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Abstract
Previous studies (e.g., Hamori, 2000; Ho and Tsui, 2003; Fountas et al., 2004)

find high volatility persistence of economic growth rates using generalized au-
toregressive conditional heteroskedasticity (GARCH) specifications. This paper
reexamines the Japanese case, using the same approach and showing that this find-
ing of high volatility persistence reflects the Great Moderation, which features a
sharp decline in the variance as well as two falls in the mean of the growth rates
identified by Bai and Perrons (1998, 2003) multiple structural change test. Our
empirical results provide new evidence. First, excess kurtosis drops substantially
or disappears in the GARCH or exponential GARCH model that corrects for an
additive outlier. Second, using the outlier-corrected data, the integrated GARCH
effect or high volatility persistence remains in the specification once we introduce
intercept-shift dummies into the mean equation. Third, thetime-varying variance
falls sharply, only when we incorporate the break in the variance equation. Fourth,
the ARCH in mean model finds no effects of our more correct measure of output
volatility on output growth or of output growth on its volatility.

Journal of Economic Literature Classification: C32, E32, O40

Keywords: Japan, real GDP growth, the Great Moderation, outlier, structural
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1. Introduction 

Real GDP growth involves long-run phenomena. For a longer sample period, structural changes 

in volatility will occur with a higher probability. For example, Kim and Nelson (1999), 

McConnell and Perez-Quiros (2000), Blanchard and Simon (2001), and Ahmed et al. (2004), 

among others, document a structural change in the volatility of U.S. GDP growth, finding a 

rather dramatic reduction in GDP volatility that some have labeled the Great Moderation. Stock 

and Watson (2003), Bhar and Hamori (2003), Mills and Wang (2003), and Summers (2005) 

show a structural break in the volatility decline of the output growth rate for Japan and other G7 

countries, although the break occurs at different times.  

Researchers frequently employ some form of a generalized autoregressive conditional 

heteroskedasticity (GARCH) modeling strategy to examine the volatility of real GDP growth. 

Most such studies, however, assume a stable GARCH or exponential GARCH (EGARCH) 

process capturing the movement in volatility. The neglect of potential structural breaks in the 

unconditional or conditional variances of output growth leads to high persistence in the 

conditional volatility or integrated GARCH (IGARCH). For example, Hamori (2000) finds that 

the GARCH persistence of volatility equals 0.972 for Japan and 0.987 for the U.S. and 

EGARCH persistence of 1.013 for Japan and 0.968 for the U.S. Ho and Tsui (2003) report that 

the EGARCH persistence equals -0.4147 for Japan, and equals 0.916 for the U.S. Finally, 

Fountas et al. (2004) find GARCH and EGARCH volatility persistence of 0.982 and 0.962, 

respectively, for Japan. All persistence measures fall close to one except a negative estimate.  

The evidence of a structural change in output growth volatility combined with finding 

high persistence in conditional volatility motivates us to revisit the issue of conditional volatility 

in real GDP growth rates for Japan. We report that a structural break exists in the variance 
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resulting in high volatility persistence. This issue is well known at the theoretical level;1 but, the 

only empirical examination for the U.S. appears in Fang and Miller (2008). This paper 

contributes to the literature by providing some new evidence from Japan. First, excess kurtosis in 

the growth rate drops substantially or disappears, once we incorporate an outlier in the GARCH 

model, either a symmetric or an asymmetric specification. Non-normally distributed residuals 

may emerge by not modeling the extraordinary change in the growth series. Second, the 

IGARCH effect or high volatility persistence remains, when we introduce two structural breaks 

in the mean equation. Third, the time-varying variance falls sharply, only when we incorporate 

the break in the variance equation. The IGARCH effect proves spurious due to nonstationary 

variance of output growth. Fourth, the ARCH(1)-M model finds no significant effects of our 

more correct specification of output volatility on output growth or of output growth on its 

volatility.  

Although our paper generally applies to modeling real GDP growth volatility using the 

GARCH approach, we focus on the Japanese case because it provides an interesting example, 

particularly when compared with the U.S. Using U.S. quarterly real GDP data, Fang and Miller 

(2008) report that the long-term growth rate of output keeps unchanged and its variance declines. 

                                                 
1 Diebold (1986) first argues that structural changes may confound persistence estimation in GARCH models. He 
notes that Engle and Bollerslev’s (1986) integrated GARCH (IGARCH) may result from instability of the constant 
term of the conditional variance (i.e., nonstationarity of the unconditional variance). Neglecting such changes can 
generate spuriously measured persistence with the sum of the estimated autoregressive parameters of the conditional 
variance heavily biased towards one. Lamoureux and Lastrapes (1990) provide confirming evidence that ignoring 
discrete shifts in the unconditional variance, the misspecification of the GARCH model can bias upward GARCH 
estimates of persistence in variance. Including dummy variables to account for such shifts diminishes the degree of 
GARCH persistence. More recently, Mikosch and Stărică (2004) prove that the IGARCH model makes sense when 
non-stationary data reflect changes in the unconditional variance. Hillebrand (2005) shows that in the presence of 
neglected parameter change-points, even a single deterministic change-point can cause GARCH  to measure 
volatility persistence inappropriately. Alternatively, Hamilton and Susmel (1994) and Kim et al. (1998) suggest that 
the long-run variance dynamics may include regime shifts, but within a given regime, it may follow a GARCH 
process. Kim and Nelson (1999), Bhar and Hamori (2003), Mills and Wang (2003), and Summers (2005) apply this 
approach of Markov switching heteroskedasticity with two states to examine the volatility of real GDP growth and 
identify structural changes. 

 3



This combination may imply immediately a weak relationship between growth and volatility.2 In 

contrast, Japan grew much more rapidly in the 1960s, during postwar reconstruction, than in the 

past few decades. We show that in Japan structural changes emerge in the variance as well as the 

mean of the real GDP growth rate identified by the multiple structural change test of Bai and 

Perron (1998, 2003). If the long-term mean growth rate fell substantially, the implication of the 

Great Moderation for the relationship between output growth and its volatility is not 

straightforward and requires model-based calculations.  

The rest of the paper unfolds as follows. Section 2 discusses the data, detects and corrects 

outliers, models the unstable GARCH process of output growth volatility, and identifies the 

break dates in the mean and the conditional variance. Section 3 presents empirical results with 

changes in the mean and the variance and identifies two areas of misspecification of the GARCH 

modeling of output growth volatility. Section 4 considers evidence on the relationship between 

the output growth rate and its volatility. Finally, Section 5 concludes.  

2. Data and Unstable GARCH process 

Output growth rates ( ) equal the percentage change in the logarithm of seasonally adjusted 

quarterly real GDP ( ) with base year 2000 over the period 1955:2 to 2008:2. All data come 

from 

ty

tY

http://www.esri.cao.go.jp/en/sna/data.html, the Cabinet Office, Government of Japan. The 

original source contains three quarterly estimates of GDP: the 1990 benchmark year for official 

series 1955:2 to 1979:4 and reference series 1980:1 to 2001:1, the 1995 benchmark year for 

official series 1980:1 to 1993:4 and reference series 1994:1 to 2005:2, and the 2000 benchmark 

year for 1994:1 to 2008:2. Accordingly, three quarterly raw data series underlie the quarterly 

series used in this paper. That is, we create the quarterly real GDP series, involving two splices. 
                                                 
2 Stock and Watson (2003) interpret the moderation in output volatility with no change in the mean growth rate as 
shorter recessions and longer expansions in the U.S. 

 4

http://www.esri.cao.go.jp/en/sna/data.html#qe


First, we splice the 1955:2 to 1980:1 real GDP series to the 1980:1 to 1994:1 real GDP series, 

measured in 1995 prices. The government measures the first historical real GDP series in 1990 

prices, which we convert to 1995 prices by multiplying by 1.043 (equals the ratio of the 1995 

currency value to 1990 currency value in the overlap quarter 1980:1).3 Second, we splice the 

resulting spliced series from 1955:2 to 1994:1 series to the 1994:1 to 2008:2 series by converting 

to 2000 prices by multiplying by 0.970 (equals the ratio of the 2000 currency value to 1995 

currency value in the overlap quarter 1994:1). 

Table 1 reports descriptive statistics for the growth rate of the spliced quarterly real GDP. 

Japan experiences a mean growth rate of 1.1667 percent for the full 54-year sample with the 

highest rate of 6.8306 in 1960:1 and the lowest rate of -3.4964 in 1974:1. Output volatility, 

represented by the standard deviation, equals 1.3037. Under the assumptions of normality, 

standard measures of skewness and kurtosis possess asymptotic distributions of N(0, 6/T) and 

N(0, 24/T), respectively, where T(=212) equals the sample size. The skewness statistic displays 

an asymmetric distribution. The asymmetry characterized by positive skewness means that in the 

sample period, a greater probability exists of large increases in real GDP growth than larger 

decreases. The kurtosis statistic exhibits leptokurticity with fat tails. A higher kurtosis means that 

extreme changes occur more frequently. The Jarque-Bera test rejects normality. Ljung-Box Q 

statistic tests for autocorrelation up to seven lags. The Ljung-Box statistics (LB ) indicate 

autocorrelation in the growth rates. The Ljung-Box statistics for squared rates (LB ) suggest 

time-varying variance in the series. Autocorrelation and heteroskedasticity suggest ARMA 

processes for the mean and the variance equations to capture the dynamic structure and to 

generate white-noise residuals.  

Q

2Q

                                                 
3 Diebold and Senhadji (1996) use this method to splice the 1869 to 1929 real GNP series in 1982 dollars to the 1929 
to 1993 real GNP series in 1987 dollars. 
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We construct an AR model for the growth rate series. Based on the Schwarz Bayesian 

Criterion (SBC), AR(3) process proves adequate to capture growth dynamics and produces 

uncorrelated residuals.4 That is, the mean growth rate equation equals the following: 

ti itit yaay ε++= ∑ = −
3

10 ,       (1) 

where the growth rate )ln(ln100 1−−×≡ ttt YYy ,  equals the natural logarithm of real GDP,tYln 5  

and tε  equals the serially uncorrelated error term.  

Hamori (2000), Ho and Tsui (2003), and Fountas et al. (2004) apply symmetric and 

asymmetric GARCH(1,1) models to parameterize the time-varying conditional variance of 

output growth for Japan. Following these authors, this paper uses the same approach modeling 

volatility process as follows: 

,   , 2
11

2
110

2
−− ++== tttttt σβεαασησε      (2) 

where tη  equals an independent and identically distributed (iid) random variable with mean zero 

and variance 1. In addition,  equals the conditional variance of the growth rate, given 

information available at time t-1. The conditions that

2
tσ

0≥iα , 0≥iβ , and 111 <+ βα  ensure 

positive and stable conditional variances of tε . The sum, 11 βα + , measures the persistence of 

shocks to the conditional variances. Evidence of an IGARCH, or, in general, evidence of high 

persistence may result from occasional level shifts in volatility. If 1β  equals zero, the process 

reduces to an ARCH(1). When 1α  and 1β  both equal zero, the variance equals a constant. We 

estimate the model employing Bollerslev and Wooldridge’s (1992) quasi-maximum likelihood 

                                                 
4 In their GARCH models, Hamori (2000) uses AR(2) and AR(4) processes for the conditional mean, while Ho and 
Tsui (2003) and Fountas et al. (2004) use AR(3) filters. In this study, the SBC chooses AR(3) for our longer sample 
period. 
5 After selecting lag lengths by the SBC, the augmented Dickey-Fuller (ADF) statistic (= -4.0061) indicates that the 
growth rates exhibit a stationary [I(0)] process at the 5-percent level.  
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estimation (QMLE) technique, assuming normally distributed errors and using the Berndt et al. 

(1974) (BHHH) algorithm.  

The model contained in equations (1) and (2) assumes that positive and negative shocks 

generate the same effect on volatility, implying a symmetric GARCH specification. The 

volatility may respond differently to shocks during periods of a rise or a fall in output growth. 

For example, using the EGARCH model introduced by Nelson (1991), Ho and Tsui (2003) find 

evidence of asymmetric volatility in the real GDP growth rates of the U.S. and Canada, although 

these authors, Hamori (2000), and Fountas et al. (2004) all report no evidence of asymmetry in 

Japan. Verhoeven and McAleer (2004) argue that asymmetry may arise with skewed 

unconditional returns. Table 1 reports skewness of the growth rates. Thus, to provide a more 

systematic analysis for our longer sample period, we also examine the following EGARCH 

process:  
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where asymmetry exists if 02 ≠α , and when 02 <α , it implies that negative shocks generate 

higher volatility than positive shocks of the same magnitude, and vice versa. The coefficient 1β  

captures the persistence of shocks in the conditional variance and the log transformation 

guarantees a positive variance.  

Table 2 reports estimation results of the two models with standard errors in parentheses, 

statistics for the standardized residuals, and p-values in brackets. In Panel A, for the 

GARCH(1,1) model, higher-order AR estimates in the mean equation prove significant at the 5-

percent level, lending support to the autoregressive specification. Each estimate in the variance 

equation exceeds zero. The volatility persistence measure of 0.9561 matches the high values 

reported in Hamori (2000) and Fountas et al. (2004) for Japan. The likelihood ratio (LR) tests for 
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111 =+ βα  in the GARCH process do not reject the null hypothesis of an IGARCH effect. The 

fitted model adequately captures the time-series properties of the data in that the Ljung-Box Q-

statistics for standardized residuals and standardized squared residuals, up to 7 lags, do not detect 

autocorrelation and conditional heteroskedasticity. The standardized residuals, however, exhibit 

significant excess kurtosis and, thus, do not exhibit a normal distribution at the 5-percent level. 

In Panel B, for the EGARCH(1,1) model, the insignificant estimate of 2α  suggests that good 

news and bad news do not exert different effects on output growth volatility. All properties of the 

diagnostic statistics, such as no autocorrelation and heteroskedasticity, significant kurtosis and 

normality test, and the insignificant LR test match those exhibited in the GARCH model. The 

significant IGARCH effect ( 1β =0.9393) appears in Hamori (2000) and Fountas et al. (2004). 

The empirical results of the GARCH models may reflect model misspecification in, at 

least, two ways. First, on the one hand, Stock and Watson (2003), Bhar and Hamori (2003), Mills 

and Wang (2003), and Summers (2005) document the decline in volatility of Japan’s output 

growth. On the other hand, Diebold (1986), Lamoureux and Lastrapes (1990), Mikosch and 

Stărică (2004), and Hillebrand (2005) note theoretically that Engle and Bollerslev’s (1986) 

IGARCH may result from instability of the constant term in the conditional variance (i.e., 

nonstationarity of the unconditional variance). Neglecting such changes can generate spuriously 

measured persistence of the conditional variance heavily biased towards one. Thus, the high 

volatility persistence found in the GARCH models in Table 2 may prove spurious, since we do 

not incorporate structural change in the variance. That the empirical results may depend on 

whether the researcher models the structural changes in the variance does not break new ground. 

See Lastrapes (1989), Tzavalis and Wickens (1995), and Fang and Miller (2008) for an analysis 

in the GARCH framework, and the references contained in these studies for different 
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applications. While this issue receives some attention for the U.S., no analysis of this issue 

considers the Japanese case. As noted by Blanchard and Simon (2001) and Stock and Watson 

(2003), Japan’s patterns of output growth and its volatility differ from that of the other G7 

countries. Therefore, Japan deserves more analysis of the conditional volatility of its real GDP 

growth. Specifically, it experiences two declines in its growth rate in addition to its volatility. 

Krämer and Azamo (2007) show that changes in the mean equation may explain changes in the 

volatility. 

Second, according to the distributional assumption in the GARCH specifications, the 

standardized residuals should reflect a normal distribution, if the GARCH models totally capture 

unconditional skewness and leptokurtic distributions. The sample skewness and kurtosis in Table 

2 for the standardized residuals indicate that the GARCH solves the skewness but only some of 

leptokurtosis for the output growth rate. Thus, the significant statistics of kurtosis and the Jarque-

Bera normality test provide another cautionary note. Blanchard and Simon (2001) note that the 

distribution of output growth exhibits excess kurtosis, if large and infrequent shocks occur. This 

suggests that the evidence of kurtosis may reflect extreme changes in the mean growth rate. We 

argue that not considering such changes as outliers, structural breaks in the mean, or structural 

breaks in the variance of the growth rate may leave the excess kurtosis unresolved, as seen in 

Table 2. 

Thus, we expect to resolve these two issues of misspecification by modeling outliers and 

changes in the mean and the variance equations. That is, the likelihood of biasing the estimated 

volatility persistence parameters toward one and the skewness and leptokurtosis in the 

distribution of output growth vanishes after adjustment of the GARCH model with various 

changes.  
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Economic and financial time series frequently include outliers.6 An outlier observation 

appears inconsistent with other observations in the growth rates. To the best of our knowledge, 

however, researchers typically overlook their existence and effect when modeling output growth 

volatility. For example, Fang and Miller (2008) apply Inclán and Tiao’s (1994) iterated 

cumulative sum of squares (ICSS) algorithm to detect structural changes in the variance, 

neglecting the effects of sample contamination of outliers. Rogrigues and Rubia (2007) prove 

that the asymptotic distribution of the ICSS test varies under additive outliers. The critical values 

from this distribution generally prove inadequate for the test, which finds too many breaks. 

Moreover, the situation worsens with time-varying volatility. In the context of persistent 

volatility patterns and additive outliers, the test is severely distorted and is expected to provide 

unreliable inference no matter the available number of observations.  

In Table 2, excess kurtosis in the GARCH residuals implies the presence of outliers in the 

growth series that the GARCH models do not capture (Balke and Fomby, 1994; Franses and 

Ghijsels, 1999; Charles and Darné, 2005, 2006; and Bali and Guirguis, 2007). In addition, the 

high persistence measures may reflect structural changes in the mean or variance of growth rates, 

which the GARCH estimations ignore (Diebold, 1986; Lamoureux and Lastrapes, 1990; 

Mikosch and Stărică, 2004; Hillebrand, 2005; Krämer and Azamo, 2007; and Fang and Miller, 

2008). Following Franses and Ghijsels (1999) and Charles and Darné (2005), we, first, employ 

the method of Chen and Liu (1993) to detect and correct for additive outliers (AOs) and 

                                                 
6 Balke and Fomby (1994) analyze fifteen post-World War II U.S. macroeconomic time series using the outlier 
identification procedure based on Tsay (1988) and find that outliers may prove important for U.S. macroeconomic 
data, and such aberrant observations may lead to large ARCH test statistics. van Dijk, Franses, and Lucas (1999) 
demonstrate that neglecting additive outliers frequently leads to a rejection of the null hypothesis of 
homoskedasticity, when it is in fact true. Tolvi (2001) and Charles and Darné (2006), however, show another 
possibility. That is, outliers can hide the ARCH tests of the series. After correcting the data for outliers, returns series 
sometimes display strong evidence of ARCH. Franses and Ghijsels (1999) and Charles and Darné (2005, 2006) 
apply the method of Chen and Liu (1993) to correct for additive outlier and show that correcting for additive outliers 
reduces excess kurtosis in GARCH models and improves forecasts of stock market volatility. 
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innovative outliers (IOs), if any, in the GARCH models. Using the outlier-corrected GDP growth 

series and following Cecchetti et al. (2005) and Herrera and Pesavento (2005), we, second, apply 

the multiple structural change test of Bai and Perron (1998, 2003) to detect structural changes in 

the mean and the variance of the series.  

Franses and Ghijsels (1999) and Charles and Darné (2005) develop a method to detect 

and correct additive and innovative outliers in GARCH models based on the outlier detection 

procedure by Chen and Liu (1993). An AO, an exogenous change, affects the level of the series 

when the outlier occurs. An IO, an endogenous change, affects the series after it occurs through 

the memory of the process. In the detection process, we, first, estimate the GARCH(1,1) model 

for the growth rate series and obtain estimates of the conditional variance, , which we write 

as an ARMA(1,1) model for 

2
tσ

2
tε  (see Bollerslev, 1986) and that may involve contamination from 

AOs and/or IOs. We, then, compute the test statistics (see Franses and Ghijsels (1999), Peña 

(2001), and Charles and Darné (2005) for details). An outlier exists when the maximized statistic 

among all possible observations exceeds the prespecified critical value, which equals ten (10) in 

our application. The choice for a critical value reflects simulation experiments proposed by 

Franses and van Dijk (2004, pp.181-182). We, next, replace the observed growth rates with 

outlier-corrected values, depending on AOs and/or IOs. Finally, we estimate the GARCH model 

for the outlier-corrected growth rates and repeat all steps until no maximized test statistic exceed 

the critical value.7 

We find two outliers, an additive outlier and an innovative outlier, both at the same date 

1974:1. According to Chen and Liu (1993), at the date, the larger is the test statistic, the more 

likely is the type of outlier. We, therefore, treat the outlier as an AO, since it exhibits the largest 
                                                 
7 We detect and correct outliers in the series of output growth using the GAUSS code available from Dick van Dijk’s 
web page at http://people.few/eur.nl/djvandijk/nltsmef/nltsmef.htm. 
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test statistic. Table 3 reports descriptive statistics for the outlier-corrected growth rate. Compare 

Table 3 to Table 1. Since the AO at 1974:1 is the minimum observation (-3.4964 in Table 1), this 

correction leads to higher mean value and skewness in Table 3. The statistics of kurtosis and the 

normality test fall, but both remain significant. In econometrics, we expect the standardized 

residuals to exhibit a normal distribution after GARCH adjustment. Table 4 reports that, using 

the outlier-corrected GDP growth series, the insignificant statistics of the Jarque-Bera test 

suggest normally-distributed residuals, although the kurtosis proves marginally significant at the 

10-percent level in the GARCH(1,1) model. All other estimates and statistics match those in 

Table 2 except that 2α  now proves significant. Asymmetry appears sensitive to the data, 

reflecting the higher skewness after outlier correction. The IGARCH effect remains, however, in 

both the GARCH and the EGARCH models, as evidenced by the insignificant LR statistics. 

Using the outlier-corrected data, we look for structural changes in the volatility for GDP 

growth in sequential steps. First, we estimate equation (1) allowing for the possibility of 

structural breaks in its intercept. Specifically, we use the statistical techniques of Bai and Perron 

(1998, 2003) to estimate multiple break dates without prior knowledge of when those breaks 

occur. After finding any breaks in the mean of , we use that model specification to obtain 

series of estimated residuals, 

ty

tε̂ . Second, we search for breaks in the variance by testing for 

parameter constancy in the conditional mean of the absolute value of the residuals tε̂  as shown 

in Cecchetti et al. (2005) and Herrera and Pesavento (2005).   

Bai and Perron (1998, 2003) propose several tests for multiple breaks. We adopt one 

procedure and sequentially test the hypothesis of m breaks versus m+1 breaks using 

)1(sup mmF +  statistics, which detects the presence of m+1 breaks conditional on finding m 

breaks and the supremum comes from all possible partitions of the data for the number of breaks 
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tested. In the application of the test, we search for up to five breaks. If we reject the null of no 

break at the 5-percent significance level, we, then, estimate the break date using least squares, to 

divide the sample into two subsamples according to the estimated break date, and to perform a 

test of parameter constancy for both subsamples. We repeat this process by sequentially 

increasing m until we fail to reject the hypothesis of no additional structural change. In the 

process, rejecting m breaks favors a model with m+1 breaks, if the overall minimal value of the 

sum of squared residuals over all the segments, including an additional break, falls sufficiently 

below the sum of squared residuals from the model with m breaks. The break dates selected 

include the ones associated with this overall minimum. We search for multiple breaks in the 

series of output growth using the GAUSS code made available by Bai and Perron (2003).  

Table 5 displays the results of testing for breaks in the mean and the variance, their 

critical values at the 5-percent significance level (in parentheses), and structural stability test. In 

Panel A, the value of the )05(sup F  test proves significant for m=5, suggesting the existence of 

at least one break in the growth rate series. The sequential )1(sup mmF +  exhibits significance 

up to m=2. That is, given the existence of one break, 6595.18)12(sup =F  suggests that a second 

break exists. The next test, 4464.1)23(sup =F  falls below the critical value, suggesting that 

only two breaks exist in the mean growth series. The break dates occur at 1973:1 and 1991:1, 

respectively. Using the same approach, but assuming a simple AR(1) model and testing for 

multiple breaks in the persistence coefficient (i.e., only  in equation 1), Cecchetti et al. (2005) 

find no breaks for Japan.

ia

8 Our results more closely approximate the break date in Stock and 

                                                 
8 Applying the Bai and Perron’s test to both the constant term and the AR persistence parameters in the mean 
equation 1 yields the same break dates at 1973:1 and 1991:1. Since not one of the six AR persistence dummies is 
significant, we conclude that the source of changes in the mean comes from the intercept. That is, in this application, 
it does not matter whether we consider the break points in the constant term alone or all parameters simultaneously. 
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Watson (2005), who use AR(4) models over the period 1960:1 to 2002:4 and find one break at 

1973:1. We identify two breaks in our longer sample period. 

In Panel B, the procedure identifies a single structural break in the variance of growth 

rates at 1972:1. Thus, change in the GARCH process governs volatility. Stock and Watson 

(2003) estimate instantaneous standard deviations of four-quarter GDP growth and show that the 

volatility of real GDP fell in the 1970s. Mills and Wang (2003) fit Hamilton’s Markov chain 

model to post-war quarterly output growth that allows for a one-time structural break and find 

the break around 1976. Summers (2005) uses the Markov switching model with high and low 

GDP volatility regimes for quarterly data and reports the date of the switch from high to low 

volatility as 1975:2. Cecchetti et al. (2005), use shorter quarterly data of real GDP growth 

starting in 1970, finding no break. Different approaches find different break dates. Generally, the 

evidence indicates that the Japanese break date occurs some time in the early to mid 1970s, 

nearly 10-year earlier than the U.S. break date of 1984:1 in McConnell and Perez-Quiros (2000) 

and 1982:1 in Fang and Miller (2008).  

In Table 5, Panels C and D, we further conduct structural stability tests for the 

unconditional variance as well as the mean of the growth rate by splitting the sample into sub-

periods according to the break date. For the unconditional mean, a t-statistic tests for the equality 

of means under unequal variances for two different samples, while a variance-ratio statistic tests 

for the equality of the unconditional variances.  

In Panel C, the mean growth rates in each sub-sample differ significantly, since the t-

statistic rejects the null hypothesis of equal means. Japan experiences a significant drop in the 

mean growth from 2.2615 in the pre-1973 sample period to 1.0684 in the period between 1973 to 

1991, and a further drop to 0.2951 in the post-1991 period. The decline in the mean growth rate 
                                                                                                                                                             
This also confirms Cecchetti et al. (2005) finding of no breaks in the AR terms in equation 1. 
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equals 87-percent from the pre-1973 to the post-1991 period. In Panel D, also a clear decline in 

the standard deviation of the growth rate occurs from 1.3573 in the pre-1972 sample to 0.8805 in 

the post-1972 sample. The p-values for the variance-ratio F-test significantly reject the null of 

variance equality between the two samples. The decline equals 35-percent in the variance. As the 

introduction notes, economists call the substantial drop in the variance of output growth in the 

period after the break the Great Moderation.  

Figure 1 plots observed real GDP, its growth rate, and marks the outliers, the break dates 

for the mean as well as the variance with a grey area, where horizontal lines denote the mean 

growth rates in the three regimes, respectively. 

Fang and Miller (2008) report that U.S. output volatility declines 49-percent with no 

change of the mean growth rate in the post-break sub-period over the period 1947:1 to 2006:2. 

Thus, two important differences of preliminary statistics for quarterly real GDP growth emerge 

between Japan and the U.S. First, the Great Moderation in the U.S. means moderation in output 

volatility. In Japan, the Great Moderation means two declines in the mean growth rate in addition 

to a decline in the variance. Second, and most interestingly, Japan and the U.S. experience a ten-

year gap between their break dates, but both exhibit a high degree of moderation in variance. 

Most research investigates the causes of the Great Moderation such as good policies, structural 

change, good luck, or output composition shifts, as discussed in McConnell and Perez-Quiros 

(2000), Blanchard and Simon (2001), Stock and Watson (2003), Ahmed et al. (2004), Bernanke 

(2004), Summers (2005), Eggers and Ioannides (2006), and Fang and Miller (2008), focusing on 

the economy of the U.S. To date, no agreement exists on the cause or causes of the reduced 

volatility. This rest of this paper addresses the effect of the Great Moderation on the time-series 
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specification of output growth volatility in GARCH models as well as the effects, if any, of our 

output growth volatility measure on output growth and of output growth on its volatility in Japan. 

3. Structural Changes and GARCH Estimates 

To consider the effect of the Great Moderation on the volatility persistence of output growth in 

GARCH specifications, we include a dummy variable in the conditional variance equation, 

which equals unity from the break date forward, zero otherwise, in the GARCH and EGARCH 

processes, respectively, as follows: 
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where = 1 for ; and 0, otherwise. The dummy variable accommodates the 

extraordinary change. Since the volatility declines, we expect a significant negative estimate of 

D 1:1972>t

γ  to capture the break in the variance process.  

Japan also experiences two sharp drops in its growth rates in addition to the moderation 

in its volatility at the break dates 1973:1 and 1991:1. To capture the mean shifts, two dummy 

variables, defined as =1 for , zero otherwise, and =1 for , zero 

otherwise, enters into the mean equation as follows: 

1D 1:1973>t 2D 1:1991>t

∑− − ++++=
3

1 22110 i titit DdDdyaay ε ,     (6) 

To see the effect of the mean changes, Table 6 reports the estimation results, where we 

include these two dummy variables in the mean equation, but still exclude the shift dummy 

variable from the variance equation. For each of the two GARCH models, the coefficients of the 

two mean-shift dummies (  and ) prove highly significant with no autocorrelation or 

heteroskedasticity. Excess kurtosis leads to non-normally distributed errors and high volatility 

1d 2d
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persistence remains. The insignificant LR statistic does not reject the null hypothesis of 

 in the GARCH, the LR test rejects  at the 10-percent level in the EGARCH, and 

the  proves significant and high. Generally, the mean shifts cannot adequately explain 

high volatility persistence in either the symmetric or the asymmetric model. This result 

reinforces Sensier and van Dijk’s (2004) finding that allowing for a structural change in the 

mean equation does not affect the distribution of percentage changes in standard deviation, but 

does not support Krämer and Azamo’s (2007) argument.  

111 =+ βα

.01 =β

11 =β

9272

Table 7 reports the estimates with both the mean and variance dummy variables. The 

coefficient of the structural dummy (i.e., γ ) proves significantly negative at least at the 10-

percent level in the variance equation along with significant dummies in the mean equation (i.e., 

 and ). The improvement of the value of the maximum log-likelihood (see Tables 2, 4, 6, 

and 7) indicates that including all three dummy variables in the GARCH models provides a 

better performance. The Ljung-Box Q-statistics of the standardized residuals and the squared 

standardized residuals show no evidence of autocorrelation and heteroskedasticity, providing 

support for the specification of the GARCH or the EGARCH. The significant LR statistic at the 

5-percent level indicates no IGARCH effect. In fact, for the GARCH (1,1) model, not only does 

a large decline occur in the estimated degree of persistence in the conditional variance, but also 

the estimate of 

1d 2d

1β  becomes insignificant in the specification that includes the dummy variable. 

That is, the GARCH(1,1) model reduces to an ARCH(1). Panel B reports a parsimonious 

ARCH(1) model with the three insignificant estimates (i.e., , , and1a 2a 1β ) deleted. The 

insignificant likelihood ratio statistic (= 1.0284), testing for the deletion and distributed as a  

with 3 degrees of freedom, suggests that the simple ARCH(1) model possesses the same 

explanatory power as the GARCH(1,1) model. All estimates and statistics match those in Panel 

2χ
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A except that 1α  no longer proves significant, reducing the ARCH(1) to a constant. For the 

EGARCH(1,1) model in Panel C, the persistence measure 1β  reduces to 0.2604 and proves 

insignificant. The estimate of asymmetry, 2α , is significant at the 10-percent level. For all three 

specifications, the coefficients of skewness and excess kurtosis prove insignificant. The 

standardized residuals conform to a normal distribution.  

In sum, the results of the symmetric or asymmetric GARCH models suggest that the high 

time-varying variance in the growth rate may reflect the change in the variance caused by the 

Great Moderation.  

Previous studies that employed a GARCH(1,1) modeling approach investigating 

volatility of real GDP growth generally conclude that high volatility persistence in the real 

growth rates exists in Japan. This study revisits this issue and finds no high volatility persistence. 

Although our quarterly real GDP data, spanning 1955:2 to 2008:2, contain more recent data than 

the sample from 1960:1 to 1996:4 in Hamori (2000), from 1961:1 to 1997:4 in Ho and Tsui 

(2003), or from 1961:1 to 2000:2 in Fountas et al. (2004), do sample period differences explain 

differences in the empirical findings? Or do differences in findings relate to structural changes in 

the variance of the growth rate in each of the sample periods? To consider the robustness of our 

results, we examine outliers and changes in the mean and the variance for these samples.  

For comparison purpose, we now employ the original Japanese quarterly estimates of 

GDP with base year 1990 over the period 1955:2 to 2001:1. The descriptive statistics show 

autocorrelation, heteroskedasticity, and leptokurtosis for all three sample periods. To save space, 

we do not report detailed statistics. The SBC selects an AR(3) filter, the same process used by 

Ho and Tsui (2003) and Fountas et al. (2004), for each of the three samples. Different samples 

may experience different dates of outliers and breaks, although we do not expect dramatic 
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changes in such dates. The Franses and Ghijsels’ (1999) procedures find a single additive outlier 

at 1974:1, the same date of the outlier in our longer sample period, for each of the three shorter 

periods. Using the outlier-corrected growth rate, the Bai and Perron’s (1998, 2003) algorithm 

detects a significant fall in the mean at 1973:1 and a significant decline in the variance at 1972:1 

for the sample period 1960:1 to 1996:4, and two falls at 1973:2 and 1991:1 in the mean and a 

decline at 1975:3 in the variance for the period 1961:1 to 1997:4, and at 1973:1 and 1990:4 in the 

mean and 1975:1 in the variance for 1961:1 to 2000:2. These contrast to the break dates at 

1973:1 and 1991:1 for the mean and 1972:1 for the variance found earlier in our sample period 

1955:2 to 2008:2. All breaks occur at almost the same dates except the second and the third 

variance change of 1975, which occurs three-year later than the change of 1972 in the first and 

our full sample.9  

Following the same procedures used before, we see IGARCH estimates and significant 

kurtosis with no autocorrelation and heteroskedasticity for each of the three samples, when we 

ignore changes in the data (i.e., outliers and changes in mean and variance), the same evidence as 

reported in Table 2. When we use the outlier-corrected data and observe the effect of including 

breaks in the mean equation for each sample, the mean-shift dummies (  and ) prove 

significantly negative with no autocorrelation and heteroskedasticity. Insignificant skewness and 

kurtosis, and, thus, normally distributed residuals emerge in two EGARCH estimations. The high 

volatility persistence of an IGARCH appears in all six symmetric and asymmetric specifications. 

Table 8 reports these findings.  

1d 2d

                                                 
9 We examine descriptive statistics for the data in the pre- and post-break subsamples for the three sample periods. 
The same conclusions emerge as in our sample period (see Table 5). The t-statistic rejects the null of equality of 
means between samples and the variance ratio rejects the null of variance equality between samples. To save space, 
we do not report detailed statistics, which are available on request. 
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Finally, when we incorporate the dummy variables in both the mean and variance 

equations, volatility persistence declines. Table 9 reports the estimation results for each of the 

three periods. For the two models, the significant negative estimates of , , and 1d 2d γ  reflect the 

extraordinary declines in the mean and the variance processes. Diagnostic statistics show no 

autocorrelation, heteroskedasticity, skewness, and kurtosis at the 5-percent level. The Jarque-

Bera test suggests that each series of the residuals displays normally distributed errors. Both the 

GARCH and the EGARCH models are adequately specified. Volatility persistence declines in 

that the significant LR statistic indicates no IGARCH effect in each of the three periods. 

Interestingly, the EGARCH estimates a negative estimate of 1β , which also appears in Hamori 

(2000) and Ho and Tsui (2003). One explanation is that the estimate 2α  is insignificant, 

suggesting no need for an asymmetric specification. The same conclusion occurs in Hamori 

(2000), Ho and Tsui (2003), and Fountas et al. (2004).  

In sum, previous studies assume implicitly that a stable GARCH process governs 

conditional growth volatility. The neglect of the structural break in the variance implies 

misspecification of the conditional variance. This leads to the conclusion of a significant 

IGARCH effect as in the GARCH and EGARCH estimations of Hamori (2000) and Fountas et 

al. (2004). Moreover, taking no account possible outliers and breaks in the growth rates entails 

excess kurtosis, and, thus, a significant Jarque-Bera test as reported by Ho and Tsui (2003), 

violating the normality assumption and generating another issue of misspecification for the 

GARCH model.  

4. Relationship between Output Volatility and Economic Growth 

The prior section considers the appropriate time-series specification of the volatility of the 

growth rate of real GDP. A number of authors examine the issue of how this volatility affects the 
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growth rate of GDP. That is, does the decreased real GDP growth rate volatility cause a higher or 

lower real GDP growth rate? For example, applying a GARCH in mean (GARCH-M) model 

(Engle et al., 1987) and using post-war real quarterly GDP data, Henry and Olekalns (2002) 

discover a significant asymmetric GARCH effect and a negative link between volatility and real 

GDP growth for the U.S. without consideration of structural shift in the volatility process. In 

contrast, Fang and Miller (2008) find a weak GARCH effect and no link between volatility and 

growth for the U.S. with a structural break in the volatility process. Fountas et al. (2004) analyze 

Japan’s data and conclude that output volatility does not affect output growth under the 

assumption of a stable GARCH process. This section pursues this question with our more 

appropriate time-series specification of the real GDP growth rate volatility. This issue is 

important because structural break in variance biases upward GARCH estimates of persistence in 

variance and, thus, vitiates the use of GARCH to estimate its mean effect.  

In this section, the mean growth rate shown in equation (6) translates into the following: 

∑ − − +++++=
3

1 22110 i ttitit DdDdyaay ελσ ,   (7) 

where tσ  equals the standard deviation of the conditional variance, , and 2
tσ λ  measures the 

volatility effect in the mean.  

Alternative theoretical models give mixed results -- negative, positive, or independent 

relationships between output growth volatility and output growth. For example, the 

misperceptions theory, proposed originally by Friedman (1968), Phelps (1968), and Lucas 

(1972), argues that output fluctuates around its natural rate, reflecting price misperceptions due 

to monetary shocks. The long-run growth rate of potential output, however, reflects technology 

and other real factors. The standard dichotomy in macroeconomics implies no relationship 

between output volatility and its growth rate (i.e., λ =0). Martin and Rogers (1997, 2000) argue 
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that learning-by-doing generates growth whereby production complements productivity-

improving activities and stabilization policy can positively affect human capital accumulation 

and growth. One natural conclusion, therefore, implies a negative relationship between output 

growth volatility and growth (i.e., λ <0). In contrast, Black (1987) argues that high output 

volatility and high growth coexist. According to Blackburn (1999), a relative increase in the 

volatility of shocks increases the pace of knowledge accumulation and, hence, growth, implying 

a positive relation between output growth volatility and growth (i.e., λ >0).  

More recently, Fountas et al. (2006) consider the possibility of a two-way relationship 

between output growth and its volatility. The authors first estimate a bivariate GARCH 

specification of output growth and inflation. And then they recover the means and conditional 

variances for output growth and inflation to run a second-stage four-variable vector-

autoregressive model to conduct Granger-causality tests. Using G7 examples, they find that 

output growth volatility positively affects output growth in all the seven countries, except Japan, 

and output growth negatively affects output growth volatility in Japan, Germany, and the U.S. 

and a zero effect in the rest of the countries. That is, a bi-directional causality between output 

growth and its volatility exists in Germany and the U.S., and one-way causality in Japan and the 

other four countries. 

In a GARCH-M model, if output growth partly determines its volatility but is excluded in 

the variance equation, then the conditional variance equation is misspecified and GARCH-M 

estimates are not consistent (see Pagan and Ullah, 1988). Fountas and Karanasos (2006) and 

Fang and Miller (2008) develop a structural specification that incorporates the contemporaneous 

conditional volatility into the mean equation for output growth and lagged output growth into the 

conditional variance equation in their GARCH-M models. They both find a negative level effect 
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in the variance for the U.S. and Fountas and Karanasos (2006) find no level effect in Japan. To 

avoid the GARCH-M model suffering from an endogeneity bias, we augment the variance 

equations (4) and (5) to include lagged output growth, respectively, as follows: 
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where θ  measures the level effect of the output growth in variance. To the best of our 

knowledge, no economic theory models explicitly the effect of output growth on its volatility. 

The sign of θ  is unknown. Fountas et al. (2006) argue that either a negative or a positive relation 

may occur. That is, an increase in output growth leads to more inflation, if both the Friedman 

(1977) hypothesis and the Taylor (1979) effect hold, then higher inflation raises inflation 

volatility and higher inflation volatility trades off with output volatility. Thus, output growth and 

its volatility are negatively related (i.e., θ <0). Ungar and Zilberfarb (1993), however, show that 

higher inflation reduces inflation volatility, and thus a positive relation (i.e., θ >0) may also 

occur. 

Table 10 reports the GARCH and EGARCH in mean estimation results, where we 

include the mean-shift dummies, and the lagged output growth as well as the one-time structural 

break in the variance process. As noted earlier in Table 7, we already demonstrated that the 

ARCH(1) adequately captures the volatility of real GDP growth of Japan. Since most previous 

studies use GARCH(1,1)-M to model the relationship between output growth and its volatility, 

for comparison reason, we report both GARCH(1,1)-M and ARCH(1)-M estimation results. For 

the three models estimated, the coefficient of the conditional standard deviation (λ ) is negative 

but insignificant. The estimate (θ ) of the lagged growth rate of output on its conditional variance 

is positive in the GARCH and ARCH models, but negative in the EGARCH specification, all 
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with no significance. Other estimates and diagnostic statistics behave well. That is, the three 

dummies ( 1d , 2d , and γ ) are significantly negative, the LR statistic suggests no IGARCH effect, 

and the residuals are normally distributed with no autocorrelations and heteroskedasticity, all at 

the 5-percent level. Based on the likelihood ratio test, ARCH(1)-M performs as good as 

GARCH(1,1)-M, and the insignificant asymmetric measure 2α  and persistence estimate 1β  

imply that an ARCH(1) actually can replace the EGARCH model. The evidence furth  

concludes no ARCH effect in the real growth rates of Japan after accounting for the change of 

the variance.  

The in

er

signifi timate of cant es λ  in the mean equation implies no relationship between 

output r

y explain the differences in findings across studies? Caporale and 

McKie

volatility and its growth. This esult conforms to the misperception hypothesis and the 

previous empirical findings, using GARCH-M models, of Speight (1999) for the U.K., Fountas 

et al. (2004) for Japan, and Grier and Perry (2000), Fountas and Karanasos (2006), and Fang and 

Miller (2008) for the U.S. This finding, however, proves inconsistent with the discovery of a 

positive relationship by Caporale and McKiernan (1996, 1998) for the U.K. and the U.S., and by 

Fountas and Karanasos (2006) for Germany and Japan, as well as the discovery of a negative 

relationship by Macri and Sinha (2000) for Australia and by Henry and Olekaln (2002) for the 

U.S.  

What factors ma

rnan (1998) and Fountas and Karanasos (2006) use annual real GNP or IP (industrial 

production) data. Macri and Sinha (2000) use quarterly real GDP and IP data, although the real 

GDP data do not exhibit an ARCH effect. Caporale and McKiernan (1996), Speight (1999), and 

Grier and Perry (2000) use monthly IP to examine the effect of output growth volatility on its 

growth. The data frequency may provide another avenue for differences in findings. Existing 
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research efforts, however, do not limit the phenomenon of the Great Moderation to quarterly 

output only. For example, Sensier and van Dijk (2004) find approximately 80 percent of 214 

monthly U.S. macroeconomic time series, including IP, experience a break in the unconditional 

volatility over the period 1959-1999, with most breaks occurring after 1980. The finding of 

GARCH-M effects, significant or not, may prove spurious, since these researches fail to account 

for the structural change in the variance.  

Regarding how the lagged growth rate of output affects its conditional variance, we use 

quarter

latility in quarterly real GDP growth rates for Japan during the period 

ly data and find no significant effect. Fountas and Karanasos (2006) employ annual data 

and report no level effect. Fountas et al. (2006) apply monthly data and identify a significant 

negative effect for Japan. We differ in reporting no positive effect in GARCH and no negative 

effect in EGARCH. Our GARCH-M estimation result proves robust to the outliers and the Great 

Moderation in the mean as well as in the variance.  

5. Conclusion 

This paper investigates vo

1955:2 to 2008:2 as well as the relationship, if any, between output growth volatility and output 

growth. We begin by considering the possible effects, if any, of structural change on the 

volatility process. Our initial results, based on a GARCH and an EGARCH model, find strong 

evidence of volatility persistence and excess kurtosis in the growth rates. Subsequent analysis 

reveals that this conclusion does not prove robust to an additive outlier in the GARCH 

specifications and the Great Moderation in the mean and the variance of output growth at the 

break dates identified by the Bai and Perron (1998, 2003) algorithm. First, excess kurtosis drops 

substantially in the GARCH or vanishes in the EGARCH model that corrects for the additive 

outlier in the growth rates. Non-normal distribution partly reflects extraordinary changes in the 
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data (Tables 2 and 4). Second, using the outlier-corrected growth series, the IGARCH effect or 

high volatility persistence remains in the specification that includes the mean-shift dummy 

variables in either a symmetric or an asymmetric model (Table 6). Third, the finding of a high 

volatility persistence measured by the GARCH or the EGARCH model disappears in the 

specification that includes a dummy variable for the structural break. The IGARCH effect proves 

spurious (Table 7). This result demonstrates a misspecification of the GARCH models, if 

researchers neglect the Great Moderation in the variance. Fourth, in a parsimonious ARCH-M 

model, our measure of volatility that corrects for the additive outlier and structural shifts in the 

mean and the volatility process finds that neither the volatility of output growth affects output 

growth, nor output growth affects its volatility (Table 10).  

Using Japan as an example, our series of empirical evidence on volatility of real GDP 

growth indicate that GARCH estimates are sensitive to data and, thus, inferences prove biased 

without a more thorough examination of the data. Non-normally distributed growth rates may 

reflect changes in the data. Outlier-corrected data and dummy variables accounting for such 

changes produce lower volatility persistence and normally distributed residuals in GARCH 

estimation, either a symmetric or an asymmetric model. As a consequence, researchers need to 

examine outliers and each of the first four moments of residuals to guarantee adequateness of the 

GARCH model employed. One issue remains unresolved and deserves further attention: Why do 

Japan and the U.S. experience ten-year gap between their break dates for the Great Moderation, 

even though both experience the high degree of moderation in output volatility. 
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Table 1: Descriptive Statistics for Real GDP Growth, 1955-2008 
  
Mean 1.1667 LB Q (1) 19.7873* 

[0.0000] 
LB Q2 (1) 5.0188* 

[0.0250] 
Standard deviation 1.3037 LB Q (2) 65.8448* 

[0.0000] 
LB Q2 (2) 46.9315* 

[0.0000] 
Maximum 6.8306 LB Q (3) 104.6101* 

[0.0000] 
LB Q2 (3) 63.1776* 

[0.0000] 
Minimum -3.4964 LB Q (4) 130.0250* 

[0.0000] 
LB Q2 (4) 81.4277* 

[0.0000] 
Skewness 0.6906* 

[0.0000] 
LB Q (5) 154.5388* 

[0.0000] 
LB Q2 (5) 98.0268* 

[0.0000] 
Kurtosis 2.2556* 

[0.0000] 
LB Q (6) 174.5210* 

[0.0000] 
LB Q2 (6) 102.2001* 

[0.0000] 
Normality test 61.7964* 

[0.0000] 
LB Q (7) 205.6469* 

[0.0000] 
LB Q2 (7) 126.6172* 

[0.0000] 
Note:  P-values appear in brackets; 0.0000 indicates less than 0.00005. The measures of skewness and kurtosis 

are normally distributed as  and , respectively, where T (=212) equals the number of 
observations. LB  and LB  equal Ljung-Box Q-statistics distributed asymptotically as  with k 
degrees of freedom, testing for level and squared terms for autocorrelations up to k lags.  

)/6,0( TN

)(2 kQ

)/24,0( TN

)(kQ 2χ

*  denotes 5-percent significance level. 
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Table 2: Model Estimation 
 

Panel A. GARCH(1,1) Estimates 
∑ ++= = −

3
10 i titit yaay ε  

2
11

2
110

2
−− ++= ttt σβεαασ  

0a  1a  2a  3a      

0.2260* 
(0.0871) 

0.1071 
(0.0751) 

0.2916* 
(0.0718) 

0.3058* 
(0.0617) 

    

0α  1α  1β       

0.0569** 
(0.0342) 

0.1657* 
(0.0680) 

0.7904* 
(0.0657) 

     

LB Q (7) LB (7) 2Q LR Skewness Kurtosis Normality    
1.0583 

[0.7871] 
2.3279 

[0.5072] 
0.9029 

[0.3431] 
-0.0422 
[0.8046] 

1.0955* 
[0.0014] 

10.5135* 
[0.0052] 

  

Function value: -297.9590 
Panel B. EGARCH(1,1) Estimates 

∑ ++= = −
3

10 i titit yaay ε  

2
11

1

1
2

1

1
10

2
−

−

−

−

−
+++= t

t

t

t

t
t loglog σβ

σ
εα

σ
ε

αασ  

0a  1a  2a  3a      
0.3134* 
(0.0841) 

0.1272** 
(0.0746) 

0.2334* 
(0.0640) 

0.2890* 
(0.0571) 

    

0α  1α  2α  1β      

-0.1725* 
(0.0667) 

0.2077* 
(0.0826) 

0.1353 
(0.0834) 

0.9393* 
(0.0478) 

    

LB Q (7) LB (7) 2Q LR Skewness Kurtosis Normality    
0.8231 

[0.8439] 
1.6417 

[0.6499] 
1.6092 

[0.2061] 
-0.1846 
[0.2792] 

0.9208* 
[0.0075] 

8.5720* 
[0.0137] 

  

Function value: -294.9061 
Note: Standard errors appear in parentheses; p-values appear in brackets; LB  and LB  equal Ljung-

Box Q-statistics, testing for standardized residuals and squared standardized residuals for autocorrelations 
up to k lags, where the degrees of freedom are reduced by the number of estimated coefficients in the mean 
equation. LR equals the likelihood ratio statistic, following a  distribution with one degree of freedom 
that tests for  in GARCH and  in EGARCH, respectively. 

)(kQ )(2 kQ

2χ

111 =+ βα 11 =β
* denotes 5-percent significance level. 
** denotes 10-percent significance level. 
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Table 3: Descriptive Statistics for Outlier-Corrected Real GDP Growth, 1955-2008 
Mean 1.2163 LB Q (1) 20.9852* 

[0.0000] 
LB Q2 (1) 5.1019* 

[0.0238] 
Standard deviation 1.2659 LB Q (2) 69.9809* 

[0.0000] 
LB Q2 (2) 47.8615* 

[0.0000] 
Maximum 6.8306 LB Q (3) 109.3186* 

[0.0000] 
LB Q2 (3) 65.1718* 

[0.0000] 
Minimum -1.9698 LB Q (4) 138.8182* 

[0.0000] 
LB Q2 (4) 81.5515* 

[0.0000] 
Skewness 0.8995* 

[0.0000] 
LB Q (5) 168.8427* 

[0.0000] 
LB Q2 (5) 96.3839* 

[0.0000] 
Kurtosis 1.8754* 

[0.0000] 
LB Q (6) 192.5618* 

[0.0000] 
LB Q2 (6) 100.4749* 

[0.0000] 
Normality test 59.6601* 

[0.0000] 
LB Q (7) 229.6830* 

[0.0000] 
LB Q2 (7) 125.2782* 

[0.0000] 
Note: See Table 1. 
* denotes 5-percent significance level. 
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Table 4: Model Estimation, Outlier-Corrected Growth Series 
 

Panel A. GARCH(1,1) Estimates, Outlier-Corrected 
∑ ++= = −

3
10 i titit yaay ε  

2
11

2
110

2
−− ++= ttt σβεαασ  

0a  1a  2a  3a      

0.2480* 
(0.0861) 

0.1283** 
(0.0745) 

0.2713* 
(0.0674) 

0.3008* 
(0.0625) 

    

0α  1α  1β       

0.0485 
(0.0340) 

0.1351* 
(0.0684) 

0.8174* 
(0.0793) 

     

LB Q (7) LB (7) 2Q LR Skewness Kurtosis Normality    
1.6654 

[0.6446] 
2.5268 

[0.4704] 
1.4004 

[0.2380] 
0.1786 

[0.2952] 
0.5810** 
[0.0917] 

4.0519 
[0.1318] 

  

Function value: -290.0513 
Panel B. EGARCH(1,1) Estimates, Outlier-Corrected 

∑ ++= = −
3

10 i titit yaay ε  

2
11

1

1
2

1

1
10

2
−

−

−

−

−
+++= t

t

t

t

t
t loglog σβ

σ
εα

σ
ε

αασ  

0a  1a  2a  3a      

0.2881* 
(0.0870) 

0.1714* 
(0.0677) 

0.2500* 
(0.0720) 

0.2972* 
(0.0744) 

    

0α  1α  2α  1β      

-0.1780* 
(0.0741) 

0.2027* 
(0.0906) 

0.1721* 
(0.0676) 

0.9137* 
(0.0539) 

    

LB Q (7) LB (7) 2Q LR Skewness Kurtosis Normality    
1.4308 

[0.6983] 
1.5209 

[0.6774] 
2.5577 

[0.1113] 
0.1110 

[0.5152] 
0.2099 

[0.5424] 
0.8133 

[0.6658] 
  

Function value: -286.8589 
Note: See Table 2. 
* denotes 5-percent significance level. 
** denotes 10-percent significance level. 
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Table 5: Break Date and Structural Stability Test  
 

Panel A. Structural Break Test in Mean 
)( 01FSup  )( 02FSup  )( 03FSup  )( 04FSup  )( 05FSup  

21.9492* 
(8.5800) 

18.0662* 
(7.2200) 

14.9417* 
(5.9600) 

11.1123* 
(4.9900) 

6.5200* 
(3.9100) 

)( 12FSup  )( 23FSup  )( 34FSup  )( 45FSup  Break date 
18.6595* 
(10.1300) 

1.4464 
(11.1400) 

1.4464 
(11.8300) 

－ 1973:1 
1991:1 

Panel B. Structural Break Test in Volatility 
)( 01FSup  )( 02FSup  )( 03FSup  )( 04FSup  )( 05FSup  

12.5872* 
(8.5800) 

6.0451 
(7.2200) 

5.0550 
(5.9600) 

4.4058 
(4.9900) 

3.5833** 
(3.9100) 

)( 12FSup  )( 23FSup  )( 34FSup  )( 45FSup  Break date 
2.6054 

(10.1300) 
2.6054 

(11.1400) 
2.5635 

(11.8300) 
0.2287 

(12.2500) 1972:1 

Panel C. Structural Stability Test for the Unconditional Mean 
Break date Period Mean Sub-sample 1 vs. 

Sub-sample 2 
Sub sample 2 vs. 

Sub-sample 3 
Sub-sample 1 vs. 

Sub-sample 3 
1973:1 
1991:1 

1955:3-1973:1 
1973:2-1991:1 
1991:2-2008:2 

2.2615 
1.0684 
0.2951 

6.5208* 
[0.0000] 

6.1631* 
[0.0000] 

11.0407* 
[0.0000] 

Panel D. Structural Stability Test for the Unconditional Variance 
Break date Period Standard 

Deviation Sub-sample 1 vs. Sub-sample 2 

1972:1 1955:3-1972:1 
1972:2-2008:2 

1.3573 
0.8805 

2.3759* 
[0.0000] 

Note:  Critical values for the 5-percent significance level appear in parentheses. P-values appear in brackets; 
0.0000 indicates less than 0.00005. In the detection process, we require 15% of the full sample as the 
minimal length of any partition. Thus, － indicates that no more place exists to insert an additional 
break given the minimal length requirement. A t-statistic under unequal variances tests for structural 
change in the unconditional mean between the different regimes. F test equals the unconditional 
variance ratio test between the samples i and j, and is asymptotically distributed as , where df 
denotes the degrees of freedom. 

),( jdfidfF

*  denotes 5-percent significance level. 
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Table 6: Model Estimation with Dummies in Mean 
 

Panel A.  GARCH(1,1) Estimates 
∑ ++++= − −

3
1 22110 i titit DdDdyaay ε  

2
11

2
110

2
−− ++= ttt σβεαασ  

where =1 for t>1973:1 and =1 for t>1991:1; 0 otherwise. 1D 2D
0a  1a  2a  3a  1d  2d    

1.9195* 
(0.2806) 

-0.0702 
(0.0805) 

0.0940 
(0.0754) 

0.1276* 
(0.0625) 

-1.0522* 
(0.2229) 

-0.6083* 
(0.1383) 

  

0α  1α  1β       

0.0239 
(0.0305) 

0.0692 
(0.0601) 

0.8968* 
(0.0890)      

LB Q (7) LB (7) 2Q LR Skewness Kurtosis Normality   
0.7309 

[0.8659] 
4.5497 

[0.2078] 
0.7006 

[0.4036] 
0.2109 

[0.2165] 
0.8638* 
[0.0121] 

8.0471* 
[0.0178] 

  

Function value: -273.4982 
Panel B.  EGARCH(1,1) Estimates 

∑ ++++= − −
3

1 22110 i titit DdDdyaay ε  

2
11

1

1
2

1

1
10

2
−

−

−

−

−
+++= t

t

t

t

t
t loglog σβ

σ
εα

σ
ε

αασ  

where =1 for t>1973:1 and =1 for t>1991:1; 0 otherwise. 1D 2D
0a  1a  2a  3a  1d  2d    

1.6846* 
(0.2478) 

-0.0175 
(0.0805) 

0.0902 
(0.0712) 

0.1329* 
(0.0583) 

-0.8508* 
(0.1970) 

-0.5559* 
(0.1308) 

  

0α  1α  2α  1β      

-0.1941** 
(0.1068) 

0.2184 
(0.1355) 

0.0949 
(0.0627) 

0.9272* 
(0.0388)     

LB Q (7) LB (7) 2Q LR Skewness Kurtosis Normality   
0.5269 

[0.9129] 
3.0887 

[0.3781] 
3.4956** 
[0.0630] 

0.2889** 
[0.0904] 

0.6884* 
[0.0457] 

7.0361* 
[0.0296] 

  

Function value: -273.1138 
Note: See Table 2. The coefficients  and  correspond to the two dummy variables in the mean equation. 1d 2d
* denotes 5-percent significance level. 
** denotes 10-percent significance level. 
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Table 7: Model Estimation with Structural Breaks in Mean and Variance 
Panel A. GARCH(1,1) Estimates 

∑ ++++= − −
3

1 22110 i titit DdDdyaay ε  

Dttt γσβεαασ +++= −−
2

11
2

110
2  

where =1 for t>1973:1 and =1 for t>1991:1 and =1 for t>1972:1; 0 otherwise. 1D 2D D
0a  1a  2a  3a  1d  2d    

1.8615* 
(0.3781) 

-0.0132 
(0.0869) 

0.0632 
(0.0685) 

0.1335** 
(0.0811) 

-1.0139* 
(0.2551) 

-0.5949* 
(0.1698) 

  

0α  1α  1β  γ      
1.0669* 
(0.5341) 

0.1733* 
(0.0839) 

0.0955 
(0.3707) 

-0.6814** 
(0.3656)     

LB (7) Q LB (7) 2Q LR Skewness Kurtosis Normality   
0.5489 

[0.9080] 
1.2827 

[0.7332] 
4.2673* 
[0.0401] 

0.0826 
[0.6281] 

0.3106 
[0.3673] 

1.0783 
[0.5832] 

  

Function value: -266.4571 

Panel B. ARCH(1) Estimates 
0a  3a  1d  2d      

1.9838* 
(0.1860) 

0.1297* 
(0.0568) 

-1.0698* 
(0.1781) 

-0.6467* 
(0.1257) 

    

0α  1α  γ       

1.2120* 
(0.2816) 

0.1791 
(0.1378) 

-0.7768* 
(0.2733)    

  

LB (7) Q LB (7) 2Q LR Skewness Kurtosis Normality  
2.0442 

[0.5632] 
1.5032 

[0.6815] 
25.4416* 
[0.0000] 

0.0866 
[0.6117] 

0.4245 
[0.2179] 

1.8311 
[0.4002] 

 

Function value: -266.9713 
Panel C. EGARCH(1,1) Estimates 

∑ ++++= − −
3

1 22110 i titit DdDdyaay ε  

Dloglog t
t

t

t

t
t γσβ

σ
εα

σ
ε

αασ +−
−

−

−

−
+++= 2

11
1

1
2

1

1
10

2  

where =1 for t>1973:1 and =1 for t>1991:1 and =1 for t>1972:1; 0 otherwise. 1D 2D D
0a  1a  2a  3a  1d  2d    

1.5858* 
(0.3249) 

0.0374 
(0.0775) 

0.0853 
(0.0638) 

0.1548* 
(0.0691) 

-0.8253* 
(0.2325) 

-0.5670* 
(0.1639) 

  

0α  1α  2α  1β  γ     
0.0617 

(0.1690) 
0.2143** 
(0.1276) 

0.1795** 
(0.0953) 

0.2604 
(0.2450) 

-0.7835** 
(0.4124)    

LB (7) Q LB (7) 2Q LR Skewness Kurtosis Normality   
0.7189 

[0.8687] 
1.9948 

[0.5734] 
9.1104* 
[0.0029] 

0.1590 
[0.3512] 

0.4944 
[0.1513] 

3.0101 
[0.2220] 

  

Function value: -268.3808 
Note: See Table 2 and Table 6. The coefficient γ  corresponds to the dummy variable in the variance equation. 
* denotes 5-percent significance level. 
** denotes 10-percent significance level. 
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Table 8: Model Estimation with Dummies in Mean 
∑ ++++= − −

3
1 22110 i titit DdDdyaay ε  

2
11

2
110

2
−− ++= ttt σβεαασ , or  

2
11

1

1
2

1

1
10

2
−

−

−

−

−
+++= t

t

t

t

t
t loglog σβ

σ
εα

σ
ε

αασ   

 1960:1~1996:4 1961:1~1997:4 1961:1~2000:2 
D1=1 for t>1973:1;  
0 otherwise. 

D1=1 for t>1973:2 and  
D2=1 for t>1991:1; 0 otherwise 

D1=1 for t>1973:1 and  
D2=1 for t>1990:4; 0 otherwise.

 GARCH EGARCH GARCH EGARCH GARCH EGARCH 
0a  1.4333* 

(0.2773) 
1.4415* 
(0.2719) 

1.7136* 
(0.3400) 

1.6457* 
(0.2705) 

1.7669* 
(0.3225) 

1.7582* 
(0.3167) 

1a  0.0527 
(0.0848) 

0.0075 
(0.0814) 

-0.0423 
(0.0837) 

-0.0236 
(0.0747) 

-0.0273 
(0.0801) 

-0.0285 
(0.0849) 

2a  0.1759* 
(0.0804) 

0.1211 
(0.0738) 

0.1433** 
(0.0851) 

0.0903 
(0.0683) 

0.1250 
(0.0867) 

0.0737 
(0.0864) 

3a  0.1837* 
(0.0649) 

0.1586* 
(0.0695) 

0.1412** 
(0.0746) 

0.1697* 
(0.0755) 

0.1333** 
(0.0741) 

0.1749* 
(0.0729) 

1d  -0.9161* 
(0.2152) 

-0.7787* 
(0.2043) 

-0.9186* 
(0.2345) 

-0.7200* 
(0.1840) 

-0.9884* 
(0.2271) 

-0.8731* 
(0.2235) 

2d    -0.5134* 
(0.2264) 

-0.8172* 
(0.1767) 

-0.5054* 
(0.2024) 

-0.7490* 
(0.1683) 

0α  0.0386 
(0.0523) 

-0.1950 
(0.2943) 

0.0504 
(0.0843) 

0.0737 
(0.0832) 

0.0487 
(0.0558) 

-0.1350** 
(0.0791) 

1α  0.0614 
(0.0531) 

0.1301 
(0.1724) 

0.0491 
(0.0590) 

-0.1041 
(0.0922) 

0.1043 
(0.0694) 

0.1598** 
(0.0873) 

2α   
 

0.0438 
(0.0914)  0.1002 

(0.0628)  0.1016** 
(0.0606) 

1β  0.8860* 
(0.1171) 

0.8379* 
(0.2946) 

0.8697* 
(0.1866) 

0.9795* 
(0.0378) 

0.8383* 
(0.1334) 

0.9637* 
(0.0439) 

LR 0.4541 
[0.5015] 

0.3025 
[0.5832] 

0.3444 
[0.5583] 

0.2932 
[0.5890] 

0.5075 
[0.4773] 

0.6787 
[0.4114] 

LB Q (7) 0.7481 
[0.8618] 

2.0142 
[0.5694] 

2.5287 
[0.4701] 

3.0636 
[0.3819] 

2.4107 
[0.4916] 

1.9119 
[0.5908] 

LB (7) 2Q 3.2549 
[0.3539] 

5.8566 
[0.1187] 

4.6447 
[0.1997] 

4.1287 
[0.2479] 

2.8308 
[0.4184] 

1.7980 
[0.6153] 

Skewness 0.3022 
[0.1414] 

0.3815** 
[0.0633] 

0.2545 
[0.2155] 

0.2445 
[0.2342] 

0.2237 
[0.2601] 

0.2198 
[0.2684] 

Kurtosis 0.8610* 
[0.0388] 

1.0334* 
[0.0131] 

1.2731* 
[0.0022] 

0.1457 
[0.7265] 

1.1078* 
[0.0059] 

0.6151 
[0.1264] 

Normality 6.6864* 
[0.0353] 

9.9716* 
[0.0068] 

11.3590* 
[0.0034] 

1.5730 
[0.4554] 

9.2189* 
[0.0099] 

3.6921 
[0.1578] 

Function value -178.4244 -181.9849 -180.3241 -174.0653 -196.7618 -195.1999 
Note: See Table 6. 
* denotes 5-percent significance level. 
**  denotes 10-percent significance level. 
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Table 9: Model Estimation with Structural Breaks in Mean and Variance 
∑ ++++= − −
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1 22110 i titit DdDdyaay ε  
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Dloglog t
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t γσβ
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εα

σ
ε
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+++= 2

11
1

1
2

1

1
10

2   

 1960:1~1996:4 1961:1~1997:4 1961:1~2000:2 
D1 =1 for t>1973:1 and  
D  =1 for t>1972:1;  
0 otherwise. 

D1 =1 for t>1973:2,  
D2 =1 for t>1991:1 and  
D  =1 for t>1975:3;  
0 otherwise. 

D1 =1 for t>1973:1,  
D2 =1 for t>1990:4 and  
D  =1 for t>1975:1;  
0 otherwise. 

 GARCH EGARCH GARCH EGARCH GARCH EGARCH 
0a  1.6189* 

(0.3528) 
1.3823* 
(0.2711) 

1.7716* 
(0.3395) 

1.4271* 
(0.2989) 

1.9241* 
(0.3465) 

1.5140* 
(0.4174) 

1a  0.0169 
(0.0971) 

0.0589 
(0.0803) 

-0.0616 
(0.0996) 

-0.0494 
(0.0837) 

-0.0289 
(0.0957) 

0.0450 
(0.0829) 

2a  0.1390 
(0.0935) 

0.1097 
(0.0679) 

0.1171** 
(0.0706) 

0.1597* 
(0.0604) 

0.0602 
(0.0773) 

0.0710 
(0.0906) 

3a  0.0597 
(0.0900) 

0.2152* 
(0.0569) 

0.1668** 
(0.0910) 

0.1983* 
(0.0749) 

0.1558** 
(0.0891) 

0.1686* 
(0.0798) 

1d  -0.7370* 
(0.2660) 

-0.8246* 
(0.2012) 

-0.9575* 
(0.2313) 

-0.7388* 
(0.2052) 

-1.1448* 
(0.2364) 

-0.8206* 
(0.2790) 

2d    -0.6574* 
(0.2228) 

-0.4319* 
(0.1725) 

-0.6766* 
(0.1818) 

-0.4714* 
(0.2270) 

0α  0.4145* 
(0.0876) 

0.3297 
(0.4473) 

1.0575* 
(0.4040) 

0.2809 
(0.3419) 

0.9128* 
(0.4374) 

0.1801 
(0.3004) 

1α  0.0232 
(0.0844) 

0.0089 
(0.1639) 

0.1870 
(0.1436) 

0.1377** 
(0.0831) 

0.3106* 
(0.1343) 

0.1695 
(0.1032) 

2α   -0.1005 
(0.0613)  -0.0237 

(0.0866)  -0.1046 
(0.0650) 

1β  0.7511* 
(0.1003) 

-0.7976* 
(0.2177) 

0.0267 
(0.1871) 

-0.9342* 
(0.0396) 

0.2097 
(0.2338) 

-0.9222* 
(0.0358) 

γ  -0.3008* 
(0.1325) 

-1.5412* 
(0.4712) 

-0.7073* 
(0.3484) 

-1.8288* 
(0.3930) 

-0.6497** 
(0.3576) 

-1.2891* 
(0.4918) 

LR 5.6393* 
[0.0190] 

68.1393* 
[0.0000] 

9.8291* 
[0.0021] 

2385.160* 
[0.0000] 

3.7939** 
[0.0534] 

2867.248* 
[0.0000] 

LB Q (7) 3.1826 
[0.3643] 

2.6424 
[0.4501] 

2.1557 
[0.5407] 

1.4419 
[0.6957] 

3.1449 
[0.3698] 

1.5654 
[0.6672] 

LB (7) 2Q 3.9532 
[0.2665] 

3.9464 
[0.2673] 

6.0527 
[0.1090] 

6.1989 
[0.1023] 

5.1500 
[0.1611] 

4.5761 
[0.2056`] 

Skewness 0.1012 
[0.6222] 

0.1188 
[0.5631] 

-0.0127 
[0.9504] 

-0.0755 
[0.7130] 

-0.0471 
[0.8124] 

-0.0541 
[0.7850] 

Kurtosis 0.1401 
[0.7366] 

0.2675 
[0.5209] 

0.7983** 
[0.0554] 

0.5531 
[0.1845] 

0.3509 
[0.3832] 

0.7009** 
[0.0816] 

Normality 0.3665 
[0.8325] 

0.7738 
[0.6791] 

3.8543 
[0.1455] 

1.9864 
[0.3703] 

0.8530 
[0.6527] 

3.2491 
[0.1969] 

Function value -180.8407 -173.9992 -176.1105 -173.5500 -196.2023 -195.0376 
Note: See Table 7. 
* denotes 5-percent significance level. 
** denotes 10-percent significance level. 
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Table 10: Feedback Model Estimates with Structural Breaks in Mean and Variance 
Panel A: GARCH(1,1)-M Estimates with Level Effect 

∑ +++++= − −
3
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2

11
2

110
2  

where =1 for t>1973:1 and =1 for t>1991:1 and =1 for t>1972:1; 0 otherwise. 1D 2D D
0a  1a  2a  3a  λ  1d  2d   

2.8484* 
(0.8090) 

0.0172 
(0.0937) 

0.0814 
(0.0672) 

0.1300* 
(0.0558) 

-0.8828 
(0.8268) 

-1.3807* 
(0.2758) 

-0.6199* 
(0.1415) 

 

0α  1α  1β  θ  γ     
0.9707* 
(0.3376) 

0.1916 
(0.1270) 

0.0092 
(0.1747) 

0.0749 
(0.0824) 

-0.5931* 
(0.2619) 

   

LB Q (7) LB (7) 2Q LR Skewness Kurtosis Normality   
0.6033 

[0.8956] 
1.4114 

[0.7028] 
12.6949* 
[0.0005] 

0.1056 
[0.5357] 

0.4258 
[0.2165] 

1.9684 
[0.3737] 

  

Function value: -264.9761 
Panel B: ARCH(1)-M Estimates with Level Effect 

0a  3a  λ  1d  2d     
2.8829* 
(0.7618) 

0.1246* 
(0.0559) 

-0.7087 
(0.6877) 

-1.4304* 
(0.2882) 

-0.6879* 
(0.1319) 

   

0α  1α  θ  γ      
1.0660* 
(0.2836) 

0.1865 
(0.1250) 

0.0529 
(0.0779) 

-0.6694* 
(0.2562) 

    

LB Q (7) LB (7) 2Q LR Skewness Kurtosis Normality   
2.6950 

[0.4410] 
1.9804 

[0.5764] 
42.3224* 
[0.0000] 

0.1063 
[0.5331] 

0.5399 
[0.1171] 

2.9325 
[0.2307] 

  

Function value: -265.7821 
Panel C: EGARCH(1,1)-M Estimates with Level Effect 

∑ +++++= − −
3

1 22110 i ttitit DdDdyaay ελσ  

Dyloglog tt
t

t

t

t
t   1

2
11

1

1
2

1

1
10

2 γθσβ
σ
εα

σ
ε

αασ ++ −−
−

−

−

−
+++=  

where =1 for t>1973:1 and =1 for t>1991:1 and =1 for t>1972:1; 0 otherwise. 1D 2D D
0a  1a  2a  3a  λ  1d  2d   

2.6915* 
(0.7286) 

-0.0100 
(0.1012) 

0.0880 
(0.0763) 

0.1366* 
(0.0579) 

-0.7421 
(0.6840) 

-1.3284* 
(0.2971) 

-0.6199* 
(0.1386) 

 

0α  1α  2α  1β  θ  γ    
0.2029 

(0.3596) 
0.3010 

(0.2120) 
0.0922 

(0.1899) 
0.0942 

(0.4367) 
-0.0345 
(0.1959) 

-1.0398* 
(0.4776) 

  

LB Q (7) LB (7) 2Q LR Skewness Kurtosis Normality   
0.5318 

[0.9118] 
0.9527 

[0.8127] 
4.3005* 
[0.0394] 

0.0994 
[0.5601] 

0.4031 
[0.2420] 

1.7599 
[0.4147] 

  

Function value: -266.9998 
Note: See Table 7. The coefficients λ  and θ  correspond to the standard deviation in the mean equation and the 

level effect in the variance equation, respectively.  
* denotes 5-percent significance level. 
** denotes 10-percent significance level.
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Figure 1. Real GDP Growth Rate and Structural Break 
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