
Jη

]

Note that the integral part in (4.3) is the same as LRT except ˙̀θ depends on η0.

Throughout deriving the power envelope, I act as if η0 is known, and then show

that the asymptotic power envelope is attainable by replacing η0 by its consistent

estimator.

The method used to derive the asymptotic power envelope in this setup exploits

the concept of the limits of experiments. An implication in the limits of experiments

is that if a sequence of experiments converges to a limit experiment, the best as-

ymptotic power function is the best power function in the limit experiment. In such

cases as the existence of the nuisance parameter, finding the power envelope of the

limit experiment is much easier than using a classical method. The asymptotic null

distribution of log(LRS
T ) is

(4.4) log(LRS
T ) →d ΛS(Ω, h) = c + Λ(Ω) + hW η(1)− h2

2
Jη

where c = −∑k
i=1 log

(
2ai exp[−ai]
1−exp[−2ai]

)
, Λ(Ω) is the limiting counterpart of B(Ω) in the

parametric model, and W η is a multivariate brownian motion with variance Jη. Since

the convergence holds for all subset I where θ ∈ I ⊂ Θ × Υ , the sequence of the

models converges to a limit experiment so that we can focus on the power envelope

of the limit experiment.

The power envelope under non zero h, ΨS(Ω) = sup E
[
φ(Z)exp

(
ΛS(Ω, h)

)]
is gen-

erally less than the parametric case Ψ(Ω), because the the former does not achieve

g(·) as long as h is nonzero. However, Theorem 3 below shows the interesting result

that ΨS(Ω) = Ψ(Ω) in this set-up. The intuition is as follows; ΛS(Ω, h), or equiva-

lently L̃R
S

T , is factored into two parts, of which the second part, hW η(1) − h2/2Jη,

does not depend on θ. The power function is determined only by the first part, and

the asymptotic size restriction is imposed only to the second part. Consequently, the

test based on the first part, c + Λ(Ω), is expected to provide the power envelope,

while it avoids the size dependency of unknown h. Since Λ(Ω) is equivalent to the

limit experiment of B(Ω), it is possible to construct a test based on Λ(Ω), that hits
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the parametric power envelope Ψ(Ω). Let’s define the limit power function ΨS as

(4.5) ΨS(Ω) = E
[
1{Λ(Ω)>kα

h}exp
(
ΛS(Ω, h)

)]

where kα
h is the continuous function that ensures E

[
1{Λ(Ω)>kα

h}
]

= α. The following

theorem proves the argument.

Theorem 3. Under Conditions 1, 2 and 3’, any asymptotic similar test function

φT (Z|Ω, η) associated with Pη satisfies

(4.6) lim
T→∞

∫
φT (Z|Ω, η)f1(Z|θ, η)dZ ≤ ΨS(Ω) = Ψ(Ω)

Theorem 3 implies that it is possible not to lose any power even though we do not

know the true value of η0, as T gets large. The intuition is because θt is invariant to

the parametric transformation in a locally linearized neighborhood. In general, the in-

variance property implies that the likelihood function is represented as a function of ˙̀θ
t

only through its effective score function, which is defined as ˙̀θe
t = ˙̀θ

t −JθηJ
−1
η

∑T
i=1

˙̀η
i ,

where Jθη = E[ ˙̀θt
˙̀η
t ]. ˙̀θe

t lies on the orthonormal complement of the space spanned by

˙̀η
t so that

∑ ˙̀θe
t and

∑ ˙̀η
t are asymptotically independent. Since L̃R

S

T is a function

of ˙̀θ
t through ˙̀θ

t −
∑T

i=1
˙̀θ
i , subtracting JθηJ

−1
η

∑T
i=1

˙̀η
i from the first term and adding

it to the second term gives ˙̀θe
t −

∑T
i=1

˙̀θe
i = ˙̀θ

t −
∑T

i=1
˙̀θ
i , which implies that the test

is locally invariant to η.

The intuition is similar to Stein’s necessary condition for adaptation which is that

Jθη is zero. Under Stein’s condition, ˙̀θe
t is always equivalent to the ˙̀θ

t so that the

invariance property always holds. The set-up in this section does not necessarily

satisfy Stein’s condition while it obtains the same inference. The orthogonality in

this set-up does not come from the property of the error distribution, but from the

property of the alternative process, θt.

The power envelope ΨS(Ω) is sharp if we have a
√

T -consistent estimator of η0 that

satisfies Condition 4. Let BS(Ω) be the small sample counterpart of Λ(Ω), i.e. BS(Ω)

is the same as B(Ω) in (3.9) except ˙̀θ
t depends also on η0, and let B̂S(Ω) be the

plug-in version of BS(Ω). Since BS(Ω) achieves Ψ(Ω), it suffices to show that B̂S(Ω)

converges in probability to BS(Ω) under both H0 and H1. Lemma 5 below proves the

argument.
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Figure 2. Asymptotic Power Envelopes for Various Fisher Information
note) Powers are plotted from 10,000 draws using 1,000 standard normal steps to approximate

Wiener Processes.

Lemma 5. Suppose there exist
√

T -consistent estimators η̂ and θ̂, and a consistent

estimator Ĵθ. Assume that ˙̀θ
t (η) satisfies condition 4 for both η0 and θ0. Under

Condition 1,2, and 3’

(4.7) |B̂S(Ω)−BS(Ω)| −→ 0 in probability under H0 and H1

Lemma 5 also provides the motivation to use an error distribution which is more

general than normal. Note that ΨS(Ω) is an increasing function of Ω∗ = J
1
2
θ ΩJ

1
2
θ which

is proportional to the Fisher information of g(εt). Accordingly, ΨS(Ω) is strictly

increasing in the Fisher information. Consider, for example, Fernandez and Steel

(1998)’s generalized exponential family g(εt) = A(η) exp [B(η)|εt|η]. The fisher infor-

mation of this type of density ranges [1,∞] where it is one when g(εt) is normal and

increases if g(εt) is away from normal. Consequently, any non-Gaussian density in

the family would have higher ΨS(Ω). Since ΨS(Ω) is sharp, we may get a significant

power gains by using a generalized one whenever η 6= 2. Figure 2 presents asymp-

totic power envelopes for various values of the Fisher information in the generalized

exponential family, where the bottom line represents Gaussian case. It shows a large

increase in power, which justifies the use of the test with non Gaussian error density.

4.2. Asymptotically Optimal Tests in Semiparametric Models. The previ-

ous section investigates an optimal test under which finite dimensional η in g(·) are

unknown, while it is known that g is in a specific set G. This section extends the

idea to a model in which g is entirely unknown. Rather than allowing for g to be
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fully nonparametric, I give a mild restriction that g is parameterized by an infinite

dimensional unknown nuisance parameter η. Consequently, the true density f(·) is

only known to belong to a class S which contains all parametric families.

The set S can be considered as the union of all parametric submodels Pη in which

the semiparametric power envelope, say Ψe(Ω), can be defined to be infPη∈S ΨS(Ω, h).

The previous section shows that ΨS(Ω, h) is equivalent to Ψ(Ω) regardless of h, which

implies that Ψe(Ω) = Ψ(Ω). Unlike the previous section, however, the plug-in version

of the efficient test, say B∗(Ω), is inappropriate because
√

T -consistent estimator of

the infinite dimensional η is not available.

This problem is known to be the existence of an adaptive test. It is well known

that, in standard LAN set up, an adaptive test is possible if an adaptive estimator

exist. (See Choi, Hall, and Schick (1996).) Jansson (2008) extends this finding to

nonstandard unit root test. An important finding in this section is that, our nonstan-

dard testing problem is still amenable to adaptation by using extant semiparametric

methods developed for standard problems. The purpose is to find a feasible test

statistic B∗(Ω) which converges in probability to B(Ω) both under H0 and H1. Based

on (3.6), it implies that there exist estimators { ˆ̀̇θt} and Ĵθ which satisfy

T∑
t=1

(θt − 1

T

T∑
i=1

θi)
ˆ̀̇θ
t =

T∑
t=1

(θt − 1

T

T∑
i=1

θi) ˙̀θ
t + op(1)

Ĵθ = Jθ + op(1)(4.8)

The objective of this section is to show the existence of the estimators that satisfy

(4.8), and to demonstrate that it provides the existence of an adaptive test function.

A possible construction of the efficient estimator is to use a kernel estimation method.

Using data and the consistent estimator of θ0, compute the residuals ε̃1, . . . , ε̃T with

ε̃t = ε(y1, . . . , yt, X1, . . . , XT , θ̂) for t = 1, . . . , T . A kernel density estimator is defined

as for all e in a small neighborhood of each value of ε̃t

f̂T (e; ε̃1, . . . , ε̃T ) =
1

(T − 1)aT

∑

i6=t

k

(
e− ε̃i

aT

)
(4.9)

f̂
′
T (e; ε̃1, . . . , ε̃T ) =

1

(T − 1)a2
T

∑

i6=t

k′
(

e− ε̃i

aT

)
(4.10)
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where aT is a bandwidth and the kernel k(·) is three times continuously differentiable

with derivative k(i) satisfying ‖k(i)(z)‖ < ck(z) with i = 1, 2, 3 for some positive c,

and
∫

z2k(z)dz < ∞. { ˆ̀̇θt} and Ĵθ are defined as

ˆ̀̇θ
t (ε̃t; ε̃1, . . . , ε̃T ) =

f̂ ′T (ε̃t; ε̃1, . . . , ε̃T )

bT + f̂T (ε̃t; ε̃1, . . . , ε̃T )
(4.11)

Ĵθ =
1

T

T∑
t=1

ˆ̀̇θ
t (ε̃t)

ˆ̀̇θ
t (ε̃t)

′(4.12)

where {bT} is a sequence of constants such that (Ta3
T bT )−1 → 0. Note that { ˆ̀̇θt} uses

the entire sample data. Most existing research splits the sample period and uses only

the observations in one sample period to estimate { ˆ̀̇θt} of the other split sample. It

splits the sample not because of the elegancy, but because it yields a relatively easy

way to obtain the asymptotic result under minimized conditions. From a practical

point of view, however, it is desirable to use all sample data in moderate sample sizes

in order to avoid the size distortion problem, and to produce a better power. Schick

(1987), and Koul and Schick (1997) suggest a general condition to use the whole data

under additional conditions on the boundness of ṁ(·) and the memory property of

{XT}. The method in this section is generally similar to them, and Condition 1 and

2 are shown to be enough to satisfy their conditions, so that no additional condition

is required in order to use the whole sample data for adaptation. Let’s define the

critical function ψT (Z|Ω) = 1[B∗(Ω)>kα] where kα is the continuous function satisfying

E0[ψT (Z|Ω)] = α and B∗(Ω) as

(4.13) B∗(Ω) =
k∑

i=1

ζ̂ ′i

[
a2

i

T 2
IT − FMeF

′
]−1

ζ̂i

where ζ̂i = (ζ̂i,1, . . . , ζ̂i,T )′, ζ̂i,j =
∑j

t=1
ˆ̀̇θ∗
t,i, and ˆ̀̇θ∗

t,i is the ith element of ˆ̀̇∗θ
t . Let

Ψ∗(ω) = limT→∞
∫ ∫

ψT (Z|Ω)f1(Z|η)dZdνδ. The following theorem shows that we

can construct an adaptive test based on (4.11) and (4.12), without further strict

conditions.

Theorem 4. Under Condition 1 to 4, any asymptotically similar test φ(Z|Ω)∗T asso-

ciated with S satisfies

lim
T→∞

∫
φ∗T (Z|Ω)f1(Z|η)dZ ≤ Ψ∗(Ω) = Ψ(Ω)
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Theorem 4 indicates that Ψ∗(Ω) provides the asymptotic power envelope in a semi-

parametric model, and B∗(Ω) is adaptive in the sense that Ψ∗(Ω) attains the para-

metric power envelop Ψ(Ω). Accordingly, the knowledge of the error distribution is

asymptotically irrelevant for conducting an optimal test under mild conditions sug-

gested in this paper.

5. Comparative Simulation Study

This section examines the performance of the asymptotically efficient tests in finite

samples through Monte Carlo experiments. Parametric and semiparametric set up

are separately examined. In parametric model, I consider the linear quantile model

with asymmetric Laplace distribution in which the performance of parametric test

function B̂(Ω̂) is evaluated. In semiparametric model, various types of the error

distributions are considered in linear equation where I examine the performance of

semiparametric test B̂∗(Ω̂).

5.1. Monte Carlo Simulation in Parametric Models. Consider the model

(5.1) yt = X ′
t(β

q
0 + βq

t ) + εq
t t = 1, . . . , T

where yt is a scalar, and Xt is k × 1 vectors and is assumed to satisfy Condition

2. εq
t is iid from the asymmetric Laplace distribution which is defined as ϕq(ε) =

exp
[
−1

q
ε · 1{ε<0} + 1

1−q
ε · 1{ε>0}

]
, where 1{ } is an indicator function. In this cir-

cumstance, X ′
t(β

q
0 + βq

t ) represents qth conditional quantile of yt, that is, Pr[yt >

X ′
t(β

q
0 + βq

t )|X1, . . . , Xt] = q. Consequently, εq
t is not a zero mean disturbance, but

has the property that Pr[εq
t < 0] = q. The score and its covariance with maxi-

mum likelihood estimators are defined as ˙̀
t(β̂q) = 1

1−q
Xt − 1

q(1−q)
Xt1{yt<Xtβ̂q} and

Ĵ1 = 1
Tq(1−q)

∑T
t=1 XtX

′
t, respectively. The asymmetric laplace distribution is known

to be differentiable in quadratic mean. It is easy to show that quantile regression

estimator satisfy Condition 4). Consequently, B̂(Ω̂) is asymptotically point optimal

in this setup.

I simulate the empirical sizes and the powers of the test. I consider {Xt} =

{(1, Zt)}, where {Zt} are generated from AR(1) model with iid Gaussian error.

I examine 18 combinations of 3 different critical levels (1%, 5%, and 10%), 3 sam-

ple sizes (50, 100, and 200), and 2 quantile levels (0.3, 0.5). 5,000 replications are
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Table 1. Monte carlo estimates of the empirical sizes in parametric models

Empirical Size(%)
q = 0.3 q = 0.5

1 % 5 % 10 % 1 % 5 % 10 %
T= 50 1.72 5.38 9.48 1.11 4.38 8.44

100 1.10 4.58 8.64 1.06 4.96 9.56
200 1.28 5.00 9.48 1.14 5.36 9.70
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Figure 3. Small Sample Powers, Quantile Models, T=100, q=0.3

generated for each of 18 combinations. Table 1 shows the experimental result of the

empirical sizes. The test performs fairly well for all significant levels. The differences

between empirical sizes and actual sizes do not exceed one percent, even when the

sample size is as small as 50.

As a next step, I calculate small sample powers of the test and compare them with

those of other existing tests. Various types of alternative processes are examined: sin-

gle break, multiple breaks (2 and 4 breaks), and random walk breaks. The powers are

compared with those of SupF test, Andrews and Ploberger (1994)’s test (ExpLM),

and Nyblom (1989)’s test (Nyb).



OPTIMAL PARAMETER INSTABILITY TESTS 23

The size adjusted small sample powers are shown at figure 3. The figures show that

B̂(Ω̂) performs the best among 4 test statistics. B̂(Ω̂) has the best power against the

random walk process and the multiple breaks. The gaps become larger as the number

of breaks increases. The powers of B̂(Ω̂) for the single break alternatives are pretty

close to ExpLM and SupF even though both ExpLM and SupF explicitly consider

single break alternatives.

The differences of the powers, however, are mild for all unstable processes. Even

though SupF and ExpLM are not designed for time varying parameter processes,

the two tests show pretty reasonable power properties against the random walk case.

Note that the breaking processes considered in SupF , ExpLM , and Nyb do not

satisfy Condition 1. This gives an important empirical implication: The asymptotic

equivalence of the optimal tests shown in the previous section can be more or less

applied even in small samples and in the breaking process which are a little apart from

Condition 1. The loss of power by misspecifying the true unstable parameter process

is allowable. I also perform the simulation for different sample sizes and quantile

levels. I don’t present the simulation results for them because they are similar to

what I present here.

5.2. Monte Carlo Simulation in Semiparametric Models. Consider the simple

linear regression model.

(5.2) yt = X ′
t(β0 + βt) + εt t = 1, . . . , T

The setup is the same as in the previous simulation except εt is now assumed to

mean zero and has different error distributions. For the estimate of the density, I use

standard Gaussian kernel estimation where the bandwidth is chosen by an optimal

window width method based on Gaussian distribution. Reasonable changes of kernel,

such as logistic and Epanechnikov do not significantly alter the result. bT is chosen

to be 0.001 × a1/3. Five different error distributions are designed, which are listed

below.

A1) Standard Normal Distribution

A2) Asymmetric Laplace Distribution(location shifted to E[εt] = 0).

A3) Student t-distribution with ν = 4 degree of freedom

A4) Mixture of two standard Normal distributions with mean 2, and -2, respectively
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Table 2. Monte carlo estimates of the empirical sizes in the semipara-
metric model

T = 100 T = 200
Model 1% 5% 10% 1% 5% 10%
A1) Standard Normal 1.46 4.16 8.86 0.82 5.12 10.58
A2) Symmetric Laplace 0.78 4.70 9.68 1.26 5.42 10.26
A3) Asymmetric Laplace 1.48 6.42 12.30 1.46 6.12 10.80
A4) Student t(4) 1.20 5.54 9.86 1.00 4.64 9.86
A5) Bimodal 1.24 5.78 10.71 1.39 5.78 10.74

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 0.6 1.2 1.8 2.4
Axis Title

Single Break(fixed time)

B*
BN
Nyb
SupF
ExpLM

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 0.6 1.2 1.8 2.4

Single Break(fixed time)

B_S
B
Nyb
SupF
ExpLM

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 0.2 0.4 0.6 0.8 1

Multiple Breaks (4 times)

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 0.2 0.4 0.6 0.8 1

Multiple Breaks (4 times)

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 3 6 9

Random Walk

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 3 6 9

Random Walk

(Standard Normal) (Student t(4))

Figure 4. Small Sample Powers in the semiparametric model, T=100
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Figure 5. Small Sample Powers in the semiparametric model,
T=100 (continued)

Table 2 shows the experimental result of the empirical sizes in which the small

sample sizes performance of B∗(Ω̂) is shown to be fairly good in all distributions.

The selected results of the simulated small sample powers are shown in figures 4

and 5, where B∗(Ω̂) is compared with B(Ω̂), SupF , ExpLM , and Nyb, which are

set up based on the Gaussian error distribution. Therefore, these tests might have

the best powers in A1 but lose some powers in the other distributions. The powers

of all six tests are close to each other when the error distribution is unimodal and

symmetric. The left hand side of figure 4 shows that B∗(Ω̂) has similar powers to
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the others even when the error distribution is normal. It implies that B∗(Ω̂) is little

outperformed by the existing tests based on Gaussian distribution, even in the worst

case. The right hand side of figure 4 shows that in t-distribution, B∗(Ω) performs

the best against multiple breaks and random walk parameter. However, the power

gaps between B∗(Ω̂) and others are small. Unlike the large sample case (figure 2),

substantial power gains by using non-Gaussian error distribution are not clear in

this small sample instance. The result in the Laplace distributional case is similar

to the t-distribution case, and I do not present the results in this paper. Since the

distinctive feature of Gaussian, Laplace and student-t distributions is thickness of tail,

these results imply that the relative finite sample powers are not very sensitive to tail

behavior of error distribution. Figure 5 shows that B∗(Ω̂) performs the best when

the error distribution is skewed and the gaps become larger as the number of breaks

increase. The gaps are relatively bigger than previous distributions. The power gaps

become fairly consequential in bimodal error distribution, as shown in figure 5. B∗(Ω̂)

has the powers 62%p greater than the best of the others, at its greatest extent. In

summary, there is considerable power improvement of the adaptive test B∗(Ω̂). The

degree of the improvement depends on the modality and the skewness, rather than

the tail behavior.

6. Conclusion

Parameter instability is of central importance in time series models. This paper

gives three implications for testing parameter stability. First, asymptotically optimal

tests for parameter instability do not require information about the exact form of the

unstable parameter processes. Many tests are designed to have good powers against

specific alternative processes. The result in this paper implies that a tailored test

for specific instability does not have any power gain in the asymptotic sense, which

means that attempts to derive tailor-made tests are asymptotically irrelevant. Monte

carlo simulation results show that misspecifying the unstable process results in only

a mild loss of powers even in small samples.

Second, Adaptation has shown to be possible in such nonstandard testing problem

as unstable parameter process. It implies that an attempt to find a well-fitted error

distribution is asymptotically inappropriate under mild conditions because one may

not gain any asymptotic power. This asymptotic irrelevancy is consequential because
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widely assumed normal density is generally far from macroeconomics and financial

data, and choosing another specific density often might be too discretionary.

Finally, I suggest two easy-to-compute asymptotically optimal test statistics. B̂(Ω̂)

is used when the error distribution restricted to a certain parametric family, while

B∗(Ω̂) can be applied if any restriction of the error distribution is irrelevant. By

avoiding the sample-split method, the test B∗(Ω) also shows good size and power

performance even in small samples. Small sample simulations show that the test

statistics have correct sizes and improved powers against the existing tests for almost

all unstable processes.

Appendix A. Proofs

A.1. proof of Lemma 1. I will give the proof for the one dimensional case for the no-
tational convenience. The proof for the multi-dimensional case is straightforward. Let
ξ0
t = ξt(·|θ0, 0), ξ1

t = ξt(·|θ0, θt). Then Condition 3 implies

(A.1) ξ1
t = ξ0

t + θ′tξ̇
0
t + rt

where E[( rt

ξ0
t
)2] = o(‖(σ2

t )‖), and σ2
t is the variance of θt. By using (A.1), the square root

of the integrand of the LR statistics in (3.3) can be written as,

(A.2)
√

LT =
T∏

t=1

(
ξ1
t

ξ0
t

)
=

T∏

t=1

(
ξ1
t − ξ0

t

ξ0
t

+ 1
)

=
T∏

t=1

(
θ′t

ξ̇0
t

ξ0
t

+
rt

ξ0
t

+ 1

)
=

T∏

t=1

(1 + ηt)

where ηt = θ′t
ξ̇0
t

ξ0
t

+ Rt and Rt = rt

ξ0
t
. Therefore LT can be rewritten as,

Lt = exp

[
T∑

t=1

log(1 + ηt)

]

Note that
∑T

t=1 log(1+ηt) =
∑T

t=1 ηt− 1
2

∑T
t=1 η2

t +op(1) if maxt |ηt| = op(1), and
∑T

t=1 η2
t =

Op(1). Since
∑ ˙̀

t
∑

i θi = 0 under the normalization given in Condition 1 process, and
Jθ

∑
θt = 0, Lemma 1 is proved by showing

(1)
∑T

t=1 ηt = 1
2

∑T
t=1 θt l̇t − 1

8

∑T
t=1 θ2

t Jθ + op(1)
(2)

∑T
t=1 η2

t = 1
4

∑T
t=1 θ′tJθθt + op(1)

(3) maxt |ηt| = op(1)

Proof of (1) : Let δt = Tθt. To prove (1), we have only to show that
∑T

t=1 Rt =
− 1

8T 2

∑T
t=1 δ2

t Jθ + op(1). Squaring both sides of (A.1) gives

(ξ1
t )2 = (ξ0

t )2 + r2
t +

2
T

ξ0
t δtξ̇0

t + 2ξ0
t rt +

2
T

δtξ̇0
t rt +

1
T 2

(δtξ̇0
t )2
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⇒ 2Rt = 2
rt

ξ0
t

=
(

(ξ1
t )2

(ξ0
t )2

− 1
)
−R2

t −
1
T

δt
˙̀
t − 1

T
δt

˙̀
tRt − 1

4T 2
(δt

˙̀
t)2

By taking conditional expectation with respect to δt, we get

2E[Rt|δt] =
(

E

[
(ξt)2

(ξ0
t )2

|δt

]
− 1

)
− E

[
R2

t |δt

]− 1
T

δtE[ ˙̀t|δt]− 1
T

δtE[ ˙̀tRt|δt]−
1

4T 2
δ2
t E[ ˙̀t ˙̀′

t|δt]

Let R̃t = 1{‖δt/
√

T‖ < MT }Rt denote a truncated version of Rt where MT√
T
→ 0 and

MT → ∞. The sequences R̃t and Rt are asymptotically equivalent in the sense that∑T
t=1 Rt =

∑T
t=1 R̃t + op(1). Note that max{‖δt/

√
T‖<MT }(

1
T 2 δ2

s)
−1E[R2

s|δs] = op(1) from
(A.1) and 1

T 2

∑
δ2
t = Op(1) from Condition 1. Consequently,

T∑

t=1

E[R̃2
t |δt] =

T∑

t=1

1{‖δt/
√

T‖<MT }E[R2
t |δt] ≤

T∑

t=1

max
{‖δt/

√
T‖<MT }

((
1
T 2

δ2
s

)−1

E[R2
s|δs]

)
1
T 2

δ′tδt

= max
{‖δt/

√
T‖<MT }

(
(

1
T 2

δ2
s)
−1E[R2

s|δs]
)

1
T 2

T∑

t=1

δ2
t = op(1)×Op(1) = op(1)

Also, using Chebychev inequality,
1
T

δtE[ ˙̀tRt|δt] ≤ 1
T

dtiE[ ˙̀2t |δt]1/2E[R2
t |δt]1/2

= Op(T−1/2)× (Op(1))1/2 × (op(T−1/2))1/2 = op(T−1)(A.3)

Note that E[ ˙̀t|δt] = 0, and E[ ˙̀2t |δt] = Jθ,(see Vaart (1998)). Using (A.1) and (A.3), (1) is
proved because

(A.4)
T∑

t=1

Rt =
T∑

t=1

E[Rt|δt] + op(1) =
1

8T 2

T∑

t=1

δ2
t Jθ + op(1)

Proof of (2):
T∑

t=1

η2
t =

1
4T 2

T∑

t=1

(δt
˙̀
t)2 +

1
T

T∑

t=1

δt
˙̀
tRt +

T∑

t=1

R2
t

=

(
1
4

T∑

t=1

δtJθδt + op(1)

)
+ op(1) + op(1)

where the last two terms of the last equality comes from (A.3) and (A.4).
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Proof of (3):

max
t

ηt ≤ 1
2

max
‖ 1√

T
δt‖≤MT

‖ 1√
T

δt‖ · ‖
˙̀
t√
T
‖+ max

t
Rt + op(1)

≤ MT√
T
‖ ˙̀

t‖+ max
t

Rt + op(1) = op(1) + op(1) + op(1) = op(1)

The first term of the 2nd inequality comes from Cauchy-Schwarz inequality, the first term
of the last equality comes from E[ ˙̀

t
2
] ≤ ∞ and the second term comes from

maxt|Rt|2 ≤
T∑

t=1

R2
t = op(1)

which completes the proof. ¦

A.2.

Lemma 6. Let’s define L̃T as

(A.5) L̃T = exp

[
˙̀′(Me ⊗ Ik)θ̃ − 1

2
θ̃′(Me ⊗ Jθ)θ̃

]

Under Condition 1 to 3, |L̃T −LT | =⇒ 0 under H0, where ⇒ represents weak convergency.

Proof) It can be proved by showing that for any δ = Tθ that satisfies Condition 1, 1
T δ′(Me⊗

Ik) ˙̀ and 1
2T 2 δ′(Me ⊗ Jθ)δ converge to well defined limiting variables. The first term can be

rewritten as
1
T

δ′(Me ⊗ Ik) ˙̀ =
1
T

δ′ ˙̀− 1
T 2

δ′(ee′ ⊗ Ik) ˙̀ =
1
T

δ′ ˙̀− 1
T 2

[(e′ ⊗ Ik)δ]′[(e′ ⊗ Ik) ˙̀]

=
1
T

T∑

t=1

δ′t ˙̀
t − 1

T 2
(

T∑

t=1

δt)′(
T∑

t=1

˙̀
t)

Consequently, I prove that each term of the last equation converges to a well defined limiting
distributions.

1
T

T∑

t=1

δ′t ˙̀
t = tr[Ω∗

1
2

1
T

T∑

t=1

Ω−
1
2 δ′t ˙̀

tJ
− 1

2
θ ] ⇒ tr[Ω∗

1
2

∫
WδdW ′

`] =
∫

W ′
δΩ

∗ 1
2 dW`

where Wδ and W` are multivariate standard Wiener processes.

1
T 2

(
T∑

t=1

δt)′(
T∑

t=1

˙̀
t) = tr

[
Ω∗

1
2 (T

3
2

T∑

t=1

Ω−
1
2 δt)(T

1
2

T∑

t=1

J−
1
2 ˙̀

t)′
]

⇒ tr

[
Ω∗

1
2

∫
Wδ(r)drW`(1)′

]
=

∫
Wδ(r)drΩ∗

1
2 W`(1)
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The convergence of the second term of LT can be proved as
1
T 2

δ′(Me ⊗ Jθ)δ =
1
T 2

δ′(IT ⊗ Jθ)δ − 1
T 3

δ′(ee′ ⊗ Jθ)δ

=
1
T 2

δ′(IT ⊗ Jθ)δ − 1
T 3

[(e′ ⊗ J
1/2
θ )δ]′[(e′ ⊗ J

1/2
θ )δ]

=
1
T

T∑

t=1

δ′tJθδ − 1
T 3

(
T∑

t=1

δt)′Jθ(
T∑

t=1

δt)

1
T 2

T∑

t=1

δ′tJθδt = tr

[
Ω∗

1
T 2

T∑

t=1

(
Ω−

1
2 δt

)(
Ω−

1
2 δt

)′]

⇒ tr

[
Ω∗

∫
Wδ(r)Wδ(r)′dr

]
=

∫
Wδ(r)′Ω∗Wδ(r)dr

1
T 3

(
T∑

t=1

δt

)′

Jθ

(
T∑

t=1

δt

)
= tr


Ω∗

(
T

3
2

T∑

t=1

Ω−
1
2 δt

)(
T

3
2

T∑

t=1

Ω−
1
2 δt

)′


⇒ tr

[
Ω∗

∫
Wδ(r)dr

∫
Wδ(r)′dr

]
=

∫
Wδ(r)′drΩ∗

∫
Wδ(r)dr

which completes the proof. ¦

A.3. Proof of Lemma 2. Let’s denote the variance of θ̃, FF ′/T 2⊗Ω as K. L̃RT can be
written as

L̃RT =
∫

(2π)−
k(T−1)

2 |K|− 1
2 exp

[
˙̀′(Me ⊗ Ik)θ̃ − 1

2
θ̃′(Me ⊗ Jθ)θ̃ − 1

2
θ̃′K−1θ̃

]
dθ̃

= |K(Me ⊗ Jθ) + ITk|1/2 exp
[
1
2

˙̀′(Me ⊗ Ik){(Me ⊗ Jθ) + K−1}−1(Me ⊗ Ik) ˙̀
]

×
∫

(2π)−
k(T−1)

2

∣∣(Me ⊗ Jθ) + K−1
∣∣ 1
2 exp[−1

2

(
θ̃ − {(Me ⊗ Jθ) + K−1}(Me ⊗ Ik) ˙̀

)′

× {(Me ⊗ Jθ) + K−1}
(
θ̃ − {(Me ⊗ Jθ) + K−1}(Me ⊗ Ik) ˙̀

)
]dθ̃

= |K(Me ⊗ Jθ) + ITk| exp
[
1
2

˙̀′(Me ⊗ Ik){(Me ⊗ Jθ) + K−1}−1(Me ⊗ Ik) ˙̀
]

= c · exp
[
1
2

˙̀′(Me ⊗ Ik){Me ⊗ Jθ + T 2(FF ′)−1 ⊗ Ω−1}−1(Me ⊗ Ik) ˙̀
]

= c · exp[
1
2

˙̀′(Me ⊗ Ik)(I ⊗ J−1/2P ){Me ⊗ Ik + (
FF ′

T 2
)−1 ⊗ Λ−1}−1

×(IT ⊗ J−1/2P )′(Me ⊗ Ik) ˙̀]

= c · exp
[
1
2

¯̀̇∗′{Me ⊗ Ik + (
FF ′

T 2
)−1 ⊗ Λ−1}−1 ¯̀̇∗′

]
(A.6)
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where c = |K(Me ⊗ Jθ) + ITk|, ¯̀̇∗ = (¯̀̇∗′1 , . . . ,
¯̀̇∗′
T )′, and ¯̀̇∗

j = ˙̀∗
j − 1

T

∑T
t=1

˙̀∗
t . I then change

the expression of the test statistic. Let’s define (a2
i , . . . , a

2
k) be the vector of the diagonal

elements of Λ, and ιi be the k × 1 vector which is one at ith element and zeros otherwise.

(A.7) Me⊗Ik +(
FF ′

T 2
)−1⊗Λ−1 = Me⊗Ik +

k∑

i=1

a−2
i (

FF ′

T 2
)−1⊗ ιiι

′
i =

k∑

i=1

(Me +K−1
ai )⊗ ιiι

′
i

where Kai = a2
i

(
FF ′
T 2

)
. Note that ιiι

′
i · ιjι′j is k × k zero matrix if i 6= j and ιiι

′
i if i = j. It

makes the inverse of Me ⊗ Ik + (FF ′
T 2 )−1 ⊗ Λ easy as below.

(A.8) (Me ⊗ Ik + (
FF ′

T 2
)−1 ⊗ Λ)−1 =

k∑

i=1

(Me + K−1
ai )−1 ⊗ ιiι

′
i

because
[∑k

i=1

(
Me + K−1

ai

)⊗ ιiι
′
i

] [∑k
i=1(Me + K−1

ai )−1 ⊗ ιiι
′
i

]
=

∑k
i=1 IT ⊗ ιiι

′
i+

∑k
i=1

∑
j 6=i

(
Me + K−1

ai

) (
Me + K−1

aj

)−1
⊗ (ιiι′i)(ιjι

′
j) = IT ⊗ Ik. Consequently,

¯̀̇∗′(Me ⊗ Ik + (
FF ′

T 2
)−1 ⊗ Ω∗−1)−1 ¯̀̇∗′ = ¯̀̇∗′

[
k∑

i=1

(Me + K−1
ai )−1 ⊗ ιiι

′
i

]
¯̀̇∗′

=
k∑

i=1

¯̀̇∗′F
(

FMeF + (
T 2

a2
i

)IT

)−1

F ′ ¯̀̇∗′(A.9)

Taking log of (A.6) and applying (A.9) completes the proof. ¦

A.4. proof of Theorem 1. Theorem 1 can be proven by showing that P [|LRT − L̃RT | >
ε] → 0 under both the null and the alternative hypothesis.

(1) Proof of the convergence under the null hypothesis: For 0 < M < ∞, define

LRT (M) =
∫

ΠT
t=1

f(ε1t |θ0)
f(ε0t |θ0, θt)

1{‖√Tθ‖<M}dνθ

L̃RT (M) =
∫

exp

[
˙̀′(Me ⊗ Ik)θ̃ − 1

2
θ̃′(Me ⊗ Jθ)θ̃

]
1{‖√Tθ‖<M}dν

θ̃

Note that for any ε > 0, the following is satisfied

P [|LRT − L̃RT | > 3ε] ≤ P [|LRT − LRT (M)| > ε] (i)

+ P [|L̃RT − L̃RT (M)| > ε] (ii)

+ P [|LRT (M)− L̃RT (M)| > ε] (iii)(A.10)
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Consequently, it suffices to show that each term of (A.10) converges to zero, respectively.

(i) P [|LRT − LRT (M)| > ε] ≤ ε−1E[|LRT − LRT (M)|]

= ε−1E

[∫

‖√Tθ‖>M
ΠT

t=1

f(εt|θ0, θt)
f(εt|θ0, 0)

dνθ

]
= ε−1

∫

‖√Tθ‖>M
dνθ = ε−1P [‖

√
Tθ‖ > M ]

The first inequality comes from Chebychev inequality. The second equality uses Fubini
Theorem. The right hand side of the last equality can be made arbitrarily small for all T
by taking M large enough by the property of θ defined in Condition 1.

(ii)
∣∣∣L̃RT − L̃RT (M)

∣∣∣ =
∫

L̃T dν
θ̃
−

∫

‖√Tθ‖<M
L̃T dν

θ̃

= c exp
[
1
2

¯̀̇∗′{Me ⊗ Ik + (
FF ′

T 2
)−1 ⊗ Λ−1}−1 ¯̀̇∗′

] ∫
(2π)−

k(T−1)
2

∣∣(Me ⊗ Jθ) + K−1
∣∣ 1
2

× exp[−1
2

(
θ̃ − {(Me ⊗ Jθ) + K−1}(Me ⊗ Ik) ˙̀

)′
{(Me ⊗ Jθ) + K−1}

×
(
θ̃ − {(Me ⊗ Jθ) + K−1}(Me ⊗ Ik) ˙̀

)
]dνθ̃

(A.11) = c exp
[
1
2
B∗(θ0, Jθ, Ω)

] ∫

‖√Tθ‖>M
dνθ̃

The first term on the last equation is Op(1) by Lemma 3, and the second term can be made
arbitrarily small by taking M large by Condition 1. In consequence, P [|L̃RT−L̃RT (M)| > ε]
can be made arbitrarily small for all T large by taking M sufficiently large.

Proof of (iii): Let’s define

LT (M) =
T∏

t=1

f(ε1t |θt)
f(ε0t )

· 1{‖√Tθ‖<M} = LT · 1{‖√Tθ‖<M}

L̃T (M) = exp
[

˙̀′(Me ⊗ Ik)θ̃ − 1
2
θ̃′(Me ⊗ Jθ)θ̃

]
· 1{‖√Tθ‖<M} = L̃T (θ̃) · 1{‖√Tθ‖<M}

L∗T (M) = exp
[

˙̀′(Me ⊗ Ik)θ − 1
2
θ′(Me ⊗ Jθ)θ

]
· 1{‖√Tθ‖<M} = L∗T (θ) · 1{‖√Tθ‖<M}

The test statistics are defined as LRT (M) =
∫

LT (M)dνθ, L̃RT (M) =
∫

L̃T (M)dν
θ̃
.

We define additional test statistic, LR∗
T (M) =

∫
L∗T (M)dνθ. I prove (iii) by showing that

LRT (M)− LR∗
T (M) →p 0 and L̃RT (M)− L̃R

∗
T (M) →p 0. The first convergence is proved

as
LRT (M) =

∫
LT (M)dνδ =

∫
(1 + op(1))L∗T (M)dνθ = LR∗

T (M) + op(1)
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The second equality follows from Lemma 1. The third equality uses LR∗
T (M) is bounded

in probability which is shown as

P [LR∗
T (M) > K] ≤ K−1E [LR∗

T (M)] = K−1

∫
E [LR∗

T (M)] dνθ

= K−1

∫
E[LT |θ]1{‖√Tθ‖<M}dνθ

which can be made arbitrarily small by choosing K sufficiently large. To prove the second
convergence, we use an additional indicator function 1{B(Ω)>K} and define new test statistics

LRT (M,K), L̃RT (M,K), and L̃R
∗
T (M,K) as LRT (M), L̃RT (M), and L̃R

∗
T (M) multiplied

by 1{B(·)>K}, respectively. Note that for any ε > 0,

P [|L̃RT (M)− L̃RT ∗ (M)| > 3ε] ≤ P [|L̃RT (M)− L̃RT (M, K)| > ε]

+P [|L̃R
∗
T (M)− L̃R

∗
T (M, K)| > ε] + P [|L̃RT (M, K)− L̃R

∗
T (M, K)| > ε]

The convergence of the first term can be easy to show by using the similar method of
(A.11). The convergence of the second term can be shown as

P [|L̃R
∗
T (M) − L̃R

∗
T (M,K)| > ε] ≤ 1

ε
E

[∣∣∣L̃R
∗
T (M)− L̃R

∗
T (M,K)

∣∣∣
]

=
1
ε

∫ ∫
L∗T

(
1− 1{B∗(·)>K}

)
1{‖√Tθ‖<M}dνθdνz

≤ 1
ε

∫
1{‖√Tθ‖<M}dνθ = P

[
‖
√

Tθ‖ < M
]

(A.12)

where the third inequality comes from
∫

L∗T dνz = 1. (A.12) can be made arbitrarily small
for all T by taking M sufficiently large. In order to prove the convergence of the third term,
we define additional random elements γ and γ̃, which have the same distribution as θ and θ̃,
respectively and are independent of θ and θ̃ and of each other. We prove LR∗

T (M)−L̃RT (M)
convergence in mean square. Note that LR∗

T (M) and L̃RT (M) can be alternatively written
as integrals with respect to the measure of γ and γ̃, respectively. Let LR∗

T (M, K, θ) and
L̃RT (M,K, θ) be LR∗

T (M,K) and L̃RT (M,K) integrated with respect to the measure of θ.

E[(LR∗
T (M, K)− L̃RT (M,K))2]

= E
[
(LR∗

T (M, K, θ)− L̃RT (M, K, θ̃))(LR∗
T (M, K, γ)− L̃RT (M,K, γ̃))

]

= E [LR∗
T (M, K, θ)LR∗

T (M,K, γ)]−E
[
LR∗

T (M,K, θ)L̃RT (M,K, γ̃)
]
−

E
[
L̃RT (M,K, θ̃)LR∗

T (M, K, γ)
]

+ E
[
L̃RT (M, K, θ̃)L̃RT (M, K, γ̃)

]
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=
∫ ∫ ∫

L̃T (θ)1{‖√Tθ‖<M}L̃T (γ)1{‖√Tγ‖<M}1{B∗(·)>K}dνθdνγdνz −
∫ ∫ ∫

L̃T (θ)1{‖√Tθ‖<M}L̃T (γ̃)1{‖√T γ̃‖<M}1{B∗(·)>K}dνθdνγ̃dνz −
∫ ∫ ∫

L̃T (θ̃)1{‖√T θ̃‖<M}L̃T (γ)1{‖√Tγ‖<M}1{B∗(·)>K}dν
θ̃
dνγdνz +

∫ ∫ ∫
L̃T (θ̃)1{‖√T θ̃‖<M}L̃T (γ̃)1{‖√T γ̃‖<M}1{B∗(·)>K}dν

θ̃
dνγ̃dνz

Lemma 6 implies that the integrands of all four terms weakly converge to the same
limiting distribution. Thus, Crystal Ball condition give us that it is enough to show that
SupE[L̃T (M,K)2+δ] is finite. It can be proved by computations close to those in the proof
of Lemma 2.

E[L̃T (M, K)a] =
∫ ∫

(2π)−
k(T−1)

2 |K|− 1
2 exp[a ˙̀′(Me ⊗ Ik)θ̃ − aθ̃′(Me ⊗ Jθ)θ̃ − 1

2
θ̃′K−1θ̃]

×1[‖√Tθ‖<M ]1[B∗(·)<K]dθ̃dνz

= c1 ·
∫

exp[
a2

4
˙̀′(Me ⊗ Ik)(a(Me ⊗ Jθ) + K−1)−1(Me ⊗ Ik) ˙̀]

∫
(2π)

−k(T−1)
2

×|a(Me ⊗ Jθ) + K−1| 12 exp[−1
2
(θ̃ − a(aMe ⊗ Jθ + K−1)(Me ⊗ Ik)2 ˙̀)′

×(a(Me ⊗ Jθ) + K−1)(θ̃ − a(aMe ⊗ Jθ + K−1)(Me ⊗ Ik)2 ˙̀)]1[‖√Tθ‖<M ]1[B∗(·)<K]dθ̃dνz

= c1

∫
exp

[
a2

4
¯̀̇∗′(Me ⊗ Ik + (

FF ′

T 2
)−1 ⊗ 1

a
Ω∗−1)−1 ¯̀̇∗′

]
1[B∗(·)<K]dνzP [‖

√
Tθ‖<M]

c1P
[
‖
√

Tθ‖ < M
] ∫

exp
[a

4
B(Ω,

√
aJθ, θ

0)
]
1[B∗(·)<K]dνz

=≤ c1P
[
‖
√

Tθ‖ < M
]
exp

[a

4
K

]

so that, for sufficiently large K there exits S such that SupE[L̃T (M, K)2+δ] < S.

(2) Proof of convergence under the alternative hypothesis: The proof can be done by
showing that the distribution under the alternative hypothesis, f1(y|θ0, θt) is contiguous to
that under the null hypothesis, f0(y|θ0). The contiguity of the distribution in which the
likelihood ratio has the asymptotic distribution as (3.8) has already been shown by Elliott
and Müller (2006).

A.5. Proof of Theorem 2. Let’s rewrite θ̂ = θ0 + T−
1
2 WT where WT is a k × 1 random

variable with P [|WT | > M ] → 0 for arbitrarily large M. By using Condition 4 and continuous
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mapping theorem, we could get

T−1/2

[sT ]∑

t=1

Ĵ
−1/2
θ

˙̀
t(θ̂) = T−1/2

[sT ]∑

t=1

Ĵ
−1/2
θ

˙̀
t(θ0 + T−1/2WT ) + op(1)

= T−1/2

[sT ]∑

t=1

Ĵ
−1/2
θ

˙̀
t(θ0)− sK(θ0)WT + op(1)

Since WT (1) is constant for all t ≤ T , The theorem can be easily proved by showing that
B(Ω) doesn’t change for the transformation from { ˙̀

i(θ0)} to { ˙̀
i(θ0) + c} where c is the

T × 1 vector of constants. Note that Me
˙̀∗
i (θ

0) = Me

[
˙̀∗
i (θ

0) + c
]
. We could get

B(Ω) =
k∑

i=1

˙̀∗′
i (θ0){Me −Gai} ˙̀∗

i (θ
0) =

k∑

i=1

˙̀∗′
i (θ0)Me[Me + K−1

ai ]−1Me
˙̀∗
i (θ

0)

=
k∑

i=1

[
˙̀∗′
i (θ0) + c

]
Me[Me + K−1

ai ]−1Me

[
˙̀∗
i (θ

0) + c
]

=
k∑

i=1

˙̀∗′
i (θ̂){Me −Gai} ˙̀∗

i (θ̂) + op(1) = B̂(Ω) + op(1)(A.13)

which shows the asymptotic equivalency under the null hypothesis. The equivalency under
the alternative comes from the contiguity which is proven in Theorem 1. ¦

A.6. proof of Lemma 3. Let’s define Ai = IT +K−1
ai . The inverse of Ai can be expressed

as,
A−1

i = (I + K−1
ai )−1 = Kai(I + Kai)−1 = I − (I + Kai)−1

By Sherman-Morrison Lemma,

[Me + K−1
ai ]−1 = A−1

i − (A−1
i e)(1 + e′A−1

i e/T )−1(e′A−1
i )

= I − (I + Kai)−1 + (1 + e′A−1
i e/T )−1

[
ee′ − 2(I + Kai)−1ee′ + (I + Kai)−1ee′(I + Kai)−1

]

Define T × (T − 1) vector Be as BeB
′
e = Me.

Me[Me + K−1
ai ]−1Me

= Me −Me(I + Kai)−1Me + (1 + e′A−1
i e/T )−1Me(I + Kai)−1ee′(I + Kai)−1Me

= Me −Be(Be(I + Kai)B′
e)
−1B′

e = Me −Gai

where Ga = H−1
a −H−1

a e(e′H−1
a e)−1e′H−1

a , Ha = r−1
a FAaA

′
aF

′, Aa =




1 0 · · · 0 0
−ra 1 · · · 0 0

...
...

...
...

0 0 · · · −ra 1




and ra = 1− aT−1. The third equality uses the fact that Mee = 0. The last equality is by



36 DONG JIN LEE

Lemma 4 of Elliott and Müller (2006). Consequently the test statistic can be written as

(A.14) B(Ω) =
k∑

i=1

˙̀∗′
i (θ0){Me −Gai} ˙̀∗

i (θ
0)

Lemma 6 of Elliott and Müller (2006) gives us the distribution of the test statistic which is
the same as (3.8). ♦

A.7. Proof of Lemma 4 and 5. The proofs are similar to the proofs of Lemma 1, and
3, respectively, and are therefore omitted in the interest of brevity. ♦

A.8. Proof of Theorem 3. Since the test function φT is bounded in probability, Pro-
horov’s Theorem implies that for every subsequence φT ′ , there exists a further subsequence
with φT ′′ ⇒ φ as T

′′ → ∞ under H0. Theorem 6.6 of Vaart (1998) gives the asymptotic
distribution of φT ′′ under H1 as L = I{φ}exp[ΛS ]. Accordingly the following convergence
holds.

(A.15) lim
T ′′→∞

E [φT ′′(ZT )] −→d E
[
φ(Sθ,Wη)exp[ΛS(Ω, h)]

]

where Sθ = (
∫

W ′
θdWε −

∫
W ′

θWε(1),
∫

W ′
θWθ − (

∫
Wθ)′(

∫
Wθ)), Wθ is a Brownian motion

independent of Wη and Wε, and Wε is a Brownian motion of which the covariance with
Wη is Jθη. (A.15) enables us to use the limits of experiments to obtain the asymptotic
power envelope for the testing problem. Let’s define the two power functions in the limit
experiments as follows.

Ψ(Ω) = E
[
1{Λ(Ω)>kα} exp[Λ(Ω)]

]

ΨS(Ω, h) = E
[
1{Λ(Ω)>kα} exp[ΛS(Ω, h)]

]
(A.16)

Ψ(Ω) gives the asymptotic power envelope in parametric models by theorem 1. By con-
struction ΨS(Ω, h) ≤ Ψ(Ω). Therefore it is enough to show that

ΨS(Ω, h) = Ψ(Ω) for all Ω, h

ΨS(Ω, h) = E
[
1{Λ>kα} exp[ΛS ]

]
= E

[
1{Λ>kα} exp[Λ] exp

[
hWη − h2

2
Jη

]]

= E

[
1{Λ>kα} exp[Λ]E

[
exp

[
hWη − h2

2
Jη

]
|Sθ

]]

Note that Wη has zero covariance with
∫

W ′
θdWε−

∫
W ′

θWε(1) so that Wη is independent
of Sθ and normal with zero mean and variance Jη. Therefore,

E

[
exp

[
hWη − h2

2
Jη

]
|Sθ

]
=

∫
exp

[
hWη − h2

2
Jη

]
exp

[
−1

2
W ′

ηJ
−1
η Wη

]
dWη

=
∫

exp
[
−1

2
(Wη − hJη)′J−1

η (Wη − hJη)
]

dWη = 1(A.17)
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Consequently, we get

(A.18) ΨS(Ω, h) = E
[
1{Λ>kα} exp[Λ]

]
= Ψ(Ω)

which completes the proof. ¦

A.9. proof of Theorem 4. Let’s define L̂RT as

L̂RT =
∫

exp

[
ˆ̀̇θ′(Me ⊗ Ik)θ − 1

2
θ′(Me ⊗ Jθ)θ

]
dνθ =

∫
L̂T dνθ

Theorem 4 is proven by showing that P [|L̃RT − LR∗
T | > ε] → 0 under H0 and H1 where

LR∗
T =

∫
L∗T dνθ and L∗T is as defined in Theorem 1. Since LR∗

T is contiguous as shown in
the proof of Theorem 1, it suffices to show the convergence only under the null hypothesis.
Throughout the proof, I assume that θ0 is known. The asymptotic invariancy of replacing
θ0 by θ̂ is straightforward from Theorem 2. be the same as L̃RT except ˙̀θ′ and Jθ) are

replaced by ˆ̀̇θ′ and Ĵθ), respectively. both the null and the alternative hypothesis. For
0 < M < ∞, define L̂RT =

∫
L̂T1{‖√Tθ‖<M}dνθ, and LR∗

T =
∫

L∗T1{‖√Tθ‖<M}dνθ. Note
that for any ε > 0, the following is satisfied

P [|LR∗
T − L̂RT | > 3ε] ≤ P [|LR∗

T − LR∗
T (M)| > ε] (i)

+ P [|L̂RT − L̂RT (M)| > ε] (ii)

+ P [|LR∗
T (M)− L̂RT (M)| > ε] (iii)(A.19)

Therefore, it suffices to show that each term of (A.19) converges to zero, respectively. (i),
and (ii) can be proved in the similar way as Theorem 1. Hence I will prove (iii) only by
showing that

(A.20) ln(L∗T ) = ln(L̂T ) + op(1)

so that

(A.21) LR∗
T (M) =

∫
L∗T (M)dνθ =

∫
(1 + op(1))L̂T (M)dνθ = L̂RT (M) + op(1)

For the notational convenience, The proof is done based on univariate θt and constant
σt, The extension is straigtforward. Let θ∗t = θt1{|

√
Tθt| ≤ M}. Then (A.20) is proved by

showing that
T∑

t=1

(θ∗t −
1
T

T∑

i=1

θ∗i )
′ṁ(Xt)

ˆ̀̇g(εt) =
T∑

t=1

(θ∗t −
1
T

T∑

i=1

θ∗i )
′ṁ(Xt) ˙̀g(εt) + op(1)(A.22)

Ĵθ = Jθ + op(1)(A.23)

where ˙̀g(εt) is the 1st derivative of ln g(εt). To simplify the proof, I replace ṁ(Xt) by
ṁ(Xt)∗ = ṁ(Xt)1{|ṁ(Xt)| ≤ Mm}. It can be easily shown that the replacement does
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not affect the result by using exactly the same way as the proof of (i) and (ii) in Theo-

rem 1. The proof of Lemma 4.3 of Schick (1987) implies that if
√

T
∫ ˆ̀̇g(ε)dε 9 0, then

1√
T

∑T
t=1

( ˆ̀̇g(εt)− ˙̀g(εt)
)

=
√

T
∫ ˆ̀̇g(ε)g(ε)dε + op(1). It implies that (A.22) can be ob-

tained if we have the following

(A.24)
T∑

t=1

θ∗t ṁ
∗(Xt)

( ˆ̀̇g(εt)− ¯̀̇g(εt)
)

= T θ̄∗ ¯̇m∗
∫ ( ˆ̀̇g(ε)− ¯̀̇g(ε)

)
g(ε)dε + op(M)

where θ̄∗, ¯̇g
`(εt) and ¯̇m∗ are their sample means. I first show that

(A.25)
1√
T

T∑

t=1

ṁ∗(Xt)
( ˆ̀̇g(εt)− ˙̀g(εt)

)
=
√

T ¯̇m∗(Xt)
∫

ˆ̀̇g(ε)g(ε)dε + op(1)

Theorem 6.2 of Koul and Schick (1997) implies that (A.25) holds if for some sequence
< τT > of positive integers tending to infinity, the following is satisfied (See pp.269-271 of
Koul and Schick (1997)))

(A.26)
1
T

∑

1≤l,t≤T

∑

|t−l|>τt

E
(
|ṁ∗(Xt)−E[ṁ∗(Xt)|ε1, . . . , εl−1, εl+1, . . . , εT ]|2

)
= op(1)

Note that E [ṁ∗(Xt)|ε1, . . . , εl−1, εl+1, . . . , εT ] = E[ṁ∗(Xt)|ε1, . . . , εl−1] if l > t because of
Condition 2. Consequently we have only to show that

(A.27)
1
T

∑

1≤t,l≤T

∑

|t−l|>τt

E
(
|ṁ∗(Xt)− E[ṁ∗(Xt)|ε1, . . . , εl]|2

)
= op(1)

for all l < t. Let’s set τt = T 1/2−α where 0 < α < 1/2. Then,
1
T

∑

1≤t,l≤T

∑

|t−l|>τt

E
(
|ṁ∗(Xt)−E[ṁ∗(Xt)|ε1, . . . , εl]|2

)

=
1
T

∑

1≤t,l≤T

∑

|t−l|>τt

E
(
|(ṁ∗(Xt)−E[ṁ∗(Xt)]) + (E[ṁ∗(Xt)]− E[ṁ∗(Xt)|ε1, . . . , εl])|2

)

≤ 1
T

∑

1≤t,l≤T

∑

|t−l|>τt

E
(
|ṁ∗(Xt)−E[ṁ∗(Xt)]|2

)
+ E

(
|E[ṁ∗(Xt)]− E[ṁ∗(Xt)|ε1, . . . , εl]|2

)

The first term is Op(T−2α) because 1
T

∑
1≤t,l≤T

∑
|t−l|>τt

E
(
|ṁ∗(Xt)− E[ṁ∗(Xt)]|2

)
<

T−2αM2
x = Op(T−2α). Theorem 4.2 of Davidson (1994) implies that the second therm is

also is Op(T−2α) because,
1
T

∑

1≤t,l≤T

∑

|t−l|>τt

E
(
|E[ṁ∗(Xt)]− E[ṁ∗(Xt)|ε1, . . . , εl|2

)
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≤ 1
T

T∑

t=[T 1/2−α]+1

(t− [T
1
2
−α])E[36 · |ṁ∗(Xt)|2] ≤ T−2αMx = Op(T−2α)

where [x] is the the largest integer less than x. It satisfies (A.27). Proving (A.24) based
on (A.25) is equivalent to proving (A.25) based on (A.9). Therefore we have only to
show that

√
Tθ∗t satisfies (A.26). Note that θ∗t is independent of {εt} and by Condition

1 E [θ∗t |ε1, . . . , εl−1, εl+1, . . . , εT ] for all l. Consequently,

1
T

∑

1≤l,t≤T

∑

|t−l|>τt

E

(∥∥∥
√

Tθ∗t − E[
√

Tθ∗t |ε1, . . . , εl−1, εl+1, . . . , εT ]
∥∥∥

2
)

=
1
T

∑

1≤l,t≤T

∑

|t−l|>τt

E

(∥∥∥
√

Tθ∗t
∥∥∥

2
)
≤ 1

T

∑

1≤t,l≤T

∑

|t−l|>τt

M = Op(T−2α)

which satisfies (A.27). Convergence of Ĵθ is proved by Schick (1987) which completes the
proof. ¦
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