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Abstract
We examine the time-series relationship between housing prices in eight South-

ern California metropolitan statistical areas (MSAs). First, we perform cointegra-
tion tests of the housing price indexes for the MSAs, finding seven cointegrating
vectors. Thus, the evidence suggests that one common trend links the housing
prices in these eight MSAs, a purchasing power parity findingfor the housing
prices in Southern California. Second, we perform temporalGranger causality
tests revealing intertwined temporal relationships. The Santa Anna MSA leads
the pack in temporally causing housing prices in six of the other seven MSAs,
excluding only the San Luis Obispo MSA. The Oxnard MSA experienced the
largest number of temporal effects from other MSAs, six of the seven, excluding
only Los Angeles. The Santa Barbara MSA proved the most isolated in that it tem-
porally caused housing prices in only two other MSAs (Los Angels and Oxnard)
and housing prices in the Santa Anna MSA temporally caused prices in Santa
Barbara. Third, we calculate out-of-sample forecasts in each MSA, using various
vector autoregressive (VAR) and vector error-correction (VEC) models, as well
as Bayesian, spatial, and causality versions of these models with various priors.
Different specifications provide superior forecasts in thedifferent MSAs. Finally,
we consider the ability of theses time-series models to provide accurate out-of-
sample predictions of turning points in housing prices thatoccurred in 2006:Q4.
Recursive forecasts, where the sample is updated each quarter, provide reasonably
good forecasts of turning points.
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1. Introduction 

This paper considers the dynamics of housing prices and the ability of different pure time-series 

models to forecast housing prices in eight Southern California metropolitan statistical areas 

(MSAs) – Bakersfield, Los Angeles, Oxnard, Riverside, San Diego, San Luis Obispo, Santa 

Anna, and Santa Barbara.1 Earlier papers examine the efficiency and diffusion of housing prices 

across contiguous geographic regions. For example, see the analysis of Tirtirglou 1992; and 

Clapp and Tirtirglou 1994 on the Hartford MSA.  

This paper, first, tests for cointegration between real house prices in the eight MSAs, 

using the Johansen technique (1991). We find seven cointegrating relationships between the real 

house prices, a purchasing power parity (PPP) result for housing prices in Southern California. 

Block exogeneity tests on the vector error correction (VEC) model reveal an intricate temporal 

causality pattern between housing prices for these MSAs. The Santa Anna MSA leads the pack 

in temporally causing housing prices in six of the other seven MSAs, excluding only the San 

Luis Obispo MSA. The Oxnard MSA experienced the largest number of temporal effects from 

other MSAs, six of the seven, excluding only Los Angeles. The Santa Barbara MSA proved the 

most isolated in that it temporally caused housing prices in only two other MSAs (Los Angels 

and Oxnard) and housing prices in the Santa Anna MSA temporally caused prices in Santa 

Barbara. 

We next compare the out-of-sample forecasting performance of various time-series 

models – vector autoregressive (VAR), vector error-correction (VEC), and various Bayesian 

time-series models. For the Bayesian models, we estimate Bayesian VAR (BVAR) and VEC 

(BVEC) models as well as BVAR and BVEC models that include spatial and causality priors 

                                                 
1 We exclude the El Centro MSA because of too short a time series on housing prices. 

 2



(LeSage 2004, Gupta and Miller 2009). A causality BVEC model performs the best across all 

eight MSAs, although the forecasting performances in the individual MSAs do differ. That is, 

none of the MSAs perform the best in this causality BVEC model that performs the best across 

all eight MSAs.  

We organize the rest of the paper as follows. Section 2 examines the potential linkage of 

housing prices across geographic regions. Section 3 specifies the various time-series models 

estimated in Section 4. Section 5 concludes. 

2. Housing Demand and Supply and Spatial Price Arbitrage 

The Law of One Price (LOOP) states that a homogeneous good that sells in two different 

markets should sell for the same price, ignoring transaction and transportation costs. 

Fundamentally, the LOOP requires the arbitrage of goods prices between markets or, in other 

words, that one can transport the good between markets at relatively low cost. Clearly, housing 

fails in, at least, two important areas – lack of homogeneity in housing goods and lack of 

transportability between markets. In addition, when one compares housing indexes, rather than 

individual home prices, across geographic regions, the Purchasing Power Parity (PPP) approach, 

which extends the LOOP to price indexes, applies. PPP implies that trade between geographic 

regions of goods leads to a convergence of the regions’ price indexes. Once again the operation 

of PPP requires the arbitrage of goods between regions. 

Housing economists address the issue of a non-homogeneous good by appealing to the 

characteristics of housing. Hedonic models allow the researcher to compare housing prices based 

on the characteristics imbedded into the sales, such as number of bedrooms and baths, square 

footage, and so on. Typically, the geographic reach of the housing market reflects the commuting 

shed for the metropolitan area. That is, houses compete with each other within the same 
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metropolitan area. Tirtirglou (1992) and Clapp and Tirtirglou (1994) provided some of the 

earliest tests of whether the housing market exhibited efficiency in a spatial market in Hartford, 

Connecticut. 

Since we cannot transport houses from one metropolitan market to another necessarily 

imply that the housing markets in the MSAs do not exhibit linkages? Trade theory demonstrates 

that although labor and capital frequently do not move between countries, factor prices equalize 

(Samuelson 1948), if goods and services flow freely between countries. That is, flows of goods 

and services between countries act as surrogates for labor and capital flows and cause the prices 

of labor and capital to equalize even though capital and labor do not move between countries. 

Since housing cannot flow between markets, do other flows exist that can cause PPP to hold? 

First, the migration of home buyers between metropolitan areas can link the housing markets. 

Second, home builders can also move their operations between metropolitan areas in response to 

differential returns on home building activity. In sum, the movement of home buyers and home 

builders between regions in response to price differences can arbitrage the prices of homes, even 

though the homes themselves cannot move between regions. 

In sum, we argue that housing prices between geographic regions affect each other if 

either home buyers or home builders move between the markets in response to price incentives. 

On the home buyer side, different types of buyers or motivations may assist in the arbitrage 

process. One, within the Southern California MSAs, commuters can choose to purchase a home 

that trades off the home price with the commuting cost. Thus, commuting across MSAs by some 

will exert some pressure to equalize home prices, adjusting for commuting costs. Two, equity 

conversion may allow some longtime residents of areas that experienced significant appreciation 

to cash in their accumulated equity and buy a “better” home in an area with lower home prices 
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and probably higher commuting costs. Three, investors may use spatial arbitrage to allocate their 

housing investment funds.2 

Home builders face two basic components in their cost of  supplying new housing -- 

construction (replacement) costs and land value. If the demand for housing rises in one region, 

that will draw resources, including construction labor, from other regions. As a result, 

construction costs in both regions will rise. It rises first in the market where the demand for 

housing rises to attract more construction workers. And as a consequence, as the supply of 

construction workers in the other region falls, their wages will rise. The equalizing of 

construction costs tends to equilibrate housing prices across regions.  

Just as we cannot transport housing between regions, we cannot transport land as well. 

Thus, if a region faces a fixed, or extremely inelastic, supply of land, then that regions housing 

prices and land values will rise. That is, since housing prices include construction (replacement) 

costs and land prices, higher land prices will drive up housing prices even though construction 

(replacement) costs may equilibrate between regions. All eight metropolitan areas in this paper 

face land restrictions that respond in this manner. That is, all eight regions experienced a housing 

“bubble” in recent years that deflated recently. See Figure 1. 

In sum, we argue that the housing “bubbles” in the eight MSAs in the Southern California 

housing market reflect, in large measure, run ups and then crashes in land values. While other 

factors such as construction costs also played a role, land values dominated the movement in 

home prices.  

 

 
                                                 
2 Meen (1999) offers a similar discussion of UK for housing price arbitrage between the Southeast to the Northwest, 
which he calls the “ripple effect.” He defines four explanations -- migration, equity conversion, spatial arbitrage, and 
exogenous shocks with different timing of spatial effects. 
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3. VAR, VEC, BVAR, BVEC, SBVAR, and SBVEC Specification and Estimation3 

Following Sims (1980), we can write an unrestricted VAR model as follows: 

ε= + +0 ( )ty A A L yt t  (1),4        (1) 

where y equals a ( ) vector of variables to forecast; A(L) equals an (×1n ×n n ) polynomial matrix 

in the backshift operator L with lag length p, and ε  equals an ( ×1n ) vector of error terms. In our 

case, we assume that , where In equals an (ε σ 2~ (0, nN I ) ×n n ) identity matrix. 

With cointegrated (non-stationary) series, we can transform the standard VAR model into 

a VEC model. The VEC model builds into the specification the cointegration relations so that 

they restrict the long-run behavior of the endogenous variables to converge to their long-run, 

cointegrating relationships, while at the same time describing the short-run dynamic adjustment 

of the system. The cointegration terms, known as the error correction terms, gradually correct 

through a series of partial short-run adjustments. 

More explicitly, for our eight variable system, if each series ty  is integrated5 of order 

one, (i.e., I(1)),6 then the error-correction counterpart of the VAR model in equation (1) converts 

into a VEC model as follows.7 

  
1

1
1

p

t t i t
i

y y y 1 tπ ε
−

− −
=

Δ = + Γ Δ +∑        (2) 

where  
1 1

[ ]and
p p

i i
i j

.j
i

I A Aπ
= =

= − − Γ = −∑ ∑
+

                                                

 

 
3 The discussion in this section relies heavily on LeSage (1999), Gupta and Sichei (2006), Gupta (2006), and Gupta 
and Miller (2009). 
4 A(L) = + + +2

1 2 ... p
pA L A L A L ; and  equals an (0A ×1n ) vector of constant terms. 

5  A series is integrated of order q, if it requires q differences to transform it into a zero-mean, purely non-
deterministic stationary process. 
6  See LeSage (1990) and references cited therein for further details regarding the non-stationarity of most 
macroeconomic time series. 
7 See Dickey et al. (1991) and Johansen (1995) for further technical details. 
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VAR and VEC models typically use equal lag lengths for all variables in the model, 

which implies that the researcher must estimate many parameters, including many that prove 

statistically insignificant. This over-parameterization problem can create multicollinearity and a 

loss of degrees of freedom, leading to inefficient estimates, and possibly large out-of-sample 

forecasting errors. Some researchers exclude lags with statistically insignificant coefficients. 

Alternatively, researchers use near VAR models, which specify unequal lag lengths for the 

variables and equations. 

Litterman (1981), Doan et al., (1984), Todd (1984), Litterman (1986), and Spencer 

(1993), use a Bayesian VAR (BVAR) model to overcome the over-parameterization problem. 

Rather than eliminating lags, the Bayesian method imposes restrictions on the coefficients across 

different lag lengths, assuming that the coefficients of longer lags may approach more closely to 

zero than the coefficients on shorter lags. If, however, stronger effects come from longer lags, 

the data can override this initial restriction. Researchers impose the constraints by specifying 

normal prior distributions with zero means and small standard deviations for most coefficients, 

where the standard deviation decreases as the lag length increases. The first own-lag coefficient 

in each equation is the exception with a unitary mean. Finally, Litterman (1981) imposes a 

diffuse prior for the constant. We employ this “Minnesota prior” in our analysis, where we 

implement Bayesian variants of the classical VAR and VEC models. 

Formally, the means and variances of the Minnesota prior take the following form: 

)  and       (3) ββ σ 2~ (0, )
jj Nββ σ 2~ (1,

ii N

where βi  equals the coefficients associated with the lagged dependent variables in each equation 

of the VAR model (i.e., the first own-lag coefficient), while β j  equals any other coefficient. In 

sum, the prior specification reduces to a random-walk with drift model for each variable, if we 
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set all variances to zero. The prior variances, 2
βσ i

 and 2
βσ j

, specify uncertainty about the prior 

means βi  = 1, andβ j  = 0, respectively.  

Doan et al., (1984) propose a formula to generate standard deviations that depend on a 

small numbers of hyper-parameters: w, d, and a weighting matrix f(i, j) to reduce the over-

parameterization in the VAR and VEC models. This approach specifies individual prior 

variances for a large number of coefficients, using only a few hyper-parameters. The 

specification of the standard deviation of the distribution of the prior imposed on variable j in 

equation i at lag m, for all i, j and m, equals S1(i, j, m), defined as follows: 

= × ×1

ˆ
( , , ) [ ( ) ( , )]

ˆ
i

j

σ ,      (4) S i j m w g m f i j
σ

where f(i, j) = 1, if i = j and  otherwise, with (ijk ≤ ≤ij0 k 1), and g(m) = , with d > 0. The 

estimated standard error of the univariate autoregression for variable i equals 

−dm

σ̂ i . The ratio 

σ
σ

ˆ
ˆ

i

j
 scales the variables to account for differences in the units of measurement and, hence, 

causes specification of the prior without consideration of the magnitudes of the variables. The 

term w indicates the overall tightness and equals the standard deviation on the first own lag, with 

the prior getting tighter as the value falls. The parameter g(m) measures the tightness on lag m 

with respect to lag 1, and equals a harmonic shape with decay factor d, which tightens the prior 

at longer lags. The parameter f(i, j) equals the tightness of variable j in equation i relative to 

variable i, and by increasing the interaction (i.e., the value of ), we loosen the prior.ijk
8  

The overall tightness (w) and the lag decay (d) hyper-parameters equal 0.1 and 1.0, 

respectively, in the standard Minnesota prior, while  = 0.5, implying a weighting matrix (F) ijk

                                                 
8 For an illustration, see Dua and Ray (1995). 
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for our eight MSAs: 

⎡
⎢
⎢
⎢
⎢

=

⎣

1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0

F

⎤
⎥
⎥
⎥
⎥

⎢
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

⎥
⎥ .    (5) 

Since researchers believe that the lagged dependant variable in each equation proves most 

important, F imposes βi =1 loosely. The β j coefficients, however, that associate with less-

important variables receive a coefficient in the weighting matrix (F) that imposes the prior means 

of zero more tightly. Since the Minnesota prior treats all variables in the VAR, except for the 

first own-lag of the dependent variable, in an identical manner, several researchers attempt to 

alter this fact. Usually, this means increasing the value for the overall tightness (w) hyper-

parameter from 0.10 to 0.20, so that more influence comes from other variables in the model. In 

addition, Dua and Ray (1995) introduce a prior that imposes fewer restrictions on the other 

variables in the VAR model (i.e., w = 0.30 and d = 0.50). 

Alternatively, LeSage and Pan (1995) propose spatial BVAR (SBVAR) and BVEC 

(SBVEC) models. They adopt a weight matrix that uses the first-order spatial contiguity (FOSC) 

prior, implying a non-symmetric F matrix with more importance given to variables from 

neighboring MSAs than those from non-neighboring MSAs. Figure 2 maps the locations of the 

eight MSAs.9 They impose a value of one for both the diagonal elements of the weight matrix, as 

in the Minnesota prior, as well as for place(s) that correspond to variable(s) from MSAs with 

                                                 
9 We exclude the El Centro MSA because of too short a time series on housing prices. 
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which the specific MSA shares a common border(s). For the elements in the F matrix that 

correspond to variable(s) from MSAs that do not share common borders, Lesage and Pan (1995) 

impose a weight of 0.1. In sum, the 0.5 weights in the specification shown in equation (5) 

become 1.0 for neighbors and 0.1 for non-neighbors.  

Gupta and Miller (2009) propose new specifications, causality BVAR (CBVAR) and 

BVEC (CBVEC) models, where the weight matrix depends on tests for Granger temporal 

causality –- the temporal causality (TC) prior. They modify the LeSage and Pan (1995) first-

order spatial-contiguity (FOSC) prior in that they consider some neighbors as more important 

than other neighbors. In fact, non-neighbors may exert more influence than neighbors. If one 

MSA’s home prices temporally cause another MSA’s home prices, then they code the weight 

matrix for that off-diagonal entry at 1.0. If no temporal causality exists, then they code the off-

diagonal entry as 0.1.  

LeSage and Krivelyova (1999) develop another approach to remedy the equal treatment 

in the Minnesota prior, called the “random-walk averaging” (RWA) prior. As noted above, most 

attempts to adjust the Minnesota prior focus mainly on alternative specifications of the prior 

variances. The RWA prior requires that both the prior mean and variance incorporate the 

distinction between important variables, neighbors and non-neighbors, for each equation in the 

VAR and VEC models. In this specification, neighbors and non-neighbors receive weights of 1.0 

and 0.0, respectively. 

Consider the weight matrix F in equation (5). The order of inclusion of MSAs in the 

matrix is as follows: Bakersfield, Los Angeles, Oxnard, Riverside, San Diego, San Luis Obispo, 

Santa Ana, and Santa Barbara. In addition, we continue with 1.0 down the main diagonal of the 

F matrix, to emphasize the importance of the autoregressive influences from the lagged values of 
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the dependant variable (house price of a specific metropolitan area).10 In sum, the weight matrix 

F in our application becomes as follows: 

⎡
⎢
⎢
⎢
⎢

=

⎣

1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0
1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0
1.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0
1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0 1.0 0.0 1.0 0.0
1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0
0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0
1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0

F

⎤
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

.    (6) 

We then standardize the weight matrix in equation (6) so that each row sums to unity. 

Formally, we write the standardized F matrix, called C, as follows: 

=

0.167 0.167 0.167 0.167 0.0 0.167 0.0 0.167
0.2 0.2 0.2 0.2 0.0 0.0 0.2 0.0
0.2 0.2 0.2 0.0 0.0 0.2 0.0 0.2
0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.0
0.0 0.0 0.0 0.33 0.33 0.0 0.33 0.0
0.25 0.0 0.25 0.0 0.0 0.25 0.0 0.25
0.0 0.25 0.0 0.25 0.25 0.0 0.25 0.0
0.25 0.0

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦0.25 0.0 0.0 0.25 0.0 0.25

.  (7) 

We can interpret the C matrix as generating a pseudo random-walk process with drift, 

where the random-walk component averages across the important variables in each equation i of 

the VAR. Formally, 

3

1
1

it i ij jt it
j

y C y uδ −
=

= + +∑ , i = 1, 2, and 3.     (8) 

Expanding equation (8), we observe that by multiplying 1jty − ,containing the house prices of the 

                                                 
10 Using 1.0 on the main diagonal of the F matrix for the RWA prior, however, does not always prove obvious. 
LeSage and Krivelyova (1999) provide the exposition for when the autoregressive influences do not influence 
importantly certain variables.  
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eight metropolitan areas at t-1, with C produces a set of explanatory variables for the VAR equal 

to the mean of observations from the important variables (neighboring house prices) in each 

equation i at t-1.11 This also suggests that the prior mean for the coefficients on the first own-lag 

of the important variables equals 1
ic , where  (=3, 4, 5, or 6) equals the number of important 

variables in a specific equation i of the VAR model.

ic

12  

In sum, the prior variances for the parameters under the RWA prior, as proposed by 

LeSage and Krivelyova (1999), retaining the distinction between important and unimportant 

variables, require the following ideas: 

(i) Assign a smaller prior variance to parameters associated with unimportant variables, 

imposing zero prior means with more certainty; 

(ii) Assign a small prior variance to the first own-lag of the important variables so that prior 

means force averaging over the first own-lags of such variables;   

(iii) Impose the prior variance of parameters associated with unimportant variables at lags 

greater than one such that it becomes smaller as the lag length increases, imposing decay 

in the influence of the unimportant variables over time; 

(iv) Assign larger prior variances on lags other than the first own-lag of the important 

variables, allowing those lags to exert some influence on the dependant variable; and  

(v) Assign decreasing prior variances on the coefficients of lags, other than the first own-lag 

of the important variables.  

Thus, in the specification of the RWA, as in the Minnesota prior, longer lag influences decay 
                                                 
11 Just as with the constant in the Minnesota Prior, δ is also estimated based on a diffuse prior. 
12 As in the Minnesota prior, the RWA prior uses a prior mean of zero for the coefficients on all lags, except for the 
first own lags. The RWA approach of specifying prior means requires that the researcher scale the variables to 
similar magnitudes, since otherwise it does not make intuitive sense to say that the value of a variable at t equals the 
average of values from the important variables at t-1. This issue does not affect our analysis, since our variables are 
all scaled in the same fashion. 
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irrespective of whether we classify the variable as important or unimportant.  

Given (i) to (v), we adopt a flexible form, where the RWA prior standard deviations 

 for a variable j in equation i at lag length m equal the following: 2 ( , , )S i j m

2

2

2

1( , , ) ( , );     ;     1;             , 1,...., ;

( , , ) (0, );   ;     2,...., ;   , 1,...., ;  and

( , , ) (0, );   ;  1,...., ;   , 1,...., ;

c
i

c

c

S i j m N j C m i j nc

S i j m N j C m p i j nm

S i j m N j C m p i j nm

σ

ση

σρ

∈ = =

∈ = =

¬∈ = =

∼

∼

∼

  (9) 

where 0 1cσ< < , 1η > , 0 1ρ< ≤ , and  equals the number of important variables in equation 

i. For the important variables in equation i (i.e., 

ic

j C∈ ), the prior mean for the lag length of 1 

equals the average of the number of important variables in equation i, and equals zero for the 

unimportant variables (i.e., ). With 0j¬∈C 1cσ< < , the prior standard deviation for the first 

own lag imposes a tight prior mean to reflect averaging over important variables. For important 

variables at lags greater than one, the variance decreases as m increases, but the restriction that 

1η >  allows for the loose imposition of the zero prior means on the coefficients of these 

variables. We use c
m

σρ  for lags on unimportant variables, with prior means of zero, to indicate 

that the variance decreases as m increases. In addition, since 0 1< ≤ρ , we impose the zero 

means on the unimportant variables with more certainty. In our model, however, we do not 

include any unimportant variables. 

Gupta and Miller (2009) propose a weighted random-walk averaging (WRWA) prior. 

That is, they extend the specification of LeSage and Krivelyova (1999) by assuming that the first 

own-lagged value proves more important than the other important variables (neighbors).13 They 

                                                 
13 Kuethe and Pede (2008) specify a similar prior, where they assume that the coefficient of the own-lagged term 
equals one and the sum of the lags of the other important variables, not including the own-lagged term, sums to one 
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impose the condition that the first own-lagged variable proves twice as important as the other 

important variables.  

( )

( )

{ }

3 '

3 '

3

2( , , ) , ;   ';     1;       , 1,...., ;
1

1( , , ) , ;   ';     1;       , 1,...., ;
1

( , , ) 0, ;           ';     2,...., ;   , 1,...., ;  

c
i

c
i

c

S i j m N j C m j i i j n
c

S i j m N j C m j i i j n
c

S i j m N j C m p i j nm

σ

σ

ση

⎧ ⎫⎪ ⎪ ∈ = = =⎨ ⎬+⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪ ∈ = ≠ =⎨ ⎬+⎪ ⎪⎩ ⎭

∈ = =

∼

∼

∼

{ }3

and

( , , ) 0, ;          ';   1,...., ;    , 1,...., .cS i j m N j C m p i j nm
σρ ¬∈ = =∼

 (10) 

Thus, in our eight-variable system,  equals 3, 4, 5, or 6 and the prior means for the first own 

lag equals 

ic

( )'
2

1ic +
 and the first lags of the other important variables in each equation equal 

( )'
1

1ic +
. We also adopt the values for the hyperparameters used by Gupta and Miller (2009): 

0.1, 8,and 0.5.cσ η ρ= = = 14 Consequently, the weighting matrix becomes the following: 

=

0.286 0.143 0.143 0.143 0.0 0.143 0.0 0.143
0.167 0.334 0.167 0.167 0.0 0.0 0.167 0.0
0.167 0.167 0.334 0.0 0.0 0.167 0.0 0.167
0.167 0.167 0.0 0.334 0.167 0.0 0.167 0.0

'
0.0 0.0 0.0 0.25 0.5 0.0 0.25 0.0
0.2 0.0 0.2 0.0 0.0 0.4 0.0 0.2
0.0 0.2 0.0

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.2 0.2 0.0 0.4 0.0
0.2 0.0 0.2 0.0 0.0 0.2 0.0 0.4

.  (11) 

We estimate the BVAR, BVEC, SBVAR, SBVEC, CBVAR, and CBVEC models, based 

on the FOSC, TC, RWA, and WRWA priors, using Theil's (1971) mixed estimation technique. 

                                                                                                                                                             
as well. Thus, their weighting scheme doubles the weight as compared to our scheme as well as requiring the own-
lagged term to retain the coefficient of one, which reflects the essence of the random-walk averaging (RWA) prior. 
14 LeSage (1999) suggested ranges for the values for these hyperparameters. 
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Specifically, we denote a single equation of the VAR model as: = +1y X 1β ε , with 

ε σ= 2
1( )Var I . Then, we can write the stochastic prior restrictions for this single equation as 

follows: 

111 111 111 111

112 112 112 112
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0 / 0 . . 0

. . . . . . . . .

. . . . . . . . .
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⎥
⎥
⎥
⎥
⎥
⎥⎦

  (12) 

Note that 2( )Var u Iσ= , and the prior means  and the prior variance ijmr ijmσ 15 take the 

forms shown in equations (3) and (4) for the Minnesota prior; in equations (3), (4) and (6) for the 

FOSC prior; in equations (2), (3), and (7) for the TC prior, in equation (9) for the RWA prior, 

and in equation (10) for the WRWA prior. With equation (12) written as follows: 

r uβ= Σ + ,         (13) 

we derive the estimates for a typical equation as follows: 

1
1

ˆ ( ' ' ) ( ' ' )X X X yβ −= + Σ Σ + Σ r

                                                

      (14) 

Essentially then, the method involves supplementing the data with prior information on 

the distribution of the coefficients. The number of observations and degrees of freedom increase 

artificially by one for each restriction imposed on the parameter estimates. Thus, the loss of 

degrees of freedom from over-parameterization in the classical VAR or VEC models does not 

emerge as a concern in the BVAR, BVEC, SBVAR, SBVEC, CBVAR, and CBVEC models. 

4. Model Estimation and Results 

This section reports our econometric findings. First, we determine whether cointegration exists 

 
15 Note σ ijm  in equation (12) is a generic term used to describe Sk(i, j, m), k=1, 2, 3. 
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between the variables in our model. Second, we select the optimal model for forecasting each 

market’s housing price, using the minimum root mean square error (RMSE) for one- to four-

quarter-ahead out-of-sample forecasts. Finally, we examine the ability of the optimal forecasting 

models to detect turning points in our-of-sample forecasts. 

Evidence on Cointegration 

The first step in our analysis tests for Granger temporal causality between the eight housing price 

series. Temporal causality tests emerge from VAR or VEC models. We first consider various 

lag-length selection criteria for the VAR specification, including the sequential modified 

likelihood ratio (LR) test statistic (each test at the 5-percent level), the final prediction error 

(FPE), the Akaike information criterion (AIC), the Schwarz information criterion (SIC), and the 

Hannan-Quinn information criterion (HQIC). All criteria choose six lags. Table 1 reports the 

results. 

We next run the Johansen test for cointegration with six lags. Cointegration tests – the 

trace statistic and maximum eigen-value test – both indicate seven cointegrating vector. Table 2 

tabulates the findings. 

Running the VEC specification and using the block exogeneity test, we discover that 

housing prices in Los Angeles temporally cause housing prices in Bakersfield, Riverside, San 

Diego, and San Luis Obispo, the two inland MSAs and the most distant coastal MSAs. At the 

same time, Oxnard, San Diego, San Luis Obispo, Santa Ana, and Santa Barbara housing prices 

temporally cause Los Angeles prices. In other words, each coastal MSA housing price index 

temporally causes the Los Angeles index.16  

The most isolated MSA in causality terms is Santa Barbara, where its hosing prices are 

                                                 
16 Since the VEC specification constitutes the first differenced form of the three endogenous variables, and the 
optimal lag length used for the VAR is 6, we estimate all VEC models with 5 lags. 
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temporally caused by Santa Ana’s housing prices and housing prices in Los Angeles and Oxnard 

temporally lead housing price adjustments in Santa Barbara. The Oxnard MSA housing prices 

respond to the most other MSA housing prices – Bakersfield, Riverside, San Diego, San Luis 

Obispo, Santa Ana, and Santa Barbara. Further, the Santa Ana MSA housing prices temporally 

lead the most other MSA housing prices – Bakersfield, Los Angeles, Oxnard, Riverside, San 

Diego, and Santa Barbara.17  

On a bivariate basis, we observe seven pairs of MSAs with no causality between their 

housing prices and seven pairs with two-way causality. No causality exists between Bakersfield-

Riverside, Bakersfield-Santa Barbara, Riverside-San Diego, Riverside-Santa Barbara, San 

Diego-Santa Barbara, San Luis Obispo-Santa Ana, and San Luis Obispo-Santa Barbara. Neither 

Los Angeles nor Oxnard appear in the list of no bivariate causality, implying that these two 

MSAs always exhibit a causality relationship between their housing prices and housing prices 

with each other MSA. On the other hand, Santa Barbara, the most isolated MSA, exhibits no 

causality with four of the other MSAs. 

Two-way temporal causality exists between Bakersfield-Santa Ana, Los Angeles-San 

Diego, Los Angeles-San Luis Obispo, Oxnard-San Luis Obispo, Oxnard-Santa Ana, San Diego-

San Luis Obispo, and San Diego-Santa Ana. Neither Riverside nor Santa Barbara exhibit two-

way causality of their housing prices with the housing prices of any other MSA. The Santa Ana, 

San Diego, and San Luis Obispo MSAs each exhibit two-way causality of their housing prices 

with the housing prices in three other MSAs, where housing prices in Santa Ana cause housing 

prices in the most other MSAs. 

Examining the no bivariate causality findings, we see that unexpectedly four pairs of 

                                                 
17 The Santa Ana housing prices just fall short of significantly causing housing prices in San Luis Obispo at the 10-
percent level. 
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MSAs that geographically share portions of their borders exhibit no causality between their 

housing prices in either direction -- Bakersfield-Riverside, Bakersfield-Santa Barbara, Riverside-

San Diego, and San Luis Obispo-Santa Barbara.18 In addition, five pairs of MSAs that exhibit 

two-way temporal causality do not share a common border -- Bakersfield-Santa Ana, Los 

Angeles-San Diego, Los Angeles-San Luis Obispo, Oxnard-Santa Ana, and San Diego-San Luis 

Obispo. 

In sum, we find more evidence of temporal causality occurring for non-adjacent MSAs 

and not occurring for adjacent MSAs much more frequently than we would have hypothesized. 

We also find that Santa Barbara forms a more isolated geographic area than the rest of the 

Southern California MSAs. Los Angeles and Oxnard share the characteristic that they each link 

in a causal way to every other MSA in Southern California. 

One- to Four-Quarter-Ahead Forecast Accuracy 

Given the specification of priors in Section 2, we estimate numerous Bayesian, spatial, causality, 

and random-walk VAR and VEC models based on the FOSC, TC, RWA, and WRWR priors for 

Bakersfield, Los Angeles, Oxnard, Riverside, San Diego, San Luis Obispo, Santa Ana, and Santa 

Barbara over the period 1977:Q2 to 1994:Q4 using quarterly data. We then compute out-of-

sample one- through four-quarters-ahead forecasts for the period of 1995:Q1 to 2004:Q4, and 

compare the forecast accuracy relative to the forecasts generated by an unrestricted VAR and 

VEC models.19 Note that the choice of the in-sample period, especially, the starting date depends 

on data availability. The starting point of the out-of-sample period follows Rapach and Strauss 

(2007, 2008), who observe marked differences in housing price growth across U.S. regions since 

                                                 
18 Here, we assume that Oxnard and San Luis Obispo share a portion of their border. In fact, they do not. But, we 
feel that they are close enough to justify the assumption. 
19 Note that the initial estimation period does not include the dramatic run up in home prices at the end of the out-of-
sample forecast period. 
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the mid-1990s. Finally, we choose the end-point of the horizon as 2005:Q4, since we also use 

our alternative models to predict the turning point(s) in the real housing prices of these eight 

MSAs and, hence, stop prior to the date where the turning point actually occurred. In our case, 

the real house prices peaked in each market as follows: Bakersfield, 2006:Q4; Los Angeles, 

2006:Q4; Oxnard, 2006:Q2; Riverside, 2006:Q4; San Diego, 2006:Q1; San Luis Obispo, 

2006:Q1; Santa Ana, 2006:Q2; and Santa Barbara, 2005:Q4.  

The models include house prices for the above mentioned eight MSAs. The nominal 

housing price data for the eight MSAs come from the Freddie Mac. Using matched transactions 

on the same property over time to account for quality changes, the Conventional Mortgage Home 

Price Index (CMHPI) of the Freddie Mac provides a means of measuring typical price inflation 

for houses within the U.S. The Freddie Mac data consist of both purchase and refinance-

appraisal transactions, and include over 33 million homes. We deflate the MSA-level nominal 

CMHPI housing price by the personal consumption expenditure (PCE) deflator from the Bureau 

of Economic Analysis (BEA) to generate our real housing price series. As Hamilton (1994, p. 

362) notes, we seasonally adjust the data, since the Minnesota-type priors do not perform will 

with seasonal data.  

Each equation of the various VAR (VEC) models includes 49 (41) parameters with the 

constant, given that we estimate the models with 6 (5) lag(s) of each variable. We estimate the 

eight-variable models for a given prior for the period 1977:Q2 to 1994:Q4, and then forecast 

from 1995:Q1 through to 2004:Q4. Since we use six (five) lags, the initial six (five) quarters 

from 1977:Q2 to 1978:Q3 (1978:Q2) feed the lags. We re-estimate the models each quarter over 

the out-of-sample forecast horizon in order to update the estimate of the coefficients, before 

producing the 4-quarters-ahead forecasts. We implemented this iterative estimation and the 4-
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quarters-ahead forecast procedure for 40 quarters, with the first forecast beginning in 1995:Q1. 

This produced a total of 40 one-quarter-ahead forecasts, …, up to 40 four-quarters-ahead 

forecasts.20 We calculate the root mean squared errors (RMSE)21 for the 40 one-, two-, three-, 

and four-quarters-ahead forecasts for the eight home prices of the models. We then examine the 

average of the RMSE statistic for one-, two-, three-, and four-quarters ahead forecasts over 

1995:Q1 to 2004:Q4. We follow the same steps to generate forecasts from the Bayesian, spatial, 

random-walk, and causality versions of VAR and VEC models based on the FOSC, TC, RWA, 

and WRWA priors.  

For the BVAR models, we start with a value of w = 0.1 and d = 1.0, and then increase the 

value to w = 0.2 to account for more influences from variables other than the first own lags of the 

dependant variables of the model. In addition, as in Dua and Ray (1995), Gupta and Sichei 

(2006), Gupta (2006), and Gupta and Miller (2009), we also estimate a BVAR model with w = 

0.3 and d = 0.5. We also introduce d = 2 to increase the tightness on lag m. Finally, we specify 

σc=0.1, η=8, θ=0.5 for the random-walk models with the two different specifications for 

causality and spatial priors. We select the model that produces the lowest average RMSE values 

as the ‘optimal’ specification for a specific metropolitan area. 

Table 4 reports the average RMSEs across all eight MSAs. The last column looks at the 

average RMSE across the one-, two-, three-, and four-quarter-ahead forecast. The spatial BVEC 

model with w=0.1 and d=2.0 provides the lowest average RMSE, which we identify as the 

optimal specification. This specification deviates from the Minnesota prior in that the decay 

                                                 
20 For this, we used the algorithm in the Econometric Toolbox of MATLAB, version R2006a. 
21 Note that if t nA +  denotes the actual value of a specific variable in period t + n and t t nF +  equals the forecast made 

in period t for t + n, the RMSE statistic equals the following: ( )2
1
N

t t n t nF A
N

+ +
⎡ ⎤−∑
⎢ ⎥
⎢ ⎥⎣ ⎦

 where N equals the number 

of forecasts.  
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factor reduces the influence of lagged values more quickly. The optimal specifications for the 

one-, two-. three-, and four-quarter-ahead forecasts equal the BVAR with w=0.1 and d=1.0, 

BVAR with w=0.1 and d=2.0, BVAR and causality BVAR with w=0.2 and d=2.0, respectively. 

Tables 5 through 12 report the findings for Bakersfield, Los Angeles, Oxnard, Riverside, 

San Diego, San Luis Obispo, Santa Ana, and Santa Barbara, respectively. Focusing on the 

average RMSE across the one-, two-, three-, and four-quarter-ahead forecasts, we observe the 

following findings. First, the optimal specification for Los Angeles, Riverside, and San Luis 

Obispo corresponds to a spatial BVEC with w=0.1 and d=2.0, w=0.2 and d=1.0, and w=0.2 and 

d=2.0, respectively. That is, the specifications for Los Angeles and Riverside reflect less 

importance for other variables and lagged values, respectively, than the Minnesota prior. San 

Luis Obispo imposes less importance on lags and more importance on other variables relative to 

the Minnesota prior. Second, the optimal specification for Oxnard and Santa Ana equals the 

causality BVEC with w=0.1 and d=1.0, or the Minnesota prior. Third, the optimal specification 

for Riverside equals the BVEC and allows more importance for both other variables and lagged 

values with w=0.3 and d=0.5. Fourth, the optimal specification for Santa Barbara equals the 

causality BVAR with w=0.2 and d=2.0. Finally, the optimal specification for San Diego equals 

the standard VAR model and the use of Bayesian models increases the RMSE.  

In sum, different specifications yield the lowest RMSE in different MSAs. No common 

pattern emerges. Comparing the forecasting performance across MSAs, however, we see that 

they rank from best to worst forecasting performance as follows: Oxnard (0.010004), San Diego 

(0.012190), San Luis Obispo (0.015627), Los Angeles (0.018092), Santa Ana (0.020822), Santa 

Barbara (0.026338), Riverside (0.038635), and Bakersfield (0.043258) experiences the lowest 

average RMSE across the one-, two-, and three-quarter-ahead forecast horizon. Viewed 
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differently, the forecasting performance in all the coastal MSAs beat the performance in the two 

inland MSAs.  

Forecasting Turning Points 

Figure 1 illustrates that each housing market experienced a marked reversal of real housing 

prices after the peaks in 2005 and 2006, depending on the MSA. We exposed our optimal 

forecast models to the acid test – predicting turning points. We estimated the optimal models 

based on the average RMSE from Tables 5 through 12, using data through the fourth quarter of 

2004. Next we forecasted prices from the first quarter of 2005 through the end of the sample 

period in the second quarter of 2008. Then we updated the data by one quarter and repeated the 

forecasting exercise with a model estimated through the first quarter of 2006 and forecasting 

with this model from the second quarter of 2006 to the second quarter of 2008. We then continue 

the updating and forecasting process until the end of the sample in the second quarter of 2008. 

The results of this forecasting experiment appear in Tables 13 through 20. 

The various forecasting models do a better or worse job of forecasting the turning point 

in each MSA. Overall, the performance is good with a few exceptions. First, Bakersfield, Los 

Angeles, Riverside, and San Diego all predict a turning point once we include data up to but not 

including the actual peak in the housing price. In addition, San Diego also predicted a turning 

point in the housing price after including the actual peak price. The other three MSAs each 

predict a falling housing price for all forecasting models that include more actual data, once the 

peak price is included in the sample used to estimate the forecasting model. Moreover, the first 

quarter forecast falls below its forecast value in the previous forecast period. 

Second, the forecasting models for Santa Ana nearly match those just discussed, but with 

a longer delay. That is, the forecasting models continue to predict rising prices through the end of 
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the forecasting period until the eighth forecasting period that uses data through 2006:Q3, one 

quarter after the actual housing price peaks. Then from the eighth forecasting period onward, the 

models all predict declining prices through the end of the sample period. 

Third, the forecasting of the San Luis Obispo MSA housing prices provides the best 

performance. The first forecast effort that begins by predicting the 2005:Q1 housing price 

predicts a peak price in 2006:Q1, when the actual housing price does peak. The second and third 

forecasts also predict a peak price in the future, but now in 2005:Q1, one quarter too early. The 

fourth forecast predicts a peak price in 2006:Q2 and the fifth and sixth forecasts predict a peak in 

2006Q3, two quarters too late. The seventh and all future forecasts predict a monotonically 

falling housing price. 

Fourth, the forecasting models for Oxnard perform the worst of all the MSAs. Although 

the housing price actually peaks in 2006:Q2, the forecasting models continue to predict rising 

housing prices until the eleventh forecast that uses data through 2007:Q2 to estimate the 

forecasting model. The eleventh and twelfth forecasts each predict a peak in the second quarter 

of the forecasts. Then thirteenth forecast predicts declining prices to the end of the sample. 

Finally, the Santa Barbara MSA forecasting models present the most complex picture. 

The second forecast predicts a peak in the housing price in 2007:Q2, using data to construct the 

model that ends in 2005:Q1. The actual peak in the housing price occurs in 2005:Q4. The next 

two forecasts, however, predict declining housing prices through the end of the sample. Then the 

fourth, fifth, and sixth forecasting models predict turning points. The eighth and all remaining 

forecast predict monotonically declining housing prices through the end of the sample. 

5. Conclusion 
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Housing prices rose dramatically in Southern California MSAs in the early 2000s, peaking in 

2005 or 2006 depending on the MSA. This paper considers the time-series relationships between 

the housing prices in the Bakersfield, Los Angeles, Oxnard, Riverside, San Diego, San Luis 

Obispo, Santa Ana, and Santa Barbara MSAs, using Freddie Mac data from 1977:Q2 to 

2008:Q2. First, we test for Granger temporal causality. Second, we generate out-of-sample 

forecasts using VAR, VEC and Bayesian, spatial, and causality VAR and VEC models with 

various priors. Finally, we explore the ability of these models to forecast turning points in 

housing prices that occurred in 2006:Q4. 

Los Angeles housing prices temporally cause housing prices in Bakersfield, Riverside, 

San Diego, and San Luis Obispo, the two inland MSAs and the most distant coastal MSAs. At 

the same time, Oxnard, San Diego, San Luis Obispo, Santa Ana, and Santa Barbara housing 

prices temporally cause Los Angeles prices. In other words, each coastal MSA housing price 

index temporally causes the Los Angeles index. Santa Barbara proved the most isolated MSA in 

causality terms. The Oxnard MSA housing prices respond to the most other MSA housing prices 

and the Santa Ana MSA housing prices temporally lead the most other MSA housing prices. 

More evidence exists of temporal causality occurring with non-adjacent MSAs than with 

adjacent MSAs, an unexpected result. Los Angeles and Oxnard each causally link to every other 

MSA in Southern California. 

Different time-series models prove better at forecasting housing prices in the different 

MSAs. Comparing the forecasting performance across MSAs, however, we see that they rank 

from best to worst forecasting performance as follows: Oxnard, San Diego, San Luis Obispo, 

Los Angeles, Santa Ana, Santa Barbara, Riverside, and Bakersfield experiences the lowest 
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average RMSE across the one-, two-, and three-quarter-ahead forecast horizon. That is, the 

forecasting performance in all the coastal MSAs beat the performance in the two inland MSAs. 

Forecasting turning points in housing prices proves a difficult task. When we estimate our 

model using data through 2004:Q4, forecasts generally continue to predict a rising trend in 

housing prices and do not signal any turning point except for the San Luis Obispo MSA. When 

we update the data for the estimated model as new data become available, then we do forecast 

turning points generally one quarter before the actual peak in the housing price and then we 

forecast declining prices in future forecast periods, except for Oxnard. 
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Table 1: Lag-Length Selection Tests 

 Lag LogL LR FPE AIC SC HQ 
0  1473.603 NA   3.59e-30 -45.09548 -44.82786 -44.98989 
1  1962.895  843.0880  7.56e-36 -58.18139 -55.77284 -57.23106 
2  2090.049  187.7969  1.18e-36 -60.12460 -55.57511 -58.32953 
3  2179.955  110.6525  6.72e-37 -60.92168 -54.23126 -58.28188 
4  2290.222  108.5707  2.66e-37 -62.34528 -53.51392 -58.86074 
5  2498.835  154.0526  8.11e-39 -66.79491 -55.82262 -62.46564 
6  2687.379   92.82181*   1.13e-39*  -70.62704*  -57.51381*  -65.45303* 

Note: The star indicates lag order selected by the criterion. The criterion include the sequential modified 
likelihood ratio (LR) test statistic (each test at 5% level), the final prediction error (FPE), the Akaike 
information criterion (AIC), the Schwarz information criterion (SIC), and the Hannan-Quinn information 
criterion (HQIC). 

 
 
 
Table 2: Johansen Cointegration Tests 
 
Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.948321  542.9606  159.5297  0.0000 
At most 1 *  0.823094  350.3845  125.6154  0.0000 
At most 2 *  0.710271  237.7955  95.75366  0.0000 
At most 3 *  0.626334  157.2729  69.81889  0.0000 
At most 4 *  0.509552  93.28736  47.85613  0.0000 
At most 5 *  0.348198  46.97895  29.79707  0.0002 
At most 6 *  0.245797  19.15801  15.49471  0.0134 
At most 7  0.012565  0.821902  3.841466  0.3646 

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 
Hypothesized  Max-Eigen 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.948321  192.5761  52.36261  0.0001 
At most 1 *  0.823094  112.5890  46.23142  0.0000 
At most 2 *  0.710271  80.52261  40.07757  0.0000 
At most 3 *  0.626334  63.98553  33.87687  0.0000 
At most 4 *  0.509552  46.30841  27.58434  0.0001 
At most 5 *  0.348198  27.82095  21.13162  0.0049 
At most 6 *  0.245797  18.33610  14.26460  0.0108 
At most 7  0.012565  0.821902  3.841466  0.3646 

Note: The trace and maximum eigen-value tests both indicate 7 cointegrating 
vectors at the 5-percent level. 

 
*  denotes rejection of the hypothesis at the 0.05 level 
** MacKinnon-Haug-Michelis (1999)  p-values 
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Table 3: Granger Temporal Causality Tests 

MSA 
Bakers-

field 
Los 

Angeles Oxnard Riverside 
San 

Diego 

San 
Luis 

Obispo 
Santa 
Ana 

Santa 
Barbara 

Bakers-
field   10.52**  7.042  7.90  13.358*  16.03*  9.52**  8.16 

Los 
Angeles  7.31   14.13*  5.60  9.96**  14.68*  12.42*  11.188* 

Oxnard  16.86*  7.27   13.96*  18.47*  9.47**  16.67*  11.79* 

Riverside  3.19  10.19**  7.92   2.97  14.21*  10.01**  2.00 

San 
Diego  1.817  18.178*  5.27  8.35   17.86*  21.12*  8.82 

San Luis 
Obispo  7.19  16.30*  9.40**  7.83  11.47*   9.22  3.12 

Santa 
Ana  18.24*  4.09  15.96*  5.81  11.65*  8.57   5.95 

Santa 
Barbara  6.46  7.20  9.09  3.29  2.96  6.39  12.12*   

Note: Numbers are χ2, chi-squared, test statistics with 5 degrees of freedom for the null hypothesis that 
the lagged values of the column variable do not prove jointly significant in the equation for the 
row variable. For example, in the first row, we reject the null hypotheses that lagged values of the 
Los Angeles, San Luis Obispo, and Santa Ana MSA housing prices do not significantly affect 
housing prices in the Bakersfield MSA at the 5- and 10-percent levels. 

 
* rejection of the null-hypothesis at 5-percent level. 
** rejection of the null-hypothesis at the 10-percent level. 
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Table 4: Forecast Results for All Eight MSAs 

  RMSEs 
Parameterization Models 1 2 3 4 Average 

  
VAR  0.080942 0.126143 0.240683 0.346271 0.19851 
VEC 0.080696 0.191404 0.358172 0.538615 0.292222 

w=0.3, d=0.5 

BVAR 0.065956 0.108213 0.215062 0.27712 0.166588 
BVEC 0.07153 0.130146 0.232009 0.325186 0.189718 
Causality BVAR  0.053987 0.123166 0.256702 0.289006 0.180715 
Spatial BVAR 0.040968 0.079404 0.181547 0.24517 0.136772 
Causality BVEC  0.071399 0.120781 0.228494 0.312339 0.183253 
Spatial BVEC 0.047387 0.091118 0.186629 0.252942 0.144519 

w=0.2, d=1 

BVAR 0.039539 0.07829 0.173346 0.186551 0.119432 
BVEC 0.052079 0.088746 0.157391 0.204771 0.125747 
Causality BVAR  0.046515 0.092174 0.200975 0.22459 0.141064 
Spatial BVAR 0.047227 0.086561 0.18788 0.247707 0.142344 
Causality BVEC  0.068552 0.094571 0.164629 0.209873 0.134406 
Spatial BVEC 0.043917 0.100808 0.179006 0.238969 0.140675 

w=0.1, d=1 

BVAR 0.035317 0.049335 0.126794 0.118866 0.082578 
BVEC 0.040412 0.070014 0.112726 0.145979 0.092283 
Causality BVAR  0.03695 0.069036 0.141288 0.159988 0.101815 
Spatial BVAR  0.053974 0.087413 0.153998 0.197612 0.123249 
Causality BVEC  0.059594 0.061908 0.077585 0.095575 0.073665 
Spatial BVEC 0.048128 0.090642 0.133854 0.180043 0.113167 

w=0.2, d=2 

BVAR 0.045177 0.044248 0.098074 0.1065 0.0735 
BVEC 0.038224 0.084254 0.140296 0.185433 0.112052 
Causality BVAR  0.037346 0.057389 0.101926 0.108124 0.076196 
Spatial BVAR 0.062963 0.093693 0.1583 0.189729 0.126171 
Causality BVEC  0.048603 0.058534 0.092229 0.117084 0.079112 
Spatial BVEC 0.04641 0.091007 0.144945 0.1809 0.115816 

w=0.1, d=2 

BVAR 0.060534 0.064287 0.067053 0.092407 0.07107 
BVEC 0.039296 0.072925 0.125208 0.166128 0.100889 
Causality BVAR  0.046477 0.073562 0.082498 0.089092 0.072907 
Spatial BVAR 0.065141 0.08505 0.105803 0.14503 0.100256 
Causality BVEC  0.041374 0.056676 0.081271 0.101583 0.070226 
Spatial BVEC 0.057068 0.08626 0.124128 0.158378 0.106459 

σc=0.1, η=8, θ=0.5 

RBVAR Causality1 0.088071 0.084746 0.146872 0.172476 0.123041 
RBVAR Causality2 0.082801 0.08946 0.15063 0.175755 0.124662 
RBVAR Spatial1 0.077357 0.087919 0.183671 0.179352 0.132075 
RBVAR Spatial2 0.083549 0.082698 0.170235 0.182005 0.129622 
RBVEC Causality1 0.071244 0.254395 0.184218 0.183024 0.17322 
RBVEC Causality2 0.071244 0.254395 0.184218 0.183024 0.17322 
RBVEC Spatial1 0.080824 0.290871 0.323186 0.234723 0.232401 
RBVEC Spatial2 0.079189 0.276654 0.270396 0.210936 0.209294 

Note: VAR and VEC refer to vector autoregressive and vector error-correction models. BVAR and BVEC refer 
to Bayesian VAR and VEC models. The text discusses the various priors and parameterizations. RMSE 
means root mean square error. The entries measure the average RMSE across all forecasts at each 
horizon – one-, two-, three-, and four-quarter-ahead forecasts. The column Average computes the 
average RMSE across the one-, two-, three-, and four-quarter-ahead forecast RMSEs. 
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Table 5: Forecast Results for Bakersfield 
 
  RMSEs 

Parameterization Models 1 2 3 4 Average 

  
VAR  0.055025 0.057967 0.143001 0.088551 0.086136 
VEC 0.016500 0.029062 0.170797 0.179115 0.098868 

w=0.3, d=0.5 

BVAR 0.066336 0.047092 0.167823 0.105393 0.096661 
BVEC 0.023590 0.078523 0.253199 0.288952 0.161066 
Causality BVAR  0.044398 0.134031 0.363022 0.323425 0.216219 
Spatial BVAR 0.061439 0.009220 0.153415 0.193957 0.104508 
Causality BVEC  0.030896 0.139480 0.343697 0.457309 0.242846 
Spatial BVEC 0.010408 0.002868 0.109574 0.106279 0.057282 

w=0.2, d=1 

BVAR 0.068738 0.040972 0.210664 0.189994 0.127592 
BVEC 0.038345 0.080053 0.245034 0.273255 0.159172 
Causality BVAR  0.047769 0.097551 0.309303 0.295255 0.187470 
Spatial BVAR 0.116423 0.034904 0.173983 0.222131 0.136860 
Causality BVEC  0.037202 0.122558 0.303183 0.381359 0.211075 
Spatial BVEC 0.052514 0.045832 0.045170 0.029515 0.043258 

w=0.1, d=1 

BVAR 0.089704 0.013843 0.144885 0.127121 0.093888 
BVEC 0.053143 0.050303 0.174508 0.172277 0.112558 
Causality BVAR  0.080099 0.023619 0.205677 0.193380 0.125694 
Spatial BVAR  0.142038 0.089160 0.095800 0.107266 0.108566 
Causality BVEC  0.049043 0.076164 0.187635 0.176595 0.122359 
Spatial BVEC 0.106420 0.075926 0.002381 0.028032 0.053190 

w=0.2, d=2 

BVAR 0.093464 0.053834 0.078107 0.046613 0.068005 
BVEC 0.046229 0.058255 0.214111 0.225821 0.136104 
Causality BVAR  0.103108 0.044657 0.096801 0.060511 0.076269 
Spatial BVAR 0.154430 0.119174 0.054355 0.060508 0.097116 
Causality BVEC  0.031631 0.095688 0.236777 0.243915 0.152003 
Spatial BVEC 0.099409 0.063180 0.037630 0.011094 0.052828 

w=0.1, d=2 

BVAR 0.137000 0.141000 0.056480 0.127312 0.115448 
BVEC 0.058368 0.030153 0.158980 0.152909 0.100103 
Causality BVAR  0.165140 0.161459 0.074100 0.152894 0.138398 
Spatial BVAR 0.166268 0.172644 0.049805 0.083297 0.118003 
Causality BVEC  0.050257 0.027775 0.108125 0.050372 0.059132 
Spatial BVEC 0.118428 0.068345 0.033845 0.009551 0.057542 

σc=0.1, η=8, θ=0.5 

RBVAR Causality1 0.095711 0.062697 0.254129 0.247825 0.165090 
RBVAR Causality2 0.081154 0.072446 0.260185 0.261446 0.168807 
RBVAR Spatial1 0.168662 0.010138 0.155446 0.157675 0.122980 
RBVAR Spatial2 0.155025 0.007738 0.153893 0.156208 0.118216 
RBVEC Causality1 0.072810 0.303861 0.018852 0.078509 0.118508 
RBVEC Causality2 0.072810 0.303861 0.018852 0.078509 0.118508 
RBVEC Spatial1 0.120527 0.167964 0.060914 0.002401 0.087951 
RBVEC Spatial2 0.117675 0.205918 0.105261 0.042453 0.117827 

Note: See Table 4. 
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Table 6: Forecast Results for Los Angeles 
 
  RMSEs 

Parameterization Models 1 2 3 4 Average 

 
VAR  0.081802 0.327154 0.655579 0.928672 0.498302 
VEC 0.091155 0.281502 0.597506 0.938820 0.477246 

w=0.3, d=0.5 

BVAR 0.064639 0.271955 0.537467 0.734121 0.402045 
BVEC 0.084609 0.210290 0.422984 0.610132 0.332004 
Causality BVAR  0.071690 0.255841 0.470013 0.603031 0.350144 
Spatial BVAR 0.027526 0.149027 0.322108 0.418028 0.229172 
Causality BVEC  0.098097 0.167451 0.293486 0.374339 0.233343 
Spatial BVEC 0.037842 0.069015 0.131947 0.108525 0.086832 

w=0.2, d=1 

BVAR 0.029286 0.169434 0.347830 0.427997 0.243637 
BVEC 0.068386 0.142963 0.287269 0.382136 0.220189 
Causality BVAR  0.050118 0.190663 0.364521 0.438864 0.261042 
Spatial BVAR 0.021293 0.051761 0.163010 0.184329 0.105098 
Causality BVEC  0.091182 0.134110 0.231520 0.269716 0.181632 
Spatial BVEC 0.019301 0.034084 0.080885 0.046782 0.045263 

w=0.1, d=1 

BVAR 0.002818 0.092346 0.212566 0.221072 0.132201 
BVEC 0.040207 0.061510 0.145830 0.164870 0.103104 
Causality BVAR  0.035105 0.147369 0.296743 0.344251 0.205867 
Spatial BVAR  0.045781 0.000006 0.080336 0.057389 0.045878 
Causality BVEC  0.067497 0.083417 0.154820 0.161940 0.116918 
Spatial BVEC 0.001396 0.006152 0.047601 0.018211 0.018340 

w=0.2, d=2 

BVAR 0.016099 0.047640 0.138078 0.110658 0.078119 
BVEC 0.037678 0.068101 0.163622 0.196471 0.116468 
Causality BVAR  0.009976 0.098720 0.226004 0.242940 0.144410 
Spatial BVAR 0.052760 0.010435 0.063652 0.025435 0.038071 
Causality BVEC  0.057658 0.081958 0.165716 0.182928 0.122065 
Spatial BVEC 0.002976 0.014829 0.070233 0.054808 0.035711 

w=0.1, d=2 

BVAR 0.042215 0.021199 0.021283 0.055769 0.035116 
BVEC 0.013086 0.015576 0.080416 0.074208 0.045821 
Causality BVAR  0.002488 0.064342 0.167689 0.160908 0.098857 
Spatial BVAR 0.059497 0.038493 0.007456 0.068231 0.043419 
Causality BVEC  0.032069 0.039404 0.107458 0.107518 0.071612 
Spatial BVEC 0.017541 0.021625 0.017873 0.015329 0.018092 

σc=0.1, η=8, θ=0.5 

RBVAR Causality1 0.109634 0.096958 0.209929 0.262315 0.169709 
RBVAR Causality2 0.090326 0.113081 0.234251 0.281885 0.179886 
RBVAR Spatial1 0.145943 0.069003 0.184614 0.273225 0.168196 
RBVAR Spatial2 0.132557 0.066301 0.179862 0.251062 0.157446 
RBVEC Causality1 0.002019 0.214690 0.188836 0.123455 0.132250 
RBVEC Causality2 0.002019 0.214690 0.188836 0.123455 0.132250 
RBVEC Spatial1 0.026912 0.354950 0.205635 0.075064 0.165640 
RBVEC Spatial2 0.025945 0.380385 0.195588 0.091964 0.173470 

Note: See Table 4. 
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Table 7: Forecast Results for Oxnard 

  RMSEs 
Parameterization Models 1 2 3 4 Average 

  
VAR  0.115150 0.252746 0.507114 0.761972 0.409245 
VEC 0.126310 0.216132 0.557702 1.025562 0.481427 

w=0.3, d=0.5 

BVAR 0.069155 0.184779 0.377138 0.548993 0.295016 
BVEC 0.097909 0.096329 0.257540 0.445084 0.224215 
Causality BVAR  0.025297 0.106331 0.294484 0.372073 0.199546 
Spatial BVAR 0.052357 0.074530 0.118265 0.134998 0.095038 
Causality BVEC  0.032471 0.108670 0.279048 0.451324 0.217878 
Spatial BVEC 0.064684 0.129251 0.236039 0.390122 0.205024 

w=0.2, d=1 

BVAR 0.008457 0.073719 0.171977 0.213835 0.116997 
BVEC 0.038568 0.023576 0.029617 0.068528 0.040072 
Causality BVAR  0.044202 0.039487 0.160983 0.201701 0.111593 
Spatial BVAR 0.027495 0.075214 0.110392 0.191788 0.101222 
Causality BVEC  0.021428 0.056982 0.151692 0.222267 0.113093 
Spatial BVEC 0.020732 0.179819 0.277824 0.415763 0.223535 

w=0.1, d=1 

BVAR 0.017655 0.004724 0.037705 0.005663 0.016437 
BVEC 0.006177 0.106098 0.115442 0.152644 0.095090 
Causality BVAR  0.072944 0.055458 0.015049 0.030025 0.043369 
Spatial BVAR  0.048643 0.122346 0.173724 0.282750 0.156866 
Causality BVEC  0.011374 0.017384 0.001608 0.009651 0.010004 
Spatial BVEC 0.026046 0.196147 0.260178 0.353979 0.209087 

w=0.2, d=2 

BVAR 0.020834 0.032115 0.006814 0.069661 0.032356 
BVEC 0.018909 0.128483 0.134729 0.174989 0.114278 
Causality BVAR  0.048811 0.039243 0.003024 0.035449 0.031632 
Spatial BVAR 0.068431 0.147487 0.187177 0.298562 0.175415 
Causality BVEC  0.009244 0.033671 0.023859 0.045401 0.028044 
Spatial BVEC 0.038444 0.198919 0.257918 0.353192 0.212118 

w=0.1, d=2 

BVAR 0.060579 0.122725 0.140266 0.245484 0.142263 
BVEC 0.031376 0.152096 0.178362 0.246382 0.152054 
Causality BVAR  0.092731 0.144188 0.152487 0.227135 0.154135 
Spatial BVAR 0.066661 0.149213 0.184742 0.309088 0.177426 
Causality BVEC  0.008986 0.099114 0.114970 0.153334 0.094101 
Spatial BVEC 0.063640 0.214452 0.266881 0.360905 0.226469 

σc=0.1, η=8, θ=0.5 

RBVAR Causality1 0.182437 0.034981 0.020337 0.031270 0.067256 
RBVAR Causality2 0.183808 0.037769 0.017301 0.016269 0.063787 
RBVAR Spatial1 0.132648 0.076631 0.119133 0.041671 0.092521 
RBVAR Spatial2 0.157885 0.092028 0.146126 0.084776 0.120204 
RBVEC Causality1 0.082430 0.152383 0.354839 0.247116 0.209192 
RBVEC Causality2 0.082430 0.152383 0.354839 0.247116 0.209192 
RBVEC Spatial1 0.051474 0.265714 0.657952 0.683151 0.414573 
RBVEC Spatial2 0.071044 0.244668 0.634023 0.522665 0.368100 

Note: See Table 4. 
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Table 8: Forecast Results for Riverside 

  RMSEs 
Parameterization Models 1 2 3 4 Average 

  
VAR  0.048250 0.014699 0.152299 0.191810 0.101764 
VEC 0.026229 0.157782 0.098093 0.154955 0.109265 

w=0.3, d=0.5 

BVAR 0.040950 0.022964 0.163094 0.180879 0.101972 
BVEC 0.023186 0.105291 0.024205 0.001856 0.038635 
Causality BVAR  0.023404 0.125192 0.335594 0.359388 0.210894 
Spatial BVAR 0.001083 0.113337 0.322361 0.426022 0.215701 
Causality BVEC  0.064049 0.070615 0.124141 0.164153 0.105739 
Spatial BVEC 0.011423 0.005494 0.167344 0.200228 0.096122 

w=0.2, d=1 

BVAR 0.020529 0.070855 0.248123 0.285587 0.156273 
BVEC 0.026007 0.072788 0.065984 0.055378 0.055039 
Causality BVAR  0.046081 0.071489 0.255528 0.285651 0.164687 
Spatial BVAR 0.025322 0.149721 0.376967 0.505147 0.264289 
Causality BVEC  0.076780 0.086224 0.079714 0.097003 0.084930 
Spatial BVEC 0.002980 0.002869 0.157613 0.185708 0.087292 

w=0.1, d=1 

BVAR 0.028641 0.059013 0.228857 0.258538 0.143762 
BVEC 0.034814 0.061516 0.069454 0.057173 0.055739 
Causality BVAR  0.044290 0.046576 0.213625 0.235417 0.134977 
Spatial BVAR  0.007846 0.113134 0.304029 0.373019 0.199507 
Causality BVEC  0.081794 0.105688 0.015244 0.011818 0.053636 
Spatial BVEC 0.010009 0.026482 0.114837 0.124967 0.069074 

w=0.2, d=2 

BVAR 0.064169 0.007495 0.159112 0.177180 0.101989 
BVEC 0.027121 0.049826 0.068824 0.062304 0.052019 
Causality BVAR  0.069873 0.001221 0.141684 0.150387 0.090791 
Spatial BVAR 0.022722 0.074224 0.257921 0.314941 0.167452 
Causality BVEC  0.069310 0.081419 0.046384 0.034208 0.057830 
Spatial BVEC 0.007144 0.025169 0.103816 0.112053 0.062046 

w=0.1, d=2 

BVAR 0.097632 0.072578 0.024700 0.013500 0.052103 
BVEC 0.047417 0.057393 0.058448 0.050103 0.053340 
Causality BVAR  0.072491 0.030210 0.076884 0.037913 0.054374 
Spatial BVAR 0.063618 0.000462 0.133630 0.132338 0.082512 
Causality BVEC  0.078908 0.103257 0.013531 0.058028 0.063431 
Spatial BVEC 0.028384 0.042183 0.078327 0.083278 0.058043 

σc=0.1, η=8, θ=0.5 

RBVAR Causality1 0.110328 0.047476 0.243835 0.261372 0.165753 
RBVAR Causality2 0.099990 0.062879 0.251513 0.268491 0.170718 
RBVAR Spatial1 0.018109 0.185350 0.391483 0.438508 0.258362 
RBVAR Spatial2 0.008656 0.198479 0.402759 0.438584 0.262119 
RBVEC Causality1 0.168743 0.404328 0.199462 0.014889 0.196855 
RBVEC Causality2 0.168743 0.404328 0.199462 0.014889 0.196855 
RBVEC Spatial1 0.131970 0.358721 0.133772 0.000694 0.156289 
RBVEC Spatial2 0.133987 0.370365 0.164469 0.051406 0.180057 

Note: See Table 4. 
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Table 9: Forecast Results for San Diego 

  RMSEs 
Parameterization Models 1 2 3 4 Average 

  
VAR  0.009100 0.005308 0.004184 0.030170 0.012190 
VEC 0.031665 0.291746 0.537845 0.931422 0.448169 

w=0.3, d=0.5 

BVAR 0.011965 0.024363 0.035940 0.093844 0.041528 
BVEC 0.027426 0.197926 0.328421 0.575538 0.282328 
Causality BVAR  0.035566 0.120105 0.074147 0.050141 0.069990 
Spatial BVAR 0.039478 0.046371 0.013030 0.024248 0.030781 
Causality BVEC  0.035306 0.055509 0.177431 0.411596 0.169961 
Spatial BVEC 0.010804 0.187877 0.208320 0.201895 0.152224 

w=0.2, d=1 

BVAR 0.000187 0.032149 0.048548 0.005239 0.021531 
BVEC 0.006519 0.130010 0.173506 0.295500 0.151384 
Causality BVAR  0.034141 0.119803 0.115742 0.103780 0.093367 
Spatial BVAR 0.045548 0.022921 0.032126 0.032797 0.033348 
Causality BVEC  0.040741 0.020245 0.101112 0.259499 0.105399 
Spatial BVEC 0.030482 0.170679 0.164443 0.128750 0.123588 

w=0.1, d=1 

BVAR 0.001874 0.039949 0.076875 0.021881 0.035145 
BVEC 0.015818 0.043784 0.027613 0.061195 0.037103 
Causality BVAR  0.012748 0.085976 0.115208 0.097726 0.077914 
Spatial BVAR  0.053078 0.049205 0.023613 0.075499 0.050349 
Causality BVEC  0.048254 0.024191 0.003415 0.087465 0.040831 
Spatial BVEC 0.020317 0.081600 0.037885 0.014644 0.038611 

w=0.2, d=2 

BVAR 0.013364 0.031835 0.084140 0.043595 0.043234 
BVEC 0.018784 0.101982 0.094523 0.133957 0.087311 
Causality BVAR  0.002435 0.078040 0.128753 0.116317 0.081386 
Spatial BVAR 0.040987 0.002022 0.073902 0.057732 0.043661 
Causality BVEC  0.029629 0.004896 0.003362 0.076918 0.028701 
Spatial BVEC 0.033649 0.109572 0.081051 0.055492 0.069941 

w=0.1, d=2 

BVAR 0.029372 0.010214 0.019891 0.046312 0.026447 
BVEC 0.013088 0.058555 0.029965 0.040990 0.035649 
Causality BVAR  0.027613 0.025341 0.061672 0.007122 0.030437 
Spatial BVAR 0.044502 0.027468 0.011710 0.043916 0.031899 
Causality BVEC  0.031382 0.020212 0.029460 0.014728 0.023946 
Spatial BVEC 0.022309 0.044588 0.010918 0.048575 0.031598 

σc=0.1, η=8, θ=0.5 

RBVAR Causality1 0.006732 0.107565 0.112229 0.107678 0.083551 
RBVAR Causality2 0.005815 0.097696 0.102059 0.092186 0.074439 
RBVAR Spatial1 0.052854 0.057221 0.128082 0.090979 0.082284 
RBVAR Spatial2 0.093017 0.014722 0.030711 0.023951 0.040601 
RBVEC Causality1 0.010583 0.220292 0.398392 0.096319 0.181396 
RBVEC Causality2 0.010583 0.220292 0.398392 0.096319 0.181396 
RBVEC Spatial1 0.068673 0.479217 0.297497 0.094957 0.235086 
RBVEC Spatial2 0.044597 0.315998 0.262531 0.175886 0.199753 

Note: See Table 4. 
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Table 10: Forecast Results for San Luis Obispo 

  RMSEs 
Parameterization Models 1 2 3 4 Average 

  
VAR  0.193574 0.125929 0.049781 0.120072 0.122339 
VEC 0.165042 0.263262 0.418691 0.468176 0.328793 

w=0.3, d=0.5 

BVAR 0.156269 0.126751 0.086422 0.035448 0.101223 
BVEC 0.132920 0.119109 0.204968 0.225480 0.170619 
Causality BVAR  0.126968 0.112904 0.270422 0.268431 0.194681 
Spatial BVAR 0.038255 0.069741 0.165881 0.275755 0.137408 
Causality BVEC  0.133798 0.214504 0.350089 0.388012 0.271601 
Spatial BVEC 0.051657 0.074758 0.039147 0.056746 0.055577 

w=0.2, d=1 

BVAR 0.083370 0.073640 0.060553 0.000032 0.054399 
BVEC 0.069552 0.032601 0.080484 0.077039 0.064919 
Causality BVAR  0.066990 0.045169 0.136037 0.131942 0.095035 
Spatial BVAR 0.015880 0.122445 0.180423 0.223949 0.135674 
Causality BVEC  0.113445 0.144465 0.214347 0.221068 0.173331 
Spatial BVEC 0.030700 0.067777 0.034409 0.072580 0.051366 

w=0.1, d=1 

BVAR 0.051005 0.035998 0.036418 0.000884 0.031076 
BVEC 0.013851 0.028527 0.011546 0.033894 0.021955 
Causality BVAR  0.014804 0.006066 0.053295 0.087465 0.040407 
Spatial BVAR  0.026466 0.116467 0.142439 0.157275 0.110662 
Causality BVEC  0.066016 0.045859 0.078691 0.084661 0.068807 
Spatial BVEC 0.020663 0.031406 0.000906 0.033182 0.021539 

w=0.2, d=2 

BVAR 0.050155 0.006434 0.009881 0.064591 0.032765 
BVEC 0.004870 0.032731 0.011589 0.041337 0.022632 
Causality BVAR  0.006960 0.045152 0.038646 0.062535 0.038323 
Spatial BVAR 0.031283 0.130907 0.157989 0.188553 0.127183 
Causality BVEC  0.041562 0.010494 0.030496 0.028910 0.027866 
Spatial BVEC 0.013278 0.019304 0.015325 0.014601 0.015627 

w=0.1, d=2 

BVAR 0.055253 0.035904 0.049352 0.018161 0.039667 
BVEC 0.006358 0.061469 0.067540 0.117162 0.063132 
Causality BVAR  0.005201 0.025240 0.032210 0.074694 0.034336 
Spatial BVAR 0.031216 0.116927 0.135568 0.169583 0.113324 
Causality BVEC  0.001423 0.053605 0.043416 0.055580 0.038506 
Spatial BVEC 0.016876 0.005727 0.035584 0.008289 0.016619 

σc=0.1, η=8, θ=0.5 

RBVAR Causality1 0.024262 0.011151 0.018329 0.117887 0.042907 
RBVAR Causality2 0.032771 0.012943 0.013099 0.108518 0.041833 
RBVAR Spatial1 0.014848 0.084800 0.102448 0.000115 0.050553 
RBVAR Spatial2 0.022458 0.056670 0.060607 0.042568 0.045576 
RBVEC Causality1 0.009732 0.185039 0.049050 0.335845 0.144916 
RBVEC Causality2 0.009732 0.185039 0.049050 0.335845 0.144916 
RBVEC Spatial1 0.025591 0.024626 0.612326 0.268608 0.232788 
RBVEC Spatial2 0.005786 0.042210 0.424891 0.099031 0.142979 

Note: See Table 4. 
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Table 11: Forecast Results for Santa Ana 

  RMSEs 
Parameterization Models 1 2 3 4 Average 

  
VAR  0.017045 0.151326 0.285412 0.448223 0.225501 
VEC 0.032600 0.127259 0.237364 0.408985 0.201552 

w=0.3, d=0.5 

BVAR 0.006231 0.129495 0.235680 0.344475 0.178970 
BVEC 0.028883 0.093682 0.122344 0.167929 0.103209 
Causality BVAR  0.005547 0.130168 0.233911 0.315121 0.171187 
Spatial BVAR 0.025198 0.155381 0.258611 0.341559 0.195187 
Causality BVEC  0.031960 0.115006 0.128280 0.171101 0.111587 
Spatial BVEC 0.039626 0.127858 0.183226 0.230213 0.145231 

w=0.2, d=1 

BVAR 0.004479 0.112016 0.178155 0.216968 0.127904 
BVEC 0.017388 0.060622 0.048244 0.039451 0.041426 
Causality BVAR  0.014824 0.137510 0.238802 0.312823 0.175990 
Spatial BVAR 0.036724 0.171707 0.279751 0.344768 0.208237 
Causality BVEC  0.025578 0.088887 0.075829 0.074141 0.066109 
Spatial BVEC 0.031716 0.122501 0.177567 0.224209 0.138998 

w=0.1, d=1 

BVAR 0.006836 0.098483 0.140665 0.141251 0.096808 
BVEC 0.011740 0.037462 0.003613 0.030475 0.020822 
Causality BVAR  0.007479 0.107495 0.177235 0.216030 0.127059 
Spatial BVAR  0.040432 0.159989 0.240088 0.268878 0.177347 
Causality BVEC  0.018236 0.054401 0.013179 0.024142 0.027489 
Spatial BVEC 0.020198 0.094146 0.117866 0.136853 0.092266 

w=0.2, d=2 

BVAR 0.018145 0.107729 0.142780 0.123541 0.098049 
BVEC 0.009687 0.028263 0.002668 0.043027 0.020911 
Causality BVAR  0.018055 0.115310 0.169906 0.178411 0.120421 
Spatial BVAR 0.035893 0.139339 0.193358 0.189619 0.139552 
Causality BVEC  0.017573 0.046590 0.009592 0.031603 0.026339 
Spatial BVEC 0.015159 0.077243 0.095117 0.101760 0.072320 

w=0.1, d=2 

BVAR 0.002830 0.062998 0.060840 0.001137 0.031951 
BVEC 0.009415 0.018172 0.020814 0.071692 0.030023 
Causality BVAR  0.003883 0.054085 0.061017 0.022200 0.035296 
Spatial BVAR 0.030312 0.110407 0.126220 0.078064 0.086251 
Causality BVEC  0.015454 0.023381 0.024673 0.076532 0.035010 
Spatial BVEC 0.013635 0.055466 0.052137 0.033874 0.038778 

σc=0.1, η=8, θ=0.5 

RBVAR Causality1 0.065785 0.054911 0.100359 0.141774 0.090707 
RBVAR Causality2 0.065148 0.047752 0.094394 0.138320 0.086404 
RBVAR Spatial1 0.006636 0.154214 0.220001 0.269286 0.162534 
RBVAR Spatial2 0.007972 0.140015 0.202250 0.250378 0.150154 
RBVEC Causality1 0.005778 0.301415 0.200289 0.129102 0.159146 
RBVEC Causality2 0.005778 0.301415 0.200289 0.129102 0.159146 
RBVEC Spatial1 0.019940 0.272141 0.376706 0.201297 0.217521 
RBVEC Spatial2 0.014350 0.301839 0.358987 0.157570 0.208187 

Note: See Table 4. 
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Table 12: Forecast Results for Santa Barbara 

  RMSEs 
Parameterization Models 1 2 3 4 Average 

  
VAR  0.127590 0.074013 0.128093 0.200702 0.132600 
VEC 0.156069 0.164485 0.247376 0.201886 0.192454 

w=0.3, d=0.5 

BVAR 0.112101 0.058306 0.116931 0.173806 0.115286 
BVEC 0.153721 0.140020 0.242411 0.286521 0.205668 
Causality BVAR  0.099023 0.000759 0.012026 0.020438 0.033062 
Spatial BVAR 0.082406 0.017626 0.098707 0.146788 0.086382 
Causality BVEC  0.144618 0.095013 0.131780 0.080875 0.113071 
Spatial BVEC 0.152651 0.131824 0.417431 0.729527 0.357858 

w=0.2, d=1 

BVAR 0.101268 0.053538 0.120919 0.152757 0.107121 
BVEC 0.151866 0.167358 0.328989 0.446880 0.273773 
Causality BVAR  0.067993 0.035723 0.026883 0.026705 0.039326 
Spatial BVAR 0.089131 0.063818 0.186385 0.276746 0.154020 
Causality BVEC  0.142056 0.103099 0.159631 0.153931 0.139679 
Spatial BVEC 0.162911 0.182902 0.494136 0.808442 0.412098 

w=0.1, d=1 

BVAR 0.084006 0.050326 0.136384 0.174516 0.111308 
BVEC 0.147544 0.170915 0.353801 0.495303 0.291891 
Causality BVAR  0.028131 0.079731 0.053470 0.075612 0.059236 
Spatial BVAR  0.067508 0.048999 0.171954 0.258819 0.136820 
Causality BVEC  0.134539 0.088156 0.166086 0.208331 0.149278 
Spatial BVEC 0.179978 0.213279 0.489178 0.730477 0.403228 

w=0.2, d=2 

BVAR 0.085183 0.066897 0.165682 0.216164 0.133481 
BVEC 0.142515 0.206394 0.432302 0.605562 0.346693 
Causality BVAR  0.039549 0.036771 0.010590 0.018440 0.026338 
Spatial BVAR 0.097197 0.125956 0.278043 0.382484 0.220920 
Causality BVEC  0.132215 0.113557 0.221647 0.292788 0.190052 
Spatial BVEC 0.161222 0.219841 0.498474 0.744196 0.405933 

w=0.1, d=2 

BVAR 0.059393 0.047679 0.163613 0.231581 0.125567 
BVEC 0.135261 0.189988 0.407136 0.575578 0.326991 
Causality BVAR  0.002265 0.083631 0.033929 0.029867 0.037423 
Spatial BVAR 0.059053 0.064790 0.197296 0.275725 0.149216 
Causality BVEC  0.112513 0.086660 0.208535 0.296575 0.176071 
Spatial BVEC 0.175734 0.237698 0.497457 0.707228 0.404529 

sigma=0.1, tau=8, 
theta=0.5 

RBVAR Causality1 0.109677 0.262227 0.215829 0.209685 0.199355 
RBVAR Causality2 0.103396 0.271118 0.232236 0.238924 0.211419 
RBVAR Spatial1 0.079156 0.065996 0.168161 0.163358 0.119168 
RBVAR Spatial2 0.090822 0.085632 0.185670 0.208515 0.142660 
RBVEC Causality1 0.217859 0.253152 0.064026 0.438956 0.243498 
RBVEC Causality2 0.217859 0.253152 0.064026 0.438956 0.243498 
RBVEC Spatial1 0.201505 0.403637 0.240689 0.551611 0.349361 
RBVEC Spatial2 0.220126 0.351846 0.017416 0.546515 0.283976 

Note: See Table 4. 

 



Table 13: Recursive Forecasts of the Real Housing Price Index: Bakersfield 

Forecast Actual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2005:Q1 226.1 220.0              

2005:Q2 239.5 247.6 242.5             

2005:Q3 253.5 282.6 269.3 257.8            

2005:Q4 268.1 327.7 301.9 285.6 271.7           

2006:Q1 278.4 381.5 342.7 317.6 300.4 288.5          

2006:Q2 282.6 452.3 390.5 355.7 334.3 318.7 301.0         

2006:Q3 283.9 540.3 450.7 399.7 375.1 351.3 327.8 300.0        

2006:Q4 286.6 659.8 524.2 452.2 421.4 387.2 356.3 317.8 294.8       

2007:Q1 283.5 815.1 618.7 514.9 477.3 427.3 387.2 334.6 299.0 292.0      

2007:Q2 275.3 1,034.9 738.2 590.5 542.1 471.3 421.1 350.8 300.3 288.9 283.3     

2007:Q3 265.8 1,335.4 895.8 683.3 620.4 521.3 457.7 368.0 299.3 284.0 278.7 278.1    

2007:Q4 251.3 1,783.6 1,102.8 796.5 713.2 576.0 498.5 384.2 298.8 278.0 273.5 274.3 257.5   

2008:Q1 228.7 2,432.8 1,384.5 939.7 825.7 638.9 542.0 402.0 295.9 272.3 267.9 270.0 250.0 240.4  

2008:Q2 207.6 3,464.2 1,770.1 1,117.1 961.6 707.1 591.3 418.0 294.2 265.5 262.6 265.1 243.2 231.8 211.4 
Note: The Actual column gives the actual data. The Diagonal column gives the one-quarter-ahead forecast for Forecast 1, 2, …,, and 14. Forecast 1 estimates 

the model through 2004:Q4 and then forecasts one-, two-, ..,, and fourteen-quarters ahead. Forecast 2 estimates the model through 2005:Q1 and then 
forecasts one-, two-, …, and thirteen-quarters ahead, and so on. Finally, Forecast 14 estimates the model through 2008:Q1 and then forecasts one-
quarter ahead. The bolded numbers equal the maximum prices in each column. 

 



Table 14: Recursive Forecasts of the Real Housing Price Index: Los Angeles 

Forecast Actual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
2005:Q1 325.7 330.2              
2005:Q2 342.5 346.8 344.5             
2005:Q3 357.5 367.0 360.3 364.1            
2005:Q4 377.5 391.7 378.5 381.0 373.4           
2006:Q1 391.0 418.7 400.0 399.9 387.1 401.6          
2006:Q2 398.2 451.4 423.2 421.6 402.6 418.7 409.9         
2006:Q3 403.5 488.3 450.1 444.8 420.2 436.9 423.4 410.3        
2006:Q4 405.6 533.1 479.8 471.2 438.6 456.5 437.3 418.4 411.4       
2007:Q1 401.5 584.8 514.5 500.1 459.5 476.9 451.9 426.1 414.1 406.0      
2007:Q2 398.3 648.0 553.6 532.8 481.3 498.8 466.9 433.3 415.2 403.6 396.6     
2007:Q3 391.1 722.8 599.0 569.1 505.9 521.8 482.4 440.6 415.1 400.2 394.4 394.0    
2007:Q4 376.8 815.3 651.0 610.1 531.9 546.3 498.3 447.4 415.2 395.8 391.7 388.9 382.1   
2008:Q1 350.7 927.5 711.5 656.6 561.0 572.1 514.8 454.3 414.0 391.7 388.8 382.6 377.5 364.3  
2008:Q2 321.5 1,068.6 782.5 708.4 592.0 599.4 531.5 460.5 413.1 386.5 386.1 375.5 373.3 357.9 327.9 

 Note: See Table 12. 
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Table 15: Recursive Forecasts of the Real Housing Price Index: Oxnard 

Forecast Actual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
2005:Q1 336.8 352.2              
2005:Q2 347.7 373.0 358.3             
2005:Q3 360.4 397.0 376.1 359.1            
2005:Q4 374.6 425.5 396.0 373.9 371.4           
2006:Q1 382.5 457.1 418.8 390.8 391.4 391.0          
2006:Q2 383.8 494.5 443.4 410.1 413.6 413.1 398.7         
2006:Q3 379.8 537.3 471.5 430.7 438.9 437.7 419.4 394.2        
2006:Q4 373.6 587.6 502.5 454.3 466.1 465.6 442.1 410.0 384.8       
2007:Q1 364.3 647.0 537.4 479.7 496.8 495.7 467.7 427.4 392.8 370.8      
2007:Q2 356.6 717.1 576.6 508.6 530.3 529.8 495.3 446.8 402.9 374.2 357.4     
2007:Q3 346.0 802.0 620.6 540.4 567.8 567.4 526.4 467.3 415.2 378.3 359.6 350.4    
2007:Q4 331.5 902.2 671.0 576.0 609.7 609.8 560.3 490.0 428.3 383.2 361.2 351.2 333.2   
2008:Q1 307.8 1,027.5 726.8 616.0 655.7 657.8 598.0 514.4 443.7 388.2 362.6 350.8 333.3 319.2  
2008:Q2 284.2 1,176.0 792.1 660.2 708.4 711.5 640.2 541.0 460.3 394.2 363.9 349.8 332.7 317.8 290.9 

 Note: See Table 12. 
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Table 16: Recursive Forecasts of the Real Housing Price Index: Riverside 

Forecast Actual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
2005:Q1 300.0 299.1              
2005:Q2 312.9 327.1 326.6             
2005:Q3 325.5 362.9 358.8 330.3            
2005:Q4 342.0 409.7 396.8 352.0 338.3           
2006:Q1 354.1 464.9 444.5 375.5 356.5 366.1          
2006:Q2 357.7 538.0 501.0 402.7 377.7 393.6 377.7         
2006:Q3 361.3 629.1 571.9 433.6 402.9 420.9 397.1 374.5        
2006:Q4 363.7 753.2 661.0 469.2 430.5 448.8 416.4 385.1 369.3       
2007:Q1 359.7 916.0 774.8 511.7 463.1 480.2 436.9 394.2 371.0 364.6      
2007:Q2 354.9 1,148.4 925.3 560.1 500.0 512.0 459.6 402.5 371.0 358.4 352.9     
2007:Q3 341.4 1,471.3 1,123.3 620.4 543.3 549.2 483.5 411.7 370.3 351.7 346.6 351.6    
2007:Q4 322.3 1,961.6 1,397.7 689.0 593.3 587.2 511.4 419.8 370.1 345.0 340.0 345.2 332.1   
2008:Q1 292.6 2,689.1 1,775.8 777.3 651.6 632.6 540.0 429.3 369.0 338.7 333.1 338.2 324.6 311.0  
2008:Q2 253.7 3,886.0 2,324.9 878.0 721.1 679.5 575.0 437.1 369.1 332.2 326.4 330.7 318.2 303.9 270.0 

 Note: See Table 12. 
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Table 17: Recursive Forecasts of the Real Housing Price Index: San Diego 

Forecast Actual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
2005:Q1 383.5 376.2              
2005:Q2 391.8 406.3 399.4             
2005:Q3 396.2 415.3 405.1 405.4            
2005:Q4 401.7 421.6 417.3 409.4 395.6           
2006:Q1 402.1 444.8 429.2 425.4 411.1 420.0          
2006:Q2 398.4 460.6 435.4 437.0 426.4 435.7 421.7         
2006:Q3 395.4 474.8 444.0 447.8 431.0 447.9 424.7 396.5        
2006:Q4 391.4 490.1 452.6 456.8 436.0 455.1 431.9 391.0 391.1       
2007:Q1 383.2 511.7 456.9 467.3 440.9 463.0 435.4 386.0 375.3 377.7      
2007:Q2 373.9 526.3 463.1 477.3 445.6 466.4 435.3 378.3 362.9 357.8 363.0     
2007:Q3 361.8 548.3 468.0 485.1 445.1 466.8 427.6 365.7 351.0 344.9 346.4 363.1    
2007:Q4 347.9 569.4 471.8 494.1 448.1 466.9 421.1 351.1 336.0 330.3 330.4 346.3 342.8   
2008:Q1 329.1 594.3 475.1 502.9 449.9 465.8 413.5 335.0 315.9 310.5 311.8 333.3 330.1 335.4  
2008:Q2 302.8 617.4 478.4 513.2 451.5 462.2 402.2 317.9 296.5 288.9 291.8 316.4 316.6 323.7 308.0 

 Note: See Table 12. 
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Table 18: Recursive Forecasts of the Real Housing Price Index: San Luis Obispo 

Forecast Actual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
2005:Q1 359.1 355.5              
2005:Q2 367.8 368.6 377.1             
2005:Q3 381.2 375.8 384.1 372.3            
2005:Q4 391.0 377.4 385.7 372.5 38  6.5           
2006:Q1 392.0 379.5 382.7 367.4 389.3 401.1          
2006:Q2 386.4 375.9 380.8 358.8 389.9 409.4 400.8         
2006:Q3 379.7 373.3 374.4 351.4 388.2 411.1 401.1 393.6        
2006:Q4 374.0 365.8 369.7 340.5 386.7 408.1 397.5 392.0 378.1       
2007:Q1 367.4 359.3 360.5 332.0 383.1 406.4 391.3 386.1 373.2 366.0      
2007:Q2 359.0 349.1 353.8 319.6 379.8 399.8 386.1 377.6 365.2 356.5 358.3     
2007:Q3 351.9 339.8 342.6 310.7 374.2 395.7 378.3 370.3 355.8 347.1 353.6 345.2    
2007:Q4 345.2 328.0 334.3 297.4 369.1 386.4 372.2 360.3 347.7 338.5 348.7 330.9 344.3   
2008:Q1 329.8 316.4 321.7 288.3 361.6 381.1 363.1 352.7 337.9 330.4 344.0 317.5 340.0 337.8  
2008:Q2 319.0 303.9 312.1 274.2 354.9 369.8 356.6 341.8 330.4 322.8 339.5 305.7 336.9 332.7 320.0 

Note: See Table 12. 
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Table 19: Recursive Forecasts of the Real Housing Price Index: Santa Ana 

Forecast Actual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
2005:Q1 343.5 357.4              
2005:Q2 360.2 380.5 364.3             
2005:Q3 371.9 409.1 381.9 377.5            
2005:Q4 386.9 444.9 402.9 395.3 385.4           
2006:Q1 400.0 485.3 428.1 416.0 398.8 406.8          
2006:Q2 403.0 535.8 455.1 440.1 413.7 419.7 416.8         
2006:Q3 402.3 594.8 487.3 465.8 430.2 433.9 427.6 412.4        
2006:Q4 400.1 668.8 522.8 495.6 447.5 449.5 439.3 415.8 406.1       
2007:Q1 392.2 758.4 564.8 527.4 466.7 465.5 451.6 419.6 403.1 396.7      
2007:Q2 385.6 871.8 611.9 564.4 486.6 482.9 464.2 423.4 400.3 391.0 384.8     
2007:Q3 372.8 1,014.1 667.7 604.5 508.9 500.5 477.5 427.0 397.5 385.4 379.3 379.6    
2007:Q4 358.8 1,197.3 731.5 651.2 532.1 519.9 490.8 430.6 394.5 379.5 374.0 371.5 361.2   
2008:Q1 331.0 1,435.8 807.2 702.1 558.0 539.1 505.0 433.7 391.7 373.6 368.6 363.3 353.8 345.4  
2008:Q2 306.8 1,750.2 895.6 761.7 585.2 560.4 518.8 437.0 388.6 367.6 363.3 354.8 347.3 337.0 307.6 

 Note: See Table 12. 
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Table 20: Recursive Forecasts of the Real Housing Price Index: Santa Barbara 

Forecast Actual 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
2005:Q1 393.5 396.1              
2005:Q2 408.1 418.6 409.1             
2005:Q3 412.8 435.9 413.5 417.5            
2005:Q4 427.8 454.2 419.1 431.5 426.2           
2006:Q1 424.3 478.3 427.4 443.2 434.2 436.0          
2006:Q2 422.5 499.8 432.0 456.1 444.4 447.4 433.1         
2006:Q3 417.1 524.8 435.8 466.9 454.3 457.9 444.2 424.7        
2006:Q4 405.7 551.1 439.4 478.0 462.0 466.7 447.0 424.8 412.5       
2007:Q1 396.6 578.9 441.4 489.0 468.1 472.7 450.3 416.8 405.8 398.1      
2007:Q2 376.4 608.8 442.0 499.9 473.8 477.6 450.8 409.9 391.8 385.5 383.5     
2007:Q3 357.6 641.4 441.7 510.2 478.3 480.7 449.6 399.6 377.4 368.6 367.8 364.3    
2007:Q4 334.3 676.6 439.9 520.2 482.1 482.2 446.9 387.7 360.5 350.7 350.3 349.4 342.9   
2008:Q1 318.8 714.7 436.8 529.9 484.8 481.8 443.0 374.5 342.8 330.8 331.7 331.4 323.9 318.8  
2008:Q2 296.0 756.1 432.1 539.1 486.5 479.6 437.0 360.0 324.4 310.4 311.7 314.1 305.7 301.9 295.8 

Note: See Table 12. 
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Figure 1: Housing Price Indexes: Bakersfield, Los Angeles, Oxnard, Riverside, San Luis Obispo, Santa Ana, and Santa 
Barbara  
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Figure 2: MSA Map: Bakersfield, Los Angeles, Oxnard, Riverside, San Luis Obispo, Santa Ana, and Santa Barbara 


