University of
Connecticut

Department of Economics Working Paper Series

Data Envelopment Analysis for Performance Evaluation: A Chid’s
Guide

Subhash C. Ray
University of Connecticut

Lei Chen
University of Connecticut

Working Paper 2009-38

November 2009

341 Mansfield Road, Unit 1063
Storrs, CT 06269-1063
Phone: (860) 486—3022

Fax: (860) 486—4463
http://www.econ.uconn.edu/

This working paper is indexed on RePEc, http://repec.org/



Abstract
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important feature of this paper is a detailed exposition @f/lto write various
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non-convex Free Disposal Hull (FDH) procedure and the st:@bage regression
analysis that seeks to account for variation in measuredesifty scores due to
external factors.
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DATA ENVELOPMENT ANALYSIS FOR PERFORMANCE EVALUATION:
A CHILD’S GUIDE

In the present age of globalization, efficient utilization of resources is becoming more and more
important for firms to survive and prosper in the face of intense competition from both domestic
and foreign firms. The usual measure of efficiency often relies on a single indicator like output
per worker or business per employee. While easily understood as a convenient measure of
performance, it fails to account for the use of other inputs (like materials, energy, and capital) that
contribute to the output and constitute the bulk of the production costs of a firm. It is imperative
that a comprehensive measure of performance includes all the relevant factors that are important
for production.
In evaluating the performance of a business the owners or the managers would typically like to
know:
e [s the company making the best use of the resources?
e I[s it possible to produce more from the same input bundle? If so, which outputs and how
much more?
e Can the firm economize on the resources used? If so, which inputs and by how much?
e [s the firm’s input-mix consistent with the relative prices of the inputs? If not, which
input should be substituted for what?
o s the firm of the right size? If not, is it too big or too small?
e  Would a potential merger with another specific firm enhance efficiency?

The list goes on.

Even for public sector and not-for-profit private sector agencies engaged in the delivery of public
services, efficiency in resource utilization is of critical importance. Provision of public services
like education or health care involves use of valuable resources as inputs to produce the desired
results as outputs. In that sense, it is like any other production activity. For example, education at
the primary level requires teachers, administrative and support staff, and physical resources
ranging from class room facilities to textbooks and school supplies. These are the inputs of the
educational production process. The outputs on the other hand are the different kinds of cognitive
skills acquired by the pupils. It is not unreasonable to treat the school as a firm that uses these
inputs to produce the stated outputs. There are, however, several respects in which a public

service delivery agency would differ from a commercial firm. First, the outputs here are provided



to the beneficiaries at zero or minimal cost to them. Second, often there are no market prices
available to evaluate the output bundle produced. Even when a subsidized price is charged for any
service, it does not reflect either the marginal benefit to the consumer or the marginal cost to the
producer. Finally, unlike in the case of a commercial product, there is no obvious criterion like
profitability or return on equity that would permit one to evaluate the performance of a public
service provider. Such absence of a clear cut measure of performance works against
accountability and tends to foster corruption and incompetence. It is important, therefore, to
develop suitable measures of performance even when market prices are not available or
substantially distorted through subsidization.

In order to evaluate the performance of any decision making unit — be it a commercial firm, a
non-profit organization, or a government department — one needs to define a best performance.
This can, then, be used as a benchmark for assessment of the actual performance of the unit.
Depending upon the context, it could be the maximum output producible from the input actually
used by the firm with which one compares the actual output, the minimum cost of producing the
observed output of the firm that can be compared to its actual cost, or even simply the maximum
output per unit of input actually observed in a sample. Because there are no engineering norms
defining how much output can be produced from a given input bundle or the minimum quantities
of inputs needed to produce a target output, defining the benchmark becomes an empirical
question.

There are two main approaches available for constructing the benchmark technology from
observed data. The first is a parametric and econometric approach known as Stochastic Frontier
Analysis (SFA) '. The other is the nonparametric method of Data Envelopment Analysis (DEA)
that uses mathematical programming techniques. The objective of this paper is to familiarize the
reader with the economic theoretic foundations of DEA, the various mathematical programming
models that are relevant in specific contexts, and how these models can be solved using an easily
accessible software, the Excel Solver?.

The paper is organized as follows. In section 2 we introduce and distinguish between the three
interrelated but different concepts from production economics — effectiveness, productivity, and
efficiency. Sections 3 and 4 constitute the core of this paper. Section 3 contains both an intuitive
and a technical exposition of the DEA methodology that follows a brief description of the

econometric SFA method in section 3.1. Section 4 offers a detailed and step-by-step instruction

! For a detailed exposition of the SFA methodology see Kumbhakar and Lovell (2000).

? This paper is not meant to be a substitute for the more rigorous books on DEA like Ray (2004) or Cooper,
Seiford, and Tone (2007). Rather, it provides an easier access to the material for those who are more
application-oriented and still would like to understand the methodology in general terms.



how to write an appropriate DEA program for measuring output-oriented technical efficiency,
scale efficiency, and cost efficiency on the Excel Solver. Guidance is also provided on how to
write macros in Visual Basic so that one can evaluate efficiencies of all units at one shot without
having to solve one problem at a time. Section 5 explains how one can use the concept of
dominance to measure efficiency through Free Disposal Hull (FDH) analysis. Section 6 addresses
the question of non-discretionary external factors that can affect the measured efficiency of a

firm. Finally, section 7 offers a summing up.

2. Some Basic Concepts
In the following paragraphs, we consider a number of alternative measures of performance and
describe in details a nonparametric approach that can be applied in a variety of situations and is

especially useful when output and input price data are not available.

2.1 Effectiveness, Productivity, and Efficiency

A provider of public service is said to be effective when it meets or exceeds a pre set
output target. For example, an elementary schooling system is said to be effective when more than
75% per cent of the pupils tested demonstrate an acceptable level proficiency in some
standardized mastery test in reading, writing, and arithmetic. By this measure, the higher the
percentage of students “passing” the test, the better performing is the school. A major
shortcoming of effectiveness as a measure of performance is that it is based solely on the levels of
output and has no relation to the quantities of input used to produce the output observed. A school
or a health care facility could be ineffective and fail to reach the goal simply because it has got a
very limited budget and cannot afford the resources minimally necessary to achieve the goal. An
under-funded agency may be a high performer within the constraints of its limited budget and still
remain ineffective.

By far the most commonly used and also the most easily understood measure of
performance is productivity. In the simple case of a single output produced from a single input, it
is merely the ratio of the output and input quantities. A producer with a higher output per unit of
input used is more productive and is deemed to perform in a superior fashion. Consider this
simple example involving five firms producing a single output y using a single input, labor ( ).

The hypothetical input-output quantities are shown in Table 1.



Firm A |B C D E
Output (y) 10 | 8 16 |9 7
Input (L) 4 |7 12 10 |9
Labor Productivity | 2.5 | 1.14 | 1.33 | 0.90 | 0.77

Tablel. Data for Hypothetical Firms
By this criterion, firm A with the highest labor productivity performs best and firm E does worst.
Note that output per worker or labor productivity is itself a descriptive measure summarizing the
separate pieces of information about the output and the input quantity of a firm into a single ratio
measure. In fact, labor productivity becomes a measure useful for performance evaluation only in
a comparative sense. For example, Firm D with labor productivity equal to 0.90 is found to be a
relatively poor performer only when compared with firms like A, C, and B.

It is seldom the case, however, that only a single input is used to produce the output. To
make this example more realistic we include a second input, capital (K) which was used in
conjunction with labor to produce the output levels shown in Table 1 but were not actually
reported there. The more complete information on the input bundles and the output levels of the

same five firms are now shown in Table 2.

Firm A B C D E
Output (y) 10 8 16 9 7
Labor Input (L) 4 7 12 10 9
Capital Input (K) 9 3 8 6 8

Labor Productivity | 2.5 | 1.14 | 1.33 | 0.90 | 0.77
Capital Productivity | 1.11 | 2.67 | 2.0 | 1.50 | 0.88

Table2. Input and Productivity Data of Hypothetical Firms

This example clearly illustrates the problem associated with using partial productivity measures
to evaluate performance. When productivity is measured as output per unit of capital (rather than
by output per worker) firm B emerges as the best performer while firm A slips to the second
lowest position. The simple fact of the matter is that the output of a firm incorporates the

contribution of both the labor and capital inputs. To use labor productivity to evaluate



performance amounts to ignoring the contribution of capital and shows the more capital intensive
firms in a more favorable light. What we need is an aggregate measure of the inputs and express
productivity as the ratio of output to the aggregate input. But how is the aggregate input to be
constructed? The task would be simple if input prices were available and all firms faced the same
input prices. Suppose that the price of labor was w = 5 and the rental price of capital was » = 10.
Then a measure of overall productivity would be output per unit of the composite input, i.e., the
cost of the input bundle. This of course is the inverse of the average cost. Hence, a firm with a

lower average cost is a better performer.

Firm A |B C D E
Output (y) 10 |8 16 |9 7
Labor Input (L) | 4 7 12 10 9
Capital Input (K) | 9 3 8 6 8

Cost 110 | 65 140 | 110 125
Average Cost 11 | 8.125 | 8.75 | 12.22 | 17.87

Table3. Cost Data for Hypothetical Firms

In this Table 3, we can use average cost to rank the firms in reverse order of performance. Now
firm B with the lowest average cost is the best performer followed closely by firm C. Suppose
that output is measured by the number of pupils who complete the primary education. Then a
school with the lowest cost per pupil completing elementary school is treated as the best
performer and other schools are evaluated using this school as the benchmark.

This approach is quite simple and appeals to common sense. But there are problems.
First, when firms face different prices, average cost is not a meaningful criterion because a lower
average cost may reflect lower input prices rather than higher productivity. Second, and as is
often the case, we may not have appropriate prices of all inputs. In that case, we need to get an
aggregate or total factor productivity measure from the output and input quantities alone.
A natural solution would be to take some average of the partial productivities for a measure of

total factor productivity. For example, the labor and capital productivities of firm A are

A4 _ Ya _ 10 4 _ Y4 _ 10
AP; == andAPK—KA—g.

Define its total factor productivity as the weighted geometric mean

TFP* = (4P Y (aPg )™ (1)



where 5, + [ =1; B, B > 0. Here 3, and S are, respectively, the weights assigned to labor

and capital productivities. For example, if we set £, = 0.6and S, = 0.4, in this example
TFP* =(2.5)°(1.1)" =1.8

Forany firmj (j =4, B, C, D, E)

TFP’ = (y—)ﬂ (y—)ﬂ = %;X ;=LK )

Ly K;
J

Note that here X ;= LfL K /ﬂ “ becomes a measure of aggregate input. We may compare the total

factor productivities of two firms B and A through the productivity index

TFPB _ y%(ls _ y%A QJ’

TFP, %, (Li )ﬂ (ﬁ )ﬁK o )

Ly K4

TFPI, , =

This productivity index is known as the Tornqvist index and is the ratio of an output quantity (Q,)
index and an input quantity index (Qx). If TFPI 4 exceeds unity, B is more productive than A.
Otherwise, A is more productive.

The weights S and Sk are of critical importance in the definition of the aggregate input X
and can have a significant impact on the how the total factor productivity is measured. When cost
information is available, one can use the shares of the labor and capital input in the total cost for
these weights. But when cost shares are not known (or they differ across firms), one must use
judgment in selecting the weights.

We may now take a closer look at the input aggregator function

X:f(LaK):LﬂLKﬂK;ﬂL+ﬂK:1; /BLaﬂK > 0. 4)
It is easy to see that f(L,K) in X can be regarded as a Cobb Douglas production function exhibiting
constant returns to scale. This, however, is a consequence of our decision to take a weighted
geometric mean of the partial productivities as a measure of total factor productivity. In fact, we
could use any production function exhibiting constant returns to scale and non-negative marginal
productivities to define the aggregate input and derive the productivity index.

When the inputs L and K are aggregated through a production function, the total factor
productivity of a firm also becomes its technical efficiency index. The production function

defines the maximum quantity of output that can be produced from a given input bundle. Thus,
Y= f (L o K j)
is the maximum output that can be produced from the input bundle (L, K;). Obviously, the

actually observed output from this input bundle must be no greater than the upper limit. That is



We can define the technical efficiency of the firm ; as

7. =24, (5)

J Vi
But, when the production function is used to define the aggregate input quantity, it serves also as
a measure of total factor productivity. It is important to note, however, that unless the production
function is restricted to be homogeneous of degree 1 (i.e., constant returns to scale holds
globally), the efficiency measure cannot be treated as a productivity measure. This is because, to
serve as a valid input quantity index, apart from being non-decreasing in the individual inputs,
X =f(L,K) must also double whenever both inputs are doubled.

We may now consider a more general production function

y =g(LK) (©6)
where the production function g(L, K) defines the maximum output that can be produced from
some specific input bundle (L, K). The technical efficiency of any firm j producing output y; using
the input bundle (L; K))is

r =2 = <I. @)

J V; g(L K )

Note that technical efficiency shows what fraction of the maximum output producible from the
input bundle used has been actually produced by the firm ;. It sets a benchmark that is appropriate
for the input quantities actually used.

The following example illustrates why efficiency is a more reasonable measure of

performance than effectiveness. Suppose that the production function is

y=2JKL+L (®)

and a firm will be considered effective only if y > 20.Firm 1 produces y, = 28 units of output

and is, therefore, considered effective while firm 2 with y, =15 units of output is not. Now
suppose that the input bundle of firm 1 is (L; = 25, K; = 9). Firm 2’s input bundle, on the other

hand, is (L; =9, K; = 4). According to the production function specified above, the maximum
producible quantities of firms 1 and 2 are, yl =35and y2 =15, respectively. Their

corresponding levels of technical efficiency are

7, =2£=0.80and 7, =12 =1.0.

15
It is clear that the maximum producible output from the input bundle used by firm 2 would be
lower than the targeted minimum of 20 and no firm could be effective if it had to use this input

bundle. On the other hand, firm 1 does exceed the target but is actually under-utilizing its inputs



producing only 80% of the maximally producible output quantity. With 100% technical
efficiency, firm 2 is a better performer. It fails to become effective simply because it has got too
few resources. In order to make it effective, one must provide it with more resources.

In empirical analysis, measuring technical efficiency to evaluate performance requires
estimating the production function g(.) that defines the benchmark output level against which the
actual output is to be compared.

3. Estimation of the Production Function and Measurement of Efficiency

As noted before, there are two principal approaches to production function and efficiency
measurement that are widely used in the literature. The first is an econometric method known as
Stochastic Frontier Analysis (SFA). The other is a non-parametric approach using mathematical

programming techniques and is known as Data Envelopment Analysis (DEA).

3.1 Stochastic Frontier Analysis

Consider the n-input 1-output production technology characterized by the production function
Y =g, Xy, )e". ©)

Here x=(x,, x5, ..., x,) is a bundle of n inputs and u is a two-sided random error representing

favorable or unfavorable random shocks. When u is positive, the maximum output producible

from the input bundle x increases. In the opposite case of a negative value of u the maximum

producible output is lower. Thus the production frontier itself is random. The actual output y is

always on or below the applicable frontier for the realized value of u. This can be expressed as
y=g(x,%,....,x,)e ", —o<v<oo; u>0. (10)
Aigner, Lovell, and Schmidt (ALS) (1977) specified a Cobb Douglas form of the function g(.),

the usual Normal distribution N (O, O'V2 ) for the random shock v and half-Normal distribution

| N(0,5) | for the one-sided technical efficiency term v. The log-linear specification of the

stochastic production function is
n
lnyj=ﬂ0+2ﬂilnxy.+vj—uj. (11)
i=1

ALS derived the log-likelihood function

lnL=C—nlna+iln®(—%)— ! ng., (12)

J=1 J=1

where



g, =v,—u;; A= Z—, o=40, +0];®(.)is the cumulative standard Normal
distribution function, and C is a constant. The model parameters ( B=(B,, ... B,);0. 00 ) can

then be estimated by the maximum likelihood procedure. Jondrow, Materov, Lovell, and Schmidt

pe;A10) v

(1982) have shown that E(u;, | &,) = O'*( -

(e, 770 7) where ¢(.) is the density function of

the standard Normal distribution and o, = 1/% The estimated technical efficiency of firm j

would be

Fo=e (13)

J
where i1, = E(u, | £,).

When a firm produces a vector of outputs rather than a single output, the stochastic
frontier production function cannot be used because a production function is not defined in the
multiple output case. One has to use a cost function for the analytical framework when multiple
outputs are involved. But decomposition of the overall cost efficiency into a technical efficiency

and an allocative efficiency component is by no means straight forward.
3.2 Data Envelopment Analysis and Measurement of Technical Efficiency

Validity of any estimated stochastic production frontier as the benchmark for evaluating
the efficiency of an observed input-output bundle crucially depends on the appropriateness of the
functional form of the estimated model. Choice of the preferred functional specification is often
arbitrary and is driven by computational simplicity and tractability. Additionally the stochastic
distribution of the one-sided inefficiency term (e.g., half-Normal vs. exponential) is a matter of
preference for the analyst. The nonparametric method of Data Envelopment Analysis (DEA)
introduced by Charnes, Cooper, and Rhodes (CCR) (1978) and further generalized by Banker,
Charnes, and Cooper (BCC) (1984) requires no parametric specification of the production frontier
and relies on a number of fairly general assumptions about the nature of the underlying
production technology. Using a sample of actually observed input-output data and these
assumptions, it derives a benchmark output quantity with which the actual output of a firm can be
compared for efficiency measurement.

Any production technology transforming an input bundle x into the output bundle y can be
characterized by the production possibility set

T ={(x, y) : y can be produced from x; x >0, y >0 }. (14)

10



In the 1-output case, the frontier or the graph of the technology is defined by the production
function

g(x)=maxy:(x,y) €T. (15)
That is, for any input bundle x’, g(x’) is the maximum quantity of y that can be produced.
An equivalent definition of the production possibility set would be

T={xy):y<gx);x>0;,y>0} (16)

We have seen that in the parametric stochastic frontier analysis one arbitrarily picks up a
functional form of g(x). For example, ALS specified the Cobb Douglas form. In DEA, one only
makes a number of assumptions about the underlying technology that would be consistent with
many different functional forms of the production function but does not select any particular

function.

Assumptions about the technology

1. All actually observed input-output bundles are feasible. That is every input-output
combination (¥, /) (j=1,2,...,N) in the sample is in 7.

2. The production possibility set is convex. That is if (x’, ') and (x°, )°) are both feasible,
then any weighted average of the two input bundles can produce the corresponding
weighted average of the two output bundles. This would be true for any number of

N N
feasible input-output bundles. Hence, X = Z/ljxj can produce y = Z A ; v’/ for any set
=1 j=1

of non-negative weights 4,(j =1,2,..., N)such that iﬁ,j =1.
J=1

3. Inputs are freely disposable. This means that increasing any input without reducing any
other input would not cause a decrease in the output. More formally, if (x’, ) € T'and
x'>x" then (x’ )’) e T. Note that here we are considering a vector inequality in the sense
that no element of the x” bundle is smaller than the corresponding element of the x”
bundle while some elements may be strictly larger.

4. Outputs are freely disposable. That is if x” can produce y” then it can always produce a

smaller output bundle y'<y”. Formally, if x, y’) € Tand y' <)”, then (x" y') e T.

11



3.3 Technical Efficiency

Consider, to start with, a simple technology for producing a single output (y) from a single input
(x). In Figure 1 the curve Y = g (x) shows the production function or the graph of the technology.
When any point (x’, ) lies on this curve, y’ is the maximum output that can be produced from

input x”. Point P, and P, show the actual input-output quantities (x,;, y,) and (xs ys), respectively,

of two firms 4 and B. Both points lie below the graph. The point PZ on the graph shows that Y: is
the maximum output that can be produced from input x,. Thus, P: shows the benchmark or

reference input-output bundle for firm A. Similarly, P; is the reference bundle for firm B. Define

Y gxy)

= . (17
Y, 7, (17)

A

Then a measure of the performance of firm A is its output-oriented technical efficiency

LGy )=t. (8
The output-oriented technical efficiency shows what proportion of the potential output from x
has actually been realized by firm A. Similarly, the technical efficiency of firm B is measured by

the ratio of Yz and Y, ; . As is apparent from Figure 1, firm B performs better than firm A.

In many situations, however, the output quantity is an assigned task and it is more important to
produce the observed output from the smallest quantity of input than to produce the maximum
output from the observed input quantity. This leads to an alternative measure of performance —

the input-oriented technical efficiency. As shown in Figure 2, the minimum input quantity needed

to produce output y, is xz .Similarly, x; is he minimum input quantity needed to produce yp. It
can be seen that both bundles (xi1 ,y,)and (x; , V) lie on the graph of the technology. That is,
g(x’)=y ,and g(x,)=y,. Define 6§, = % and 6, = ;—Z Then the input-oriented technical
efficiencies of the two firms are

7.(x 00 =0, and

7.(x5,75) =0 (19)
The input-oriented technical efficiency denotes what proportion of its observed input bundle is
actually necessary for producing its observed output. Unless 7, equals unity, the firm is wasting

input.

12



In order to numerically compute the technical efficiency of a firm — whether output- or input-
oriented — one needs to empirically construct the graph of the technology. In the econometric
SFA approach one starts with an explicit specification of a production function and applies the
maximum likelihood estimation procedure to estimate the parameters of the model. There are two
major advantages of this approach. First, one gets the sampling distribution of the parameter
estimates and can use them for hypothesis testing. Second, one can derive the elasticities or other
features of the technology from the estimated model analytically. On the downside, validity of the
entire SFA analysis is contingent on the correctness of the specified functional form which
remains a maintained hypothesis. We now use a simple geometric example to explain how DEA,
the nonparametric alternative, can be used to construct the benchmark frontier without any

explicit specification of a functional form.

A 1-input 1-output Example

Consider the data listed in Table 1. In this 1-input 1-output example, the actual input-output
bundles of the different firms are shown by the points A through E in Figure 1. By assumption
(A1) each of these observed input-output bundles is feasible. Next, by convexity, all points in the
closed area ABEDC are also feasible. Finally, by the free disposability assumptions, all points to
the right of this area and all points below this enlarged area are also feasible. Hence, the graph of
the technology constructed from the data points and the assumptions (A1-A4) is the broken line
FACG. The corresponding production possibility set consists of points on or below this graph.
Now consider the firm D. The maximum output producible from its input (x = 9) is attained at the

point D" on the graph directly above the point D. The point D" is a (0.25, 0.75) weighted average

of the points A and C. Hence the output at D is y; =14.5. Thus, ¢Z =143 and 1, (D) = 0.6209.

A 2-input 1-output Example

The simple geometric approach to construct the graph and to evaluate the output- or input-
oriented technical efficiency of a firm described above can be applied only in the case of 1-input
1-output production. Even when only 2-inputs are used to produce a single output, this simple
diagrammatic approach fails and one must resort to algebra. To illustrate the algebraic approach
we consider the simple 1-output 2-input data shown in Table 2. Suppose that we want to evaluate
the performance of firm £. Now, by assumption 1, each of the five input-output bundles observed

in the sample is feasible. Now construct a weighted average of these input bundles applying

13



weights 0.25 to (L4, Ky), 0.25 to (L¢, K¢), 0.50 to (Lp, Kp), and zero weight to the other two
bundles. The resulting weighted average bundle would be (L,K ) =(9,7.25). The corresponding
weighted average of the output quantities of these firms would be y =8.75. Hence, by

assumption 2, it is possible to produce 8.75 units of the output from 9 units of labor and 7.25

units of capital. But firm £ is using 9 units of labor and 8 units of capital. That is compared to the
average input bundle (Z K ) it is actually using more capital but no less labor. Hence, by free

disposability of inputs (i.e., assumption 3) it is possible to produce 8.75 units of the output from
the input bundle actually used by firm E. It should be emphasized that nowhere have we
suggested that 8.75 is the maximum amount of output producible from the actual input bundle of
firm E. But because 8.75 is a feasible quantity, the maximum cannot be any lower than this

feasible quantity. That is, g(Lg ,Kg) > 8.75. Hence,

e < 1= 0.80.

TE = G,k 3875

But is there any other weighted average of the observed input bundles that does not require more
of either labor or capital than what firm E is using but the corresponding weighted average of the
outputs is even higher than 8.75?

The answer in this case is in the affirmative. In fact, a different weighting scheme with 0.33
assigned to A, 0.67 to B, and 0.6 to C would result in an input bundle (L", K') = (9, 8) which,
coincidentally, is exactly the same bundle that £ is using, but the resulting weighted average of
the outputs would be y* = 16.46667. This implies that g(Lz ,Kz) > 16.46667. With this input-

output bundle as the benchmark the technical efficiency of firm £ would be measured as

7, < e = 0.519802.

This, however, raises more questions. First, how did we get these new set of weights? Second,
how do we know that there is no other weighting scheme that could result in an even higher value
of the weighted average of the outputs without violating the constraint that the weighted average
of the inputs should not exceed either the labor or the capital input used by firm £? Answers to

both of these questions lie in the following linear programming problem:

14



max @

alof Al als )+l

o] I3 L8| Ple| I8 T8
s.t. A,10)+2,(8)+ A.(16)+ A,(9) + A, (7) = p(7); (20)

A+ g+ A+ A, + A, =15

AysAgsAcsAps Ay 20,0 unrestricted.
In this problem, 14 through Az are the weights to be assigned to the individual input-output
bundles. The last two constraints ensure that they are all non-negative and that they do add up to
100%. The first two constraints ensure that the weights chosen are such that the weighted average
of the observed input bundles does not exceed the input bundle of the firm under evaluation
(which is firm E in this example). Finally, the left hand side of the 3™ constraint is the
corresponding weighted average of the observed outputs. Because our objective is to maximize

@ , that can be achieved by selecting the As that maximize the weighted average of the outputs

without violating the other constraints. In this particular case the optimal solution of this LP
problem yields (1), =0.33; 2, = 0.67; 4. = 0.6; 4}, = 1, = 0;p" =1.92)
Hence, an estimate of g(Lz, Kz) is @ v, =13.47. We know that there does not exist any other set

of weights that would yield a higher value of the output without violating the constraints. If there

had been any, the optimal solution would have picked that set of weights. Finally, even though
@ is unrestricted in sign, (1, = 1, = 4. = A, =0; 4, = I;@=1)would be a feasible solution.

Hence, ¢ would never be lower than 1, even though it is unrestricted.

A similar LP problem solved for firm D had an optimal solution with @ =1.42,
Ap =0.4,4. = 0.6 and the other As equal to zero. Hence, the estimated technical efficiency of
firm D was
T, =145 =0.70.

For each of the remaining firms (4, B, and C), q)* was 1 implying that there is no weighted

average of the observed input bundles that could yield a weighted average of the outputs
exceeding the actual outputs of these firms. Thus, based only on these simple assumptions (1)-(4)

and the data, we cannot regard these firms as inefficient.
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A Multiple Output Multiple Input Case

One of the main appeals of DEA is that unlike the frontier production function analysis, it can
easily handle multiple output technologies. It is useful to illustrate this with an example. For this,
we modify the input-output data shown in Table 2 by introducing a second output. The revised

data are presented in Table 4 below:

Firm A |B|C |D |E
Output 1 (y)) 108|169 |7
Output 2 (y») 6 (44 |8 |6
Labor Input(L) (4 |7 [12]10|9
Capital Input(K) |9 |3 |8 |6 |8

Table 4. 2-output 2-input Data for 5 Hypothetical Firms

In order to evaluate the efficiency of firm £ in this 2-output example, we solve the revised LP
problem

AL L
ot A, mw mmc m% mmm > (pm e

A +Ag+ A+ A, + 4, =15
A Az AcsAp, Ay 2 05 unrestricted.

S

In this case, instead of a scalar output, each firm is producing a bundle of two outputs (yi, y2). To
accommodate this, we now have two restrictions for the outputs. In the left hand sides of the 3™

and the 4™ restrictions, we are constructing weighted averages of these individual output vectors
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of the firms in the sample. The optimal solution of this problem yields A, =0.17; 1, =0.83;

* *

A, = = A, = 0. The resulting output and input bundles are, respectively,

(y_1 =9. 17;)72 =7.66)and (L =9;K = 6.5). Note that the weighted average input bundle
consists of the same quantity of L and 1.5 fewer units of K compared to the input bundle of firm
E. On the output side, , =1.31y/ and y, =1.28y5 . The optimal value of ¢ is

¢ =min {yy—lg;j—z;} =1.28.
Note that in the weighted average output bundle y; is 30.95% higher and y, is 27.78% higher than
the quantities of these outputs produced by firm E. Taking the lower of the two, we find that

every output of firm E can be increased by a factor of 1.28 or larger. This is the value of (0*.

In this case, the technical efficiency of firm E is

7, =1+-=0.78.

4
It is easy to see that this is an overly favorable estimate of the efficiency of firm E. This is
because apart from increasing both outputs by 27.78% an additional 3.17% increase would be
feasible for output 1 while at the same time use of the capital input could be cut down from 8 to
6.5 units. The technical efficiency measure shown above does not reflect such further output

increase or input reduction potential.

3.4 An Algebraic Formulation of the DEA Optimization Problem
Let x’ = (x/,x],...,x) be the bundle of n inputs used and y’ = (y/,y7,..., ¥’ ) the bundle of

m outputs produced by firm j (j =1, 2, ...,N). Suppose that k is one of the observed firms and we

wish to measure the technical efficiency of firm k. The observed input output bundle of firm £ is

(x*,y"). The relevant DEA LP problem would be

max @
N
s.t. Z/Ijxl.j <x, (i=12,..,n);
J=1
N
Z/ijy,j >y, (r=12,..,m); (22)
J=1

N
z/ij =1; /7(; >0 (] = 1,2,...,N);(0 unrestricted.

Jj=1

The technical efficiency of firm k£ would be measured by
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=% (23)

where ¢* is the optimal solution of the DEA LP problem above.

Output and Input-Oriented Measures of Technical Efficiency

At this point, it would be useful to formally define the production possibility set constructed from
the sample data set D = {(x, /); j = 1,2, ..., N}. The sample estimate of the underlying production
possibility set 7 is

—

S = {(x,y) 1 X Ziijxj;ys iljyj;i/lf =14, 20(j= 1,2,...,N)}. (24)
J=1 J=1 Jj=

The set S is also described as the free disposal convex hull of the observed input-output vectors.
There are two alternative ways to look at the technical efficiency of a firm that uses the input
bundle x” and produces the output bundle y°. In what is known as the output-oriented approach,
one examines to what extent (if at all) would it be produce to increase the output without
requiring to use any additional input. When multiple outputs are involved (i.e., x’ is a vector of
outputs) without any prior knowledge about the relative significance of the individual outputs in
the bundle, one tries to find out what is the maximum equi-proportionate increase possible in all
outputs in the bundle. It is understood that in specific cases, some individual outputs could be
increased even more than what is implied by the common expansion rate. This was illustrated in
the preceding example analyzing the efficiency of firm E.
A measure of the output-oriented technical efficiency of a firm with observed input-output bundle
o, ¥ is

7} = where ¢ =maxg: (x",pp")eS. (25

Typically, as in the case of public education or provision of health care, providing the services to
more individuals from the actual resources spent is considered more important than lowering the
resources spent (keeping the output at its observed level). In such cases, the output-oriented
technical efficiency is the appropriate measure of performance. It is an unfortunate fact, however,
that government agencies, much like individuals, have limited resources to satisfy competing
needs. More resources devoted to education leaves fewer resources for other services like disaster
relief or construction of infrastructures. In such cases, if it is agreed that the observed output level
meets in some sense an adequate goal, the primary objective would be to reduce the input used to

the extent possible without lowering the output. The inputs saved can then be used to meet other
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goals. When input conservation is regarded as more important than expanding outputs, the

appropriate measure of performance of firm k& would be its input-oriented technical efficiency
i =0 =min@:(&",y")eS. (26)
The relevant DEA LP problem for measuring the input-oriented technical efficiency of firm £ is

min @

N
s.t. D Ax, <k, (i=12,.,n);
j=1

N
z/’tjyrj 2y, (r=12,.,m); (27)

Jj=1

N
Z/Ij =1, 4,20 (j = 1,2,...,N);t9 unrestricted.
j=1

Again, it is easy to see that if (x*, }¥) is an actual observation in the sample, #° will always be less
than or equal to 1. Using the 2-input, 2-output example from Table 4, the input-oriented DEA LP
for firm E had an optimal solution A, = 0.35948,15 = Ap =0.32026, Ac = A =0; 0" =0.76471. This
weighted average of the input bundles of firms A, B, and D would reduce both inputs of firm E to
only 76.471% of their existing levels. More over, it would result in no change in output 1 but an

increase in the quantity of output 2 by 2.03922 units.

3.5 Returns to Scale

None of the four assumptions that we made about the technology had anything to do with returns
to scale. Returns to scale is a property of the frontier of the production possibility set. When a
small equi-proportionate increase in all inputs causes a more than proportionate increase in all
outputs along the frontier, locally increasing returns to scale prevails. Similarly, locally
diminishing returns to scale holds when the proportionate increase in outputs is lower than the
proportionate increase in inputs. In the case of constant returns to scale, outputs and inputs
increase (or decrease) by the same proportion along the frontier. It is possible that the technology
exhibits increasing, constant, or deminishing returns to scale along different segments of the

frontier. This Variable Returns to Scale (VRS) is the more general assumption about the
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production technology. If, however, one assumes that Constant Returns to Scale (CRS) holds
everywhere along the frontier, definition of the production possibility set and the resulting
measure of technical efficiency will change.

An implication of the (global) CRS assumption is that if any input-output bundle (x, y) is
feasible, so would be the bundle (zx, #y) for any non-negative ¢. Take another look at the definition
of the production possibility set S in (21) above. We know that by convexity, any input-output

N N
bundle(x, y) such that x = z/l_ /.xi and y = Zﬂ_ j y’ for a set of non-negative Ajs satisfying

J=1 J=1

/1_ ; =1 will be feasible. If additionally we assume that CRS holds, (#x,#y) will also be feasible

SM-

~
N

N N
for every non-negative . Define 1 = t4;. Then, under CRS, [Z y7] jxj , Z H; ¥’ j is feasible for

J=1 J=1

any set of non-negative zs. In particular, the z4s are not restricted to add up to unity.

Hence, under the assumption of CRS, the corresponding construction of the production possibility

set would be
SC=2(x6y)x2D Axy< D Ay 4,20 =1,2,..,N) . (28)
Jj=1 Jj=1

Here the superscript C indicates that CRS has been assumed. Note the absence of the constraint
that the As would have to add up to unity. This equality constraint will also be removed from the
output- or input-oriented DEA LP problems when CRS is assumed. Removal of a constraint

makes the CRS DEA problems less restrictive than the corresponding VRS models. As a result
(o* will either be higher or stay the same when compared with the optimal solution of the VRS

problem. Similarly, 8" from the CRS problem will be either strictly lower or equal to what is
obtained under VRS. This means that measured technical efficiency under CRS will be less than
or equal to what is obtained under the VRS assumption. Moreover, when CRS is assumed, the
input- and output-oriented measures will be identical. This is not the case under the VRS

assumption.

Scale Efficiency
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In the foregoing discussion of technical efficiency, either the input level or the output level was
treated as given and the objective was to either maximize output from the given input or minimize
input for producing the given output. Obviously, when the output increases but the input
remained unchanged, average productivity increases. Similarly, a reduction in input with
unchanged output also raises productivity. Consider output-oriented technical efficiency in the

1-input 1-output case. If 7,(x,,),) is unity, the ratio

AP, = 20 (29)

Xo
is the maximum average productivity that can be attained at the observed input scale x,. But

suppose that the firm could choose its input level. Then the question would be:

What is the input level x” that maximizes average productivity?
Note that a necessary condition for maximization is

dAP(x)

dx

at x = x". But this implies that locally constant returns to scale holds at x". Frisch (1965) described

0

this as the technically optimal production scale. The scale efficiency of a firm using the input x, is
measured by comparing the efficient average productivity at x, with the maximum average

productivity (attained at x"). The efficient average productivity at x, is

AP (x,) =& (30)

Xo

The maximum average productivity is

AP () =2 31)
X

Thus, scale efficiency at x, is

AP" (x,)

SE(XO) :F(x*). (32)

The concept of scale efficiency and also its measurement can be easily understood from the
diagram in Figure 3. In this 1-input 1-output example, the production function is

g(x)=2x? —4 forx >4; g(x) = 0 from x < 4.
The firm under consideration uses input x, = 9 to produce output y, = 1. Its actual average

productivity is APy = §.But g(x,) = 2. Hence, the firm is not on the frontier. The efficient average
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productivity at the observed input level is AP (x,) = <. This is shown by the slope of the line

0Q,. The maximum average productivity is attained at the point Q" . At the optimal production
scale x" =16, g(x")=4and AP"(x") = 1. Hence,

SE(x) = %
Note that Scale efficiency lies between 0 and 1, by construction. In this example, the measured
value & implies that even at full technical efficiency at its observed input scale of xy = 9, the

average productivity of the firm be(about) 90% of the maximum average productivity that could

be achieved at the optimal input scale x” = 16.

Now consider the ray through the origin

r(x)= %x

which is tangent to the production function g(x)=2x" — 4 at the point Q". Clearly, at Q" the

average and marginal productivities are equal and CRS holds locally. However, if this tangent
line itself had been the production function, there would be CRS globally. Ray (2004) called this
the pseudo production function. Only one point on this tangent line is feasible and that is the
tangency point, Q. Now look at the point R, on this tangent line. Average productivity at O is

the same as the average productivity at R,. Hence,

* DoXo [
AP (Xo) _ o0 _ 0w _Qo¥o _ &%) 5
AP (x") Qoix o Ryxy (o)

Ox,

SE(x,) =

Now, we have already seen that the output-oriented technical efficiency of the firm under
evaluation is

Yo '
g(xy)

Ty(xoayo): (34)

If, on the other hand, one assumed that the technology exhibited CRS everywhere, the frontier
would have been y = r(x) rather than y = g(x). The technical efficiency under the CRS assumption

would be

Yo
”(xo).

75 (X9, ¥y) = (35)
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Hence,

C
SE(x,) = gx) _ 7 (30:20). (36)

r(x,) Ty(xoayo)

1 1
In the present case, z'yc (xg,¥0) = Eand 7,(X0,¥0) = 5 Hence, SE(xy, yp) = § as obtained
4

before.

When the output-oriented DEA LP model for firm E in the 2-input 2-output example

shown before was solved under the CRS assumption, the optimal solution was
A,=03939;4, =4, =4, =0;4, =0.7424;0" =1.3838.

Note that the technical efficiency is strictly lower under the CRS assumption. Further, the A-

weights do not add up to unity in this case. The CRS technical efficiency of firm E was

z'yC (E) =0.72. As seen before, the corresponding VRS efficiency was 0.78. Hence, the scale

efficiency was 0.93.
3.6 Measurement and Decomposition of Cost Efficiency

A widely prevalent misconception among productivity analysts is that DEA may be used in
public sector and non-profit applications where prices are either unavailable or irrelevant. For
market entities trying to minimize cost or maximize profit, one should use an econometrically
estimated parametric cost or profit function to construct the benchmark. The reality is that the
choice between DEA and SFA is decided by one’s willingness (or otherwise) to rely on a specific
functional form of the technology and not by the availability of market prices. In this section we
show how one can use DEA to evaluate the minimum cost of producing the observed output
(bundle) for a firm at given market prices of inputs. Comparing the minimum cost with the actual
cost incurred by the firm yields a measure of its cost efficiency.

A firm minimizes cost when it uses an input bundle that can produce the target output at the
lowest cost at the applicable input prices. The choice, therefore, is only among those input
bundles that can actually produce the desired output. The set of input bundles (x) that can

produce a specified output () is the input requirement set

') = fx:(x,y")eT } 37)
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In the standard textbook example, the input requirement set consists of all input bundles that lie
on or above the isoquant for the given output, y. A 1-output 2-input example of the input

requirement set for the output level 10 is

V(10) = {(x,,x,): £ (x,,x,) >10}. (38)

For example, the input requirement set for the production function

[ x9) = Jx +2yx, (39)

1S

V(10) = {x,,3,)14/x, +24x, 210} (40)

Suppose that the vector of input prices faced by the firm is w” = (w;4, w2).Then the minimum cost
is
C(Wo,y0)=minw°‘x:\/x71+2./x >10. (41)

If the actual input bundle used by the firm is ¥ = (x10, x20) then the actual cost is
= Wig X190 T Wag X20.
Cw’,»")

= (42)

The cost efficiency of the firm can be measured as =

Figure 4 provides a simple graphical illustration of measuring cost efficiency. In the diagram the
curve f(x;, x») =)' is the isoquant for the output level y’. All points on and above this curve are
in V()). Point A shows the actual input bundle of the firm. The expenditure line EF through the
point A is the iso-cost line

Wig X+ Wagx2 = C'. (43)
If the firm could eliminate its input-oriented technical inefficiency by scaling down both inputs

by the factor 1, (=0) it could move to the input bundle B on the isoquant. The iso-cost line GH

through B shows the cost of this technically efficient bundle (x; = &¢;x] = 6&)):
WX +wyx; =CT, (44)

Once technical inefficiency has been removed, the only way any further reduction in cost (if

possible) must through a trade off between the inputs. Given the input prices, the cost efficient
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point C is the point of tangency between the isoquant and the iso-cost line JK. The minimum cost

1S

C" = CW",¥°) = X, + Wy, (45)

In this diagram, cost efficiency is

C(wo,yo) OD
= = . 46
v o O (46)

This can be decomposed as

_OD OB OD

_Ob_0B 0D 47
"= 04" 04 0B “7)

OB OB
Here a = @ is the technical efficiency and a = o is the allocative efficiency.

In order to operationalize this measurement and decomposition of cost efficiency, one needs to
construct the relevant isoquant for the target output level. When an explicit specification of the

production function is available, one can simply look at the graph of the implication function

S(x1, x3) :yo. (43)

In DEA, however, we proceed through the input requirement set for y':

Vo) ={x:(x,)") e T}. (49)

If we use the empirically constructed set, S, for T:

N N N
V(') = {x x2Y Ax iy <Y Ay Y A =14, 20() = 1,2,...,N)}. (50)
J=1

I= j=1

The minimum cost, C(w”’, »°) can be obtained as

14
* .
C = min Zwioxl.j
i=l

N
s.t. Z/Ijxl.j <x, (i=12,..,n);
j=1
N
zﬂ‘,y,j >y, (r=12,..,m); (51)

Jj=1

N
YA, =1 4,20 (j=12,..,N).

Jj=1
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A 1-output 2-input Example

Consider the data from Table 3 above. Suppose that we wish to evaluate the cost efficiency of
firm D in the sample. It uses the input bundle (L, =10, Kp = 6) and produces output yp =9. At
input prices (w=5, r=10) its actual cost is 110. To obtain its minimum cost we solove the DEA
LP problem:
min C=5L + 10K

st. 4, + 74, +124. +104, +94, <L;

94, +34, +84, +64, +81, <K;

104, +84, +164. +94, +74, 29; (52)

A+ A, + A+ A, + A, =]

Ay g, Aes Ap, Ay 20.

The optimal solution for this LP problem is
(X, =4, =4, =0;1, =0.875,1. =0.125);(L =7.635,K =3.635);C" =74.375.}.
Thus, the cost efficiency of firm D is

74375
P =0

This implies that it is possible to produce the observed output level of D at only 67.6% of its

=0.676.

actual cost. The input-oriented technical efficiency obtained by solving the relevant DEA LP

problem was 6, = 0.707. Hence, the allocative efficiency was o, = Yp _ 0.956. This implies
D
that about 30% of the cost could be reduced by simply eliminating technical inefficiency without

altering the input ratio. A further 5% reduction could be achieved by changing the input-mix.

5. DEA on Excel Solver
In this section we offer a step by step instruction on how to write the programs for various kinds
of DEA models for Excel Solver. Specifically, first we show examples of DEA models for
measuring output-oriented VRS technical efficiency of individual firms in the 1-output 2-input

and 2-output 2-input cases. Then we explain how one can write Macro commands in Visual Basic
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in order to measure efficiency of all units in the sample all at once. Then we describe the
programs for measuring cost efficiency both for a single firm and for all firms at once using a
Macro.

1-output 2-input ourput oriented Technical Efficiency

We consider the empirical example of one-output two-input output-oriented DEA TE
model with the data from Table 2. The model is specified in equation (20). To solve this LP
problem in Excel, we first import the data to an Excel spreadsheet as shown in the Solver Figure
1. Column A records the firm’s name. Column B shows the firm’s number according to its
appearance in column A. Column C to column E shows the original data for the output and
inputs. In column F, we define the lambdas. Therefore, cells F4 to F8 are the changing variables
lambda 1 through lambda 5. In columns H to J, on row 4, we define the left hand side of the
constraints. Specifically, the command we need to type in cell H4 is

“=SUMPRODUCT(C4:C8,$F$4:$F$8)”.
Next, we can copy and paste this command to cells 14 to J4 on the same row. The symbol “$” in
the above command works as a cell address fixing indicator. It will fix the column letter or row
number to the right of it when the command is being copied and pasted to another cell. The
unfixed column letter and/or row number will be automatically updated according to where the

original command is copied and pasted to.

In column H, on row 6, we identify the firm for which we want to evaluate the technical
efficiency. In Excel, the VLookup function searches for value in the left-most column of
table array and returns the value in the same row from another column in the table array based

on the index_number. The syntax for the VLookup function is’:
VLookup(value, table array, index number).

On row 7, we find the associated serial number for the firm using the command

? An excellent reference for advanced Excel functions is Powell and Baker (2007)
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“=VLOOKUP(H6,A4:B8,2)”.

In the present case, as shown in Solver Figure 1 below, the array (B4:B8) contains the names of
the firms and their serial numbers. In cell H6 we have entered the firm name, E. Hence, the
VLOOKUP command finds the row in the first column of the specified array that contains the
entry E. This is Row 7. Then it finds the entry in the 7" row of the 2™ column of the array. This is
the value 5 in cell B7.

On row 8, we define the sum of all lambdas, so the command in cell HS is “=SUM(F4:F8)”. On
row 9 in the same column, we define value of phi which is the objective function of the LP
problem. Note that cell H9 is also a changing variable. Cell H10 shows the technical efficiency
of the selected firm. It equals the inverse of the maximized phi in cell H9. Thus the formula in

cell H10 is “=1/H9”.

On row 5, we need to fill in the right hand side of the constraints. In Excel, the Index
function returns the value of an element in a table or an array selected by the row and column

number indexes. The syntax for the Index function is:
Index(array, row_number, column_number ),

where array is a range of cells or table; row_number is the row number in the array to use to
return the value; column_number is the column number in the array to use to return the value

(optional if the array is a single column array).

Because the right hand side of the output constraint is defined as the actual output of the selected

firm multiplied by phi, in cell H5 we type command “=INDEX(C4:C8,H7)*H9”.

In the present case, the array is a single column (C4:C8). The entry in cell H7 identifies the
relevant row (Row 5). Thus, it picks up the output of firm E, the unit under evaluation. This is

multiplied by the entry in cell H9 which contains the value of ‘phi’.

The right hand side of the input constraint is just the actual input for the selected firm. So in cell
I5 we type “=INDEX(D4:D8,$H$7)”, and then copy and paste this command to cell J5 on the
same row.

We have finished with inputting information to the spreadsheet, and now we are going to

fill in the solver parameters. For this, we first select “Solver” from the menu “Data”, a Solver
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Parameters window will pop-up. In the ‘Set Target Cell’ box in this window, we type “H9”’;
among the ‘Equal To’ options, we select “Max”; in the ‘By Changing Cells’ box, we type “F4:F8,
H9”. Then we click the icon “Add” to impose constraints. In the ‘Add Constraints’ window, we
type “H4” in the ‘Cell Reference’ box; in the box next to it, we select “>="; in the ‘Constraint’
box, we type “H5”. Once we have done that, we click “Add” to save current constraint and
continue to the next constraint. Now we type “I4:J4” in the Cell Reference box on the left; select
“<="1in the middle box; type “I5:J5” in the Constraint box on the right. Click “Add”, and start

e__%

typing the third constraint, which is to type “H8” in the Cell Reference box; select in the
middle box; type “1” in the Constraint box. Now click “OK” to go back to the Solver Parameters
window, and then click “Options”. In the Solver Options windows, check “Assume Linear
Model” and “Assume Non-negative”, and then click “OK”. The last step, click “Solve” on the
right upper corner, Excel Solver will start solving the problem and report the result to us once it’s
done. If Solver finds an optimal solution, the optimized value of phi will be shown in cell H9,
and the technical efficiency for the selected firm will be shown in cell H10.

In this example, we first evaluate firm E’s technical efficiency by typing “E” in cell H6

and solving the LP problem in Solver. The result is shown in the following figure:

A | i [ ( | D [ | i | G | H | | | ] | K
1 One-output Two-input DEA Model
= =INDEX(DA:DB,SHS7) =SUMPRODUCT(C4:C8,5F54:5F58)
EX Firm Firm # Output (¥) Labor (L) Capital (K) A Y / L K
Z A 1 10 a 9 0.33 LHS 13.47 9 8
| 5| [ ? 8 7 3 0.07 RHS 13.47 9 &
| 6] C 3 16 12 8 0.6 Firm E ™ <INDEX{CA:C8,H7)*H9
7 o] 4 9 10 [ [4] Firm ## 5 “__
8 E 5 7 ] 8 0 sum of A 1.00 =VIOOKUP(HE,AMBE,2)
| 10| TE 0.520
1] =1/H9
12

Solver Figure 1: Measuring TE of firm E

We can evaluate firm D’s technical efficiency by simply changing “E” to “D” in cell H6 and
resolving the LP problem in Solver (without changing the Solver Parameter setup). The result is

shown in the following figure:

A [ B [ C [ D [ E [ F G H I J K
|1 One-output Two-input DEA Model
2
Z Firm Firm # Gutput (Y) Labor (L) Capital (K) A Y L K
4 A 1 10 4 9 0 LHS 12.80 10 6
E B 2 8 7 3 0.4 RHS 12.80 10 a6
6 C 3 16 12 3 0.6 Firm D
Z D 4 9 10 6 0 Firm # 4 — Change here to "D"
8 E 5 7 9 3 0 Sum of A 1.00
o P
|10 TE 0.703
[11]
12
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Solver Figure 2. Measuring the TE of Firm D

2-output 2-input Example

Next, we consider the empirical example of two-output two-input output-oriented DEA
TE model with the data from Table 4. The model is specified in equation (21). To solve this LP
problem in Excel, we first import the data to an Excel spreadsheet as shown in the Solver Figure
2. Column A records the firm’s name. Column B shows the firm’s serial number according to its
appearance in column A. Column C to column F shows the original data for outputs and inputs.
In column G, we define the lambdas. Therefore, cells G4 to G8 are the changing variables
lambda 1 through lambda 5. In columns I to L, on row 4, we define the left hand side of the
constraints. Specifically, the command we need to type in cell 14 is
“=SUMPRODUCT(C4:C8,$G$4:$G$8)”, then we can copy and paste this command to cells J4 to
L4 on the same row.

In column I, on row 6, we define the firm for which we want to evaluate the technical
efficiency. On row 7, we find the associated serial number to the firm using the command
“=VLOOKUP(16,A4:B8,2)”. On row 8, we define the sum of all lambdas, so the command in
cell H8 is “=SUM(G4:G8)”. On row 9 in the same column, we define value of phi, which is the
objective function of the LP problem. Notice that cell H9 is also a changing variable. Cell 110
shows the technical efficiency of the selected firm. It equals the inverse of the maximized phi in
cell 19. Thus the formula in cell H10 is “=1/19”.

On row 5, we need to fill in the right hand side of the constraints. Because the right hand
side of each output constraint is defined as the actual output of the selected firm times phi, in cell
I5 we type command “=INDEX(C4:C8,$1$7)*$1$9”, and then copy and paste this command to
cell J5. The right hand side of each input constraint is just the actual input for the selected firm.
So in cell K5 we type “=INDEX(E4:E8,$1$7)”, and then copy and paste this command to cell L5.

We have finished with inputting information to the spreadsheet, and now we are going to
fill in the solver parameters. Now we select “Solver” from the menu “Data”, a Solver Parameters
window will pop-up. In the Set Target Cell box, we type “19”; in Equal To options, we select
“Max”; in By Changing Cells box, we type “G4:GS8, 19”. Then we click icon “Add” to impose
constraints. In the Add Constraints window, we type “14:J4” in the Cell Reference box; in the
box next to it, we select “>="; in the Constraint box, we type “I15:J5”. Once we have done that,
we click “Add” to save current constraint and continue for the next constraint. Now we type
“K4:L4” in the Cell Reference box on the left; select “<=" in the middle box; type “K5:L5” in the
Constraint box on the right. Click “Add”, and start typing the third constraint, which is to type
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“I8” in the Cell Reference box; select “=" in the middle box; type “1” in the Constraint box. Now
click “OK” to go back to the Solver Parameters window, and then click “Options”. In the Solver
Options windows, check “Assume Linear Model” and “Assume Non-negative”, and then click
“OK”. The last step, click “Solve” on the right upper corner, Excel Solver will start solving the
problem and report the result to us once it’s done. If Solver finds an optimal solution, the
optimized value of phi will be shown in cell 19, and the technical efficiency for the selected firm
will be shown in cell 110.

In this 2-output 2-input example, we evaluate firm E’s technical efficiency by typing “E”

in cell 16 and solving the LP problem in Solver. The result is shown in the following figure:

a [ s [ ¢ [ o [ & [ ® [ e [ w ] [ o [ « [ ¢ T m
1 Two-output Two-input DEA Model
B =INDEX(C4:C8,5157)*5159 =SUMPRODUCT(C4:C8,5G5$4:5G$8)
3 Firm Firm#  Output(Yy) Output(Y) Labor(L) Capital (K) A Y, / Y2 L K
4 A 1 10 6 4 9 0.17 LHS 9.17 7.67 9 6.5
5 B 2 8 4 7 3 0 RHS 8.94 7.67 9w 8
6 C 3 16 4 12 8 0 Firm E INDEX(E4:£8,5157)
7 D 4 9 8 10 6 0.83 Firm # 5 —
8 E 5 7 6 9 8 0 Sum of A 1.00 «_ =VLOOKUP(16,A4:B8,2)
2 Phi [ 1278 | =SUM(G4:68)
10 TE 0.783
11 =1/19
12

Solver Figure 3: Measuring TE of Firm E (Multiple-output, Multiple-input case)

In the above examples, we show how one can solve the DEA efficiency evaluation problems for
the individual firms — one firm at a time. However, when the sample size is large this can be quite
time consuming and burdensome. It is useful to write a set of Macro commands that will program
Solver to evaluate the efficiencies of all firms in a single run. In the next section we use a sample
data set from Indian pharmaceutical firms in an example that explains how to write a Visual Basic

Macro for measuring output-oriented technical efficiency.
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A Visual Basic Macro

Empirical Example of Using Excel Solver to Solve DEA Models

We consider the output-oriented DEA TE model and use sample data from a number of
Indian pharmaceutical companies in the empirical example. This data set includes 80
observations. We consider one output (Y) and four inputs (material M, fuel F, labor L, and capital

K). The DEA model can be expressed as the following:
max ¢

N
_AY, =Y,

j=1J

N N
zj:l AM, < Mo;zjzl A F; < By

s.t. N - (53)
DAL <Ly MK <K

N .
DA =hA,20,(=1,2,..,N).

To solve the above LP problem in Excel, we first import the data to an Excel spreadsheet
as shown in the Solver Figure 3. Column A records the firm number. Column B to column F
shows the original data for the output and inputs. In column G, we define the lambdas.
Therefore, cells G4 to G83 are the changing variables lambda 1 through lambda 80. In columns I
to M, on row 4, we define the left hand side of the constraints. Specifically, the command we
need to type in cell 14 is “=SUMPRODUCT(B4:B83,5G$4:3G$83)”, then we can copy and paste
this command to cells J4 to M4 on the same row. The symbol “$” in the above command works
as a cell address fixing indicator. It will fix the column letter or row number to the right of it
when the command is being copied and pasted to another cell. The unfixed column letter and/or
row number will be automatically updated according to where the original command is copied
and pasted to.

In column I, on row 7, we define the firm number for which we want to evaluate the
technical efficiency. On row 9, we define the sum of all lambdas, so the command in cell 19 is
“=SUM(G4:G83)”. Onrow 11 in the same column, we define value of phi, which is the
objective function of the LP problem. Notice that cell I11 is also a changing variable. Cell 113
shows the technical efficiency of the selected firm. It equals the inverse of the maximized phi in

cell I11. Thus the formula in cell 113 is “=1/111".
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On row 5, we need to fill in the right hand side of the constraints. Because the right hand
side of the output constraint is defined as the actual output of the selected firm times phi, in cell
I5 we type command “=INDEX(B4:B83,17)*I111”. The right hand side of the input constraint is
just the actual input for the selected firm. So in cell J5 we type “=INDEX(C4:C83,$1$7)”, and
then copy and paste this command to cells K5 to M5 on the same row.

We have finished with inputting information to the spreadsheet, and now we are going to
fill in the solver parameters. First, we need to make sure Solver is available for use. In Excel
2007, in the main menu tab on the top, if we select “Data”, we should see “Solver” in the sub-
group of “Analysis” on the rightmost. If it is not there, we have to do the following: (i) go to the
left-upper corner of the window, click “Office Button” once, and then click “Excel Options™ at
the bottom; (ii) in the Excel Options window, click “Add-Ins” in the left menu column, and then
in the Manage box, select “Excel Add-ins” and click “Go”; (iii) In the Add-Ins available box,
select the “Solver Add-in” check box, and then click “OK”.

Now we select “Solver” from the menu “Data”, a Solver Parameters window will pop-up.
In the Set Target Cell box, we type “I117; in Equal To options, we select “Max”’; in By Changing
Cells box, we type “G4:G83, I111”. Then we click icon “Add” to impose constraints. In the Add
Constraints window, we type “I4” in the Cell Reference box; in the box next to it, we select “>=";
in the Constraint box, we type “I5”. Once we have done that, we click “Add” to save current
constraint and continue for the next constraint. Now we type “J4:M4” in the Cell Reference box
on the left; select “<=" in the middle box; type “J5:M5” in the Constraint box on the right. Click
“Add”, and start typing the third constraint, which is to type “I9” in the Cell Reference box; select
“="in the middle box; type “1” in the Constraint box. Now click “OK” to go back to the Solver
Parameters window, and then click “Options”. In the Solver Options windows, check “Assume
Linear Model” and “Assume Non-negative”, and then click “OK”. The last step, click “Solve” on
the right upper corner, Excel Solver will start solving the problem and report the result to us once
it’s done (which takes less than one second in most of cases). If Solver finds an optimal solution,
the optimized value of phi will be shown in cell 11, and the technical efficiency for the selected
firm will be shown in cell 113.

Following the above steps, we can investigate the technical efficiency for each individual
firm in the sample. However, it becomes tedious when the total number of firms is large. One
solution to this problem is that we can run a Visual Basic macro program in Excel to solve the
technical efficiencies once for all. To import the VB macro program, we first need to have the
Developer tab on the main menu. If it is not there, we can do the following: (i) go to the left-

upper corner of the window, click “Office Button” once, and then click “Excel Options™ at the
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bottom; (ii) in the Excel Options window click “Popular” in the left menu column then select
“Show Developer tab in the Ribbon check box on the right, and then click “OK”.

Now we have the tab Developer showing on the menu. We click “Developer”, and then
“Insert” in the “Controls” sub-group. Under the “ActiveX Controls”, we click the leftmost icon
on the first row, which is also called “Command Button”. The arrow cursor now becomes a fine
cross cursor. Move the cursor to any blank place on the spreadsheet we are working with, and
then click and drag to create an icon for the VB macro program on the spreadsheet. By default,
the caption of the icon is “CommandButton1”. We can change it by right click it and then select
“Properties” from the menu and change the caption to, for example, “Run Macro”. Now double
click the command button we created, we go to the VB programming for code editing. Between

the lines of “Private Sub” and “End Sub”, we type in the following code:

For Unit=1 To 80

Range("I7") = Unit

SolverSolve UserFinish:=True
Range("N" & Unit + 3) = Range("113")
Next Unit

Next, in the Microsoft Visual Basic window, we select “Tools” from the main menu, and
then click “References”. In the “References — VBAProject” window, select “SOLVER” check
box and then click “OK”. If the “SOLVER” check box is not shown in that window, we need to
do the following: (i) click “Browse...” in that window; (ii) in the “Add Reference” window, look
in “Local Disk (C:)” then “Program Files” then “Microsoft Office” then “Office 12" then
“Library” then “SOLVER?”, and then select “Microsoft Office Excel Files” at the “Files of type”
window; (iii) select the file “SOLVER” in the “Add Reference” window and click “Open”; (iv)
click “OK” in the “References — VBAProject” window.

Now we go back to the Excel spreadsheet we are working on. Click “Design Mode” on
the menu once, and then click the command button (Run Macro) we created. The VB macro
program should start running and technical efficiency scores for all firms will show up in column
O, on the corresponding rows. To save our work, we need to save the Excel file as an “Excel

Macro-Enabled Workbook™.
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T
m|p|w|u‘>—\|c|\°|w“““ m| m| J}-|W‘M| H|

20

A B C D E F G H 0 T« T o T wm T N
Data for Indian Pharmaceutical Companies =SUMPRODUCT{B4:883,G54:56$83)
Firm # Y m F L K A 4 M F L K TE
1 79.72 2113 219 246 5717 0 LHS 1840427 7195023 0.36302 1003808 6652726 0.311748
8518 1747 248 263 104.64 0 RHS  184.9427 7195023 096432 1903808 106799 0.322009
3 85.23 7.20 0.96 1.80 106.80 0 \ 0.460847
4 90.89 1169 151 279 56.96 0 Firm # 3 =INDEX(B4:B83,5157) 0.401099
5 9539 16.55 1.09 174 8256 0 0433172
6 10228 1409 6.98 407 23660 0 Sum of A 1 =INDEX(B4:B83,17)*I111 0.323032
7 10344 1623 276 3.89 144 96 0 \ 0.325464
8 10371 2886 0.19 1.28 2143 0 Phi SUM(G4:683) 1
9 10641 2369 2.60 6.09 93.72 0 0.253524
10 10789 4014 077 058 1486 0 TE 046087 < [ 1
1 110.64 6.44 023 0.34 3152 [0.805247 = 1
12 11588 1553 7.94 503 147.06 0 0.218236
13 12451 1920 2443 359 344.14 0 G EES 0.389018
14 12975 2948 408 515 167.84 0 0.300446
15 13219 3711 2.03 439 142.87 0 0.311306
186 12420 1301 129 7.90 48.85 0 0.472698
17 12076  51.88 276 1.20 89.28 0 0.589598
18 14113 4790 212 337 6247 0 0.426918
19 14754 1136 0.90 10.04 60.19 0 0.480232
20 158.81 4163 7.78 451 12567 0 0.372452
21 16273 65.19 1.35 0.82 92.04 0 0.864975
22 166.86  54.99 495 471 210.04 0 0.224917
23 17470 4801 11.80 505 46054 0 0.330916
24 176118 2340 1029 9.78 474 68 0 0.289567
25 17787 1431 161 1002 12817 0 0.260907
26 17861 5323 0.37 1.80 103.50 0 0.621948
27 19534 6576 0.13 134 38.73 0 1
28 20312 B743 2.03 1.94 154 68 0 0614363
29 20535 4109 3.09 445 97.91 0 0.504318
a0 20842 3957 3.44 .04 96.09 0 0.286961
a1 21477 1466 2.06 1299 138.98 0 0.297327
a2 22065 2345 12.15 699 309214 0 0.445945
33 22567  B527 717 347 22025 0 0.504481
34 23812 8212 325 559 34169 0 0.367653
a5 24288 6543 4651 900 201481 0 0.313412
36 24352 6154 2.09 347 187 56 0 0.572629
a7 25304  79.88 264 375 113.65 0 0.603964
a8 26638 5431 585 1062 34551 0 0.338332
9 26760 7514 9.55 649 117894 0 0.370172
40 29031 8842 293 315 20446 0 0.651299
41 29381 10176 1.70 172 4416 0 1
42 32594 5548 2.96 17.03 19267 0 0.358674
43 33335 4109 469 1924 27942 0 0.408714
44 32415 6343 15.98 8.04 743,63 0 0.458917
45 35373 8304 9.06 373 181.21 0 0771182
46 354.90 9640 7.49 886  476.18 0 0.288312
47 38407 6035 534 1110 21958 0 0.464546
48 39052 12148 248 375 81453 0 0681219
49 397561 5028 2401 1481 133227 0 0.460857
50 40249 5626 8.10 1946 22613 0 0.424058
51 40529 3176 3.95 1932 27945 0 0543991
52 43017 4176 6.85 4317 23008 0 0502928
53 44976 12689 276 481 208.23 0 0.720389
54 464.37 165 0.48 .70 169.79 | 0.179385 1
55 49222 6673 8.65 2166 47277 0 0.487789
56 53301 11799 1896 1485 35333 0 0.493084
57 551.93 10841  47.16 834 834016 0 0.602196
58 55560 16448 2067 27235 212022 0 0.497204
59 55866  093.13 18.84 882 47992 0 0.622303
80 59974 5456 582 2343 61825 0 0638991
81 82271 4833 2122 3870 59758 0 0698945
62 680.78 13230 1173 4275 13427.16 0 0591173
63 70191 12291 405 3363 456222 0 0.629462
64 736.90 22878 1250 1269 53833 0 0687339
85 76098 11131 3076 3887 78701 0 0664123
66 76427 27133 087 537 25177 0 1
67 776.02 18556 1729 69.98 99969 0 0.667076
68 78767 2851 7.30 3058 53902 0 1
89 79238 3249 058 3405 7392 0 1
70 81652 11160 620 451 69558 [0.015368 1
71 83383 22667  18.90 1666  £99.41 0 0.770179
72 84013 10914  5.14 4066 28358 0 0.766324
73 88269 16227 2642 2575  1300.00 0 0.793159
74 89942 34615 2109 2124 129249 0 0.818016
75 90392 16192 2060 3786 1224238 0 0.726264
76 97258 23882 341 2766  768.79 0 0.889712
77 103769  83.04 174 2699  219.07 0 0.966362
78 104817 37779 1295 7.01 701.87 0 1
79 108163 7925 177 1521 187.87 0 1
80 116321 10471 1340 4277 72052 0 1

Solver Figure 3. Technical Efficiencies of Indian Pharmaceutical Firms
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Example of Measuring Cost Efficiency

We consider the empirical example of one-output two-input cost DEA model with the
data from Table 3. The model is specified in equation (52). To solve this LP problem in Excel,
we first import the data to an Excel spreadsheet as shown in the Solver Figure 4. Column A
records the firm’s name. Column B shows the firm’s number according to its appearance in
column A. Column C to column E shows the original data for the output and inputs. Column F
records the total cost for each firm given the input prices wp =5 ans wx = 10. In column G, we
define the lambdas. Therefore, cells G4 to G8 are the changing variables lambda 1 through
lambda 5. In columns I to K, on row 4, we define the left hand side of the constraints.
Specifically, the command we need to type in cell 14 is “=SUMPRODUCT(C4:C8,$G$4:3G$8)”,
then we can copy and paste this command to cells J4 to K4 on the same row.

In column I, on row 7, we define the firm for which we want to evaluate the cost
efficiency. On row 8, we find the associated number for the firm using the command
“=VLOOKUP(17,A4:B8,2)”. On row 9, we define the sum of all lambdas, so the command in
cell 19 is “=SUM(G4:G8)”. On row 10 in the same column, we record the actual total cost. The
command in cell 110 is “=INDEX(F4:F8,18)”. Cell 111 shows the optimal total cost of the
selected firm. Therefore the command in cell 111 is “=SUMPRODUCT(J5:K5,J6:K6)”. We
define the DEA cost efficiency as the ratio of the actual cost to the optimal cost. Thus the
command in cell 12 is “=I11/110".

On row 5, we need to fill in the right hand side of the constraints. Because the right hand
side of the output constraint is the actual output of the selected firm, in cell I5 we type command
“=INDEX(C4:C8,18)”. The right hand side of the input constraint is the optimal quantity of each
input for the selected firm. Notice that cells J5 and K5 are also changing variables. We record
the input prices on row 6 under columns J and K.

We have finished with inputting information to the spreadsheet, and now we are going to
fill in the solver parameters. Now we select “Solver” from the menu “Data”, a Solver Parameters
window will pop-up. In the Set Target Cell box, we type “I11”; in Equal To options, we select
“Min”; in By Changing Cells box, we type “G4:G8,J5:K5”. Then we click icon “Add” to impose
constraints. In the Add Constraints window, we type “I4” in the Cell Reference box; in the box
next to it, we select “>="; in the Constraint box, we type “I15”. Once we have done that, we click
“Add” to save current constraint and continue for the next constraint. Now we type “J4:K4” in
the Cell Reference box on the left; select “<=" in the middle box; type “J5:K5” in the Constraint
box on the right. Click “Add”, and start typing the third constraint, which is to type “I9” in the

e__%

Cell Reference box; select in the middle box; type “1” in the Constraint box. Now click
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“OK” to go back to the Solver Parameters window, and then click “Options”. In the Solver
Options windows, check “Assume Linear Model” and “Assume Non-negative”, and then click
“OK”. The last step, click “Solve” on the right upper corner, Excel Solver will start solving the
problem and report the result to us once it’s done. If Solver finds an optimal solution, the
minimized value of total cost will be shown in cell [11, and the cost efficiency for the selected
firm will be shown in cell 112.

In this example, we first evaluate firm D’s cost efficiency by typing “D” in cell [7 and

solving the LP problem in Solver. The result is shown in the following ﬁgure:

A | B | C | i | E | F | G K | L

Optimal Cost 74375 INDEX{FA:F8,18)

Cost Efficiency  0.676 \ =SUMPRODUCT{J5:K5,16:K6)
m 111/110

+ One-output Two-input Coat DEA Model, =INDEX(CA:C8,18) =SUMPRODUCT(C4:C8,5G54:5G58)
T Firm Firm # Output (Y)  Labor (L)  Capital (K}  Total Cost A / K
T A 1 10 4 9 110 0 LHS \ ?b}'"} 3.625
5] B 2 8 7 3 65 0.875 RHS !bb
L C 3 16 12 8 140 0.125 Illput Price 10
) = R P T
Z Sum of A 1.00 &—— =SUM{G4:GE)

10 Actual Cost 110
1]
2]

-
w

l

Solver Figure 4. Measuring Cost Efficiency of Firm D
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A VBA Macro for Measuring Cost Efficiency

In this example, we solve a Cost DEA model and apply the data for Indian manufacturing
industry in the empirical example. This data set includes 22 observations. The input-outputs are
the average (or per establishment data) obtained from the Annual Survey of Industries for the
year 2004. We consider one output (Y) and five inputs (capital K, production labor L, non-
production labor L,, fuel F, and material M). We also have the price information for each input
(Wi, w1, wa, wy, and w,, are price indices for the above five inputs respectively). The DEA model

can be expressed as the following:

min ~ wK+wL +w,L, +w F+w,M

N N
LAY 22X 4K <K

j=1J

N N
zf:l ;thU = L15z,f:1 ;thZj <Ly
S.t. . N s
2 M SFY L AM <M

N .
D A=A, 20 =12, N).

To solve the above LP problem in Excel, we first import the data to an Excel spreadsheet as
shown in the Solver Figure 5. Column A records the state number. Column B records the
abbreviation of each state. Column C to column G shows the original data for the output and
inputs. Column I to column M shows the associated input price indices for the five inputs. In
column, we calculate the actual total cost for each state. In column O, we define the lambdas.
Therefore, cells O4 to O25 are the changing variables lambda 1 through lambda 22. In columns
Q to V, on row 4, we define the left hand side of the constraints. Specifically, the command we
need to type in cell Q4 is “=SUMPRODUCT(C4:C25,$0%$4:30$25)”, then we can copy and paste
this command to cells R4 to V4 on the same row. The symbol “$” in the above command works
as a cell address fixing indicator. It will fix the column letter or row number to the right of it
when the command is being copied and pasted to another cell. The unfixed column letter and/or
row number will be automatically updated according to where the original command is copied
and pasted to.

In column Q, on row 10, we define the state number for which we want to evaluate the
technical efficiency. On row 12 in the same column, we define the sum of all lambdas, so the

command in cell Q12 is “=SUM(04:025)”.
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In columns Q to V, on row 5, we need to fill in the right hand side of the constraints.
Because the right hand side of the output constraint is the actual output of the state selected, in
cell Q5 we type command “=INDEX(C4:C25,Q10)”. The right hand side of the input constraint
is just the optimal input for the selected state. So in columns R to V, on row 6, we define the
optimal level of inputs for the selected state. Please note that we do not type in any expressions
in cells R6 toV6 on row 6. Instead, we define them as changing cells.

In columns R to V, on row 8, we define the input price indices for the selected state.
Specifically, in cell R8 we type command “=INDEX(14:125,$Q$10)”, then we copy and paste this
command to cells S8 to V8 on the same row.

Once we define the optimal input levels and input price indices for a selected state, we
can get the minimum total cost for the state. In column Q, on row 14, we define the minimum
total cost by typing command “=SUMPRODUCT(R5:V5,R8:V8)”. On row 16 in the same
column, we define the actual total cost by typing command “=INDEX(N4:N25,Q10)”. At last,
we define the cost efficiency of the selected state by typing command “=Q14/Q16” into cell Q18.

We have finished with inputting information to the spreadsheet, and now we are going to
fill in the solver parameters. We select “Solver” from the menu “Data”, a Solver Parameters
window will pop-up. In the Set Target Cell box, we type “O14”; in Equal To options, we select
“Min”; in By Changing Cells box, we type “04:025, R5:V5”. Then we click icon “Add” to
impose constraints. In the Add Constraints window, we type “Q4” in the Cell Reference box; in
the box next to it, we select “>="; in the Constraint box, we type “Q5”. Once we have done that,
we click “Add” to save current constraint and continue for the next constraint. Now we type
“R4:V4” in the Cell Reference box on the left; select “<=" in the middle box; type “R5:V5” in the
Constraint box on the right. Click “Add”, and start typing the third constraint, which is to type
“012” in the Cell Reference box; select “=" in the middle box; type “1” in the Constraint box.
Now click “OK” to go back to the Solver Parameters window, and then click “Options”. In the
Solver Options windows, check “Assume Linear Model” and “Assume Non-negative”, and then
click “OK”. The last step, click “Solve” on the right upper corner, Excel Solver will start solving
the problem and report the result to us once it’s done (which takes less than one second in most
cases). If Solver finds an optimal solution, the minimized total cost will be shown in cell Q14,
and the cost efficiency for the selected state will be shown in cell Q18.

Following the above steps, we can investigate the cost efficiency for each individual state
in the sample. We can run a Visual Basic macro program in Excel to solve the cost efficiencies
once for all in the following way. From the menu on the top, we click “Developer”, and then

“Insert” in the “Controls” sub-group. Under the “ActiveX Controls”, we click the leftmost icon
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on the first row, which is also called “Command Button”. The arrow cursor now becomes a fine
cross cursor. Move the cursor to any blank place on the spreadsheet we are working with, and
then click and drag to create an icon for the VB macro program on the spreadsheet. By default,
the caption of the icon is “CommandButton]1”. We can change it by right click it and then select
“Properties” from the menu and change the caption to, for example, “Run Macro”. Now double
click the command button we created, we go to the VB programming for code editing. Between
the lines of “Private Sub” and “End Sub”, we type in the following code:

For Unit=1 To 22

Range("Q10") = Unit

SolverSolve UserFinish:=True
Range("W" & Unit + 3) = Range("Q18")
Next Unit

Next, in the Microsoft Visual Basic window, we select “Tools” from the main menu, and
then click “References”. In the “References — VBAProject” window, select “SOLVER” check
box and then click “OK”. If the “SOLVER” check box is not shown in that window, we need to
do the following: (i) click “Browse...” in that window; (ii) in the “Add Reference” window, look
in “Local Disk (C:)” then “Program Files” then “Microsoft Office” then “Office 12” then
“Library” then “SOLVER?”, and then select “Microsoft Office Excel Files” at the “Files of type”
window; (iii) select the file “SOLVER” in the “Add Reference” window and click “Open”; (iv)
click “OK” in the “References — VBAProject” window.

Now we go back to the Excel spreadsheet we are working on. Click “Design Mode” on
the menu once, and then click the command button (Run Macro) we created. The VB macro
program should start running and cost efficiency scores for individual states will show up in
column W, on the corresponding rows. To save our work, we need to save the Excel file as an

“Excel Macro-Enabled Workbook”.
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hd output (per factory)

K capital

L1 production worker

L2 non-production worker
F fuel

M materials

wk  price index for capital

w1 price index for production warker
w2  price inex for non-praduction worker
wi price index for fuel

wm__ price index for material

A | B | € o [ e T F T & T H®H T [ 0 T ®x T v T m T v T o T *7 T @ T ®”rR T 5 T . 17T T v i wv T w

1 Indian Manufacturing Data
= =INDEX(C4:C25,Q10) =SUMPRODUCT(C4:C25,5054:50525)
I MNumber State ¥ K L1 Lz F M wk w1 w2 wi wm total cost A Y K Lt Lz F M Cost Effi
2] 1 HP 140491 81084 5168 1614 10380  779.03 0.14 0.53 2.00 31741 1.00 33915 0 LHS\ 757.6451 150.9075 24.75602 13.13572 21.3231 446.792  0.45636
H PU 70028 14143 4090 10.73 4551  472.36 0.21 0.49 120 413.20 1.00 19340 0 RHS ™ 757.6451 [150.9075 | 24.75602 ] 13.13572] 21.3231 | 446.792 | 0.433395
(6] 3 CH 686.87 13426 22,09 12.65 18.67  384.55 0.22 0.74 2.09 360.70 1.00 7202 [0.833117 1
7] 4 ut 1339.56 38255  47.01 21.83 85.26  B11.24 017 0.98 1.95 282,10 1.00 25018 0 wk wi w2 wi wm  0.526314
i 5 HA 1745.09 383.14 61.89 19.89 58.30 1175.68 o0.22 0.66 2.34 457.00 1.00 27991 0.066883 Price 018 0.50 1.80 45211 1.00 1
E DE 55488 7466 25.64 12.74 1645 29552 0.28 0.56 1.66 560.30 1.00 9567 0 1
o] 7 RA 78192 25728 3617 10.59 7483 44122 0.18 0.54 1.51 463.82 1.00 35136 0 Number 22 INDEX(14:125,5Q510) 0.308461
I up 113900 32905  47.28 14.06 64.50  722.45 0.18 0.55 1.82 438.38 1.00 29109 0 0.564409
2] 9 Bl 73008 17728 3072 6.18 4672  589.41 0.24 0.41 117 412,95 1.00 19944 0 Sum of A 1 €&————— =5UM(04:025) 0.444506
i i0 AS 1289.47 411.11 59.22 10.69 4B.66 760.05 0.11 041 1.53 370.20 1.00 18858 (1] 0.B57978
1 14] 1" WE 118629 402.23 658.47 16.37 £4.96 736.92 0.18 0.77 1.77 453.48 1.00 21002 0 TC" 1015068 ———— -SUMPRODUCT(R5:V5,R8:V8) 0.585809
(16| 12 JH 233864 100841  73.10 2182 17080  866.21 0.12 137 264 41295 1.00 71675 0 0.649153
(16| 13 OR 133185 81728 6673 16.80 15961  613.47 0.15 0.76 2.45 357.10 1.00 57835 0 TC  20175.81 €———— -INDEX(N4:N25,0110) 0.281547

17 14 cT 207001 91388  58.01 21.22 24128  901.58 0.1 0.86 3.41 437.84 1.00 121239 0 0.35046
E 15 MP 1551.14 576.75 54.11 1741 122.45 918.59 0.14 0.64 2.02 509.09 1.00 63407 1] Cost Effi. 0503111 €&¥———rn— =Q14:’le 0.427974
ﬁ 16 GuU 1916.85 B40.38 4461 14.83 91.14 1326.49 0.15 0.64 205 423.47 1.00 40076 (1] 0.745472
(20| 17 MH 189763 50851 4307 18.29 65.84 104490 017 0.3 251 346,55 1.00 24035 0 1
ElRE AP 65749 22648 5035 8.60 3796 409.74 0.19 0.41 1.48 380.30 1.00 14923 0 Run Macro 0.491587
22| 13 KA 143294 50504 5677 16.10 6464  855.38 0.17 0.85 2.34 430.28 1.00 32707 0 0.731532
(23] 20 GO 297737 BO250  54.86 1768 171.37 180474  0.16 0.82 2,69 342,29 1.00 50691 0 1
A 2 KE B657.56 134.70 43.97 T.B9 36.56 48017 0.19 Das 1.83 385.02 1.00 14621 (1] 0.508067
E 22 TN 757.65 24232 43.72 10.52 4341 461.80 o0.18 0.50 1.80 45211 1.00 20176 (1] 0.503111
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5. Relaxing the Convexity Assumption: Free Disposal Hull Analysis

Among the four assumptions made about the technology, convexity is the strongest. The
benchmark input-output bundle constructed from a suitably weighted average of the observed
input-output data is usually not one of the observed bundles. This may leave the practitioner
uneasy because no firm in the sample is actually found to have produced the benchmark output
bundle from the weighted average input bundle. By contrast, if a benchmark is an actually
observed bundle the target is evidently feasible and efficiency measured against any such target is
clearly more persuasive.

Deprins, Simar , and Tulkens (1984) introduced a revised version of the standard DEA
model which became known as Free Disposal Hull (FDH) analysis. Their simple modification
was to restrict each /; to be a 0-1 binary variable. The FDH version of the output-oriented VRS

DEA problem (19) is

max @

N
s.t. D Ax; <xy (i=12,..,n);
j=1

N
Z/ljy,j >y, (r=12,..,m); (54)

=

N

Z/Ij =1; 4, €{0,1}; (j = 1,2,...,N);¢ unrestricted.
Jj=1

Note that because each A is either 0 or 1 and at the same time they add up to 1, only one A would
be 1 and all others will be zero. That means that a single observed input-output bundle is selected
as a bench mark for comparison for measuring the efficiency of firm k. The restrictions ensure
that the benchmark firm will not use any input in greater quantity than firm k. Nor would it
produce a smaller amount of any output.

The problem in (27) is an integer programming problem. In general, integer programming
problems are more complicated than a standard LP problem. But, as shown in Ray (2004, chapter

6) there exists a very simple way to obtain the optimal solution of the FDH problem.



6. Taking Account of Non-discretionary Variables

The quantity of output produced from a given input bundle often depends on a number of
factors over which the firm has no control. These can be designated as non-discretionary
variables. In agricultural production, the same input bundle even at its best utilization would
produce a higher or lower output depending on the amount of rainfall. The farmer has no control
over it. In education the same bundle of school inputs would produce a higher output (measured
by standardized test scores) when the level of education or socioeconomic status of the parents of
the average pupil is higher. Such ‘environmental’ variables cause the frontier to move up or
down. Unlike the two-sided random shock in a stochastic frontier model, however, these variables
are observable and can be explicitly accounted for in measuring the technical efficiency of a firm.

There are two different approaches to deal with non-discretionary variables in DEA. In
the first, they are directly incorporated in the DEA model itself. For this, one must first classify
the non-discretionary variables as favorable or unfavorable. A favorable variable is one that
increases the maximum output producible from a given input bundle. An unfavorable variable, by
contrast, lowers the maximum producible output from the same input bundle. It is assumed that
an increase in the favorable variable or a decrease in the unfavorable variable cannot lower
output. The standard DEA models are suitably modified in the light of this assumption. Suppose
that in addition to the n inputs and m outputs we have the information on the level of one
favorable variable (f) and one unfavorable variable () for each firm in the sample. Then the
revised output-oriented VRS DEA LP model for firm & would become

max @
N
s.t. zﬂ“jxij <xy ((=L2,..,n);
j=1
N
Zﬂjy,j >y, (r=12,..,m);
j=1

DAL S S (54)
j=1

N
DAz
=1

N
Z/I. =1 41.20 (j = 1,2,...,N);§0 unrestricted.
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Because firm £ has no less of the favorable variable and no more of the unfavorable variable than
the hypothetical firm constructed from the weighted average of the observed bundles, it should be
able to produce as much output as this weighted average would.

In the other approach, the non-discretionary variables are treated as separable from the
inputs and output of the firm. They shift the frontier, which is a function of the controllable inputs
only, like Hicks-neutral technical change. One uses the usual inputs and outputs of a firm to
obtain a DEA efficiency score. In a second stage regression these efficiency score is treated as the
dependent variable and regressed on the non-discretionary variables. An advantage of this
approach is that one can estimate how a change in any one discretionary variable affects the
measured efficiency of a firm. Moreover, one need not classify them as favorable or unfavorable
beforehand. If it is a favorable factor, it should come out with a positive coefficient in the fitted
regression. Similarly, an unfavorable factor would have a negative coefficient. There is an
econometric problem with this regression, however. The DEA efficiency scores are by
construction bounded at unity from above. It is, therefore, a limited dependent variable. A simple
least squares regression is in appropriate for such a model and the more careful analyst uses a

Tobit regression*.

6. A Summing Up

In this paper we have offered a detailed introduction to the core DEA models that can be used to
measure technical efficiency, scale efficiency, and overall cost efficiency of a firm. The principal
appeal of DEA lies in the fact that it creates a benchmark based entirely on observed data for
comparison and performance evaluation. In particular, there is no prior assumption about the
nature of factor substitutability that is inherent in an explicit specification of the function form of
the production or cost function. Of course, the analyst needs to ensure that all of the data come
from firms that are technologically homogenous. This, it should be pointed out, is often
misinterpreted to be a special problem for DEA alone. In fact, one should not attempt to fit a
production function econometrically unless there is reason to believe that the data come from the
same data generating process. We have paid special attention to what is effectively a tutorial on
how to write the Excel programs (especially those using VBA Macros) for different kinds of

DEA models. Once the readers master the art of writing these programs, they can set up and solve

* While methodologically correct the intuitive meaning of such a regression is not always clear because
there is no obvious censoring of the dependent variable that would rationalize a Tobit model.
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all kinds of DEA problems (even those that have not been included in this paper) without having
to rely on the availability of a prefabricated software.

Finally, over the past three decades since its original formulation in the OR/MS literature, DEA
has matured into a full blown nonparametric analytical methodology that provides an alternative
to the parametric econometric approach to efficiency measurement. There are various other
applications of DEA that measure profit efficiency, productivity growth over time, measuring
efficiency in the presence of both good and bad outputs, and so on. It is hoped that this
introduction will encourage and enable the more enterprising reader to move on to the more
rigorous and complete books like Féare, Grosskopf, and Lovell (1994), Ray (2004), and Cooper,
Seiford, and Tone (2007), to name a few.
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Figure 2 Measuring Input-oriented Technical Efficiency
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