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Abstract

A preference profile has a one-dimensional Euclidean reptasion if it can
be derived from an arrangement of individuals and alteveation a line, with
each individual preferring the nearer of each pair of aktiies. We provide a
polynomial-time algorithm that determines whether a gipegference profile has
a one-dimensional Euclidean representation and, if sastoacts one. This result
has electoral and mechanism design applications.
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1. Introduction.

We address the problem of determining whether a given preference profile has a one-
dimensional Euclidean representation. We will adopt the language of elections to introduce
the problem. In that setting the problem is to determine whether voter preferences over
candidates could have been formed solely on the basis of the candidates’ and voters’ po-
sitions on a single issue. More exactly, given a finite set of candidates, a finite electorate
and a voter preference profile in the form of a linear ordering of candidates for each voter,
is there an arrangement of the candidates and the voters on a line such that for any voter
v and candidates ¢ and d, v prefers ¢ to d if and only if the distance from v to c is less

than the distance from v to d?

Here the problem splits in two. In the first version of the problem, voters are allowed
to have different perceptions of distance. In particular, for points ¢, d and e in R with d
between ¢ and e, two voters may disagree on whether d is nearer ¢ or e, but must agree
that c is nearer d than e. A spatial representation as described above, in which voters are
allowed to have different perceptions of distance, is called a convex representation in R.
Equivalently, a convex representation in R is an arrangement of the candidates alone on a
line in such a way that for every voter v and candidate ¢, there is a convex set in R, that
is, an interval, that contains those candidates and only those candidates who are weakly

preferred to ¢ by v.

Convex representations in R have also been called qualitative scales (Coombs, 1964),
and preferences convexly representable in R have been called ordinally single-peaked pref-

erences (Brams et al, 2002).
Bogomolnaia and Laslier (2007) provide a surprisingly simple answer for the

2-dimensional version of the above question: every preference profile is consistent with
voter preferences being formed on the basis of candidates’ positions on two issues. In

other words, every preference profile has a convex representation in R2.
Bartholdi and Trick (1986) produced a polynomial time algorithm to determine

whether a given voter preference profile has a convex representation in R. Ballester and

Haeringer (2007) then presented a simple characterization of convex representability in
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R; they showed that a convex representation in R exists if and only if the given voter
preference profile does not contain as a subprofile either of two examples, one involving
three voters and three candidates, and one involving two voters and four candidates.

The second version of the problem differs from the first version only in that voters are
required to share a common perception of distance. A spatial representation in R in which
voters are required to share a common perception of distance is called a Fuclidean repre-
sentation in R. Euclidean representations in R have also been called quantitative scales
(Coombs, 1964); and preferences that have Euclidean representations in R have been called
cardinally single-peaked preferences (Brams et al, 2002). Bogomolnaia and Laslier (2007)
obtain some interesting results concerning Euclidean representations in higher dimensions.
Their results relevant to our problem appear in their Proposition 15, which in dimension 1
asserts the existence of a Euclidean representation in R if the number of voters is at most
two and the number of candidates is at most three, and also provides a two voter, four
candidate example with no Euclidean representation in R.

We will construct an algorithm that in polynomial time determines whether a given
voter preference profile possesses a Euclidean representation in R and, if so, constructs
such a representation. Here, “in polynomial time” means in a number of steps that is
polynomial in the number of candidates.

The algorithm proceeds in five steps. Step 1 checks to see that there aren’t too
many distinct voters for the given number of candidates. Step 2 constructs a convex
representation in R for the given preference profile, if one exists. Starting with this convex
representation, Step 3 reorders a certain subset B of candidates in preparation for Step
4, which solves a linear programming problem to construct a Euclidean representation in
R for the given preferences restricted to B, if one exists. Step 5 extends the Euclidean
representation to the full preference profile.

Laslier (2003) uses multivariate statistical analysis methods, in particular, Principal
Component Analysis (PCA), to study the structure of preference profiles. Since PCA is
used to represent preference profiles in low dimensional Euclidean space, it is natural to
conjecture that the 1-dimensional PCA representation may in fact provide a 1-dimensional

Euclidean representation, whenever one exists. Unfortunately, this is not in fact the case.
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For example, suppose a,b and c are alternatives and 1 and 2 are individuals with prefer-
ences a b ¢ and b ¢ a respectively. This preference profile has a 1-dimensional Euclidean
representation with a < b < ¢, the order unique up to mirror image. However, the 1-
dimensional PCA representation, which can be found by following the directions of Laslier
(1996, pp 115-116), identifies b and c. Of course the general question of whether some other
technique of multivariate analysis always provides 1-dimensional Euclidean representations

remains open.

Eguia (2008) has actually characterized preference profiles that possess k-dimensional
Euclidean representations. Unfortunately, the 1-dimensional version of his results does
not provide the polynomial time check desired, or even a check in finite time, since his
characterizations include a continuum of conditions that must be satisfied by a given

preference profile.

Besides the previously discussed application to elections, our results have a mechanism
design application. Suppose you are planning a community along a stretch of road. You
plan to build homes and several amenities, such as a gym, a grocery store, a bowling alley,
etc. Each prospective home-buyer has ranked the amenities from likely-to-be-used-most-
often to likely-to-be-used-least-often. You would like to know if it is possible to place the
homes and amenities on the highway so that each homeowner is nearest his top-ranked
amenity, second nearest his second-ranked amenity, etc. Since in this context homeowners
will have the same perception of distance, we are looking for a Euclidean representation
inR. *

The rest of the paper is organized as follows. Section 2 consists of preliminaries.
Section 3 contains our result on Euclidean representations in R. Section 4 contains some

concluding remarks.

2. Preliminaries.

* Is there any meaningful interpretation for a convex representation in R even though
homeowners have a common perception of distance? Yes, there is. In a convex representa-
tion, no homeowner ever has to drive past a less-often used amenity to get to a more-often

used amenity.



Let I be a finite set of voters or, more generally, individuals. Let A = {a’ }jes be
a finite set of candidates or, more generally, a finite set of distinct alternatives, indexed
by J, a finite set of positive integers. We assume for convenience that no two voters have
identical preferences. Let R = (R;);c; be an ordered |I|-tuple of distinct linear orders on
A. A linear order R; on A is a complete, transitive, antisymmetric binary relation on A.
The expression a’R;a* can be read “i weakly prefers a’ to a*.” Alternative a’ € A is
Ri-minimal (R;-mazimal) if a* R;a? (a’ R;a®) for all a* € A. A linear order is essentially
a ranking of alternatives from the most preferred (R;-maximal) to the least preferred (R;-
minimal). Then (I, A, R) is a profile of linear orders.

For X C R4, co(X) is the convex hull of X in R9.

Definition 1. A convex representation in R? for profile (I, A, R) is a set X = {27};c; C
R< such that for all i € I and 2% € X, the upper contour set U;(z*) := {27: o/ R;a"}
satisfies U; (%) = co(U;(z%)) N X.

Definition 2. A FEuclidean representation in R for profile (I, A, R) is an ordered pair
(X, W) with X UW = {27},;c;U{w'}ie; € RY such that for i € I and distinct a’, a* € A4,

a’ R;a® if and only of p(27, w') < p(x*, w?), where p is Euclidean distance.

Definition 3. A profile of linear orders (I, A, R) is 3,3-twisted if there exist b, ¢,d € I and
distinct a?,a?,a” € A such that, among a?,a? and a”, a? is Rp-minimal, a? is R.-minimal

and a" is Rg-minimal.

Definition 4. A profile of linear orders (I, A, R) is 2,4-twisted if there exist b, ¢ € I and

distinct a?,a?,a”,a® € A such that a" Rya?RyaP, a? R.a?R.a”, a® Rya? and a®*R.af.

Proposition 1. (Ballester and Haeringer, 2007) A profile of linear orders (I, A, R) has a

convex representation in R if and only if it is neither 3,3-twisted nor 2,4-twisted.

A family of problems (Q(n)) is an infinite sequence of collections of problems. Consider
an algorithm that solves (Q(n)), that is, an algorithm that solves every
Q € U Q(n). Such an algorithm is a polynomial-time algorithm if there is a polynomial

P such that for every positive integer n, the algorithm solves each @) € Q(n) in at most
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P(n) steps. In general, a polynomial-time algorithm can be usefully implemented on a

computer, an algorithm that takes an exponential number of steps cannot.
3. Euclidean Representations in R.

We now construct an algorithm that inputs a voter preference profile (I, A, R) and
outputs a Euclidean representation (X, W) with X UW = {27},;c; U {w'}icr C R or
announces that no Euclidean representation in R exists.

Step 1. First check to see that |I] < ("3') 4+ 1. This is a necessary condition, since,
if (X,W) is a Euclidean representation in R for (I, 4, R) and w® < w® it follows from

the fact that voters have distinct preferences that there must exist P and x¢ such that

w < (z, + 14)/2 < wC. Since there are ("3') candidate-pair midpoints, there can be at
most ("g') + 1 voters.

Step 2. Use Proposition 1 to determine whether (I, A, R) possesses a convex representation
in R. If not, (I, A, R) possesses no Euclidean representation in R.. If so, construct a convex
representation X in R for (I, A, R) using the method of Ballester and Haeringer (2007) or
Bartholdi and Trick (1986).

Next, in order to establish and exploit the (limited) uniqueness of Euclidean represen-
tations in R, we need to reindex the candidates. Suppose al4l, al41=1 . "+ have been
chosen for 1 < r < |A|. (If r = | A], this means the reindexing has not yet begun.) Choose

a” to satisfy

A A-1
1 gla-1

a"is R;—minimal in A — {a ..,a" ™1} for some i and, if possible, such that

there exists a* with «” R;—minimal in A — {CLlAl,CblA_ll, ..,a" T ak} for all i
(1)

Notice that the construction is not in general unique. By our use of (1) in the construction,
for all j, a’ is R;—minimal in {a',a?, ..., a’} for some i (2)

Now partition A into t sets
_fk 12 ka—1 _ foka o katl ka—1
{A; ={d" =a',a?,...,a" "1}, Ay = {a*2, a1 . aks—1}

LAy = {dF dRt o dl AT



defined inductively by

ki =1,k is the smallest j > k;, such that o’ is R;—minimal in {a',a?,...,a’} for all i

(3)

Lemma 1. If (I, A, R) has a convex representation in R and |A;| > 1, then, up to order
in R, there are exactly two convex representations in R for (I, A;, R|4,), and these two

convex representations are oppositely ordered.

Proof. Suppose |A;| > 1 and Z; = {25, 2F+1 | ZR=1) (or {ZF, 2Rt o RlAIYif ] =
t) is a convex representation in R for (I, A;, R|4,). Then {zF M+l and {—zk 2kl
are convex representations in R for (I, {a*', a**1}, R|qm gri+1y) and they are oppositely
ordered in R. If |4;| > 2, by (2) and (3) both a**2 and a? are R;-minimal in

{akt, a¥*1 a*1+2) for some i, where a? # a**2. Then, both z¥*2 and 29 are extrema of
{2k ZRtl 2Rit2) Therefore the order of {z*, z2¥*1} in R uniquely determines the order
of {zF, Zki+1 »ki+21 in R. In other words, up to order in R there are exactly two convex
representations in R for (I,{a™,a"*1 a**2} R|iaht kit akit2}). (ke Rt pkit2)
and {—zF —zk+l _ k+2}  Continue adding on one a’ at a time until the conclusion

holds for A; =

Our description of Step 3 requires the following notation. Let B = Uj4,|>14;. Let
A, Apa. ..., Ajs be the subsequence of Ay, Ao, ..., A; containing all A; C B. For any set
Z CR,let —Z ={—2: z€ Z}.

Step 3. From Step 2 we have a convex representation X CR for (I, A, R) and therefore
a convex representation Z CR for (I, B, R|g). We will define a linear order < on Z (not
in general the order inherited by Z from R under less-than-or-equal) such that the order
of candidates in every Euclidean representation in R for (I, B, R|p) agrees with < or its
inverse. Clearly, this agreement condition places no restrictions on the linear order (Z, <)
if (1, B, R|p) possesses no Euclidean representation in R.

Let Z;; = {zj s al € Ap}. Using Lemma 1, without loss of generality we can let < on

Z11 be the order on Zj; inherited from R ordered by less than or equal (in short, let < on
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Z1 agree with Z;; CR). By Lemma 1 we must define < on Zj5 to agree with Z;5 CR or

to be ordered oppositely to Z;2 CR.

Question 1. Is there a Euclidean representation in R for (I, B, R|g) with Z;; ordered by

<, with Z;5 ordered like Z;5 CR, and such that Zkll+2zk”+1 < Zk12+2zk12+1 ? Without loss of

generality, assume 2%t < 2P+l and 2kiz < 2R+l By (2) and (3), choose b, ¢ € T such that
a1 Rya®+1 and aF2t'R.a¥2. A “yes” answer to Question 1 would imply a*2 Rya*2t1

kntlp ok
and a" TR akn.

kjg+1

< zk“*';klﬁl. By (2) and (3), choose

d,e € I such that a***t 'R a* and a*2R.a*211. A “yes” answer to Question 2 would

. . . kia
Question 2. Same question, but with ==+

imply a*2*t!' R a*> and a*1 R ak1t!

If not(a*2 Rya*2*! and a*1 1 R.a*1) and not(a*2*! Rza*2 and a* R.a*1+1), then
the answers to Questions 1 and 2 are “no” and “no.” There is no Euclidean representation
in R for (I, B, R|g) with Z;; ordered by < and Zj; ordered like Z;3 CR. Therefore we
adopt the only remaining alternative and define < on Zj3 to be ordered oppositely to
Z12 CR. This guarantees that in every Euclidean representation in R for (I, B, R|p), the
order of Z;; and the order of Z;5 both agree with < or both agree with its inverse.

On the other hand, if a®2 Rya*>*! and a** 1 R.a* we ask a third question.

Question 3. Is there a Euclidean representation in R for (I, B, R|g) with Z;; ordered by
< and Zj, ordered oppositely to Z; CR? If so we have zF1 < Zkutl and zhietl < ke If

Ky kpp+1 Ky kyp+1 ..
FltE <2 P22 then by af Ryaf T, aM2 I Ryakiz | a contradiction. If

PR < PR e
2 2

, then by a*>*t'R.a*2, a*1 R.a*1+1 a contradiction.

Therefore the answer to Question 3 is “no.” We adopt the only remaining alternative
and define < on Z;5 to agree with Z; CR. This guarantees that in every Euclidean
representation in R for (I, B, R|g), the order of Z;; and the order of Z;5 both agree with
< or both agree with its inverse.

The final case, a®2t1 R a*2 and a*1 R.a*1t1, similarly leads us to define < on Zj5 to
agree with Z;5 CR.

Next use < on Zj5 to define < on 73, use < on Z;3 to define < on Zy4, etc.

Now extend < on Z;; and < on Zj3 to < on Zj; U Zj5 so that the order of Z;; U Zjo
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in every Euclidean representation in R for (I, B, R|p) agrees with < on Z;; U Zj5 or its
inverse as follows. By (2), (3) and the fact that a candidate least preferred by any voter
must give rise to an extremum of a convex representation, Zk12 and zF2*t1 must be extrema
of < on Z;; U{zk=2, ZF2H11: otherwise < on Zj; U{z%2, zM2+1] cannot agree with the order
of Z;; U{zM2 k241 in a convex representation in R for (I, B, R|g), and therefore cannot
agree with the order in a Euclidean representation in R for (I, B, R|g). Then < on Z;; and
on Zj determines < on Zj U {zF2, 2ty If |Ajp] > 3, 27212 and either 2% or ZF2t!
must be extrema of < on Zj; U{zkl2 , ZRetl zkl3+1} so that < on Z;; and on Zj5 determines
<on Z;; U {zkl2 , R+l zkl2+2}. Continuing in this way, we define < on Z;; U Zj5, then use
< on Zjp and Zj3 to define < on Zjy U Zj5 U Zj3, etc. We pass the linear order (Z, <) to

Step 4, considering Z as simply an abstract set on which a linear order has been defined.

Step 4. From Step 3 we have Z = {27: @/ € B} and a linear order < on Z such that the
order of candidates in every Euclidean representation in R for (I, B, R|p) agrees with <
or its inverse. We now want to think of Z as a subset of R that is not completely specified,
but such that the order of Z in R is in agreement with the linear order < defined in Step 3.
We can completely specify Z and also define W = {w', w?,...,w!!l} CR so that (Z, W)
is a Euclidean representation in R for (I, B, R|p) if and only if there is a solution in real
values to the following system of linear inequalities:

(1) all inequalities zP < 29 from the given linear order (Z, <), passed from Step 3 and

(2) (ZT;ZS) < (Zp_gzq) if 2P, 29, 2", 25 € Z, 2P < 29, 2" < 2% and there exists b € I such that
2P Ryz? and z°Rpz".
If a solution Z exists, W is defined from Z as follows, If b € I, 2P, 29 € Z and 2P < 29,

D q . p q .
then w® < =F2 if 2P Ry2% and w® > 3% if 29R,2P.

Notice that the number of unknowns in the system of inequalities defining Z is
|B| < |A| and the number of inequalities is less than | B|?+|I||B|* < \B|2+((|§|)+1)|B\4 <
|BI® < |A[°

At the end of Step 4, we have arrived at one of two possible outcomes.

The first possibility is that we have concluded that there is no Euclidean representation

in R for (I, B, R|p) in which the order of candidates agrees with the linear order on Z
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defined in Step 3. Then by Step 3, there is no Euclidean representation in R for (I, B, R|5),
which implies there is no Euclidean representation in R for (I, A, R).

The second possibility is that we have constructed a Fuclidean representation (Z, W)
in R for (I, B, R|p).

We will use the following fact to extend (Z, W) to a Euclidean representation in R

for (I, A, R).

Lemma 2. Suppose (I, A, R) has a convex representation in R, i € I,|A;| =1, A; # A
and a” € A,,. Then a"R;a* if and only if m < I.

Proof. By (3) a® is R;-minimal in {a',a?,...,a"}. If m <, then r < k; so that a" R;a"".

Now suppose there exists 7,1,m < |A| and b € I with a” € A,,, |l < m and a" Rya®.
Further, suppose 7 is the minimal such integer. By (2) a” is R.-minimal in {a!,a?,...,a"}
for some ¢ € I. Since k;1 < 7 and since a¥ R;a*+1 for all 4, (which follows from (3)) a* is
not Rp-minimal in {a!,a?,...,a"}. Therefore there exists p with k; < p < r such that a?
is Rp-minimal in {a',a?,...,a"} and a* R.a? by the minimality of r. Since a* R.a?R.a",
there must be ¢ with k; < ¢ < r and ¢ # p such that a* R.aPR.aR.a" for some c. If
there were no such ¢ for all ¢ with a? R.a”, we could not have p < r by (1). We also have
a¥ Rya? by the minimality of 7.

We now have a* R.aPR.a?R.a” and a" Rya® Rya?RyaP. Setting k; = s, these expres-
sions say (I, A, R) is 2-4 twisted, which together with Proposition 1 contradicts the convex

representability in R of (I, A, R). =

Step 5. From Step 4 we have a Euclidean representation (Z, W) in R for (I, B, R|g), which
we now use to construct a Euclidean representation (X, W), in R for (I, A, R). Suppose
|A;| = 1. We may have | < m for all A4,, C B, > m for all A,, C B, or m <1l < n for
some m,n with A,,, A, C B. We will deal with the third case, which is the most difficult.
By Lemma 2, if a? € A,,,a9 € A,, and m < | < n, then a?R;a* R;a? for all i € I. We
first construct Y C R by setting y? = 2P for a? € B such that p < k;; by setting y? > 29
if ¢ > k; and 27 > 2P for aP € B such that p < k;; and by setting y¢ < 27 if ¢ > k; and
29 < 2P for aP? € B such that p < k;.
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If in addition we construct Y so that |y?—27| = |y" —2z"| whenever y, # 2z, and y, # z,,

then (Y, W) will be a Euclidean representation in R for (I, B, R|g), since (yq;yr) = (zq;zr)

if y9 > 27 and y" < 2" or if y? = 29 and y" = 2"

(y'+y")
2

, and since in any other case y4,y" and

. . . . q r .
will be in the same direction from each voter as were 29, 2" and (z JQFZ ) , respectively.

Finally, if |9 — 29 is chosen large enough whenever y¢ # 29, then we can define y** by
placing it between {y?: y? = 2P} and {yP: yP > 2P} (or {yP: yP < zP} if we prefer), in such
a way that (Y U{y*}, W) is a Euclidean representation in R for (I, BU{a"}, Rlpygakiy)-
Continuing to treat one a* at a time in this manner, we arrive at (X, W) = (YU{y*: |4;| =

1}, W), a Euclidean representation in R for (I, A, R). =

It is easy to see that Steps 1, 3 and 5 of our algorithm are accomplished in polynomial
time, that is, in a number of steps that is polynomial in |A|. Bartholdi and Trick (1986)
proved that Step 2 can be acccomplished in polynomial time. We discuss Step 4 in Section
5.

Finally by our construction, the number of distinct Euclidean representations in R

for a given representable (I, A, R), where two representations are distinct if they order the

candidates differently, is 214~ B~41149 where § = 1 %f B#10
0 if B=40

5. Concluding Remarks: Linear Programming.

We note that our application of linear programming is somewhat unusual. Gale (2007)
points out that almost all linear programming applications concern consumption or pro-
duction problems; that is, they involve optimizing over a set of processes that consume or
produce a set of goods.

Concerning the complexity of linear programming problems, it is well known that in
practice the famous simplex method solves linear programming problems relatively quickly.
Borgwardt (1982) and Smale (1983) proved that the average number of steps required by
the simplex method is polynomial. However, Klee and Minty (1972) had already demon-
strated that for worst-case examples, the simplex method requires an exponential number
of steps. Fortunately, Khachiyan (1980) demonstrated that the ellipsoidal method does in
fact solve linear programming problems in polynomial time. Since we have a polynomial-

time reduction of our problem, determining whether a Euclidean representation in R exists
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and if so constructing one, to a linear programming problem, and since linear programming

problems are solvable in polynomial time, our problem is solvable in polynomial time.

12



10.

11.

12.

13.

References

M. Ballester and G. Haeringer, A characterization of single peaked preferences, work-
ing paper, 2007.

J. Bartholdi IIT and M. Trick, Stable matching with preferences derived from a psy-
chological model, Operations Research Letters 5 (1986), 165-169.

A. Bogomolnaia and J. Laslier, Euclidean preferences, Journal of Mathematical Eco-
nomics 43 (2007), 87-98.

K. H. Borgwardt, The average number of pivot steps required by the simplex method
is polynomial, Zeitschrift fiir Operations Research 7 (1982), 157-177.

S. Brams, M. Jones and M. Kilgour, Single-peakedness and disconnected coaltions,
Journal of Theoretical Politics 14 (2002), 359-383.

C. Coombs, A Theory of Data, New York: John Wiley and Sons, 1964.
J. Eguia, Foundations of spatial preferences, working paper, 2008.

D. Gale, Linear Programming and the simplex method, Notices of the American Math-
ematical Society 54 (2007), 364-369.

L. G. Khachiyan, Polynomial algorithms in linear programming , USSR Computational
Mathematics and Mathematical Physics 20 (1980), 53-72.

V. Klee and G. J. Minty, How good is the simplex algorithm? in (O. Shishe, ed),
Inequalities 111, New York, Academic Press (1972), 159-175.

J. F. Laslier, Multivariate description of comparison matrices, Journal of Multi-
Criteria Decision Analysis 5 (1996), 112-126.

J. F. Laslier, Analyzing a preference and approval profile, Social Choice and Welfare
20 (2003), 229-242.

S. Smale, On the average number of steps of the simplex method of linear program-
ming, Mathematical Programming 27 (1983), 241-262.

13



