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Abstract
In this paper we offer a simple exposition of the neoclassical production the-

oretic foundations of Data Envelopment Analysis. The concepts of technical effi-
ciency (both input- and output-oriented), scale efficiency, and cost efficiency are
explained and the corresponding DEA models are described indetails. We offer
step-by-step instruction on how to write the codes for solving the various DEA
models using the Solver option in the widely accessible MS Excel software. An
important feature of this paper is a detailed exposition of how to write various
Visual Basic Macro programs for solving DEA problems. We also describe the
non-convex Free Disposal Hull (FDH) procedure and the second-stage regression
analysis that seeks to account for variation in measured efficiency scores due to
external factors.
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DATA ENVELOPMENT ANALYSIS FOR PERFORMANCE EVALUATION: 
A CHILD’S GUIDE 

 
 
 
In the present age of globalization, efficient utilization of resources is becoming more and more 

important for firms to survive and prosper in the face of intense competition from both domestic 

and foreign firms. The usual measure of efficiency often relies on a single indicator like output 

per worker or business per employee. While easily understood as a convenient measure of 

performance, it fails to account for the use of other inputs (like materials, energy, and capital) that 

contribute to the output and constitute the bulk of the production costs of a firm. It is imperative 

that a comprehensive measure of performance includes all the relevant factors that are important 

for production. 

In evaluating the performance of a business the owners or the managers would typically like to 

know: 

• Is the company making the best use of the resources? 

• Is it possible to produce more from the same input bundle? If so, which outputs and how 

much more? 

• Can the firm economize on the resources used? If so, which inputs and by how much? 

• Is the firm’s input-mix consistent with the relative prices of the inputs? If not, which 

input should be substituted for what? 

• Is the firm of the right size? If not, is it too big or too small? 

• Would a potential merger with another specific firm enhance efficiency? 

The list goes on.  

 

Even for public sector and not-for-profit private sector agencies engaged in the delivery of public 

services, efficiency in resource utilization is of critical importance. Provision of public services 

like education or health care involves use of valuable resources as inputs to produce the desired 

results as outputs. In that sense, it is like any other production activity. For example, education at 

the primary level requires teachers, administrative and support staff, and physical resources 

ranging from class room facilities to textbooks and school supplies. These are the inputs of the 

educational production process. The outputs on the other hand are the different kinds of cognitive 

skills acquired by the pupils. It is not unreasonable to treat the school as a firm that uses these 

inputs to produce the stated outputs. There are, however, several respects in which a public 

service delivery agency would differ from a commercial firm. First, the outputs here are provided 
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to the beneficiaries at zero or minimal cost to them. Second, often there are no market prices 

available to evaluate the output bundle produced. Even when a subsidized price is charged for any 

service, it does not reflect either the marginal benefit to the consumer or the marginal cost to the 

producer. Finally, unlike in the case of a commercial product, there is no obvious criterion like 

profitability or return on equity that would permit one to evaluate the performance of a public 

service provider. Such absence of a clear cut measure of performance works against 

accountability and tends to foster corruption and incompetence. It is important, therefore, to 

develop suitable measures of performance even when market prices are not available or 

substantially distorted through subsidization. 

In order to evaluate the performance of any decision making unit – be it a commercial firm, a 

non-profit organization, or a government department – one needs to define a best performance. 

This can, then, be used as a benchmark for assessment of the actual performance of the unit.  

Depending upon the context, it could be the maximum output producible from the input actually 

used by the firm with which one compares the actual output, the minimum cost of producing the 

observed output of the firm that can be compared to its actual cost, or even simply the maximum 

output per unit of input actually observed in a sample. Because there are no engineering norms 

defining how much output can be produced from a given input bundle or the minimum quantities 

of inputs needed to produce a target output, defining the benchmark becomes an empirical 

question.  

There are two main approaches available for constructing the benchmark technology from 

observed data. The first is a parametric and econometric approach known as Stochastic Frontier 

Analysis (SFA) 1. The other is the nonparametric method of Data Envelopment Analysis (DEA) 

that uses mathematical programming techniques. The objective of this paper is to familiarize the 

reader with the economic theoretic foundations of DEA, the various mathematical programming 

models that are relevant in specific contexts, and how these models can be solved using an easily 

accessible software, the Excel Solver2.  

The paper is organized as follows. In section 2 we introduce and distinguish between the three 

interrelated but different concepts from production economics – effectiveness, productivity, and 

efficiency. Sections 3 and 4 constitute the core of this paper. Section 3 contains both an intuitive 

and a technical exposition of the DEA methodology that follows a brief description of the 

econometric SFA method in section 3.1. Section 4 offers a detailed and step-by-step instruction 

                                                      
1 For a detailed exposition of the SFA methodology see Kumbhakar and Lovell (2000). 
2 This paper is not meant to be a substitute for the more rigorous books on DEA like Ray (2004) or Cooper, 
Seiford, and Tone (2007). Rather, it provides an easier access to the material for those who are more 
application-oriented and still would like to understand the methodology in general terms. 
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how to write an appropriate DEA program for measuring output-oriented technical efficiency, 

scale efficiency, and cost efficiency on the Excel Solver. Guidance is also provided on how to 

write macros in Visual Basic so that one can evaluate efficiencies of all units at one shot without 

having to solve one problem at a time. Section 5 explains how one can use the concept of 

dominance to measure efficiency through Free Disposal Hull (FDH) analysis. Section 6 addresses 

the question of non-discretionary external factors that can affect the measured efficiency of a 

firm. Finally, section 7 offers a summing up. 

 

2. Some Basic Concepts 

 In the following paragraphs, we consider a number of alternative measures of performance and 

describe in details a nonparametric approach that can be applied in a variety of situations and is 

especially useful when output and input price data are not available. 

 

2.1 Effectiveness, Productivity, and Efficiency 

 A provider of public service is said to be effective when it meets or exceeds a pre set 

output target. For example, an elementary schooling system is said to be effective when more than 

75% per cent of the pupils tested demonstrate an acceptable level proficiency in some 

standardized mastery test in reading, writing, and arithmetic. By this measure, the higher the 

percentage of students “passing” the test, the better performing is the school. A major 

shortcoming of effectiveness as a measure of performance is that it is based solely on the levels of 

output and has no relation to the quantities of input used to produce the output observed. A school 

or a health care facility could be ineffective and fail to reach the goal simply because it has got a 

very limited budget and cannot afford the resources minimally necessary to achieve the goal. An 

under-funded agency may be a high performer within the constraints of its limited budget and still 

remain ineffective. 

 By far the most commonly used and also the most easily understood measure of 

performance is productivity. In the simple case of a single output produced from a single input, it 

is merely the ratio of the output and input quantities. A producer with a higher output per unit of 

input used is more productive and is deemed to perform in a superior fashion. Consider this 

simple example involving five firms producing a single output y using a single input, labor ( L). 

The hypothetical input-output quantities are shown in Table 1. 
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Firm A B C D E 

Output (y) 10 8 16 9 7 

Input (L) 4 7 12 10 9 

Labor Productivity 2.5 1.14 1.33 0.90 0.77

 

                               Table1. Data for Hypothetical Firms 

By this criterion, firm A with the highest labor productivity performs best and firm E does worst. 

Note that output per worker or labor productivity is itself a descriptive measure summarizing the 

separate pieces of information about the output and the input quantity of a firm into a single ratio 

measure. In fact, labor productivity becomes a measure useful for performance evaluation only in 

a comparative sense. For example, Firm D with labor productivity equal to 0.90 is found to be a 

relatively poor performer only when compared with firms like A, C, and B. 

 It is seldom the case, however, that only a single input is used to produce the output. To 

make this example more realistic we include a second input, capital (K) which was used in 

conjunction with labor to produce the output levels shown in Table 1 but were not actually 

reported there. The more complete information on the input bundles and the output levels of the 

same five firms are now shown in Table 2. 

 

 

  

Firm A B C D E 

Output (y) 10 8 16 9 7 

Labor Input (L) 4 7 12 10 9 

Capital Input (K) 9 3 8 6 8 

Labor Productivity 2.5 1.14 1.33 0.90 0.77

Capital Productivity 1.11 2.67 2.0 1.50 0.88

 

 

 

 

 

 

 

               Table2. Input and Productivity Data of Hypothetical Firms 

 

This example clearly illustrates the problem associated with using partial productivity measures 

to evaluate performance. When productivity is measured as output per unit of capital (rather than 

by output per worker) firm B emerges as the best performer while firm A slips to the second 

lowest position. The simple fact of the matter is that the output of a firm incorporates the 

contribution of both the labor and capital inputs. To use labor productivity to evaluate 

 5



performance amounts to ignoring the contribution of capital and shows the more capital intensive 

firms in a more favorable light. What we need is an aggregate measure of the inputs and express 

productivity as the ratio of output to the aggregate input. But how is the aggregate input to be 

constructed? The task would be simple if input prices were available and all firms faced the same 

input prices. Suppose that the price of labor was w = 5 and the rental price of capital was r = 10. 

Then a measure of overall productivity would be output per unit of the composite input, i.e., the 

cost of the input bundle. This of course is the inverse of the average cost. Hence, a firm with a 

lower average cost is a better performer. 

 

                                    . 
Firm A B C D E 

Output (y) 10 8 16 9 7 

Labor Input (L) 4 7 12 10 9 

Capital Input (K) 9 3 8 6 8 

Cost 110 65 140 110 125 

Average Cost 11 8.125 8.75 12.22 17.87

 

 

 

 

 

 

                                   Table3. Cost Data for Hypothetical Firms 

In this Table 3, we can use average cost to rank the firms in reverse order of performance. Now 

firm B with the lowest average cost is the best performer followed closely by firm C. Suppose 

that output is measured by the number of pupils who complete the primary education. Then a 

school with the lowest cost per pupil completing elementary school is treated as the best 

performer and other schools are evaluated using this school as the benchmark. 

 This approach is quite simple and appeals to common sense. But there are problems. 

First, when firms face different prices, average cost is not a meaningful criterion because a lower 

average cost may reflect lower input prices rather than higher productivity. Second, and as is 

often the case, we may not have appropriate prices of all inputs. In that case, we need to get an 

aggregate or total factor productivity measure from the output and input quantities alone. 

A natural solution would be to take some average of the partial productivities for a measure of 

total factor productivity. For example, the labor and capital productivities of firm A are 

 4
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where .0,;1 >=+ KLKL ββββ  Here βL and βK are, respectively, the weights assigned to labor 

and capital productivities. For example, if we set 6.0=Lβ and ,4.0=Kβ in this example 

  ( ) ( )0.6 0.42.5 1.1 1.8ATFP = =

For any firm j (j = A, B, C, D, E) 
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Note that here becomes a measure of aggregate input.  We may compare the total 

factor productivities of two firms B and A through the productivity index 

KL
jjj KLX ββ=

 
( ) ( )

.,
x

y

K
K

L
L

y
y

X
y

X
y

A

B
AB Q

Q
TFP
TFP

TFPI
K

A

BL

A

B

A
B

A
A

B
B

==== ββ   (3) 

This productivity index is known as the Tornqvist index and is the ratio of an output quantity (Qy) 

index and an input quantity index (QX). If TFPIB,A exceeds unity, B is more productive than A. 

Otherwise, A is more productive. 

 The weights βL and βK are of critical importance in the definition of the aggregate input X 

and can have a significant impact on the how the total factor productivity is measured. When cost 

information is available, one can use the shares of the labor and capital input in the total cost for 

these weights. But when cost shares are not known (or they differ across firms), one must use 

judgment in selecting the weights.  

 We may now take a closer look at the input aggregator function 

   (4) .0,;1;),( >=+== KLKL
KL KLKLfX ββββββ

It is easy to see that f(L,K) in X can be regarded as a Cobb Douglas production function exhibiting 

constant returns to scale. This, however, is a consequence of our decision to take a weighted 

geometric mean of the partial productivities as a measure of total factor productivity. In fact, we 

could use any production function exhibiting constant returns to scale and non-negative marginal 

productivities to define the aggregate input and derive the productivity index.  

 When the inputs L and K are aggregated through a production function, the total factor 

productivity of a firm also becomes its technical efficiency index. The production function 

defines the maximum quantity of output that can be produced from a given input bundle. Thus, 

  ),(*
jjj KLfy =

is the maximum output that can be produced from the input bundle (Lj, Kj). Obviously, the 

actually observed output from this input bundle must be no greater than the upper limit. That is 
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We can define the technical efficiency of the firm j as  

  .*
j

j

y

y
j =τ    (5) 

But, when the production function is used to define the aggregate input quantity, it serves also as 

a measure of total factor productivity. It is important to note, however, that unless the production 

function is restricted to be homogeneous of degree 1 (i.e., constant returns to scale holds 

globally), the efficiency measure cannot be treated as a productivity measure. This is because, to 

serve as a valid input quantity index, apart from being non-decreasing in the individual inputs,  

X =f(L,K) must also double whenever both inputs are doubled.  

 We may now consider a more general production function 

   (6) ),(* KLgy =

where the production function g(L, K) defines the maximum output that can be produced from 

some specific input bundle (L, K). The technical efficiency of any firm j producing output yj using 

the input bundle (Lj,Kj)is 
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j
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y
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Note that technical efficiency shows what fraction of the maximum output producible from the 

input bundle used has been actually produced by the firm j. It sets a benchmark that is appropriate 

for the input quantities actually used.  

 The following example illustrates why efficiency is a more reasonable measure of 

performance than effectiveness. Suppose that the production function is 

  LKLy +=2   (8) 

and a firm will be considered effective only if Firm 1 produces y1 =  28 units of output 

and is, therefore, considered effective while firm 2 with y2 =15 units of output is not. Now 

suppose that the input bundle of firm 1 is (L1 = 25, K1 = 9). Firm 2’s input bundle, on the other 

hand, is (L1 = 9, K1 = 4). According to the production function specified above, the maximum 

producible quantities of firms 1 and 2 are, and , respectively. Their 

corresponding levels of technical efficiency are 

.20≥y

35=*
1y 15*

2 =y

  80.035
28

1 ==τ and .0.115
15

2 ==τ  

It is clear that the maximum producible output from the input bundle used by firm 2 would be 

lower than the targeted minimum of 20 and no firm could be effective if it had to use this input 

bundle. On the other hand, firm 1 does exceed the target but is actually under-utilizing its inputs 
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producing only 80% of the maximally producible output quantity. With 100% technical 

efficiency, firm 2 is a better performer. It fails to become effective simply because it has got too 

few resources. In order to make it effective, one must provide it with more resources. 

 In empirical analysis, measuring technical efficiency to evaluate performance requires 

estimating the production function g(.) that defines the benchmark output level against which the 

actual output is to be compared. 

3. Estimation of the Production Function and Measurement of Efficiency 

 

As noted before, there are two principal approaches to production function and efficiency 

measurement that are widely used in the literature. The first is an econometric method known as 

Stochastic Frontier Analysis (SFA). The other is a non-parametric approach using mathematical 

programming techniques and is known as Data Envelopment Analysis (DEA).  

 

3.1 Stochastic Frontier Analysis 

Consider the n-input 1-output production technology characterized by the production function 

   (9) .),...,,( 21
* u

n exxxgy =

Here x=(x1, x2, …, xn) is a bundle of n inputs and u is a two-sided random error representing 

favorable or unfavorable random shocks. When u is positive, the maximum output producible 

from the input bundle x increases. In the opposite case of a negative value of u the maximum 

producible output is lower. Thus the production frontier itself is random. The actual output y is 

always on or below the applicable frontier for the realized value of u. This can be expressed as 

   (10) 1 2( , ,..., ) ; ; 0.v u
ny g x x x e v u−= −∞ ≤ ≤ ∞ ≥

Aigner, Lovell, and Schmidt (ALS) (1977) specified a Cobb Douglas form of the function g(.), 

the usual Normal distribution for the random shock v and half-Normal distribution  ),0( 2
vN σ

|),0(| 2
uN σ for the one-sided technical efficiency term v. The log-linear specification of the 

stochastic production function is 
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ALS derived the log-likelihood function 
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then be estimated by the maximum likelihood procedure. Jondrow, Materov, Lovell, and Schmidt 

(1982) have shown that ( )σ
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j

j

jjuE −= Φ− )/(1
)/(

*)|(  where (.)φ is the density function of 

the standard Normal distribution and .2

22 .
* σ

σσσ vu=  The estimated technical efficiency of firm j 

would be 

   (13) ju
j e ˆˆ −=τ

where ).|(ˆ jjj uEu ε=  

 When a firm produces a vector of outputs rather than a single output, the stochastic 

frontier production function cannot be used because a production function is not defined in the 

multiple output case. One has to use a cost function for the analytical framework when multiple 

outputs are involved. But decomposition of the overall cost efficiency into a technical efficiency 

and an allocative efficiency component is by no means straight forward. 

 

3.2 Data Envelopment Analysis and Measurement of Technical Efficiency 

 

Validity of any estimated stochastic production frontier as the benchmark for evaluating 

the efficiency of an observed input-output bundle crucially depends on the appropriateness of the 

functional form of the estimated model. Choice of the preferred functional specification is often 

arbitrary and is driven by computational simplicity and tractability. Additionally the stochastic 

distribution of the one-sided inefficiency term (e.g., half-Normal vs. exponential) is a matter of 

preference for the analyst.  The nonparametric method of Data Envelopment Analysis (DEA) 

introduced by Charnes, Cooper, and Rhodes (CCR) (1978) and further generalized by Banker, 

Charnes, and Cooper (BCC) (1984) requires no parametric specification of the production frontier 

and relies on a number of fairly general assumptions about the nature of the underlying 

production technology. Using a sample of actually observed input-output data and these 

assumptions, it derives a benchmark output quantity with which the actual output of a firm can be 

compared for efficiency measurement. 

Any production technology transforming an input bundle x into the output bundle y can be 

characterized by the production possibility set 

 T = {(x, y) : y can be produced from x; x ≥ 0; y ≥ 0 }. (14) 
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In the 1-output case, the frontier or the graph of the technology is defined by the production 

function 

           g(x) = max y : (x, y) ∈ T.  (15) 

That is, for any input bundle x0, g(x0) is the maximum quantity of y that can be produced. 

An equivalent definition of the production possibility set would be 

 T = {(x, y) : y ≤ g(x); x ≥ 0; y ≥ 0 }.  (16) 

We have seen that in the parametric stochastic frontier analysis one arbitrarily picks up a 

functional form of g(x). For example, ALS specified the Cobb Douglas form. In DEA, one only 

makes a number of assumptions about the underlying technology that would be consistent with 

many different functional forms of the production function but does not select any particular 

function. 

 

Assumptions about the technology 

 

1. All actually observed input-output bundles are feasible. That is every input-output 

combination  (xj, yj) (j= 1,2,…,N) in the sample is in T. 

2. The production possibility set is convex. That is if (x1, y1) and (x2, y2) are both feasible, 

then any weighted average of the two input bundles can produce the corresponding 

weighted average of the two output bundles. This would be true for any number of 

feasible input-output bundles. Hence, ∑
=

=
N

j

j
j xx

1

λ can produce ∑
=

=
N

j

j
j yy

1

λ for any set 

of non-negative weights ),...,2,1( Njj =λ such that  ∑
=

=
N

j
j

1

.1λ

3. Inputs are freely disposable. This means that increasing any input without reducing any 

other input would not cause a decrease in the output. More formally, if (x0, y0) ∈ T and  

       x1 ≥ x0, then (x1
, y0) ∈ T. Note that here we are considering a vector inequality in the sense     

      that no element of the x1 bundle is smaller than the corresponding element of the x0  

      bundle while some elements may be strictly larger. 

4. Outputs are freely disposable. That is if x0 can produce y0 then it can always produce a 

smaller output bundle y1≤ y0. Formally, if (x0, y0) ∈ T and y1 ≤ y0, then (x0
, y1) ∈ T. 
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3.3 Technical Efficiency 

Consider, to start with, a simple technology for producing a single output (y) from a single input 

(x).  In Figure 1 the curve Y = g (x) shows the production function or the graph of the technology. 

When any point (x0, y0) lies on this curve, y0 is the maximum output that can be produced from 

input x0. Point PA and PB show the actual input-output quantities (xA, yA) and (xB, yB), respectively, 

of two firms A and B.  Both points lie below the graph. The point on the graph shows that is 

the maximum output that can be produced from input xA. Thus, shows the benchmark or 

reference input-output bundle for firm A. Similarly, is the reference bundle for firm B. Define 

*
AP

*
AP

*
AY

*
BP

                    .)(*
*

A

A

A

A
A Y

xg
Y
Y

==ϕ   (17) 

Then a measure of the performance of firm A is its output-oriented technical efficiency 

                 
.

1
*),(
A

AAy yx
ϕ

τ = .              (18) 

The output-oriented technical efficiency shows what proportion of the potential output from xA 

has actually been realized by firm A. Similarly, the technical efficiency of firm B is measured by 

the ratio of YB and  As is apparent from Figure 1, firm B performs better than firm A. .*
BY

 

In many situations, however, the output quantity is an assigned task and it is more important to 

produce the observed output from the smallest quantity of input than to produce the maximum 

output from the observed input quantity. This leads to an alternative measure of performance – 

the input-oriented technical efficiency. As shown in Figure 2, the minimum input quantity needed 

to produce output yA is Similarly, is he minimum input quantity needed to produce yB. It 

can be seen that both bundles and lie on the graph of the technology. That is, 

.*
Ax *

Bx

)A,( *
A yx ),( *

BB yx

AA yxg =)( * and . Define BB yxg =)( *
A

A
x
x

A

** =θ and .
**
B

B
x
x

B =θ  Then the input-oriented technical 

efficiencies of the two firms are 

                                  and  *),( AAAx yx θτ =

                     .                                          (19) *),( BBBx yx θτ =

The input-oriented technical efficiency denotes what proportion of its observed input bundle is 

actually necessary for producing its observed output. Unless τx equals unity, the firm is wasting 

input. 
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In order to numerically compute the technical efficiency of a firm – whether output- or input-

oriented – one needs to empirically construct the graph of the technology. In the econometric 

SFA approach one starts with an explicit specification of a production function and applies the 

maximum likelihood estimation procedure to estimate the parameters of the model. There are two 

major advantages of this approach. First, one gets the sampling distribution of the parameter 

estimates and can use them for hypothesis testing. Second, one can derive the elasticities or other 

features of the technology from the estimated model analytically. On the downside, validity of the 

entire SFA analysis is contingent on the correctness of the specified functional form which 

remains a maintained hypothesis. We now use a simple geometric example to explain how DEA, 

the nonparametric alternative, can be used to construct the benchmark frontier without any 

explicit specification of a functional form. 

 

 A 1-input 1-output Example 

 

Consider the data listed in Table 1. In this 1-input 1-output example, the actual input-output 

bundles of the different firms are shown by the points A through E in Figure 1. By assumption 

(A1) each of these observed input-output bundles is feasible. Next, by convexity, all points in the 

closed area ABEDC are also feasible. Finally, by the free disposability assumptions, all points to 

the right of this area and all points below this enlarged area are also feasible. Hence, the graph of 

the technology constructed from the data points and the assumptions (A1-A4) is the broken line 

FACG. The corresponding production possibility set consists of points on or below this graph. 

Now consider the firm D. The maximum output producible from its input (x = 9) is attained at the 

point D* on the graph directly above the point D. The point D* is a (0.25, 0.75) weighted average 

of the points A and C. Hence the output at D is  Thus, .5.14* =Dy 9
5.14* =Dϕ  and τy (D) = 0.6209. 

 

A 2-input 1-output Example 

 

The simple geometric approach to construct the graph and to evaluate the output- or input-

oriented technical efficiency of a firm described above can be applied only in the case of  1-input 

1-output production. Even when only 2-inputs are used to produce a single output, this simple 

diagrammatic approach fails and one must resort to algebra. To illustrate the algebraic approach 

we consider the simple 1-output 2-input data shown in Table 2. Suppose that we want to evaluate 

the performance of firm E. Now, by assumption 1, each of the five input-output bundles observed 

in the sample is feasible. Now construct a weighted average of these input bundles applying 
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weights 0.25 to (LA , KA), 0.25 to (LC , KC), 0.50 to (LD , KD), and zero weight to the other two 

bundles. The resulting weighted average bundle would be ).25.7,9(),( =KL The corresponding 

weighted average of the output quantities of these firms would be .75.8=y Hence, by 

assumption 2, it is possible to produce 8.75 units of the output from 9 units of labor and 7.25 

units of capital. But firm E is using 9 units of labor and 8 units of capital. That is compared to the 

average input bundle ),( KL it is actually using more capital but no less labor. Hence, by free 

disposability of inputs (i.e., assumption 3) it is possible to produce 8.75 units of the output from 

the input bundle actually used by firm E. It should be emphasized that nowhere have we 

suggested that 8.75 is the maximum amount of output producible from the actual input bundle of 

firm E. But because 8.75 is a feasible quantity, the maximum cannot be any lower than this 

feasible quantity. That is, g(LE ,KE) ≥ 8.75. Hence, 

 

 .80.075.8
7

),( =≤=
EE

E
KLg

y
Eτ  

 

But is there any other weighted average of the observed input bundles that does not require more 

of either labor or capital than what firm E is using but the corresponding weighted average of the 

outputs is even higher than 8.75?  

The answer in this case is in the affirmative. In fact, a different weighting scheme with 0.33 

assigned to  A, 0.67 to B, and 0.6 to C would result in an input bundle (L*, K*) = (9, 8) which, 

coincidentally, is exactly the same bundle that E is using, but the resulting weighted average of 

the outputs would be y* = 16.46667. This implies that g(LE ,KE) ≥  16.46667. With this input-

output bundle as the benchmark the technical efficiency of firm E would be measured as 

 

  .519802.046667.13
7 =≤Eτ  

 

This, however, raises more questions. First, how did we get these new set of weights? Second, 

how do we know that there is no other weighting scheme that could result in an even higher value 

of the weighted average of the outputs without violating the constraint that the weighted average 

of the inputs should not exceed either the labor or the capital input used by firm E? Answers to 

both of these questions lie in the following linear programming problem: 
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                              max   ϕ  

s.t.                         (20) 
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In this problem, λA through λE are the weights to be assigned to the individual input-output 

bundles. The last two constraints ensure that they are all non-negative and that they do add up to 

100%. The first two constraints ensure that the weights chosen are such that the weighted average 

of the observed input bundles does not exceed the input bundle of the firm under evaluation 

(which is firm E in this example). Finally, the left hand side of the 3rd constraint is the 

corresponding weighted average of the observed outputs. Because our objective is to maximize 

ϕ , that can be achieved by selecting the λs that maximize the weighted average of the outputs 

without violating the other constraints. In this particular case the optimal solution of this LP 

problem yields ( ).92.1;0;6.0;67.0;33.0 ****** ====== ϕλλλλλ EDCBA  

Hence, an estimate of g(LE, KE) is  We know that there does not exist any other set 

of weights that would yield a higher value of the output without violating the constraints. If there 

had been any, the optimal solution would have picked that set of weights. Finally, even though 

.47.13* =Eyϕ

ϕ is unrestricted in sign, ( )1;1;0 ====== ϕλλλλλ EA DCB would be a feasible solution. 

Hence, ϕ  would never be lower than 1, even though it is unrestricted. 

 

 A similar LP problem solved for firm D had an optimal solution with ,  42.1* =ϕ

6.0,4.0 == CB λλ and the other λs equal to zero. Hence, the estimated technical efficiency of 

firm D was 

  .70.042.1
1 ==Dτ  

For each of the remaining firms (A, B, and C), was 1 implying that there is no weighted 

average of the observed input bundles that could yield a weighted average of the outputs 

exceeding the actual outputs of these firms. Thus, based only on these simple assumptions (1)-(4) 

and the data, we cannot regard these firms as inefficient. 

*ϕ
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A Multiple Output Multiple Input Case 

 

One of the main appeals of DEA is that unlike the frontier production function analysis, it can 

easily handle multiple output technologies. It is useful to illustrate this with an example. For this, 

we modify the input-output data shown in Table 2 by introducing a second output. The revised 

data are presented in Table 4 below: 

            

 

 

 

 
Firm A B C D E

Output 1 (y1) 10 8 16 9 7 

Output 2 (y2) 6 4 4 8 6 

Labor Input (L) 4 7 12 10 9 

Capital Input (K) 9 3 8 6 8 

 

 

 

 

 

  Table 4. 2-output 2-input Data for 5 Hypothetical Firms  

 

 In order to evaluate the efficiency of firm E in this 2-output example, we solve the revised LP 

problem 

                                                          max   ϕ  

s.t.                         (21) 
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In this case, instead of a scalar output, each firm is producing a bundle of two outputs (y1, y2). To 

accommodate this, we now have two restrictions for the outputs. In the left hand sides of the 3rd 

and the 4th restrictions, we are constructing weighted averages of these individual output vectors 
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of the firms in the sample. The optimal solution of this problem yields 0.17; 0.83; 

The resulting output and input bundles are, respectively, 

(

=*
Aλ =*

Dλ

.0*** === ECB λλλ

1 29.17; 7.66y y= = ) and ).5.6;9( == KL  Note that the weighted average input bundle 

consists of the same quantity of L and 1.5 fewer units of K compared to the input bundle of firm 

E. On the output side, 1 11.31 Ey y= and 2 1.28 .Ey = 2y The optimal value of ϕ  is 

                                1 2

1 2

* min{ ; } 1.28.E E
y y
y y

φ = =  

Note that in the weighted average output bundle y1 is 30.95% higher and y2 is 27.78% higher than 

the quantities of these outputs produced by firm E. Taking the lower of the two, we find that 

every output of firm E can be increased by a factor of 1.28 or larger. This is the value of  .*ϕ

In this case, the technical efficiency of firm E is 

 .78.0*
1 ==
ϕ

τ E  

It is easy to see that this is an overly favorable estimate of the efficiency of firm E. This is 

because apart from increasing both outputs by 27.78% an additional 3.17% increase would be 

feasible for output 1 while at the same time use of the capital input could be cut down from 8 to 

6.5 units. The technical efficiency measure shown above does not reflect such further output 

increase or input reduction potential. 

 

3.4 An Algebraic Formulation of the DEA Optimization Problem 

 Let be the bundle of n inputs used and the bundle of 

m outputs produced by firm j (j =1, 2, …,N). Suppose that k is one of the observed firms and we 

wish to measure the technical efficiency of firm k. The observed input output bundle of firm k is 

 The relevant DEA LP problem would be 

),...,,( 21
j

n
jjj xxxx =

)., ky

),...,,( 21
j

m
jjj yyyy =

( kx

                           max   ϕ  

s.t.             ∑
=

=≤
N

j
ikijj nixx

1
);,...,2,1(λ

                    (22) ∑
=

=≥
N

j
rkrjj mryy

1
);,...,2,1(ϕλ

                  unrestricted. ( ϕλλ ;,...,2,10;1
1

Njj

N

j
j =≥=∑

=

)

The technical efficiency of firm k would be measured by 
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 *
1
ϕ

τ =k   (23) 

where is the optimal solution of the DEA LP problem above. *ϕ

 

Output and Input-Oriented Measures of Technical Efficiency 

At this point, it would be useful to formally define the production possibility set constructed from 

the sample data set D = {(xj, yj); j = 1,2, …, N}. The sample estimate of the underlying production 

possibility set T is 

  (24) 
1 1 1

( , ) : ; ; 1; 0( 1,2,..., ) .
N N N

j j
j j j j

j j j
S x y x x y y j Nλ λ λ λ

= = =

⎧ ⎫
= ≥ ≤ = ≥ =⎨ ⎬
⎩ ⎭

∑ ∑ ∑

The set S is also described as the free disposal convex hull of the observed input-output vectors. 

There are two alternative ways to look at the technical efficiency of a firm that uses the input 

bundle x0 and produces the output bundle y0. In what is known as the output-oriented approach, 

one examines to what extent (if at all) would it be produce to increase the output without 

requiring to use any additional input. When multiple outputs are involved (i.e., x0 is a vector of 

outputs) without any prior knowledge about the relative significance of the individual outputs in 

the bundle, one tries to find out what is the maximum equi-proportionate increase possible in all 

outputs in the bundle. It is understood that in specific cases, some individual outputs could be 

increased even more than what is implied by the common expansion rate. This was illustrated in 

the preceding example analyzing the efficiency of firm E. 

A measure of the output-oriented technical efficiency of a firm with observed input-output bundle 

(xk, yk) is 

 
,

1
*ϕ

τ =y
k where  (25) .),(:max* Syx kk ∈= ϕϕϕ

Typically, as in the case of public education or provision of health care, providing the services to 

more individuals from the actual resources spent is considered more important than lowering the 

resources spent (keeping the output at its observed level). In such cases, the output-oriented 

technical efficiency is the appropriate measure of performance. It is an unfortunate fact, however, 

that government agencies, much like individuals, have limited resources to satisfy competing 

needs. More resources devoted to education leaves fewer resources for other services like disaster 

relief or construction of infrastructures. In such cases, if it is agreed that the observed output level 

meets in some sense an adequate goal, the primary objective would be to reduce the input used to 

the extent possible without lowering the output. The inputs saved can then be used to meet other 
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goals. When input conservation is regarded as more important than expanding outputs, the 

appropriate measure of performance of firm k would be its input-oriented technical efficiency 

.),(:min* Syx kkx
k ∈== θθθτ  (26) 

The relevant DEA LP problem for measuring the input-oriented technical efficiency of firm k is 

                   min   θ  
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ikijj nixx
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Again, it is easy to see that if (xk, yk) is an actual observation in the sample, θ* will always be less 

than or equal to 1. Using the 2-input, 2-output example from Table 4, the input-oriented DEA LP 

for firm E had an optimal solution λA = 0.35948,λB = λD =0.32026, λC = λE =0; θ* =0.76471. This 

weighted average of the input bundles of firms A, B, and D would reduce both inputs of firm E to 

only 76.471% of their existing levels. More over, it would result in no change in output 1 but an 

increase in the quantity of output 2 by 2.03922 units. 

 

 

 

 

3.5 Returns to Scale 

 

None of the four assumptions that we made about the technology had anything to do with returns 

to scale. Returns to scale is a property of the frontier of the production possibility set. When a 

small equi-proportionate increase in all inputs causes a more than proportionate increase in all 

outputs along the frontier, locally increasing returns to scale prevails. Similarly, locally 

diminishing returns to scale holds when the proportionate increase in outputs is lower than the 

proportionate increase in inputs. In the case of constant returns to scale, outputs and inputs 

increase (or decrease) by the same proportion along the frontier. It is possible that the technology 

exhibits increasing, constant, or deminishing returns to scale along different segments of the 

frontier. This Variable Returns to Scale (VRS) is the more general assumption about the 
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production technology. If, however, one assumes that Constant Returns to Scale (CRS) holds 

everywhere along the frontier, definition of the production possibility set and the resulting 

measure of technical efficiency will change.  

An implication of the (global) CRS assumption is that if any input-output bundle (x, y) is 

feasible, so would be the bundle (tx, ty) for any non-negative t. Take another look at the definition 

of the production possibility set S in (21) above. We know that by convexity, any input-output 

bundle ),( yx  such that ∑
=

=
N

j

j
j xx

1
λ and ∑

=

=
N

j

j
j yy

1
λ for a set of non-negative λjs satisfying 

will be feasible. If additionally we assume that CRS holds, 1
1

=∑
=

N

j
jλ ),( ytxt will also be feasible 

for every non-negative t. Define μj = tλj. Then, under CRS, is feasible for 

any set of non-negative μjs. In particular, the μjs are not restricted to add up to unity. 
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Hence, under the assumption of CRS, the corresponding construction of the production possibility 

set would be 

1 1
( , ) : ; ; 0 ( 1, 2,..., ) .

N N
C j j

j j j
j j

S x y x x y y j Nλ λ λ
= =

⎧ ⎫
= ≥ ≤ ≥ =⎨ ⎬
⎩ ⎭

∑ ∑  (28) 

Here the superscript C indicates that CRS has been assumed. Note the absence of the constraint 

that the λs would have to add up to unity. This equality constraint will also be removed from the 

output- or input-oriented DEA LP problems when CRS is assumed. Removal of a constraint 

makes the CRS DEA problems less restrictive than the corresponding VRS models. As a result 

 will either be higher or stay the same when compared with the optimal solution of the VRS 

problem. Similarly, from the CRS problem will be either strictly lower or equal to what is 

obtained under VRS. This means that measured technical efficiency under CRS will be less than 

or equal to what is obtained under the VRS assumption. Moreover, when CRS is assumed, the 

input- and output-oriented measures will be identical. This is not the case under the VRS 

assumption. 

*ϕ
*θ

 

Scale Efficiency 
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In the foregoing discussion of technical efficiency, either the input level or the output level was 

treated as given and the objective was to either maximize output from the given input or minimize 

input for producing the given output. Obviously, when the output increases but the input 

remained unchanged, average productivity increases. Similarly, a reduction in input with 

unchanged output also raises productivity. Consider output-oriented technical efficiency in the   

1-input 1-output case. If τy(x0,y0) is unity, the ratio  

                                               AP0 = 0

0

y
x

.                           (29)
                

 

is the maximum average productivity that can be attained at the observed input scale x0. But 

suppose that the firm could choose its input level. Then the question would be: 

 

What is the input level x* that maximizes average productivity? 

Note that a necessary condition for maximization is  

                       0)(
=

dx
xdAP

 

at x = x*. But this implies that locally constant returns to scale holds at x*. Frisch (1965) described 

this as the technically optimal production scale. The scale efficiency of a firm using the input x0 is 

measured by comparing the efficient average productivity at x0 with the maximum average 

productivity (attained at x*). The efficient average productivity at x0 is 

                
0

0
0

* )(
)(

x
xg

xAP = .                                 (30) 

The maximum average productivity is 

                .)()( *

*
**

x
xgxAP =

                             
(31) 

 

Thus, scale efficiency at x0 is 

             .
)(
)(

)( **
0

*

0 xAP
xAP

xSE =                                   (32) 

The concept of scale efficiency and also its measurement can be easily understood from the 

diagram in Figure 3. In this 1-input 1-output example, the production function is 

                      42)( 2
1

−= xxg for x ≥ 4; g(x) = 0 from x < 4. 

The firm under consideration uses input x0 = 9 to produce output y0 = 1. Its actual average 

productivity is AP0 = .9
1 But g(x0) = 2. Hence, the firm is not on the frontier. The efficient average 
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productivity at the observed input level is AP*(x0) = .9
2 This is shown by the slope of the line 

OQ0. The maximum average productivity is attained at the point Q* . At the optimal production 

scale  x* = 16,  g(x*) = 4 and AP*(x*) = .4
1  Hence,  

                         SE(x0) = .9
8  

Note that Scale efficiency lies between 0 and 1, by construction. In this example, the measured 

value 9
8 implies that even at full technical efficiency at its observed input scale of x0 = 9, the 

average productivity of the firm be(about) 90% of the maximum average productivity that could 

be achieved at the optimal input scale x* = 16. 

 

Now consider the ray through the origin 

                                   r (x) = x4
1  

which is tangent to the production function 42)( 2
1

−= xxg at the point Q*. Clearly, at Q* the 

average and marginal productivities are equal and CRS holds locally. However, if this tangent 

line itself had been the production function, there would be CRS globally. Ray (2004) called this 

the pseudo production function. Only one point on this tangent line is feasible and that is the 

tangency point, Q*. Now look at the point R0 on this tangent line. Average productivity at Q* is 

the same as the average productivity at R0. Hence, 
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 (33) 

 

 

Now, we have already seen that the output-oriented technical efficiency of the firm under 

evaluation is 

  .
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0
00 xg

y
yxy =τ

                                        
(34) 

If, on the other hand, one assumed that the technology exhibited CRS everywhere, the frontier 

would have been y = r(x) rather than y = g(x). The technical efficiency under the CRS assumption 

would be 
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(35) 
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Hence, 
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In the present case, 
4
100 2

1),( =yxC
yτ and .

2
1),( 00 =yxyτ  Hence, SE(x0, y0) = 9

8  as obtained 

before. 

 

 When the output-oriented DEA LP model for firm E in the 2-input 2-output example 

shown before was solved under the CRS assumption, the optimal solution was       

                    .3838.1;7424.0;0;3939.0 * ====== ϕλλλλλ DECBA

Note that the technical efficiency is strictly lower under the CRS assumption. Further, the λ-

weights do not add up to unity in this case. The CRS technical efficiency of firm E was 

.72.0)( =EC
yτ As seen before, the corresponding VRS efficiency was 0.78. Hence, the scale 

efficiency was 0.93. 

 

3.6 Measurement and Decomposition of Cost Efficiency 

 

A widely prevalent misconception among productivity analysts is that DEA may be used in 

public sector and non-profit applications where prices are either unavailable or irrelevant. For 

market entities trying to minimize cost or maximize profit, one should use an econometrically 

estimated parametric cost or profit function to construct the benchmark. The reality is that the 

choice between DEA and SFA is decided by one’s willingness (or otherwise) to rely on a specific 

functional form of the technology and not by the availability of market prices. In this section we 

show how one can use DEA to evaluate the minimum cost of producing the observed output 

(bundle) for a firm at given market prices of inputs. Comparing the minimum cost with the actual 

cost incurred by the firm yields a measure of its cost efficiency. 

A firm minimizes cost when it uses an input bundle that can produce the target output at the 

lowest cost at the applicable input prices. The choice, therefore, is only among those input 

bundles that can actually produce the desired output. The set of input bundles (x)  that can 

produce a specified output (y0) is the input requirement set 

                          V(y0) = { }.),(: 0 Tyxx ∈                              (37) 
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In the standard textbook example, the input requirement set consists of all input bundles that lie 

on or above the isoquant for the given output, y0. A 1-output 2-input example of the input 

requirement set for the output level 10 is     

                                                           (38) { .10),(:),()10( 2121 ≥= xxfxxV }
 

For example, the input requirement set for the production function 

                          f (x1, x2) = 21 2 xx +                                                 (39) 

 

is  

                 { }.102:),()10( 2121 ≥+= xxxxV                                   (40) 

 

Suppose that the vector of input prices faced by the firm is w0 = (w10, w20).Then the minimum cost 

is 

                  0 0 0
1 2( , ) min ' : 2 10C w y w x x x= + ≥ .                          (41) 

If the actual input bundle used by the firm is x0 = (x10, x20) then the actual cost is  

                          C0 = w10 x10 + w20 x20. 

The cost efficiency of the firm can be measured as .),(
0

00

C
ywC

=γ
             

(42) 

 

Figure 4 provides a simple graphical illustration of measuring cost efficiency. In the diagram the 

curve   f (x1, x2) = y0 is the isoquant for the output level y0. All points on and above this curve are 

in V(y0). Point A shows the actual input bundle of the firm. The expenditure line EF through the 

point  A is the iso-cost line  

                                w10 x1 + w20 x2 = C0.                                 (43) 

If the firm could eliminate its input-oriented technical inefficiency by scaling down both inputs 

by the factor τx (=θ) it could move to the input bundle B on the isoquant. The iso-cost line GH 

through B shows the cost of this technically efficient bundle  :);( 0
22

0
11 xxxx TT θθ ==

                                                             (44) .220110
TTT Cxwxw =+

Once technical inefficiency has been removed, the only way any further reduction in cost (if 

possible) must through a trade off between the inputs. Given the input prices, the cost efficient 
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point C is the point of tangency between the isoquant and the iso-cost line JK. The minimum cost 

is  

                                                                (45) .),( *
220

*
110

00* xwxwywCC +==

 

In this diagram, cost efficiency is  

                                        .),(
0

00

OA
OD

C
ywC

==γ
                                            

(46) 

This can be decomposed as 

                           ..
OB
OD

OA
OB

OA
OD

==γ
                                               

(47) 

 

Here θ=
OA
OB

is the technical efficiency and α=
OA
OB

is the allocative efficiency. 

In order to operationalize this measurement and decomposition of cost efficiency, one needs to 

construct the relevant isoquant for the target output level. When an explicit specification of the 

production function is available, one can simply look at the graph of the implication function 

                           f( x1, x2) = y0.                                                                       (48) 

 

In DEA, however, we proceed through the input requirement set for y0: 

                 V(y0) = { x: (x, y0) ∈ T }.                                                             (49) 

If we use the empirically constructed set, S, for T: 
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The minimum cost, C(w0, y0) can be obtained as 
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A 1-output 2-input Example 

                            

 

Consider the data from Table 3 above. Suppose that we wish to evaluate the cost efficiency of 

firm D in the sample. It uses the input bundle (LD =10, KD  = 6) and produces output yD = 9. At 

input prices (w=5, r=10) its actual cost is 110. To obtain its minimum cost we solove the DEA 

LP problem: 

              min C = 5L + 10 K 

s.t. ;9101274 LEDCBA ≤++++ λλλλλ  

         ;86839 KEDCBA ≤++++ λλλλλ  

         ;97916810 ≥++++ EDCBA λλλλλ                                     (52) 

          ;1=++++ EDCBA λλλλλ  

            .0,,,, ≥EDCBA λλλλλ  

The optimal solution for this LP problem is 

.}.375.74);635.3,635.7();125.0,875.0;0{( ******** ======== CKLCBEDA λλλλλ  

Thus, the cost efficiency of firm D is 

.676.0
110

375.74
==Dγ  

This implies that it is possible to produce the observed output level of D at only 67.6% of its 

actual cost. The input-oriented technical efficiency obtained by solving the relevant DEA LP 

problem was θD = 0.707. Hence, the allocative efficiency was .956.0==
D

D
D θ

γ
α  This implies 

that about 30% of the cost could be reduced by simply eliminating technical inefficiency without 

altering the input ratio. A further 5% reduction could be achieved by changing the input-mix. 

 

5. DEA on Excel Solver 

In this section we offer a step by step instruction on how to write the programs for various kinds 

of DEA models for Excel Solver. Specifically, first we show examples of DEA models for 

measuring output-oriented VRS technical efficiency of individual firms in the 1-output 2-input  

and 2-output 2-input cases. Then we explain how one can write Macro commands in Visual Basic 
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in order to measure efficiency of all units in the sample all at once. Then we describe  the 

programs for measuring cost efficiency both for a single firm and for all firms at once using a 

Macro. 

1-output 2-input ourput oriented Technical Efficiency 

 

 We consider the empirical example of one-output two-input output-oriented DEA TE 

model with the data from Table 2.  The model is specified in equation (20).  To solve this LP 

problem in Excel, we first import the data to an Excel spreadsheet as shown in the Solver Figure 

1.  Column A records the firm’s name.  Column B shows the firm’s number according to its 

appearance in column A.  Column C to column E shows the original data for the output and 

inputs.  In column F, we define the lambdas.  Therefore, cells F4 to F8 are the changing variables 

lambda 1 through lambda 5.  In columns H to J, on row 4, we define the left hand side of the 

constraints.  Specifically, the command we need to type in cell H4 is             

                             “=SUMPRODUCT(C4:C8,$F$4:$F$8)”. 

Next, we can copy and paste this command to cells I4 to J4 on the same row.  The symbol “$” in 

the above command works as a cell address fixing indicator.  It will fix the column letter or row 

number to the right of it when the command is being copied and pasted to another cell.  The 

unfixed column letter and/or row number will be automatically updated according to where the 

original command is copied and pasted to.   

 

 

 
 

 In column H, on row 6, we identify the firm for which we want to evaluate the technical 

efficiency. In Excel, the VLookup function searches for value in the left-most column of 

table_array and returns the value in the same row from another column in the table_array based 

on the index_number. The syntax for the VLookup function is3: 

                VLookup(value, table_array, index_number). 

  On row 7, we find the associated serial number for the firm using the command 

                                                      
3 An excellent reference for advanced Excel functions is Powell and Baker (2007) 
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“=VLOOKUP(H6,A4:B8,2)”. 

In the present case, as shown in Solver Figure 1 below, the array (B4:B8) contains the names of 

the firms and their serial numbers. In cell H6 we have entered the firm name, E. Hence, the 

VLOOKUP command finds the row in the first column of the specified array that contains the 

entry E. This is Row 7. Then it finds the entry in the 7th row of the 2nd column of the array. This is 

the value 5 in cell B7. 

On row 8, we define the sum of all lambdas, so the command in cell H8 is “=SUM(F4:F8)”.  On 

row 9 in the same column, we define value of phi which is the objective function of the LP 

problem.  Note that cell H9 is also a changing variable.  Cell H10 shows the technical efficiency 

of the selected firm.  It equals the inverse of the maximized phi in cell H9.  Thus the formula in 

cell H10 is “=1/H9”. 

 On row 5, we need to fill in the right hand side of the constraints. In Excel, the Index 

function returns the value of an element in a table or an array selected by the row and column 

number indexes. The syntax for the Index function is: 

                 Index(array, row_number, column_number ), 

where array is a range of cells or table; row_number is the row number in the array to use to 

return the value; column_number is the column number in the array to use to return the value 

(optional if the array is a single column array).  

Because the right hand side of the output constraint is defined as the actual output of the selected 

firm multiplied by phi, in cell H5 we type command “=INDEX(C4:C8,H7)*H9”.  

In the present case, the array is a single column (C4:C8). The entry in cell H7 identifies the 

relevant row (Row 5). Thus, it picks up the output of firm E, the unit under evaluation. This is 

multiplied by the entry in cell H9 which contains the value of ‘phi’. 

The right hand side of the input constraint is just the actual input for the selected firm.  So in cell 

I5 we type “=INDEX(D4:D8,$H$7)”, and then copy and paste this command to cell J5 on the 

same row. 

 We have finished with inputting information to the spreadsheet, and now we are going to 

fill in the solver parameters.  For this, we first select “Solver” from the menu “Data”, a Solver 
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Parameters window will pop-up.  In the ‘Set Target Cell’ box in this window, we type “H9”; 

among the ‘Equal To’ options, we select “Max”; in the ‘By Changing Cells’ box, we type “F4:F8, 

H9”.  Then we click the icon “Add” to impose constraints.  In the ‘Add Constraints’ window, we 

type “H4” in the ‘Cell Reference’ box; in the box next to it, we select “>=”; in the ‘Constraint’ 

box, we type “H5”.  Once we have done that, we click “Add” to save current constraint and 

continue to the next constraint.  Now we type “I4:J4” in the Cell Reference box on the left; select 

“<=” in the middle box; type “I5:J5” in the Constraint box on the right.  Click “Add”, and start 

typing the third constraint, which is to type “H8” in the Cell Reference box; select “=” in the 

middle box; type “1” in the Constraint box.  Now click “OK” to go back to the Solver Parameters 

window, and then click “Options”.  In the Solver Options windows, check “Assume Linear 

Model” and “Assume Non-negative”, and then click “OK”.  The last step, click “Solve” on the 

right upper corner, Excel Solver will start solving the problem and report the result to us once it’s 

done.  If Solver finds an optimal solution, the optimized value of phi will be shown in cell H9, 

and the technical efficiency for the selected firm will be shown in cell H10. 

 In this example, we first evaluate firm E’s technical efficiency by typing “E” in cell H6 

and solving the LP problem in Solver.  The result is shown in the following figure: 

 
                                     Solver Figure 1: Measuring TE of firm E 

 

We can evaluate firm D’s technical efficiency by simply changing “E” to “D” in cell H6 and 

resolving the LP problem in Solver (without changing the Solver Parameter setup).  The result is 

shown in the following figure: 
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                                      Solver Figure 2. Measuring the TE of Firm D 

 

2-output 2-input Example 

 Next, we consider the empirical example of two-output two-input output-oriented DEA 

TE model with the data from Table 4.  The model is specified in equation (21).  To solve this LP 

problem in Excel, we first import the data to an Excel spreadsheet as shown in the Solver Figure 

2.  Column A records the firm’s name.  Column B shows the firm’s serial number according to its 

appearance in column A.  Column C to column F shows the original data for outputs and inputs.  

In column G, we define the lambdas.  Therefore, cells G4 to G8 are the changing variables 

lambda 1 through lambda 5.  In columns I to L, on row 4, we define the left hand side of the 

constraints.  Specifically, the command we need to type in cell I4 is 

“=SUMPRODUCT(C4:C8,$G$4:$G$8)”, then we can copy and paste this command to cells J4 to 

L4 on the same row.   

 In column I, on row 6, we define the firm for which we want to evaluate the technical 

efficiency.  On row 7, we find the associated serial number to the firm using the command 

“=VLOOKUP(I6,A4:B8,2)”.  On row 8, we define the sum of all lambdas, so the command in 

cell H8 is “=SUM(G4:G8)”.  On row 9 in the same column, we define value of phi, which is the 

objective function of the LP problem.  Notice that cell H9 is also a changing variable.  Cell I10 

shows the technical efficiency of the selected firm.  It equals the inverse of the maximized phi in 

cell I9.  Thus the formula in cell H10 is “=1/I9”. 

 On row 5, we need to fill in the right hand side of the constraints.  Because the right hand 

side of each output constraint is defined as the actual output of the selected firm times phi, in cell 

I5 we type command “=INDEX(C4:C8,$I$7)*$I$9”, and then copy and paste this command to 

cell J5.  The right hand side of each input constraint is just the actual input for the selected firm.  

So in cell K5 we type “=INDEX(E4:E8,$I$7)”, and then copy and paste this command to cell L5. 

 We have finished with inputting information to the spreadsheet, and now we are going to 

fill in the solver parameters.  Now we select “Solver” from the menu “Data”, a Solver Parameters 

window will pop-up.  In the Set Target Cell box, we type “I9”; in Equal To options, we select 

“Max”; in By Changing Cells box, we type “G4:G8, I9”.  Then we click icon “Add” to impose 

constraints.  In the Add Constraints window, we type “I4:J4” in the Cell Reference box; in the 

box next to it, we select “>=”; in the Constraint box, we type “I5:J5”.  Once we have done that, 

we click “Add” to save current constraint and continue for the next constraint.  Now we type 

“K4:L4” in the Cell Reference box on the left; select “<=” in the middle box; type “K5:L5” in the 

Constraint box on the right.  Click “Add”, and start typing the third constraint, which is to type 
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“I8” in the Cell Reference box; select “=” in the middle box; type “1” in the Constraint box.  Now 

click “OK” to go back to the Solver Parameters window, and then click “Options”.  In the Solver 

Options windows, check “Assume Linear Model” and “Assume Non-negative”, and then click 

“OK”.  The last step, click “Solve” on the right upper corner, Excel Solver will start solving the 

problem and report the result to us once it’s done.  If Solver finds an optimal solution, the 

optimized value of phi will be shown in cell I9, and the technical efficiency for the selected firm 

will be shown in cell I10. 

 In this 2-output 2-input example, we evaluate firm E’s technical efficiency by typing “E” 

in cell I6 and solving the LP problem in Solver.  The result is shown in the following figure: 

 
 

      Solver Figure 3: Measuring TE of Firm E (Multiple-output, Multiple-input case) 

 

 

In the above examples, we show how one can solve the DEA efficiency evaluation problems for 

the individual firms – one firm at a time. However, when the sample size is large this can be quite 

time consuming and burdensome. It is useful to write a set of Macro commands that will program 

Solver to evaluate the efficiencies of all firms in a single run. In the next section we use a sample 

data set from Indian pharmaceutical firms in an example that explains how to write a Visual Basic 

Macro for measuring output-oriented technical efficiency.

 31



 

 

A Visual Basic Macro 

Empirical Example of Using Excel Solver to Solve DEA Models 

 We consider the output-oriented DEA TE model and use sample data from a number of 

Indian pharmaceutical companies in the empirical example.  This data set includes 80 

observations.  We consider one output (Y) and four inputs (material M, fuel F, labor L, and capital 

K).  The DEA model can be expressed as the following: 
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 To solve the above LP problem in Excel, we first import the data to an Excel spreadsheet 

as shown in the Solver Figure 3.  Column A records the firm number.  Column B to column F 

shows the original data for the output and inputs.  In column G, we define the lambdas.  

Therefore, cells G4 to G83 are the changing variables lambda 1 through lambda 80.  In columns I 

to M, on row 4, we define the left hand side of the constraints.  Specifically, the command we 

need to type in cell I4 is “=SUMPRODUCT(B4:B83,$G$4:$G$83)”, then we can copy and paste 

this command to cells J4 to M4 on the same row.  The symbol “$” in the above command works 

as a cell address fixing indicator.  It will fix the column letter or row number to the right of it 

when the command is being copied and pasted to another cell.  The unfixed column letter and/or 

row number will be automatically updated according to where the original command is copied 

and pasted to.   

 In column I, on row 7, we define the firm number for which we want to evaluate the 

technical efficiency.  On row 9, we define the sum of all lambdas, so the command in cell I9 is 

“=SUM(G4:G83)”.  On row 11 in the same column, we define value of phi, which is the 

objective function of the LP problem.  Notice that cell I11 is also a changing variable.  Cell I13 

shows the technical efficiency of the selected firm.  It equals the inverse of the maximized phi in 

cell I11.  Thus the formula in cell I13 is “=1/I11”. 
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 On row 5, we need to fill in the right hand side of the constraints.  Because the right hand 

side of the output constraint is defined as the actual output of the selected firm times phi, in cell 

I5 we type command “=INDEX(B4:B83,I7)*I11”.  The right hand side of the input constraint is 

just the actual input for the selected firm.  So in cell J5 we type “=INDEX(C4:C83,$I$7)”, and 

then copy and paste this command to cells K5 to M5 on the same row. 

 We have finished with inputting information to the spreadsheet, and now we are going to 

fill in the solver parameters.  First, we need to make sure Solver is available for use.  In Excel 

2007, in the main menu tab on the top, if we select “Data”, we should see “Solver” in the sub-

group of “Analysis” on the rightmost.  If it is not there, we have to do the following: (i) go to the 

left-upper corner of the window, click “Office Button” once, and then click “Excel Options” at 

the bottom; (ii) in the Excel Options window, click “Add-Ins” in the left menu column, and then 

in the Manage box, select “Excel Add-ins” and click “Go”; (iii) In the Add-Ins available box, 

select the “Solver Add-in” check box, and then click “OK”.   

 Now we select “Solver” from the menu “Data”, a Solver Parameters window will pop-up.  

In the Set Target Cell box, we type “I11”; in Equal To options, we select “Max”; in By Changing 

Cells box, we type “G4:G83, I11”.  Then we click icon “Add” to impose constraints.  In the Add 

Constraints window, we type “I4” in the Cell Reference box; in the box next to it, we select “>=”; 

in the Constraint box, we type “I5”.  Once we have done that, we click “Add” to save current 

constraint and continue for the next constraint.  Now we type “J4:M4” in the Cell Reference box 

on the left; select “<=” in the middle box; type “J5:M5” in the Constraint box on the right.  Click 

“Add”, and start typing the third constraint, which is to type “I9” in the Cell Reference box; select 

“=” in the middle box; type “1” in the Constraint box.  Now click “OK” to go back to the Solver 

Parameters window, and then click “Options”.  In the Solver Options windows, check “Assume 

Linear Model” and “Assume Non-negative”, and then click “OK”.  The last step, click “Solve” on 

the right upper corner, Excel Solver will start solving the problem and report the result to us once 

it’s done (which takes less than one second in most of cases).  If Solver finds an optimal solution, 

the optimized value of phi will be shown in cell I11, and the technical efficiency for the selected 

firm will be shown in cell I13. 

 Following the above steps, we can investigate the technical efficiency for each individual 

firm in the sample.  However, it becomes tedious when the total number of firms is large.  One 

solution to this problem is that we can run a Visual Basic macro program in Excel to solve the 

technical efficiencies once for all.  To import the VB macro program, we first need to have the 

Developer tab on the main menu.  If it is not there, we can do the following: (i) go to the left-

upper corner of the window, click “Office Button” once, and then click “Excel Options” at the 
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bottom; (ii) in the Excel Options window click “Popular” in the left menu column then select 

“Show Developer tab in the Ribbon” check box on the right, and then click “OK”. 

 Now we have the tab Developer showing on the menu.  We click “Developer”, and then 

“Insert” in the “Controls” sub-group.  Under the “ActiveX Controls”, we click the leftmost icon 

on the first row, which is also called “Command Button”.  The arrow cursor now becomes a fine 

cross cursor.  Move the cursor to any blank place on the spreadsheet we are working with, and 

then click and drag to create an icon for the VB macro program on the spreadsheet.  By default, 

the caption of the icon is “CommandButton1”.  We can change it by right click it and then select 

“Properties” from the menu and change the caption to, for example, “Run Macro”.  Now double 

click the command button we created, we go to the VB programming for code editing.  Between 

the lines of “Private Sub” and “End Sub”, we type in the following code: 
For Unit = 1 To 80 
Range("I7") = Unit 
SolverSolve UserFinish:=True 
Range("N" & Unit + 3) = Range("I13") 
Next Unit 
  

 Next, in the Microsoft Visual Basic window, we select “Tools” from the main menu, and 

then click “References”.  In the “References – VBAProject” window, select “SOLVER” check 

box and then click “OK”.  If the “SOLVER” check box is not shown in that window, we need to 

do the following: (i) click “Browse…” in that window; (ii) in the “Add Reference” window, look 

in “Local Disk (C:)” then “Program Files” then “Microsoft Office” then “Office 12” then 

“Library” then “SOLVER”, and then select “Microsoft Office Excel Files” at the “Files of type” 

window; (iii) select the file “SOLVER” in the “Add Reference” window and click “Open”; (iv) 

click “OK” in the “References – VBAProject” window. 

 Now we go back to the Excel spreadsheet we are working on.  Click “Design Mode” on 

the menu once, and then click the command button (Run Macro) we created.  The VB macro 

program should start running and technical efficiency scores for all firms will show up in column 

O, on the corresponding rows.  To save our work, we need to save the Excel file as an “Excel 

Macro-Enabled Workbook”. 
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                            Solver Figure 3. Technical Efficiencies of Indian Pharmaceutical Firms 
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Example of Measuring Cost Efficiency 

 We consider the empirical example of one-output two-input cost DEA model with the 

data from Table 3.  The model is specified in equation (52).  To solve this LP problem in Excel, 

we first import the data to an Excel spreadsheet as shown in the Solver Figure 4.  Column A 

records the firm’s name.  Column B shows the firm’s number according to its appearance in 

column A.  Column C to column E shows the original data for the output and inputs.  Column F 

records the total cost for each firm given the input prices wL = 5 ans wK = 10.  In column G, we 

define the lambdas.  Therefore, cells G4 to G8 are the changing variables lambda 1 through 

lambda 5.  In columns I to K, on row 4, we define the left hand side of the constraints.  

Specifically, the command we need to type in cell I4 is “=SUMPRODUCT(C4:C8,$G$4:$G$8)”, 

then we can copy and paste this command to cells J4 to K4 on the same row.  

 In column I, on row 7, we define the firm for which we want to evaluate the cost 

efficiency.  On row 8, we find the associated number for the firm using the command 

“=VLOOKUP(I7,A4:B8,2)”.  On row 9, we define the sum of all lambdas, so the command in 

cell I9 is “=SUM(G4:G8)”.  On row 10 in the same column, we record the actual total cost.  The 

command in cell I10 is “=INDEX(F4:F8,I8)”.  Cell I11 shows the optimal total cost of the 

selected firm.  Therefore the command in cell I11 is “=SUMPRODUCT(J5:K5,J6:K6)”.  We 

define the DEA cost efficiency as the ratio of the actual cost to the optimal cost.  Thus the 

command in cell I12 is “=I11/I10”. 

 On row 5, we need to fill in the right hand side of the constraints.  Because the right hand 

side of the output constraint is the actual output of the selected firm, in cell I5 we type command 

“=INDEX(C4:C8,I8)”.  The right hand side of the input constraint is the optimal quantity of each 

input for the selected firm.  Notice that cells J5 and K5 are also changing variables.  We record 

the input prices on row 6 under columns J and K. 

 We have finished with inputting information to the spreadsheet, and now we are going to 

fill in the solver parameters.  Now we select “Solver” from the menu “Data”, a Solver Parameters 

window will pop-up.  In the Set Target Cell box, we type “I11”; in Equal To options, we select 

“Min”; in By Changing Cells box, we type “G4:G8,J5:K5”.  Then we click icon “Add” to impose 

constraints.  In the Add Constraints window, we type “I4” in the Cell Reference box; in the box 

next to it, we select “>=”; in the Constraint box, we type “I5”.  Once we have done that, we click 

“Add” to save current constraint and continue for the next constraint.  Now we type “J4:K4” in 

the Cell Reference box on the left; select “<=” in the middle box; type “J5:K5” in the Constraint 

box on the right.  Click “Add”, and start typing the third constraint, which is to type “I9” in the 

Cell Reference box; select “=” in the middle box; type “1” in the Constraint box.  Now click 
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“OK” to go back to the Solver Parameters window, and then click “Options”.  In the Solver 

Options windows, check “Assume Linear Model” and “Assume Non-negative”, and then click 

“OK”.  The last step, click “Solve” on the right upper corner, Excel Solver will start solving the 

problem and report the result to us once it’s done.  If Solver finds an optimal solution, the 

minimized value of total cost will be shown in cell I11, and the cost efficiency for the selected 

firm will be shown in cell I12. 

 In this example, we first evaluate firm D’s cost efficiency by typing “D” in cell I7 and 

solving the LP problem in Solver.  The result is shown in the following figure: 

 
                                    Solver Figure 4. Measuring Cost Efficiency of Firm D
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A VBA Macro for Measuring Cost Efficiency 
 

In this example, we solve a Cost DEA model and apply the data for Indian manufacturing 

industry in the empirical example.  This data set includes 22 observations. The input-outputs are 

the average (or per establishment data) obtained from the Annual Survey of Industries for the 

year 2004. We consider one output (Y) and five inputs (capital K, production labor L1, non-

production labor L2, fuel F, and material M).  We also have the price information for each input 

(wk, w1, w2, wf, and wm are price indices for the above five inputs respectively).  The DEA model 

can be expressed as the following: 

  min   1 1 2 2k fw K w L w L w F w M+ + + + m

  s.t.  

01 1

1 1 2 21 1

1 1

1

; ;

; ;

; ;

1; 0;( 1, 2,..., ).

N N
j j j jj j

N N
j j j jj j

N N
j j j jj j

N
j jj

Y Y K K

L L L

F F M M

L

j N

λ λ

λ λ

λ λ

λ λ

= =

= =

= =

=

≥ ≤

≤ ≤

≤ ≤

= ≥ =

∑ ∑
∑ ∑
∑ ∑
∑                    

 (54) 

 

To solve the above LP problem in Excel, we first import the data to an Excel spreadsheet as 

shown in the Solver Figure 5.  Column A records the state number.  Column B records the 

abbreviation of each state.  Column C to column G shows the original data for the output and 

inputs.  Column I to column M shows the associated input price indices for the five inputs.  In 

column, we calculate the actual total cost for each state.  In column O, we define the lambdas.  

Therefore, cells O4 to O25 are the changing variables lambda 1 through lambda 22.  In columns 

Q to V, on row 4, we define the left hand side of the constraints.  Specifically, the command we 

need to type in cell Q4 is “=SUMPRODUCT(C4:C25,$O$4:$O$25)”, then we can copy and paste 

this command to cells R4 to V4 on the same row.  The symbol “$” in the above command works 

as a cell address fixing indicator.  It will fix the column letter or row number to the right of it 

when the command is being copied and pasted to another cell.  The unfixed column letter and/or 

row number will be automatically updated according to where the original command is copied 

and pasted to.   

 In column Q, on row 10, we define the state number for which we want to evaluate the 

technical efficiency.  On row 12 in the same column, we define the sum of all lambdas, so the 

command in cell Q12 is “=SUM(O4:O25)”. 
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 In columns Q to V, on row 5, we need to fill in the right hand side of the constraints.  

Because the right hand side of the output constraint is the actual output of the state selected, in 

cell Q5 we type command “=INDEX(C4:C25,Q10)”.  The right hand side of the input constraint 

is just the optimal input for the selected state.  So in columns R to V, on row 6, we define the 

optimal level of inputs for the selected state.  Please note that we do not type in any expressions 

in cells R6 toV6 on row 6.  Instead, we define them as changing cells.   

 In columns R to V, on row 8, we define the input price indices for the selected state.  

Specifically, in cell R8 we type command “=INDEX(I4:I25,$Q$10)”, then we copy and paste this 

command to cells S8 to V8 on the same row. 

 Once we define the optimal input levels and input price indices for a selected state, we 

can get the minimum total cost for the state.  In column Q, on row 14, we define the minimum 

total cost by typing command “=SUMPRODUCT(R5:V5,R8:V8)”.  On row 16 in the same 

column, we define the actual total cost by typing command “=INDEX(N4:N25,Q10)”.  At last, 

we define the cost efficiency of the selected state by typing command “=Q14/Q16” into cell Q18. 

 We have finished with inputting information to the spreadsheet, and now we are going to 

fill in the solver parameters.  We select “Solver” from the menu “Data”, a Solver Parameters 

window will pop-up.  In the Set Target Cell box, we type “O14”; in Equal To options, we select 

“Min”; in By Changing Cells box, we type “O4:O25, R5:V5”.  Then we click icon “Add” to 

impose constraints.  In the Add Constraints window, we type “Q4” in the Cell Reference box; in 

the box next to it, we select “>=”; in the Constraint box, we type “Q5”.  Once we have done that, 

we click “Add” to save current constraint and continue for the next constraint.  Now we type 

“R4:V4” in the Cell Reference box on the left; select “<=” in the middle box; type “R5:V5” in the 

Constraint box on the right.  Click “Add”, and start typing the third constraint, which is to type 

“O12” in the Cell Reference box; select “=” in the middle box; type “1” in the Constraint box.  

Now click “OK” to go back to the Solver Parameters window, and then click “Options”.  In the 

Solver Options windows, check “Assume Linear Model” and “Assume Non-negative”, and then 

click “OK”.  The last step, click “Solve” on the right upper corner, Excel Solver will start solving 

the problem and report the result to us once it’s done (which takes less than one second in most 

cases).  If Solver finds an optimal solution, the minimized total cost will be shown in cell Q14, 

and the cost efficiency for the selected state will be shown in cell Q18. 

 Following the above steps, we can investigate the cost efficiency for each individual state 

in the sample.  We can run a Visual Basic macro program in Excel to solve the cost efficiencies 

once for all in the following way.  From the menu on the top, we click “Developer”, and then 

“Insert” in the “Controls” sub-group.  Under the “ActiveX Controls”, we click the leftmost icon 
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on the first row, which is also called “Command Button”.  The arrow cursor now becomes a fine 

cross cursor.  Move the cursor to any blank place on the spreadsheet we are working with, and 

then click and drag to create an icon for the VB macro program on the spreadsheet.  By default, 

the caption of the icon is “CommandButton1”.  We can change it by right click it and then select 

“Properties” from the menu and change the caption to, for example, “Run Macro”.  Now double 

click the command button we created, we go to the VB programming for code editing.  Between 

the lines of “Private Sub” and “End Sub”, we type in the following code: 
For Unit = 1 To 22 
Range("Q10") = Unit 
SolverSolve UserFinish:=True 
Range("W" & Unit + 3) = Range("Q18") 
Next Unit 
 

 Next, in the Microsoft Visual Basic window, we select “Tools” from the main menu, and 

then click “References”.  In the “References – VBAProject” window, select “SOLVER” check 

box and then click “OK”.  If the “SOLVER” check box is not shown in that window, we need to 

do the following: (i) click “Browse…” in that window; (ii) in the “Add Reference” window, look 

in “Local Disk (C:)” then “Program Files” then “Microsoft Office” then “Office 12” then 

“Library” then “SOLVER”, and then select “Microsoft Office Excel Files” at the “Files of type” 

window; (iii) select the file “SOLVER” in the “Add Reference” window and click “Open”; (iv) 

click “OK” in the “References – VBAProject” window. 

 Now we go back to the Excel spreadsheet we are working on.  Click “Design Mode” on 

the menu once, and then click the command button (Run Macro) we created.  The VB macro 

program should start running and cost efficiency scores for individual states will show up in 

column W, on the corresponding rows.  To save our work, we need to save the Excel file as an 

“Excel Macro-Enabled Workbook”. 



 
 
 
                                    Solver Figure 5. Example of Meausring Cost Efficiency in Manufacturing in the Indian States in the year 2004
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5. Relaxing the Convexity Assumption: Free Disposal Hull Analysis 

 

 Among the four assumptions made about the technology, convexity is the strongest. The 

benchmark input-output bundle constructed from a suitably weighted average of the observed 

input-output data is usually not one of the observed bundles. This may leave the practitioner 

uneasy because no firm in the sample is actually found to have produced the benchmark output 

bundle from the weighted average input bundle. By contrast, if a benchmark is an actually 

observed bundle the target is evidently feasible and efficiency measured against any such target is 

clearly more persuasive. 

 Deprins,  Simar , and Tulkens (1984) introduced a revised version of the standard DEA 

model which became known as Free Disposal Hull (FDH) analysis. Their simple modification 

was to restrict each λj to be a 0-1 binary variable.  The FDH version of the output-oriented VRS 

DEA problem (19) is 
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Note that because each λ is either 0 or 1 and at the same time they add up to 1, only one λ would 

be 1 and all others will be zero. That means that a single observed input-output bundle is selected 

as a bench mark for comparison for measuring the efficiency of firm k. The restrictions ensure 

that the benchmark firm will not use any input in greater quantity than firm k. Nor would it 

produce a smaller amount of any output. 

 The problem in (27) is an integer programming problem. In general, integer programming 

problems are more complicated than a standard LP problem. But, as shown in Ray (2004, chapter 

6) there exists a very simple way to obtain the optimal solution of the FDH problem. 

 



 

6. Taking Account of Non-discretionary Variables 

 The quantity of output produced from a given input bundle often depends on a number of 

factors over which the firm has no control. These can be designated as non-discretionary 

variables. In agricultural production, the same input bundle even at its best utilization would 

produce a higher or lower output depending on the amount of rainfall. The farmer has no control 

over it. In education the same bundle of school inputs would produce a higher output (measured 

by standardized test scores) when the level of education or socioeconomic status of the parents of 

the average pupil is higher. Such ‘environmental’ variables cause the frontier to move up or 

down. Unlike the two-sided random shock in a stochastic frontier model, however, these variables 

are observable and can be explicitly accounted for in measuring the technical efficiency of a firm. 

 There are two different approaches to deal with non-discretionary variables in DEA. In 

the first, they are directly incorporated in the DEA model itself. For this, one must first classify 

the non-discretionary variables as favorable or unfavorable. A favorable variable is one that 

increases the maximum output producible from a given input bundle. An unfavorable variable, by 

contrast, lowers the maximum producible output from the same input bundle. It is assumed that 

an increase in the favorable variable or a decrease in the unfavorable variable cannot lower 

output. The standard DEA models are suitably modified in the light of this assumption. Suppose 

that in addition to the n inputs and m outputs we have the information on the level of one 

favorable variable (f) and one unfavorable variable (u) for each firm in the sample. Then the 

revised output-oriented VRS DEA LP model for firm k would become 

 max   ϕ  

s.t.             ∑
=

=≤
N

j
ikijj nixx

1

);,...,2,1(λ

                   ∑
=

=≥
N

j
rkrjj mryy

1
);,...,2,1(ϕλ

                    (54) ∑
=

≤
N

j
kjj ff

1
;λ

                ∑  
=

≥
N

j
kjj uu

1

;λ

                 unrestricted.  ( ϕλλ ;,...,2,10;1
1

Njj

N

j
j =≥=∑

=

)

 43



Because firm k has no less of the favorable variable and no more of the unfavorable variable than 

the hypothetical firm constructed from the weighted average of the observed bundles, it should be 

able to produce as much output as this weighted average would. 

 In the other approach, the non-discretionary variables are treated as separable from the 

inputs and output of the firm. They shift the frontier, which is a function of the controllable inputs 

only, like Hicks-neutral technical change. One uses the usual inputs and outputs of a firm to 

obtain a DEA efficiency score. In a second stage regression these efficiency score is treated as the 

dependent variable and regressed on the non-discretionary variables. An advantage of this 

approach is that one can estimate how a change in any one discretionary variable affects the 

measured efficiency of a firm. Moreover, one need not classify them as favorable or unfavorable 

beforehand. If it is a favorable factor, it should come out with a positive coefficient in the fitted 

regression. Similarly, an unfavorable factor would have a negative coefficient. There is an 

econometric problem with this regression, however. The DEA efficiency scores are by 

construction bounded at unity from above. It is, therefore, a limited dependent variable. A simple 

least squares regression is in appropriate for such a model and the more careful analyst uses a 

Tobit regression4.  

 

 

6. A Summing Up 

 

In this paper we have offered a detailed introduction to the core DEA models that can be used to 

measure technical efficiency, scale efficiency, and overall cost efficiency of a firm. The principal 

appeal of DEA lies in the fact that it creates a benchmark based entirely on observed data for 

comparison and performance evaluation. In particular, there is no prior assumption about the 

nature of factor substitutability that is inherent in an explicit specification of the function form of 

the production or cost function. Of course, the analyst needs to ensure that all of the data come 

from firms that are technologically homogenous. This, it should be pointed out, is often 

misinterpreted to be a special problem for DEA alone. In fact, one should not attempt to fit a 

production function econometrically unless there is reason to believe that the data come from the 

same data generating process. We have paid special attention to what is effectively a tutorial on 

how to write the Excel programs (especially those using VBA Macros) for different kinds of 

DEA models. Once the readers master the art of writing these programs, they can set up and solve 

                                                      
4 While methodologically correct the intuitive meaning of such a regression is not always clear because 
there is no obvious censoring of the dependent variable that would rationalize a Tobit model. 
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all kinds of DEA problems (even those that have not been included in this paper) without having 

to rely on the availability of a prefabricated software. 

Finally, over the past three decades since its original formulation in the OR/MS literature, DEA 

has matured into a full blown nonparametric analytical methodology that provides an alternative 

to the parametric econometric approach to efficiency measurement. There are various other 

applications of DEA that measure profit efficiency, productivity growth over time, measuring 

efficiency in the presence of both good and bad outputs, and so on. It is hoped that this 

introduction will encourage and enable the more enterprising reader to move on to the more 

rigorous and complete books like Färe, Grosskopf, and Lovell (1994), Ray (2004), and Cooper, 

Seiford, and Tone (2007), to name a few. 
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Figure 1 Measuring Output-oriented Technical Efficiency 
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Figure 2  Measuring Input-oriented Technical Efficiency 
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Figure 4 Measuring Scale Efficiency 
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Figure 5 Cost Efficiency and its Decomposition 
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