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Abstract
The paper studies the dynamic nature of optimal solutions under commitment

in Barro-Gordon and new-Keynesian models and, finds two interesting parame-
ters – the implied targets and the persistence parameter that governs the adjust-
ment toward the implied targets. The implied targets generally differ from the
social ones, but exhibit a trade-off between targets and equal the long-run equi-
librium values of target variables. The implied targets prove consistent with the
models and the social targets do not. Moreover, the implied targets emerge in
the long run according to the persistence parameter. As such, the government
delegates to the central bank short-term, state-contingent targets, which guide dis-
cretionary policy to evolve along optimal paths as these targets converge to their
long-run implied targets. For the Barro-Gordon model with output persistence,
the correct delegated targets eliminate the constant average and state-contingent
inflation biases, and a weight-liberal central bank removesthe stabilization bias.
For the new-Keynesian models, delegated targets, combinedwith the appropriate
weight-liberal or -conservative central bank, can eliminate all three biases. The
delegated targets may reflect backward- or forward-lookingbehavior, depending
on the model.
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1. Introduction 

The economic literature contains a strand that focuses on the inconsistency of optimal policy. 

Kydland and Prescott (1977) launch this whole literature by arguing that optimal policy proves 

inconsistent and showing that the inconsistency results from rational expectations. Afterwards, 

the literature proposes various solutions to the problem of the inconsistency. Using the 

Barro-Gordon (1983a,b) model, Rogoff (1985) suggests a conservative central banker, who puts 

more weight on inflation stabilization than output (employment) stabilization. Walsh (1995) 

proposes linear inflation contracts for central bankers to induce the socially optimal policy.  

Later, the study of commitment and discretion in monetary policy moved beyond the 

static Barro-Gordon framework to models that introduce persistence in output and employment. 

Using an employment-persistence model, Svensson (1997) considers several different types of 

delegation (e.g., a state-contingent inflation target coupled with a weight-conservative central 

bank). The delegation scheme in Svensson (1997) induces the central bank to follow the optimal 

policy rule. Beetsma and Jensen (1999) argue that the state-contingent nature of the delegation 

scheme may undermine its credibility. They propose a nominal income growth target for the 

central bank, which although state-independent, nevertheless attains the optimal rule in 

Svensson's model. With general consensus on the forward-looking nature of macroeconomic 

models, Jensen (2002), Walsh (2003), Svensson and Woodford (2005) and Vestin (2006) among 

others, tackle the inconsistency issue in a new Keynesian model. 

In each case, the proposed solution imposes two assumptions -- the central bank in 

practice operates with discretion and the central bank loss function must differ from the social 
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one to mitigate or eliminate the inconsistency of optimal policy. This paper also imposes these 

two assumptions, and focuses on designing the central bank loss function. That is, the central 

bank loss function may differ in functional forms with different variables and parameters from 

those of the social loss function. For instance, the central bank loss function in Rogoff (1985) 

adopts the same functional form and target variables as those of the society, but different 

parameters, specifically more weight on inflation stabilization. Walsh (1995), Beetsma and 

Jensen (1999) and Svensson and Woodford (2005) modify the functional form by adding a term 

to the social loss function. According to the nature of the added term, the central bank loss 

function includes a linear inflation contract, constant nominal income growth targeting, and a 

“commitment to continuity and predictability.” The central bank loss function in Vestin (2006), 

involving a price variable, adopts price-level targeting. Accordingly, the literature suggests that 

various central bank loss functions can replicate optimal policy by using discretionary policy. 

This paper designs central bank loss functions by adopting the same functional form and 

target variables as those of the society, but with possibly different parameters (i.e., the targets for 

the inflation rate and the output gap, and the weight on output stabilization relative to inflation 

stabilization). First, the loss function explicitly incorporates the central bank’s two target values 

and their relative importance. Second, the government delegates to the central bank short-term, 

state-contingent targets. The optimal solutions suggest two interesting parameters — the implied 

targets and the persistence parameter that governs the adjustment toward the implied targets. The 

implied targets exhibit a trade-off between targets and equal the long-run equilibrium values of 
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target variables. The implied targets prove consistent with the models. Moreover, the implied 

targets generally differ from the social targets. Accordingly, we conjecture that the central bank’s 

delegated targets, if consistent with the model and jointly achieved, should differ from the social 

ones. In addition, the implied targets emerge in the long run according to the persistence 

parameter. This suggests that the government delegates to the central bank short-term, 

state-contingent targets, which converge to the long-run implied targets at a rate controlled by the 

persistence parameter. Though the delegated targets are state-contingent, they only depend on the 

model’s structural parameters and, thus, are feasible. Third, for the Barro-Gordon model with 

output persistence, the correct delegated targets eliminate the constant average and 

state-contingent inflation biases, and a weight-liberal central bank removes the stabilization 

bias.1 For the new-Keynesian models, however, the delegated targets cannot eliminate the 

constant average and state-contingent inflation biases, until combined with the appropriate 

weight-liberal or –conservative central bank. At that point, all three biases disappear. In sum, 

based on the implied targets and the persistence parameter as well as the expectations nature of 

the Phillips curves, we design the target values and the weight of the central bank loss function to 

achieve optimal solutions. The next three sections will use three models to illustrate the 

approach. 

The main results of the paper include the following. For the new-Keynesian models, the 

inflation target is forward-looking, if the Phillips curve is principally forward-looking, and vice 

 
1 Svensson (1997, p104) shows that discretionary policy exhibits three biases -- constant average and state- 
contingent inflation biases as well as stabilization bias. Once the three biases are removed, discretionary policy 
proves socially optimal. 



versa.2 Reversing the nature of the inflation target, optimal policy is forward-looking in a 

backward-looking model, and vice versa. This argument corresponds to Woodford (1999b), who 

demonstrates that optimal policy imparts inertia in a forward-looking model. In addition, the 

central bank weight may reflect conservatism or liberalism, depending on the structural 

parameters of the model as well as the persistence of the external shocks. 

We organize the paper as follows. Section 2, 3, and 4 illustrate the approach to 

determining the delegated targets and the weight of the central bank loss function in a 

Barro-Gordon model with output persistence, a purely forward-looking new-Keynesian model, 

and a hybrid new-Keynesian model with forward- and backward-looking aspects. Section 5 

summarizes. 

2. Designing Central Bank Loss Function When Output Is Persistent 

The Model and Its Socially Optimal Solution 

The model follows Svensson (1997).3  Society minimizes the following intertemporal loss 

function 

(2.1)  , 1
0

1

t
t

t

E Lβ
∞

−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

where β (0 < β < 1) is the discount factor and E is the expectations operator. The period loss 

function equals the following 
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2 A critical value exists that divides the Phillips curve into principally forward-looking or backward-looking 
specifications. See more details in Section 4. 
3 We take a pragmatic stand on the model, and simply adopt it without much description. Please read Svensson 
(1997) for more detail. 



(2.2)  ( ) (2 2* *1
2t t tL xπ π λ⎡ ⎤≡ − + −⎢ ⎥⎣ ⎦)x , 

where π is the inflation rate, x is the output gap, *π  is the socially desirable inflation rate, *x  

is the socially desirable output gap, and λ is the social weight on output stabilization relative to 

inflation stabilization around their respective targets. 

The economic structure includes an expectations-augmented Phillips curve with output 

persistence and rational expectations 

(2.3)  ( )1
e

t t t t tx x uη α π π−= + − + , and 

(2.4)  1
e
t tE tπ π−= , 

where η (0≤η<1) measures the degree of output gap persistence, α is the response of output gap 

to unexpected inflation, e
tπ  denotes inflation expectations in period t−l of the inflation rate in 

period t, and ut is an independently and identically distributed supply shock with mean 0 and 

variance σ 2. 

The central bank minimizes the social intertemporal loss function (2.1) with period loss 

function (2.2) subject to equations (2.3) and (2.4). The socially optimal solution under 

commitment equals4 

(2.5a)  , and * *
t td uπ π= +

(2.5b)  *
1 (1 )t t tx x dη α−= + + u , 

where *
2 21

d λα
βη λα

= −
− +

. 

The optimal solutions in equations (2.5a) and (2.5b) consist of two parts – the systematic 
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4 See Svensson (1997). 



evolution paths of the inflation rate and the output gap, { }*
1 1

, t t
xπ η

∞

− =
, and reactions to supply 

shocks. The systematic evolution paths converge to ( ),0*π . So we interpret π * and 0 as long- 

run implied targets of the inflation rate and the output gap, which we specify as πa and xa, 

respectively. Moreover, the rates of convergence differ. That is, the inflation rate hits its implied 

target, π *, immediately with zero persistence, and the output gap converges to its implied target, 

0, with persistence η. To understand zero implied output gap target, which differs from the social 

target, x*, consider the Phillips curve (2.3) and the rational expectations assumption in equation 

(2.4). The equilibrium output gap requires that 

(2.6)  x xη= , i.e. 0ax x= = , 

where x  denotes the equilibrium output gap. That is, the implied target (xa) in the optimal 

solution equals the equilibrium value, and proves harmonious with the Phillips curve. 

As is well known, the optimal solution is time-inconsistent. Implementing the optimal 

policy requires either commitment or mechanism design. A central bank loss function that differs 

from the social loss function may serve as a mechanism to reduce or even eliminate the 

inconsistency. Accordingly, the next sub-section designs the central bank loss function. 

Designing the Central Bank Loss Function 

We adopt a central bank loss function, which adopts the same functional form and target 

variables as those of the society but with possibly different inflation rate target b
tπ , output gap 

target b
tx , and weight bλ . We permit state-contingent targets for the inflation rate and the 

output gap, but not for the weight. That is, the central bank period loss function equals 

7 
 



(2.7)  ( ) (2 21
2

b b b
t t t t tL xπ π λ⎡ ⎤= − + −⎢ ⎥⎣ ⎦)bx

The central bank minimizes the intertemporal loss function (2.1), but with period loss function 

(2.7). That is, we assume both society and the central bank weight the future with same 

importance, β. 

The optimal solutions suggest that the realized values of target variables in the long-run 

equal the implied targets, π * and 0, that differ from the social targets, π * and x*. That is, the best 

outcomes that we can achieve equal the implied targets, which are consistent with the model. 

Moreover, they only emerge in the long run subject to the persistence parameter. So we 

conjecture that the appropriate targets for the central bank are short-term and state-contingent, 

which converge to the implied targets. As a result, we set the systematic evolution paths in the 

optimal solution equal to the central bank’s targets 

(2.8a)  

. 

*b
tπ π=  and  

(2.8b)  1
b
t tx xη −= . 

Though the central bank’s delegated targets are state-contingent, they only depend on the 

model’s structural parameters and are, thus, feasible. Intuitively, with short-term natural output 

gap ηxt−1, not the social target x*, as the output gap target, the central bank does not possess an 

incentive to produce surprise inflation ( )e
t tπ π−  to raise the output gap above the short-term 

natural gap 1txη − . As a result, the central bank can realize the targets *
1 and txπ η − , on average. 

The formal calculation of discretionary policy with target values in equations (2.8a) and (2.8b) 
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verifies the intuition. The discretionary solution equals 5 

(2.9a)  *
21

b

t tb uαλπ π
α λ

= −
+

, and 

(2.9b)  1 2

1
1t t b tx x uη

α λ−= +
+

. 

The discretionary policy in equations (2.9a) and (2.9b) eliminates the constant average and 

state-contingent inflation biases (see Svensson, 1997, 104). The two targets in equations (2.8a) 

and (2.8b) prove meaningful for monetary policy. That is, the central bank, though operating 

with discretion, remains accountable for monetary policy because it can reach the delegated 

targets, on average. 

As we noted, the discretionary policy in equations (2.9a) and (2.9b) eliminates constant 

average and state-contingent inflation biases. We also need to remove the stabilization bias (i.e., 

it responds to supply shocks optimally). Equating discretionary policy in equations (2.9a) and 

(2.9b) with the optimal solutions in equations (2.5a) and (2.5b) produces 

(2.10)  21
b λλ

βη
=

−
. 

In sum, with appropriate state-contingent targets, discretionary policy eliminates the constant 

average and state-contingent inflation biases, and a weight-liberal central bank also removes the 

stabilization bias. As a result, discretionary policy proves socially optimal. 

The central bank’s weight λb on output stabilization relative to inflation stabilization 

depends on the structural parameters of the social loss function and the Phillips curve (i.e., the 

                                                        

9 
 

5 See equation (A.11) and its derivation in Appendix A. 



discount factor β, the social weight λ, and the output gap persistence η).6 Furthermore, we report 

the following conditions 

(2.11a)  0bλ β∂ ∂ >  if 0η ≠ , 

(2.11b)  0bλ η∂ ∂ >  if 0β ≠ ,  

(2.11c)  bλ λ>  and 0bλ λ∂ ∂ >  if 0β ≠  and 0η ≠ , and 

(2.11d)  bλ λ=  if 0β =  and/or 0η = . 

Consider condition (2.11a). Given output persistence, a more important future implies 

that optimal policy places more weight on output stabilization. Intuitively, the loss caused by the 

output gap will persist into future, if output exhibits persistence. Therefore, a more important 

future implies more weight must be placed on output stabilization to reduce the future losses 

caused by output persistence. 

Consider condition (2.11b). As long as society places some weight on the future, a more 

persistent output implies that optimal policy places more weight on output stabilization. 

Intuitively, a non-zero output gap will cause current and future losses, if output exhibits 

persistence. And, a more persistent the output gap implies that more future losses will occur. 

Accordingly, more weight on output stabilization reduces future losses. 

Consider condition (2.11c). Contrary to the usual recommendation of appointing a 

conservative central banker, the weight in equation (2.10) suggests a liberal central banker, who 

places more weight on output stabilization than society, as long as society cares for future and 
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6 Here, we assume that supply shocks equal white noise. Thus, the weight does not reflect the characteristic of the 
supply shocks. We discuss the persistence of shocks in next two sections. 



output exhibits persistence. The intuition conforms to that for conditions (2.11a) and (2.11b) 

above. In addition, the more weight the society places on output stabilization, the more weight 

the central bank must place on output stabilization. The intuition is straightforward. 

Consider condition (2.11d). If society does not care about the future and/or if output 

exhibits no persistence, then the central bank places the same weight on output stabilization as 

society, since the central bank does not need to balance current and future losses. The central 

bank does not exhibit conservatism or liberalism. 

3. Designing Central Bank Loss Function in a Purely Forward-Looking, 

New-Keynesian Model 

Researchers developed and applied new-Keynesian models in the past decade. This section uses 

a purely forward-looking new-Keynesian model to illustrate the approach to designing central 

bank loss functions.7 

The Model and Its Socially Optimal Solution 

The social intertemporal loss function equals8 

(3.1)   0
0

t
t

t

E Lβ
∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑L

with the same period loss function as in Section 2 [i.e., equation (2.2)] 

(3.2)  ( ) (2 2* *1
2t t tL xπ π λ⎡ ⎤= − + −⎢ ⎥⎣ ⎦)x

                                                       

. 

 
7 We do not take a stand on the validity of the models in this section and next. We simply adopt them without much 
discussion. See Clarida et al. (1999) for more details. 
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8 Equation (3.1) slightly differs from equation (2.1) in that in Section 2, we form the rational expectation in the 
previous period and in this section at the beginning of the present period. We just follow usual definitions in 
literature for convenience. 



We model aggregate supply as an expectations-augmented Phillips curve with purely 

forward-looking expectations9 

12 
 

t(3.3)  1t t t tx E uπ κ β π += + + , 

where π, x, and β are defined as in previous section, κ (κ >0) is the sensitivity of the inflation 

rate to the output gap, ut is a cost-push shock following AR(1) process 

(3.4)  1 ˆt tu u tuρ −= + , 

where 0 1ρ≤ < , and  is a white noise residual. ˆtu

We do not introduce aggregate demand (IS curve), which contains a nominal interest rate, 

the policy instrument. Once we determine the optimal paths of {  according to the 

social loss function and the Phillips curve, both of which do not respond to the interest rate, then 

we can pin down the optimal path of interest rates through the IS curve. So what is critical for 

policy is the Phillips curve. 

} 0
,t t t
xπ ∞

=

The consolidated first-order condition of optimal policy under the social intertemporal 

loss function (3.1) with period loss function (3.2) subject to the Phillips curve (3.3) equals10 

(3.5a)  ( )* *
0 0 for 0x x tκ π π

λ
− = − − = , and 

(3.5b)  ( )*
0 0 1 0 for 1t t tE x E x E tκ π π

λ−− = − − ≥

                                                       

. 

Combining the first-order conditions (3.5a) and (3.5b) and the Phillips curve (3.3) leads to the 

 
9 The next section considers both forward- and backward-looking expectations in the Phillips curve. Equation (3.3) 
also differs slightly from equation (2.3) in that in Section 2, we form rational expectations in the previous period and 
in this section at the beginning of the present period. 
10 See equations (B.3a) and (B.3b) in Appendix B. 



socially optimal solution11 

(3.6a)  ( ) ( )( ) ( )
* *

0 01 ,  
1

x x u t  for 0λ δπ π δ
κ δβρ

− = − − + =
−

, 

(3.6b)  ( ) ( ) ( )
*

0 0 ,  for 0
1

a ax x x x u tκδδ
λ δβρ

− = − − =
−

, 

(3.7a)  ( ) ( ) ( )
( )

* *
1

1
,  for 1

1t t tu t
δ ρ

π π δ π π
ρ δβρ−

−
− = − − ≥

−
, and 

(3.7b)  ( ) ( ) ( )1 ,  for 1
1

a a
t t tx x x x u tκδδ

λ δβρ−− = − − ≥
−

, 

where δ (0<δ<1) is the smaller root of the characteristic equation 

(3.8a)  , 2 1 0bβδ δ− + =

(3.8b)  
2

1b κβ
λ

≡ + +  and 

(3.8c)  *1ax β π
κ
−

≡ . 

The parameter ax  defines the implied output gap target. See Appendix B, equation (B.17). 

Equations (3.6a), (3.6b), (3.7a), and (3.7b) suggest that the socially optimal solution is 

time inconsistent. We adopt optimality from the timeless perspective as the benchmark.12 That is, 

we design the central bank loss function to replicate the solutions in equations (3.7a) and (3.7b) 

for all periods. To do this, we first analyze the properties of these solutions. 

The solutions in equations (3.7a) and (3.7b) consist of two parts – the systematic 

evolution paths of the inflation rate and the output gap, ( ) ( ){ }* *
1 1 1

, a a
t t t

x x xπ δ π π δ
∞

− − =
+ − + − , 

                                                        
11 See equations (B.15a), (B.15b), (B.24a), and (B.24b) and their derivation in Appendix B. 

13 
 

12 Woodford (1999a) introduces the concept of optimality from a “timeless perspective,” which means the policy 
the central bank “would have wished to commit itself to at a date far in the past.” 
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)and reactions to cost-push shocks. The systematic evolution paths converge to ( * , axπ  with the 

same persistence parameter δ. So we interpret π * and xa as long-run implied targets of the 

inflation rate and the output gap. To understand the implied targets, consider the Phillips curve 

(3.3). The equilibrium relationship of the inflation rate and the output gap must conform to 

(3.9)  xπ κ β= + π , 

where  and xπ  denote the long-run equilibrium values of the inflation rate and the output gap. 

Equation (3.9) is just equation (3.8c), where *aπ π π= =  and ax x= . Therefore, on the one 

hand, a trade-off exists between the implied targets; on the other hand, we can interpret the 

implied targets as the long-run equilibrium values of the target variables. Intuitively, the Phillips 

curve imposes a trade-off between the inflation rate and the output gap. Thus, the implied targets 

for the inflation rate and the output gap also must exhibit this same trade-off. As such, the 

implied targets are consistent with the model. 

In addition, the implied output gap target generally differs from the social one, and we 

observe that they coincide when the social targets satisfy the trade-off.13 Specifically, 

* *x *π κ β= + π , i.e. * *1x β π
κ
−

= . 

Then, by equation (3.8c) we know that 

* *1ax xβ π
κ
−

≡ = . 

In this respect, the social targets are generally inconsistent with the model.  

The persistence parameter δ that governs the dynamic adjustment of the inflation rate and 
                                                        
13 For Barro-Gordon Model with output persistence, the Phillips curve in equilibrium simplifies to 0x = . If the 
social targets satisfy the Phillips curve in equilibrium, i.e. * 0x = , then obviously the social targets coincide with 
the implied targets. That is, * aπ π=  and * 0 ax x= = . 



the output gap to their respective equilibria depends on the structural parameters (i.e., the 

discount factor β, the weight λ on output stabilization, and the sensitivity κ of the inflation rate to 

the output gap) of the social loss function and the Phillips curve, but does not depend on the 

cost-push shock. Furthermore, we report the following conditions 

(3.10a)  0δ β∂ ∂ < , 

(3.10b)  0δ λ∂ ∂ > , and 

(3.10c)  0δ κ∂ ∂ < .14 

Consider condition (3.10a). A more important future implies a less persistent evolution of 

the inflation rate and the output gap. Intuitively, if the future is more important, the inflation rate 

and the output gap must evolve more quickly to their targets to reduce future losses. That is, the 

inflation rate and the output gap evolve with less persistence. 

Consider condition (3.10b). A more important role for output stabilization implies a more 

persistent evolution of the inflation rate and the output gap. Intuitively, when output stabilization 

is more important, a smaller change of the output gap occurs as the consolidated first-order 

conditions suggest.15 As a result, the output gap and, thus, the inflation rate evolve more 

sluggishly. 

Consider condition (3.10c). A more sensitive inflation rate response to the output gap 

implies a less persistent evolution of the inflation rate and the output gap. Intuitively, with the 

inflation rate more sensitive to the output gap, the inflation rate and the output gap will evolve 

                                                        
14 See equations (C.8), (C.11), and (C.13) and their derivations in Appendix C. 
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15 See equations (B.3a) and (B.3b) in Appendix B. 



more quickly to their targets. That is, the inflation rate and the output gap evolve with less 

persistence. 

Designing the Central Bank Loss Function 

Optimal solutions in equations (3.7a) and (3.7b) suggest that the implied targets are the best 

long-run outcomes, and they emerge in the long run according to the persistence parameter. Thus, 

we delegate state-contingent targets to the central bank. That is, we set the systematic evolution 

paths in the optimal solutions in equations (3.7a) and (3.7b) as the targets of the central banker to 

direct target variables to evolve along the optimal paths. That is, 

(3.11a)  ( )* *
1

b
t tπ π δ π π−= + −  and 

(3.11b)  ( )1
b a a
t tx x x xδ −= + − . 

Though the delegated targets are state-contingent, they only depend on the model’s structural 

parameters and, thus, are feasible. The consolidated first-order condition of discretionary policy 

under the loss function (2.7) with targets in equations (3.11a) and (3.11b) subject to the Phillips 

curve (3.3) equals16 

(3.12)  
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }
* * * *

1 1

1 1        =0

t t t t t

b a a a a
t t t t t

E

x x x x E x x x x

κ π π δ π π βδ π π δ π π

λ δ βδ δ

− +

− +

⎡ ⎤ ⎡ ⎤− − − − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡+ − − − − − − −⎣ ⎦ ⎣ ⎤⎦

t

                                                       

. 

Combining the first-order condition (3.12) and the Phillips curve (3.3) generates discretionary 

policy, taking the following form: 

(3.13a)  , and ( ) ( )1
d d d

t t guπ π δ π π−− = − +

 
16 See equation (D.4) in Appendix D. We change the subscripts, which equal period 0 in Appendix D, to period t 

here. Discretion policy means that the central bank re-makes policy each period. 
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t(3.13b)  ( ) ( )1
d d d

t tx x x xδ −− = − + hu , 

where π d and x d denote implied targets of discretionary policy, δ d the evolution persistence, g 

and h reactions of the inflation rate and the output gap to cost-push shocks. Similarly, δ d is a 

less-than-one root of the characteristic equation of the first-order condition (3.12) and the 

Phillips curve (3.3).17 The discretionary solutions in equations (3.13a) and (3.13b) exhibit an 

constant average inflation bias, ( ) *1 d dδ π π− − , and an state-contingent inflation bias, 1
d

tδ π − . 

A stabilization bias also exists, in that generally ( ) ( )1 1g δ ρ ρ δβρ≠ − − −⎡ ⎤⎦ . ⎣

If π d = π * and δ d = δ, then the discretionary policy eliminates the constant average and 

state-contingent inflation biases. But, obviously, δ d depends on λb, because the characteristic 

equation of the discretionary policy involves λb.18 That is, correct delegated targets to the central 

bank are not enough to eliminate the constant average and state-contingent inflation biases, and 

the weight is also related. 19  In addition, solving for the discretionary policy proves too 

complicated, using the method in Section 2. Consequently, we adopt a different method. 

Discretionary policy should replicate the optimal policy. If the optimal solutions in equations 

(3.7a) and (3.7b) satisfy the first-order condition of discretionary policy, equation (3.12), then the 

replication occurs. Using equations (3.7a), (3.7b) and 1t t tE u uρ+ =  in equation (3.12) generates20 

(3.14)  
( )1b ρ

λ λ
ρ
−

= − . 

                                                        
17 We do not discuss whether a less-than-one root exists. We just assume that it exists. 
18 For the optimal solutions, the persistence parameter, δ, depends on λ. See equations (3.8a) and (3.8b). 
19 For Barro-Gordon model with output persistence, with the correct delegated targets, equations (2.8a) and (2.8b), 

discretionary policy, equation (2.9a), eliminates the two biases. 

20 See equation (D.6) and its derivation in Appendix D. 



The weight λb is negative and, thus, infeasible. 

The problem with applying our intuitive approach in Section 2, where the model is 

backward-looking, to the current model involves the forward-looking nature of the Phillips curve 

(3.3). Thus, an alternative intuitive solution may require that the inflation target of the central 

bank may involve a term 1t tE π +  in order to reflect this forward-looking nature. At the same time, 

we require that the inflation rate evolve with an optimal persistence δ. As a result, we try the 

following targets 

(3.15a)  ( )* *
1

b
t t tEπ π π π+= + − δ  and 

(3.15b)  ( )1
b a a
t tx x x xδ −= + − . 

The consolidated first-order condition of discretionary policy under the loss function (2.7) with 

targets in equations (3.15a) and (3.15b) subject to the Phillips curve (3.3) equals21 

(3.16)  
( ) ( )

( ) ( ) ( ) ( ){ }
* *

1

1 1            0

t t t

b a a a a
t t t t t

E

x x x x E x x x x

κ π π π π δ

λ δ βδ δ

+

− +

⎡ ⎤− − −⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − − − − − − =⎣ ⎦ ⎣ ⎦

                                                       

. 

Combining the first-order condition (3.16) and the Phillips curve (3.3) generates discretionary 

policy under the delegated targets in equations (3.15a) and (3.15b). The discretionary solutions 

also have the same forms to those of equations (3.13a) and (3.13b), and exhibit constant average 

and state-contingent inflation biases as well as a stabilization bias. A necessary condition that the 

discretionary policy replicates the optimal policy is that the optimal solutions in equations (3.7a) 

and (3.7b) satisfy the first-order condition (3.16). Using equations (3.7a), (3.7b) and 

 
21 See equation (E.3) in Appendix E. We change the subscripts, which equal period 0 in Appendix E, to period t 

here. 
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1t t tE u uρ+ =  in equation (3.16) produces22 

(3.17)  
( )
1
1

b ρλ λ
δ δβρ

−
=

−
, 

where λb is positive and feasible. In sum, under the loss function (2.7) with delegated targets in 

equations (3.15a) and (3.15b) and the weight in equation (3.17), one of the discretionary policies 

is socially optimal. 

Consider the weight in equation (3.17). In addition to the structural parameters (i.e., the 

discount factor β, the social weight λ, and the sensitivity κ), the central bank weight λb also 

depends on the cost-push shock persistence ρ. Furthermore, we report the following conditions23 

(3.18a)  0bλ ρ∂ ∂ < , 

(3.18b)  0bλ β∂ ∂ > ,  

(3.18c)  λb does not respond monotonically to λ, and  

(3.18d)  λb does not respond monotonically to κ.  

Consider condition (3.18a). A more persistent cost-push shock implies that the policy 

maker must place less weight on output stabilization. To see this, iterate the Phillips curve (3.3) 

forward as follows 

(3.19)  . ( )
0

i
t t t i t i

i
E x uπ β κ

∞

+ +
=

= +∑

Inflation depends entirely on current and expected future output gaps and cost-push shocks, 

because of the purely forward-looking nature of the Phillips curve. Thus, more persistent 

                                                        
22 See equation (E.5) in Appendix E. 
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23 See equations (F.2), (F.7), (F.8), and (F.9) in Appendix F. 



cost-push shocks imply that more losses occur because more inflation increases emerge, driven 

by current and future cost-push shocks. To reduce the losses caused by current and future 

inflation, the policy makers must place more weight on inflation stabilization and, thus, less 

weight on output stabilization. 

Consider condition (3.18b). A more important future implies that the policy makers must 

place more weight on output stabilization. Referring to equation (3.19), inflation depends 

entirely on current and expected future output gaps and cost-push shocks. When the future is 

more important, future output gaps exert more influence on inflation. Then, more weight on 

output stabilization will stabilize more current and future output gaps and, thus, stabilize 

inflation. 

Consider condition (3.18c). The central bank weight λb does not respond monotonically 

to the social weight λ. That is, λb can equal, fall below, or exceed λ. We define a critical value of 

cλρ  for which λ equals λb. Specifically,  

(3.20)  2

        if 
1        if , where 

1
        if 

b
c

b
c c

b
c

λ

λ λ

λ

λ λ ρ ρ
δλ λ ρ ρ ρ

βδ
λ λ ρ ρ

⎧ ⎫< >
−⎪ ⎪= = ≡⎨ ⎬

−⎪ ⎪> <⎩ ⎭

. 

First, the critical value cλρ ( 0 ) depends on structural parameters of the social loss 

function and the Phillips curve. Second, whether the central bank exhibits conservatism or 

liberalism depends on social loss function, the Phillips curve, and even the cost-push shock 

persistence. This result counters the usual claim that the central bank must prove more 

conservative than society. Actually, the result that 

1cλρ< <

0bλ ρ∂ ∂ <  implies equation (3.20) to some 

20 
 



extent. That is, higher persistence of the cost-push shock results in a lower central bank weight 

on output stabilization and, thus, the central bank weight may fall below that of society. 

Consider condition (3.18d). The sign of bλ κ∂ ∂  depends on ( )1 2δβρ− . Define the 

critical value for ρ  as follows: 

(3.21)  
2

1 1
2 4

c
b b

κρ
βδ β

≡ =
− −

. 

This critical value depends on the structural parameters of the social loss function and the 

Phillips curve, but may exceed 1. That is,24 

(3.22)  

2

2

11,              if 
2
11,              if 
2

cκ

κβ
λρ

κβ
λ

⎧
≥ ≤⎪⎪

⎨
⎪< >⎪⎩

+

+
.  

Accordingly, three situations exist, two imply that 0bλ κ∂ ∂ ≥ , and one that 0bλ κ∂ ∂ < . More 

specifically, 

(3.23)  

2

2

2

1if ,  then 1,  then 
20,              
1if  and 
2

10,               if  and 
2

c c

b

c

c

κ κ

κ

κ

κβ ρ ρ
λ

λ κβ ρ ρ
κ λ

κβ ρ ρ
λ

⎧ ⎧
≤ + ≥ ≤⎪ ⎪⎪⎪≥ ⎨∂ ⎪ ⎪ > + ≤⎨ ⎪∂ ⎩⎪

⎪
< > + >⎪

⎩

ρ

. 

Consider the two situations where 0bλ κ∂ ∂ ≥ . First, society does not care so much 

about the future (i.e., 21 2β κ λ≤ + ), no matter how persistent the cost-push shock. Second, 

                                                        

24 If 
21

2
κβ
λ

≤ + , then 
22

2 4bκβ β
λ

⎛ ⎞
+ ≤ −⎜ ⎟

⎝ ⎠
. Then 

2
2 4bκβ β

λ
⎛ ⎞

0+ − − ≤⎜ ⎟
⎝ ⎠

. Then 
2

21 4bκβ β
λ

⎛ ⎞
+ + − − ≤⎜ ⎟

⎝ ⎠
1, 

i.e., 2 4b b β− − ≤ 1. Thus, 
2

1 1
4

c
b b

κρ
β

= ≥
− −

. 
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society cares more about the future (i.e., 21 2β κ λ> + ), and the cost-push shock exhibits 

lower persistence (i.e., ρ <ρκc). In both situations, a more sensitive response of the inflation rate 

to the output gap implies that policy makers must place more weight on output stabilization. To 

see this, consider the Phillips curve, 1t t t t tx E uπ κ β π += +

1t t

+ . Under the two situations, the 

central bank can ignore the terms, Eβ π +  and , to some extent, and exploit the sensitivity 

parameter κ of how the inflation rate responds to the output gap. 

tu

0bλ κ∂ ∂ <Consider the situation where . Once again, society cares about the future 

(i.e., 21 2β κ λ> + ), and the cost-push shock exhibits higher persistence, (i.e., ρ >ρκc). In this 

situation, a more sensitive response of the inflation rate to the output gap implies that the policy 

makers must place less weight on output stabilization. Intuitively, in this situation, the central 

bank can no longer exploit the sensitivity of the inflation rate to the output gap, because the 

terms 1t tEβ π +  and  exert much more influence directly on current and future inflation. 

Accordingly, the policymakers must place more weight directly on inflation stabilization to 

counteract the sensitivity of the inflation rate to the output gap. A more sensitive response of the 

inflation rate to the output gap implies that the policy makers must place more weight on 

inflation stabilization and, thus, less weight on output stabilization. 

tu

4. Designing Central Bank Loss Function in a Hybrid New-Keynesian Model 

This section combines the possibility of backward- and forward-looking inflation expectations 

into a hybrid model. This model reduces to entirely forward-looking or entirely backward- 

looking models by choosing the extreme values of the parameter that indexes expectations across 

22 
 



the backward- and forward-looking dimensions. 

The Model and Its Socially Optimal Solution 

Consider the following generalization of the Phillips curve 

23 
 

t(4.1)  ( )1 11t t t t tx E uπ κ φπ φ β π− += + + − + , 

where parameter φ indexes the degree of lagged versus expected future inflation rates. The 

socially optimal solution for t≥1 equals 25 

(4.2a)  ( ) ( ) ( ) ( ) ( )
2

1 1 1a a
t t u

d a t
δπ π δ π π φ βρ ρ

δρ−
⎡ ⎤− = − + − − −⎣ ⎦ −

, and 

(4.2b)  ( ) ( ) ( )1
a a

t t tx x x x
d a

uκδρδ
λ δρ−− = − −

−
, 

where δ is a root of the characteristic equation26 

(4.3a)   with 2 4 3 2 0a bβ δ βδ δ δ− + − + =a

(4.3b)  ( )1a φ φ≡ − , 

(4.3c)  ( )
2 2

221 1 1b aκ κ 2φ β φ β β
λ λ

≡ + + + − = + + − β ,  

(4.3d)  ( ) ( )2 2 2d a bβ δ δρ ρ β δ ρ≡ + + − + + , 

(4.3e)  
( )

( )

* *

22

1

1
a

x

a

κ κπ λφ β
π

κ λ β

⎡ ⎤+ −⎣ ⎦≡
+ −

, and 

(4.3f)  
( )( )1 1a ax

φ β
π

κ
− −

≡ . 

Obviously, when φ  = 0, the characteristic equation (4.3a), the implied output target in equation 

                                                        
25 See equations (G.28) and their derivations in Appendix G. 
26 We do not discuss multiple equilibria or consider whether a convergent equilibrium exists. Rather, we just assume 
that a root exists between 0 and 1. 



(4.3f) and the optimal solutions in equations (4.2a) and (4.2b) reduce to equations (3.8a), (3.8c), 

(3.7a), and (3.7b), since a = 0.27  

Once again, we adopt the optimality from a timeless perspective as the benchmark. That 

is, we design the central bank loss function to replicate the solutions in equations (4.2a) and 

(4.2b) for all periods. To do this, we first analyze the properties of these solutions. 

Similar to Section 3, solutions in equations (4.2a) and (4.2b) consist of two parts – the 

systematic evolution paths of the inflation rate and the output gap, and reactions to cost-push 

shocks. The systematic evolution paths converge to ( ),a axπ  with the same persistence 

parameter δ. So we interpret π a and xa as the long-run implied targets of the inflation rate and the 

output gap. To understand the implied targets, consider the Phillips curve (4.1). The equilibrium 

relationship of the inflation rate and the output gap must conform to 

(4.4)  ( )1xπ κ φπ φ βπ= + + − , 

where  and xπ  denote the equilibrium values of the inflation rate and the output gap. Equation 

(4.4) is just equation (4.3f), where aπ π=  and ax x= . Similarly, a trade-off exists between the 

implied targets, and we can interpret the implied targets as the long-run equilibrium values. The 

intuition matches that in Section 3. The implied targets prove consistent with the model.  

Moreover, the implied targets generally differ from the social ones, and we observe that 

they coincide when the social targets satisfy the trade-off. Specifically, assume 

                                                        
27 Here, we show that the solutions in equations (4.2a) and (4.2b) reduce to equations (3.7a) and (3.7b). If φ  = 0, 
then a = 0, (d b
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)β δ ρ= − + , and 2d bδ δ βδ δβρ= − − . Using characteristic equation (3.8a), 2δ 1bδ β− = . 

Therefore, 1dδ δβρ= −  or ( )1 1d δ δβρ= − . As a result, equations (4.2a) and (4.2b) reduce to equations (3.7a) 
and (3.7b). 
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( )* * * 1x *π κ φπ φ β= + + − π , i.e. 
( )( )* *1 1

x
φ β

π
κ

− −
= . 

Then, 

( )
( ) ( )

( ) ( )( )* *
* *

2 22 2

1 1 1
1

1 1
a

x

a a

κ κπ λφ β φ βκ *π κπ λφ β π π
κκ λ β κ λ β

⎡ ⎤+ − − −⎡ ⎤⎣ ⎦≡ = + −⎢ ⎥
+ − + − ⎣ ⎦

= , and 

( )( ) ( )( ) * *1 1 1 1a ax x
φ β φ β

π π
κ κ

− − − −
≡ = = . 

In this respect, the social targets are generally inconsistent with the model. 

Equations (4.3a), (4.3b), and (4.3c) determine δ.28 No matter whether a root (0,1)δ ∈  

exists for the characteristic equation (4.3a), δ only depends on the structural parameters (i.e., the 

discount factor β, the weight λ on output stabilization, the sensitivity κ of inflation to output gap, 

and the lagged degree φ of inflation) of the social loss function and the Phillips curve, and does 

not depend on the cost-push shock. 

Consider the two polar models—a purely forward-looking model (φ = 0) and a purely 

backward-looking model (φ = 1). The characteristic equations reduce to the same equation (3.7a) 

in the two polar models, since a = 0. That is, the inflation rate and the output gap evolve with the 

same persistence along the optimal paths in the two polar models, although toward different 

implied targets. Furthermore, the output gaps respond in the same way and the inflation rates 

respond differently to the cost-push shocks in the two polar models. Specifically, 

                                                        
28 We cannot determine whether a root (0,1)δ ∈  exists in the characteristic equation (4.3a) for any lagged degree 

(0,1)φ ∈ . But for the two polar cases of φ = 0 and φ = 1, the characteristic equation (4.3a) reduces to (3.8a), and a 
root (0,1)δ ∈  does exist. 



(4.5a)  
( ) ( )

( ) ( )

* *
1

1

1

0   , where  satisfies (3.7a)
t t t

a a
t t t

u
d

x x x x u
d

ρπ π δ π π
ρφ δ

κδ
λ

−

−

−⎧ − = − −⎪⎪= ⎨
⎪ − = − −⎪⎩

, and 

(4.5b)  
( ) ( )

( ) ( )

1

1

1

1 , where  satisfies (3.7a)
0 0

a a
t t t

t t t

u
d

x x u
d

βρπ π δ π π
φ δ

κδ
λ

−

−

−⎧ − = − +⎪⎪= ⎨
⎪ − = − −
⎪⎩

. 

In equation (4.5a), *(1 )ax β π κ= − , while in equation (4.5b), * *[ (1 )a x ]π κπ λ β κ= + − . 

To understand the different responses of the inflation rates to the cost-push shocks in the 

two polar models, we transform the inflation rate expressions as follows: 

(4.6a)  ( ) ( ) ( )* *
0 0 1 0

10 : t t t 0 1tE E E u
d

φ π π δ π π− −= − = − + − E u , and 

(4.6b)  ( ) ( ) ( )0 0 1 0
11: 0 0t t t 0 1tE E E u
d

φ π δ π β− += − = − + − E u . 

That is, the inflation rates respond to the change of the cost-push shocks at current and previous 

periods in a purely forward-looking model (φ=0), and to the difference between current shock 

and discounted shock of next period in a purely backward-looking model (φ=1). Woodford 

(1999b) demonstrates that an optimal policy imparts inertia when expectations are 

forward-looking. We argue that an optimal policy imparts forward-looking nature in a 

backward-looking model. The consolidated first-order conditions also reveal this point.29 

(4.7a)  ( )*
0 0 1 00 : t t tE x E x Eκφ π π

λ−= − = − − , and 

(4.7b)  ( ) ( )* *
0 0 1 01: 1t t tE x E x E xκφ β π π

λ+= − = − − + − β

                                                       

. 

Intuitively, when the private sector looks backward, the central bank must lead the private sector 

to the optimal path. Accordingly, optimal policy looks forward in a backward-looking model. 
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29 See equation (G.3b) and its derivation in Appendix G. 



In sum, optimal policy looks forward (backward) in a backward-(forward-) looking model. 

Designing the Central Bank Loss Function 

The Phillips curve involves backward and forward-looking expectations of inflation. So must 

inflation target reflect backward-looking, forward-looking, or hybrid specifications? Assume that 

the delegated targets equal 

(4.8a)  ( )1
b a a
t tπ π δ π π−= + −  and 

(4.8b)  ( )1
b a a
t tx x x xδ −= + − , 

The consolidated first-order condition of discretionary policy under the loss function (2.7) with 

targets in equations (4.8a) and (4.8b) subject to the Phillips curve (4.1) equals30 

(4.9)  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ({ }

( ) ( ){ }

1 1

1 1

2
2 1

           

                =0.

a a a a
t t t t t

b a a a a
t t t t t

b a a
t t t t

E

x x x x E x x x x

E x x E x x

κ π π δ π π βδ π π δ π π

λ δ β φ δ δ

λ φβ δ δ

− +

− +

+ +

⎡ ⎤ ⎡ ⎤− − − − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡+ − − − − + − − −⎣ ⎦ ⎣

⎡ ⎤+ − − −⎣ ⎦

)⎤⎦  

Combining the first-order condition (4.9) and the Phillips curve (4.1) generates discretionary 

policy. A necessary condition that the discretionary policy replicates the optimal policy is that the 

optimal solutions (4.2a) and (4.2b) satisfy the first-order condition (4.9). Using equations (4.2a), 

(4.2b) and 1t t tE u uρ+ =  in (4.9) produces31 

(4.10)  
( )( )

( )

21
1
cb

φ φ βρ
λ λ

ρ φβρ

− −
=

−
 

where 

                                                        
30 See equation (H.3) in Appendix H. We change the subscripts, which equal period 0 in Appendix H, to period t 

here. 
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31 See equations (H.5) and (H.6) and their derivations in Appendix H. 



(4.11)  2

1
1c

ρφ
βρ

−
=

−
 and 0 < φc <1 for 0 < ρ < 1. 

To ensure  requires that 0bλ > cφ φ> . That is, when the Phillips curve is sufficiently 

backward-looking (i.e., cφ φ> ), the inflation target is backward-looking. 

Now, assume that the delegated targets take 

(4.12a)  ( )1
b a a
t t tEπ π π π+= + − δ  and 

(4.12b)  ( )1
b a a
t tx x x xδ −= + − . 

The consolidated first-order condition of discretionary policy under the loss function (2.7) with 

targets in equations (4.12a) and (4.12b) subject to the Phillips curve (4.1) equals32 

(4.13)  

( ) ( )
( ) ( ) ( ) ( ) ({ }

( ) ( ){ }

1

1 1

2
2 1

      

           0.

a a
t t t

b a a a a
t t t t t

b a a
t t t

E

x x x x E x x x x

E x x x x

κ π π π π δ

λ δ β δ φ δ

λ φβ δ δ

+

− +

+ +

⎡ ⎤− − −⎣ ⎦

⎡ ⎤ ⎡+ − − − − + − − −⎣ ⎦ ⎣

⎡ ⎤+ − − − =⎣ ⎦

)⎤⎦

Combining the first-order condition (4.13) and the Phillips curve (4.1) will generate discretionary 

policy. A necessary condition that the discretionary policy replicates the optimal policy is that the 

optimal solutions in equations (4.2a) and (4.2b) satisfy the first-order condition (4.13). Using 

equations (4.2a), (4.2b) and 

 

1t t tE u uρ+ =  in (4.13) produces33 

(4.14)  
)

( ) ( )
( ) (

21

1 1
cb

φ φ βρ
λ λ

δ δβρ φβρ

− −
=

− −
. 

To ensure  requires that 0bλ > cφ φ< . That is, when the Phillips curve is sufficiently 

forward-looking (i.e., cφ φ< ), the inf ation target is forward-looking. Moreover, in a purely 

                                                       

l

 
32 See equation (I.3) in Appendix I. We change the subscripts, which equal period 0 in Appendix I, to period t here. 
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33 See equation (I.5) and its derivation in Appendix I. 



forward-looking model (i.e., φ = 0), equation (4.14) reduces to equation (3.17).  

Equations (4.10) and (4.14) give the central bank weights on output stabilization under 

different cases of cφ φ>  and cφ φ< . For convenience, we define expectations as principally 

backward-looking if φ>φc, and vice versa. Then, the inflation target is backward-looking, if the 

Phillips curve is principally backward-looking,34 and vice versa. That is, the inflation target 

reflects the principal nature of expectations in the Phillips curve. Furthermore, the critical value 

that divides principally backward- and forward-looking models responses to β and ρ as follows:  

(4.15a)  ∂φc/∂β>0 and  

(4.15b)  ∂φc/∂ρ<0. 35  

That is, the inflation target becomes more forward-looking, when the future is more important or 

the cost-push shocks are less persistent. 

Now consider the central bank weight. In addition to the structural parameters (i.e., the 

discount factor β, social weight λ, sensitivity κ, and degree φ of lagged inflation), the central 

bank weight λb still depends on the cost-push shock persistence parameter ρ. We discuss the 

properties of λb for different values of φ. Using equation (4.10) when φ=1 generates 

(4.16)  bλ λ= . 

In a purely backward-looking model (φ=1), the central bank takes the same weight on output 

stabilization as society. That is, the central bank is neither weight conservative nor weight liberal. 
                                                        
34 Reversing the nature of the inflation target, optimal policy now imparts a future forecast in a backward-looking 
model. 

35 
( )

( )
2

22

1
0

1
c ρ ρφ

β βρ

−∂
= >

∂ −
 and 

( )
( )

2

22

2 1
0   for 0 1

1
c

β ρ ρφ
ρ

ρ βρ

− −∂
= <

∂ −
< < . 
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Using equation (4.10) when φc < φ < 1 produces 

(4.17a)  bλ λ<  and 0bλ φ∂ ∂ > , 

(4.17b)  0bλ β∂ ∂ < , 

(4.17c)  0bλ λ∂ ∂ > ,  

(4.17d)  0bλ κ∂ ∂ = , and 

(4.17e)  ( )0 as 1 2 0bλ ρ φβρ
> >⎧ ⎫ ⎧ ⎫

⎪ ⎪ ⎪∂ ∂ = − =⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪< <⎩ ⎭ ⎩ ⎭

⎪
.36 

In a principally backward-looking model (φc < φ < 1), the central bank must exhibit conservatism 

( bλ λ< ). Moreover, the central bank becomes less conservative, if the Phillips curve moves 

toward a purely backward-looking model (i.e., φ increasing, 0bλ φ∂ ∂ > ), society places less 

importance on the future ( 0bλ β∂ ∂ < ), and/or society places more weight on output 

stabilization ( 0bλ λ∂ ∂ > ). The central bank weight, however, does not respond to the sensitivity 

of inflation to the output gap ( 0bλ κ∂ ∂ = ). For the cost-push shock (4.17e), a more-persistent 

cost-push shock implies that the policy maker must place more or less weight on output 

stabilization, depending on the sign of (1 2 )φβρ− . For a model with a heavily discounted future 

(i.e., β small) and/or little persistence (i.e., ρ small), increasing persistence leads to more weight 

on output stabilization.  

In a principally forward-looking model (0 < φ < φc), λb equals equation (4.14) and now 

depends on δ, which depends on the parameters of the model. No analytical way exists to discuss 
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36 See equations (J.1), (J.2), (J.3), (J.4), (J.5), and (J.6) and their derivations in Appendix J. 
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the relationship of the central bank weight with model parameters. 37 

In a purely forward-looking model (φ = 0) , however, we discuss λb in detail in Section 3. 

5. Summary 

We design central bank loss functions using the optimal solutions under commitment. The 

optimal solutions suggest two interesting parameters — the implied targets and the persistence 

parameter that governs the adjustment toward the implied targets (See Table 1). Based on 

implied targets and the persistence parameter as well as the nature of the expectations in the 

Phillips curve, we design the central bank’s targets. With the designed targets, the relative weight 

between the targets emerges as well. Table 2 summarizes the central bank targets and weight. 

Several results emerge. First, the implied targets conform to a trade-off between targets 

imposed by the structure of the macroeconomy (i.e., the Philips curve), and equal the long-run 

equilibrium values of target variables. In this sense, the implied targets are consistent with the 

models. Moreover, the implied targets may differ from the social targets, but they coincide when 

the social targets also satisfy that trade-off. The social targets are generally inconsistent with the 

models. Second, the government delegates to the central bank short-term, state-contingent targets, 

which converge to the long-run implied targets at a rate controlled by the persistence parameter. 

Though the delegated targets are state-contingent, they only depend on the model’s structural 

parameters and, thus, are feasible. Third, for the Barro-Gordon model with output persistence, 

the correct delegated targets eliminate the constant average and state-contingent inflation biases, 

and a weight-liberal central bank removes the stabilization bias. Fourth, for the new-Keynesian 
 

37 See Appendix K. 
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models, delegated targets cannot eliminate the constant average and state-contingent inflation 

biases, until combined with the appropriate weight-liberal or –conservative central bank. Then all 

three biases disappear. The inflation target is forward- (backward-) looking, if the Phillips curve 

is principally forward- (backward-) looking. The weight may also be conservative or a liberal, 

depending on the model’s parameters as well as the persistence of the cost-push shock. Table 3 

shows how the weight specifically responds to parameters.38 Fifth, reversing the nature of the 

inflation target, the optimal policy is forward-looking in a backward-looking model. This finding 

provides the complement to Woodford’s (1999b) demonstration that optimal policy imparts 

inertia in a forward-looking model. We also support Woodford’s finding as well, since we also 

find that the optimal policy is backward-looking in a forward-looking model. Sixth, the central 

bank can attain the delegated targets jointly on average. The attainability of the delegated targets 

provides the necessary ingredients to establish monetary policy credibility and accountability. Finally, the 

central bank, though operating with discretion, can replicate optimal policy. 

 
38 Table 3 only summarizes the weight response to parameters in the New Keynesian model. For the Barro-Gordon 
model with output persistence, see equations (2.11a, b, c, d). In addition, we do not generate analytical results as to 
how the weight responds to model parameters in a principally forward-looking New Keynesian model (0<φ<φc). 



Table 1: Implied Targets and Persistence Parameters of Optimal Solutions 
 

Model 
Implied 

Inflation-Rate 
Target 

Implied 
Output-Gap 

Target 

Inflation-Rate 
Persistence 

Output-Gap 
Persistence 

Barro-Gordon Model with 
Output Persistence π * 0 0 η 

New-Keynesian Model 
 π a x a δ δ 

 

Table 2: The Three Parameters of Central Bank Loss Function 
 

Model 

Inflation-Rate 
Target 

b
tπ  

Output-Gap  
Target 

b
tx  

Central-Bank  
Weight 

bλ  

Barro-Gordon Model with 
Output Persistence 

*π  1txη −  21
λ
βη−

 

New- 
Keynesian 
Model 
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33 
 

1
a

t ta
E π π

π
δ

+ −
+ ( )1

a a
tx x xδ −+ −  

( )( )
( )( )

21

1 1
cφ φ βρ

λ
δ δβρ φβρ

− −

− −
 

1cφ φ< ≤  

(Backward) 
( )1

a a
tπ δ π π−+ − ( )1

a a
tx x xδ −+ −  

( ) ( )
( )

21

1
cφ φ βρ

λ
ρ φβρ

− −

−
 

 



 

Table 3 Weight Response to Model Parameters in the New-Keynesian Models 
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Appendix A: Discretionary Policy with Persistent Output 

The following specifies the problem of the central bank with discretion 

(A.1)  
{ }

( ) ( )

( )
1

2 21 *
0 1

1

1

1

1min
2

  . .

t t

t b
t t t

t

e
t t t t t

e
t t t

E x

x x u
s t

E

π
β π π λ η

η α π π

π π

∞
=

∞
−

−
=

−

−

x⎧ ⎫⎡ ⎤− + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎧ = + − +⎪
⎨

=⎪⎩

∑
. 

The Bellman equation for determining the discretionary policy equals 

(A.2)  ( ) ( )
2 2*

1 1 1
1( ) min ( )
2t

b
t t t t t tV x E x x V x

π
π π λ η β− − −

⎧ ⎫⎡ ⎤= − + − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 with 

(A.3)  ( ) 2
0 1 2

1
2t tV x x xtγ γ γ= + + . 

Its first order condition becomes 

(A.4)  ( ) ( )*
1 1 2 0b

t t tx x xπ π λ α η βα γ γ−− + − + + =t . 

Substituting equation (2.3) into equation (A.4) produces 

(A.5)  ( )( ) ( )* 2
1 2 1 2 2 0.b e b

t t t tx uπ π αβγ βγ αη α λ βγ π π α λ βγ−− + + + + − + + =t

1

 

Taking expectations Et-1 of equation (A.5) gives 

(A.6)  *
1 2 .e

t txπ π αβγ βγ αη −= − −  

Substituting equation (A.6) into equation (A.5) leaves 

(A.7)  
( )

( )
2*

1 2 1 2
21

b

t t b tx u
α λ βγ

π π αβγ βγ αη
α λ βγ−

+
= − − −

+ +
. 

Substituting equations (A.6) and (A.7) into equation (2.3) results in 

(A.8)  
( )1 2

2

1
1t t tx

b
x uη

α λ βγ−= +
+ +

. 

Now, computing ( )1
b

t t tE L V xβ− ⎡ +⎣ ⎤⎦  using the solutions in equations (A.7) and (A.8) 
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and comparing the coefficients of the result with ( )1tV x −  produces 

(A.9a)  ( )2
2 1 11 α βγ γ βη γ+ =  and 

(A.9b)  ( )2
2 2 21 α βγ γ βη γ+ = . 

Therefore,  

(A.10)  1 2 0γ γ= = . 

The discretion solutions in equations (A.7) and (A.8) become 

(A.11a) *
21

b

t tb uαλπ π
α λ

= −
+

, and 

(A.11b) 1 2

1
1t t b tx x uη

α λ−= +
+

 

Appendix B:  Socially Optimal Solution, Purely Forward-Looking, New-Keynesian 

Model 

The optimization problem minimizes the social intertemporal loss function (3.1) with period loss 

function (3.2) subject to the Phillips curve (3.3). Its Lagrangian expression equals 

(B.1)  ( ) (2 2* *
t tE xλ⎡ ⎤+⎢ ⎥⎣ ⎦) ( )0 1

0

1
2

t
t t t t t

t
x x uβ π π ψ κ βπ π

∞

+
=

⎧ ⎫= − − + + + −⎨ ⎬
⎩ ⎭

∑L . 

The first-order conditions equal 

(B.2)  

( ){ }
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L β βψ−
−
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+
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Eliminating the multipliers from the first-order conditions leads to the consolidated 

first-order conditions 



(B.3a)  ( )* *
0 0 for 0x x tκ π π

λ
− = − − = , and  

(B.3b)  ( )*
0 0 1 0 for 1t t tE x E x E tκ π π

λ−− = − − ≥ . 

Combining equations (B.3a) and (B.3b) with the Phillips curve (3.3) generates 

(B.4a)  ( ) * *
0 1 0 01 0E x bx x u tfor 0κ κβ β π

λ λ
− + − + − = = , and 

(B.4b)  ( ) *
0 1 0 0 1 01 0t t t t for 1E x bE x E x E u tκ κβ β π

λ λ+ −− + + − − = ≥ , 

where 

(B.5)  
2

1b κβ
λ

≡ + + . 

The smaller root of the characteristic equation equals δ. That is, 

(B.6)  . 2 1 0bβδ δ− + =

We can easily show that 0 < δ < 1.  

Assume that the solution of equation (B.4b) takes the following form for t≥1: 

(B.7)  1t t tx x e fuδ −= + + . 

Applying expectations to equation (B.7) and using 0 0tE u E u 1tρ −=  for t≥1 generates 

(B.8)  0 1 0 0t tE x E x e f E utδ ρ+ = + + . 

Substituting equation (B.8) into equation (B.4b) for t≥1 leads to 

(B.9)  ( ) ( ) *
0 0 1 01 0t t tb E x E x e f E uκ κβδ β π β βρ

λ λ−
⎛ ⎞− + + − + + −⎜ ⎟
⎝ ⎠

= . 

Transforming equation (B.9) and using ( )1 bβδ δ− − =  from equation (B.6) results in 

(B.10)  ( ) *
0 0 1 1t tE x E x e f E uκ κδ δ β π β δβρ

λ λ−
⎡ ⎤ ⎛= + − + + −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝

0 t
δ ⎞

⎠
. 

Comparing equation (B.10) with equation (B.7) produces 
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(B.11a)  ( )
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λ βδ
−
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−
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(B.11b) 
( )

              for 1
1

f tκδ
λ δβρ
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−

. 

Applying expectations E0 to equation (B.7) for t=1 generates 

(B.12)  ( )
( ) ( )

0 1 0 0 1 0 0

*
0 0

1
1 1

E x x e fE u x e f u

x u

δ δ ρ
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−
= + −

− −

. 

Substituting equation (B.12) into equation (B.4a) for t=0 leads to 

(B.13)  
( )

* * *
0 0

1
1 1 0x x u xκ β κδδ π δ

λ βδ λ δβρ
⎛ ⎞−
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e fu+ . 

Summarily, the socially optimal solution of the output gap equals 

(B.14a) *
0 0               for 0x x e fu tδ= + + = , and 

(B.14b) 1              for 1t t tx x e fu tδ −= + + ≥ , 

where e and f satisfy equations (B.11a) and (B.11b).  

To interpret the constant e in equations (B.14a) and (B.14b), we write 

( )[ 1 (1 )e e e ]δ δ δ= − − − , where ( )1ax e δ≡ − , which equals the implied output gap target. 

Thus, equations (B.14a) and (B.14b) become 

(B.15a)   *
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Using equations (B.5) and (B.6), we can show that  
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Thus, ( )
( )( )
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1 1 1
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κδ β *βπ π
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. That is, 
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Now, we can solve for πt as follows. Using equation (B.7) for t≥2 generates 

(B.18a) 0 0 1t tE x E x e fE u0 tδ −= + + , and 
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ρ− −= + + t . 

Using equations (B.18a), (B.18b), and (B.11b) leads to 
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Substituting equation (B.3b) for t≥2 into equation (B.19) gives 
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According consolidated first-order conditions in equations (B.3a) and (B.3b), we observe 
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− = − −  and 0 1 0E x x− =  ( *
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Using equations (B.3a) and (B.15a) for t=0 produces 
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Combining equations (B.20), (B.22), and (B.23) gives 
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Appendix C:  Persistence Response to Structural Parameters in a Purely 

Forward-Looking, New-Keynesian Model 

The characteristic equation equals the following: 

(C.1)  . 2 1 0bβδ δ− + =

The smaller root of the characteristic equation equals δ. That is, 

(C.2)  
2 4

2
b b β

δ
β

− −
= . 

We can easy verify that 

(C.3)   and 0 12 4b β− > 0 δ< < . 

Transforming equation (C.2) results in 

(C.4)  22 4b bβδ β− = − − . 

Differentiating δ with respect to β in the characteristic equation (C.1) leads to 
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Transforming equation (C.5) gives 
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β βδ
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Substituting equation (C.4) into equation (C.6) produces 
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Noting equation (C.3), we can see that 
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Differentiating δ with respect to λ in the characteristic equation (C.1) gets 
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Substituting equation (C.4) into equation (C.10) results in 
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Differentiating δ with respect to κ in the characteristic equation (C.1) leads to 
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Transforming equation (C.12) produces 
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Appendix D: Determining λ b with ( )*
1

b
t t

*π π δ π π−= + −  in a Purely Forward- 

Looking, New-Keynesian Model 

The central bank operates with discretion. That is, the central bank always re-minimizes each 

period, subject to the Phillips curve (3.3), the expectation of the intertemporal loss function 
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with the period loss function (2.7) and targets defined in equations (3.11a) and (3.11b). The 

Lagrangian expression of the problem equals 
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The first-order conditions with respect to π and x equal the following: 
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As the central bank re-makes policy each period, eliminating the multiplier ψ 0 leads to 

the consolidated first-order condition for t=0 

(D.4)  
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }
* * * *

0 1 0 1 0

0 1 0 1 0        =0b a a a a

E

x x x x E x x x x

κ π π δ π π βδ π π δ π π

λ δ βδ δ

−

−

⎡ ⎤ ⎡ ⎤− − − − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡+ − − − − − − −⎣ ⎦ ⎣ ⎤⎦

. 

As we require that discretionary policy replicates the optimal policy, the optimal 

solutions in equations (3.7a) and (3.7b) from timeless perspective must satisfy equation (D.4). 

Using equations (3.7a) and (3.7b) for t=0,1 and 0 1 0E u uρ=  results in 
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Substituting equations (D.5a), (D.5b), (D.5c), and (D.5d) into equation (D.4) implies that 

λb equals the following: 
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Appendix E: Determining λ b with ( )*
1

b
t t tE *π π π π+= + − δ  in a Purely Forward- 

Looking, New-Keynesian Model 

The problem follows the same path as in Appendix D, except that ( )* *
1

b
t t tEπ π π π+= + − δ

t

 

rather than 1
b
tπ δπ −= . The Lagrangian expression of the problem equals 
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As the central bank operates with discretion, we only need to calculate the first-order 

conditions regarding π0 and x0 to determine λb. 
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Eliminating the multiplier ψ 0 results in 
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As we require that discretionary policy replicates the optimal policy, the optimal 

solutions in equations (3.7a) and (3.7b) from the timeless perspective must satisfy equation (E.3). 

Using equations (3.7a) and (3.7b) for t=0,1 and 0 1 0E u uρ=  leads to 

(E.4a)  ( )* *
0 0 1

1
1 0E uρπ π π π δ

δβρ
−

− − − =
−

, 

(E.4b)  ( ) ( )0 1 1
a a

0x x x x uκδδ
λ δβρ−− − − = −

−
, and 

(E.4c)  ( ) ( )0 1 0 01
a aE x x x x uκδρδ

λ δβρ
− − − = −

−
. 

Substituting equations (E.4a), (E.4b), and (E.4c) into equation (E.3) gives 

(E.5)  
( )
1
1

b ρλ λ
δ δβρ

−
=

−
. 

Appendix F: Weight Response to Structural Parameters in a Purely Forward- 

Looking, New-Keynesian Model 

The weight in the central bank loss function equals 

(F.1)  
( )
1
1

b ρλ λ
δ δβρ

−
=

−
. 

Differentiating λb with respect to ρ produces 

(F.2)  
( )2

1 0
1

bλ βδ λ
ρ δ δβρ

∂ −
= − <

∂ −
. 

Differentiating λb with respect to β generates 
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(F.3)  
( )

( )
( ) 2

22

1
1 2

1

b λ ρλ δδβρ δ ρ
β βδ δβρ

− ⎡ ⎤∂ ∂
= − − −⎢ ⎥∂ ∂− ⎣ ⎦

. 

Substituting equation (C.6) into equation (F.3) results in 

(F.4)  ( ) ( )( ) ( )
( ) ( )2

1 1 2 2
1

1 2

b b

b

δ δβρ δρ βδλ λ ρ
β δ δβρ βδ

− − − −∂
= −

∂ − − −
. 

Noting equation (C.4), we determine that 

(F.5)  . ( ) ( )21 2 bδ δβρ βδ− − − > 0

Focusing on the numerator of equation (F.4), we determine that 

(F.6)  ( )( ) ( ) ( ) ( )1 1 2 2 1 2b bδ δβρ δρ βδ δ β δρ− − − − = − + − > 0 . 

According to equations (F.5) and (F.6), we can show that 

(F.7)  0
bλ

β
∂

>
∂

. 

Differentiating λb with respect to λ and substituting equation (C.10) into the result leads 

to 

(F.8)  
( )

( )
( ) ( )

( )

2

2

1 1
1

21

b

b
2ρ κ δβρλ δβρ

λ λδ δβρ

⎡ ⎤− −∂
= − +⎢ ⎥

∂ −− ⎢ ⎥⎣ ⎦βδ
. 

We cannot determine the sign of ∂λb/∂λ, since it depends on the values of the parameters. 

Differentiating λb with respect to κ and substituting equation (C.13) into the result produces 

(F.9)  
( )

( ) ( )
( )2

2 1
1 2

2 1

b

b

κ ρλ δβρ
κ βδ δ δβρ

−∂
= −

∂ − − −
. 

Noting equation (C.4), we know that the sign of 
( )

( ) ( )2

2 1

2 1b

κ ρ

βδ δ δβρ

−

− − −
 is positive. So 

the sign of 
bλ

κ
∂
∂

 depends on the sign of ( )1 2δβρ− . 
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Appendix G: Socially Optimal Solution in a Hybrid New-Keynesian Model 

The optimization problem minimizes the social intertemporal loss function (3.1) with period loss 

function (3.2) subject to the Phillips curve (4.1). Its Lagrangian expression equals the following: 

(G.1) ( ) ( ) ( )
2 2* *

0 1 1
0

1 1
2

t
t t t t t t t

t
E x x xβ π π λ ψ κ φπ φ βπ π

∞

− +
=

⎧ ⎫⎡ ⎤= − + − + + + − + tu −⎡ ⎤⎨ ⎬⎣ ⎦⎢ ⎥⎣ ⎦⎩ ⎭
∑L . 

The first-order conditions equal 

(G.2)  

( ){ }
( )

( ) ( ){ }

*
0

*
0 0 0 1

0

* 1 1
0 1 1

0 f

0 f

1 0 for 1

t
t t

t

t t t
t t t t

t

E x x t
x

E t

E t

β λ κψ

π π ψ βφψ
π

β π π ψ β φψ β φ βψ
π

+ −
+ −

∂ ⎡ ⎤= − + =⎣ ⎦∂
∂ ⎡ ⎤= − − + =⎣ ⎦∂
∂ ⎡ ⎤= − − + + − =⎣ ⎦∂

L

L

L

or 0

or 0

≥

=

≥

. 

Eliminating the multipliers from equation (G.2) gives the consolidated first-order 

conditions as follows: 

(G.3a)  ( ) ( ) ( )* * *
0 0 1 0                              for 0x x E x x tκφβ π π

λ
− − − = − − = , and 

(G.3b)  
( ) ( ) ( )( )

( )

* * *
0 0 1 0 1

*
0

1

                                                                 for 1

t t t

t

E x x E x x E x x

E t

φβ φ

κ π π
λ

+ −− − − − − −

= − − ≥
 

We work backward to solve equations (G.3a) and (G.3b). That is, we first solve { },t txπ  

for t≥1, then { }0 0, xπ . Combining equations (G.3b) with the Phillips curve (4.1) produces 

(G.4)  
( )( ) ( )

2
0 2 0 1 0 0 1 0 2

* *
0            1 1 1 0      for 1,

t t t t t

t

a E x E x bE x E x aE x

x E u t

β β
κ κφ β π φ β
λ λ

+ + − −− + − +

⎡ ⎤− − − + − + = ≥⎢ ⎥⎣ ⎦

 

where 

(G.5a)  ( )1a φ φ≡ −  
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(G.5b)  ( )
2 2

221 1 1b aκ κ 2φ β φ β β
λ λ

≡ + + + − = + + − β

a

t

, and 

(G.5c)  . 1 0x− ≡

Assume that δ equals a root of the characteristic equation 

(G.6)  . 2 4 3 2 0a bβ δ βδ δ δ− + − + =

Assume that the solution of equation (G.4) for t≥1 takes the following form: 

(G.7)  1t tx x e fuδ −= + + . 

Using equation (G.7) and 0 0tE u E u 1tρ −=  leads to 

(G.8a)  0 0 1 0t tE x E x e f E u 1tδ ρ− −= + + , 

(G.8b)  ( ) ( )2
0 1 0 1 0 11t t tE x E x e f Eδ δ δ ρ ρ+ −= + + + + u − , and 

(G.8c)  ( ) ( )3 2 2 2
0 2 0 1 01t t 1tE x E x e f Eδ δ δ δ δρ ρ ρ+ −= + + + + + + u −

1t

. 

Substituting equations (G.8a), (G.8b), (G.8c), and 0 0tE u E uρ −=  into equation (G.4) 

results in 

(G.9)  
( )

( )( ) ( )

2 3 2
0 1 0 2 0 1

* *

1

                       1 1 1 0,

t t ta b E x aE x df E

ce x

κβ δ βδ δ ρ
λ

κφ β π φ β
λ

− −
⎛ ⎞− + − + + +⎜ ⎟
⎝ ⎠

⎡ ⎤+ − − − + − =⎢ ⎥⎣ ⎦

u −

 

where 

(G.10a)   ( ) ( )2 2 1 1c a bβ δ δ β δ≡ + + − + +  and 

(G.10b)  ( ) ( )2 2 2d a bβ δ δρ ρ β δ ρ≡ + + − + + . 

Transforming equation (G.9) and noting that ( )2 3 21 1a b aβ δ βδ δ δ− − + − =  from 

equation (G.6) produces 
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(G.11)  
( )( ) ( )* *

0 1 0 2

0 1

1 1 1

                              .

t t

t

E x E x ce x
a

df E u
a

δ κδ φ β π φ
λ

δ κ ρ
λ

− −

−

⎧ ⎫β⎡ ⎤= + − − − + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 

Comparing equation (G.11) with equation (G.7) implies 

(G.12a)  
( )( ) ( )* *1 1

1e x
c a

δ φ β κ π φ β
δ λ
− − ⎡ ⎤= +⎢ ⎥− ⎣ ⎦

−  and 

(G.12b) 
( )

f
d a

κδρ
λ δρ

= −
−

. 

Similarly, to interpret the constant e in equation (G.7), we compute the implied output gap 

target 

(G.13)  ( )( )
( )( ) ( )* *1 1

1
1 1

a ex x
c a

δ φ β κ π φ β
δ δ δ λ

− − ⎡ ⎤≡ = + −⎢ ⎥− − − ⎣ ⎦
. 

Note that xa = 0, when φ = 1. 

Compute 

(G.14)   and 

( ) ( )

( ) ( )

( )

2 2

2 3 2 2

2 3 2 2 2 2

2 3 2 2 2 2

1 1c a a b a

a b

a a a b

a b a a

δ δ β δ δ β δ

β δ δ δ β δ δ δ

β δ β δ β δ βδ βδ δ

β δ βδ δ β δ β δ βδ

⎡ ⎤− = + + − + + −⎣ ⎦

= + + − + + −

= + + − − + −

= − + + + −

a

a

a−

a
(G.15)  

( ) ( )
( )

2 3 2 2 2 2

2 4 3 2 2 3 2 2 2

c a a b a a a

a b a a

δ δ β δ βδ δ β δ β δ βδ δ

β δ βδ δ β δ β δ βδ δ

⎡ ⎤− = − + + + − −⎣ ⎦

= − + + + − −
. 

Noting that  from equation (G.6), (G.15) becomes 2 4 3 2a bβ δ βδ δ δ− + = − a

(G.16)  ( ) 2 3 2 2 2c a a a a aδ δ δ β δ β δ βδ δ− = − + + − − . 

Subtracting equation (G.16) from equation (G.14) gives 
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(G.17)  ( )( ) ( ) ( ) ( )21 1c a c a c a a b aδ δ δ δ δ β β− − = − − − = + − − + δ . 

Substituting equation (G.5b) into equation (G.17) produces 

(G.18)  ( )
2

22 1 1a b a aκβ β β
λ

+ − − + = + − . 

The implied output target equal 

(G.19)  
( )( ) ( )

( )
( )( )

( )
( )

* *

22

* *
22

1
1 1

1 1

1 1
                1 .

1

a xex
a

x
a

κπ λφ β
φ β

δ κ λ β

φ β λ κ π φ β
λκ λ β

⎡ ⎤+ −
≡ = − − ⎢ ⎥

− + −⎢ ⎥⎣ ⎦
− − ⎡ ⎤= + −⎢ ⎥⎣ ⎦+ −

 

Using equation (G.7) for t≥1 leads to 

(G.20a)  0 0 1t tE x E x e fE u0 tδ −= + + , 

(G.20b) 0 1 0 0t tE x E x e f E utδ ρ+ = + + , and 

(G.20c)  0 1 0 2 0t t
fE x E x e E uδ
ρ− −= + + t . 

Using equations (G.20a), (G.20b), and (G.20c) yields 

(G.21)  
( ) ( )

( ) ( ) ( )

0 0 1 0 1 0 1 0 0 2

2
0

1 1

1 1 1

t t t t t t

t

E x E x E x E x E x E x

fe E

φβ φ δ φβ φ

φ β φ βρ ρ
ρ

+ − − −− − − = − − −⎡ ⎤⎣ ⎦

⎡ ⎤+ − + − − −⎣ ⎦ .u
 

Transforming equations (G.3b) gives 

(G.22)  ( ) ( ) ( )* *
0 0 1 0 1 01 1    for 1t t t tE x E x E x x E tκφβ φ φ β π π

λ+ −− − − = − − − ≥ . 

Substituting equations (G.22) (for t≥1) and (G.12b) into equation (G.21) generates 

(G.23)  
( ) ( ) ( )

( ) ( ) ( )

* *
0 0 1

2
0

1 1 1

               1 1 .

t t

t

E E x

E u
d a

λ λ eπ δ π δ π φ β φ β
κ κ

δφ βρ ρ
δρ

−
⎡ ⎤= + − + − − −⎢ ⎥⎣ ⎦

⎡ ⎤+ − − −⎣ ⎦ −
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The constant term in equation (G.23) equals 

(G.24)  
( ) ( ) ( )

( ) ( ) ( )

* *

* *

1 1 1

                   1 1 1 .a

x e

x x

λ λδ π φ β φ β
κ κ

λ λδ π φ β φ β
κ κ

⎡ ⎤− + − − −⎢ ⎥⎣ ⎦
⎡ ⎤= − + − − −⎢ ⎥⎣ ⎦

. 

Denote 

(G.25)  ( ) ( ) ( )* * *1 1 1 (a a * )ax x x xλ λ λπ π φ β φ β π φ β
κ κ κ

≡ + − − − = + − − . 

Thus, if φ = 0, then *aπ π=  and if φ = 1, then ( )* 1a *xλπ π β
κ

= + − , since xa = 0. 

Equation (G.23) becomes 

(G.26)  ( ) ( ) ( ) ( ) ( )
2

0 0 1 1 1a a
t tE E

d a 0 tE uδπ π δ π π φ βρ ρ
δρ−

⎡ ⎤− = − + − − −⎣ ⎦ −
. 

Now compute πa
 . Substituting equation (G.19) into equation (G.25) produces 

( ) ( )( )( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )
( )

( ) ( )

* *
* *

22

* *
2* *

22

**
2 2* *

2 22 2

2 2
* * *

22 2

1
1 1 1 1

1

1
1 1

1

1
1 1 1

1 1

1 1
1

1

a x
x

a

x
x a

a

x
x a a

a a

a a
x

a

κπ λφ βλ λπ π φ β φ β φ β
κ κ κ λ β

κπ λφ βλ λπ φ β β
κ κ κ λ β

λφ βλ λ κπ λπ φ β β β
κ κ κκ λ β κ λ β

λ β λ βλπ π φ β
κκ λ β κ λ

⎡ ⎤+ −
≡ + − − − − − ⎢ ⎥

+ −⎢ ⎥⎣ ⎦
⎡ ⎤+ −

= + − − − ⎢ ⎥
+ −⎢ ⎥⎣ ⎦

−
= + − − − − −

+ − + −

− −
= − + − −

+ − + ( )
( )

( )
( )

( )
( )

( )

( )
( )

*
2

2 2
* *

2 22 2

2
* *

22

1
1

1 1
1 1 1

1 1

1
1

x
a

a a
x

a a

x
a

λ φ β
κβ

λ β λ β λπ φ β
κκ λ β κ λ β

κ λπ φ β
κκ λ β

−
−

⎡ ⎤ ⎡ ⎤− −
= − + − −⎢ ⎥ ⎢ ⎥

+ − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= + −⎢ ⎥⎣ ⎦+ −

. 

That is, 
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(G.27)  
( )

( )* *
22

1
1

a x
a
κλ κπ π φ

λκ λ β
β⎡ ⎤= + −⎢ ⎥⎣ ⎦+ −

. 

In sum, the optimal paths { },t txπ  for t≥1 equal 

(G.28a)  ( ) ( ) ( ) ( )
2

1 1 1a a
t t u

d a t
δπ π δ π π φ βρ ρ

δρ−
⎡ ⎤= + − + − − −⎣ ⎦ −

, and 

(G.28b) ( ) ( )1
a a

t t tx x x x
d a

uκδρδ
λ δρ−= + − −

−
, 

where πa and xa are defined by equations (G.27) and (G.19). As we adopt the timeless optimal 

policy, we do not compute the policy for t=0. 

Appendix H: Determining λ b with ( )1
b a a
t tπ π δ π π−= + −  in a Hybrid New- 

Keynesian Model 

The Lagrangian expression of the problem equals 

(H.1)  
( )( ) ( )( )

( )

2 2

1 1
0

0
1 1

1
2
             1

a a b a a
t t t tt

t
t t t t t t

x x x x
E

x u

π π δ π π λ δ
β

ψ κ φπ φ βπ π

∞
− −

=
− +

⎧ ⎫⎡ ⎤− − − + − − −⎪ ⎪⎢ ⎥⎣ ⎦= ⎨ ⎬
⎪ ⎪+ + + − + −⎡ ⎤⎣ ⎦⎩ ⎭

∑L . 

As the central bank operates with discretion, we only need to calculate the first-order 

conditions with respect to π0, x0, and x1 

(H.2)  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

0 1 0

0
0 1 0 1

0 1 0

0
0 1 0

1 0

0
1

0,
                   

=0, and
                    

a a

a a

b a a

b a a

b a a

E

x x x x
E

x x x x x

x x x x
E

x

π π δ π π ψ

π βδ π π δ π π βφψ

λ δ κψ

βδλ δ

β λ δ

−

−

⎧ ⎫⎡ ⎤− − − −∂ ⎪⎣ ⎦ ⎪= =⎨ ⎬∂ ⎡ ⎤− − − − +⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤− − − +∂ ⎪ ⎣ ⎦ ⎪= ⎨ ⎬∂ ⎡ ⎤− − − −⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤− − −∂ ⎣ ⎦=
∂

L

L

L { }
( ) ( )

1

2
2 1

=0.
                     b a ax x x x

κψ

β δλ δ

⎧ ⎫+⎪ ⎪
⎨ ⎬

⎡ ⎤− − − −⎪ ⎪⎣ ⎦⎩ ⎭
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Eliminating multipliers ψ 0 and ψ 1 yields 

(H.3)  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ({ }

( ) ( ){ }

0 1 0 1 0

0 1 0 1 0

2
0 2 0 1

           

                =0.

a a a a

b a a a a

b a a

E

x x x x E x x x x

E x x E x x

κ π π δ π π βδ π π δ π π

λ δ β φ δ δ

λ φβ δ δ

−

−

⎡ ⎤ ⎡ ⎤− − − − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡+ − − − − + − − −⎣ ⎦ ⎣

⎡ ⎤+ − − −⎣ ⎦

)⎤⎦  

Using equations (4.2a) and (4.2b) for t=0,1,2, 0 1 0E u uρ=  and 2
0 2 0E u ρ= u  results in 

(H.4a)  ( ) ( ) ( ) ( ) ( )
2

0 1 1 1a a u
d a 0
δπ π δ π π φ βρ ρ

δρ−
⎡ ⎤− − − = − − −⎣ ⎦ −

, 

(H.4b)  ( ) ( ) ( ) ( ) ( )
2

0 1 0 01 1a aE u
d a
δπ π δ π π φ βρ ρ ρ

δρ
⎡ ⎤− − − = − − −⎣ ⎦ −

, 

(H.4c)  ( ) ( ) ( )0 1
a a

0x x x x
d a

uκδρδ
λ δρ−− − − = −

−
, 

(H.4d)  ( ) ( ) ( )0 1 0 0
a aE x x x x u

d a
κδρδ ρ

λ δρ
− − − = −

−
, and 

(H.4e)  ( ) ( ) ( )
2

0 2 0 1 0
a aE x x E x x u

d a
κδρδ ρ

λ δρ
− − − = −

−
. 

Substituting equations (H.4a), (H.4b), (H.4c), (H.4d), and (H.4e) into equation (H.3) 

leads to λb as follows: 

(H.5)  
( )( )

( )

21
1
cb

φ φ βρ
λ λ

ρ φβρ

− −
=

−
 

where 

(H.6)  2

1
1c

ρφ
βρ

−
=

−
. 

Appendix I: Determining λ b with ( )1
b a a
t t tEπ π π π+= + − δ  in a Hybrid 

New-Keynesian Model 
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The Lagrangian expression of the problem equals 

(I.1)  
( )( ) ( )( )

( )

2 2

1 1
0

0
1 1

1
2
                 1

a a b a a
t t t t tt

t
t t t t t t

E x x x
E

x u

π π π π δ λ δ
β

ψ κ φπ φ βπ π

∞
+ −

=
− +

⎧ ⎫⎡ ⎤− − − + − − −⎪ ⎪⎢ ⎥⎣ ⎦= ⎨ ⎬
⎪ ⎪+ + + − + −⎡ ⎤⎣ ⎦⎩ ⎭

∑L
x

. 

As the central bank operates with discretion, we only need to calculate the first-order 

conditions with respect to π0, x0, and x1 as follows: 

(I.2)  

( )

( )( ) ( )( )

( )( ) ( )( )

0 0 1 0 1
0

0 1 0 0 1 0
0

0 1 0 1 0 2 1
1

0;

0;  and

0.

a a

b a a b a a

b a a b a a

E

x x x x E x x x x
x

E x x x x E x x x x
x

π π π π δ ψ βφψ
π

λ δ κψ βδλ δ

λ δ κψ βδλ δ

−

∂
= − − − − + =

∂

∂
= − − − + − − − − =

∂

∂
= − − − + − − − − =

∂

L

L

L

 

Eliminating multipliers Ψ 0 and Ψ 1 gets 

(I.3)  

( ) ( )
( ) ( ) ( ) ( ) ({ }

( ) ( ){ }

0 0 1

0 1 0 1 0

2
0 2 1

      

           0.

a a

b a a a a

b a a

E

x x x x E x x x x

E x x x x

κ π π π π δ

λ δ β δ φ δ

λ φβ δ δ

−

⎡ ⎤− − −⎣ ⎦

⎡ ⎤ ⎡+ − − − − + − − −⎣ ⎦ ⎣

⎡ ⎤+ − − − =⎣ ⎦

 )⎤⎦

As we require that discretionary policy replicates the optimal policy, the optimal 

solutions in equations (4.2a) and (4.2b) from the timeless perspective must satisfy equation (I.3). 

Using equations (4.2a) and (4.2b) for t=0,1,2, 0 1 0E u uρ= , and 2
0 2 0E u uρ=  leads to 

(I.4a)  ( ) ( ) ( ) ( ) ( )
2

0 0 1 01 1a aE u
d a
ρπ π π π δ φ βρ ρ

δρ
⎡ ⎤− − − = − − − −⎣ ⎦ −

, 

( ) ( ) ( )0 1
a a

0x x x x
d a

uκδρδ
λ δρ−− − − = −

−
, (I.4b)  

( ) ( ) ( )0 1 0 0
a aE x x x x u

d a
κδρδ ρ

λ δρ
− − − = −

−
, and (I.4c)  
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(I.4d)  ( ) ( ) ( )
2

0 2 0 1 0
a aE x x E x x u

d a
κδρδ ρ

λ δρ
− − − = −

−
. 

Substituting equations (I.4a), (I.4b), (I.4c), and (I.4d) into equation (I.3) generates λb as 

follows: 

(I.5)  
( ) ( )
( ) ( )

21

1 1
cb

φ φ βρ
λ λ

δ δβρ φβρ

− −
=

− −
 

where φc is denoted by (4.11). 

Appendix J: Weight Response to Structural Parameters in a Backward-Looking 

Model (φc < φ < 1) 

We begin with equation (4.10) as follows: 

(J.1)  
( )( )

( )
( ) ( )

( )
( )
( )

21 1 1 1
1

1 1 1
cb

φ φ βρ ρ φβρ φ φ
λ λ λ

ρ φβρ ρ φβρ ρ φβρ

− − ⎡ ⎤− − − −
= = = −⎢ ⎥− − −⎣ ⎦

λ λ< . 

Differentiating λb with respect to φ leads to 

(J.2)  ( ) ( )
( )

( )
( )

2

2 2

1 1 1
0.

11

b ρ φβρ φ βρ βρλ λ λ
φ ρ φβρρ φβρ

− − − −∂
= =

∂ −−⎡ ⎤⎣ ⎦
>  

Differentiating λb  with respect to β generates 

(J.3)  .

( ) ( ) ( )
( )

( )
( )

2 2

2

2

1 1 1

1

1
0

1

b φρ ρ φβρ ρ φβρ φ φρλ
β ρ φβρ

φ φ

φβρ

− − + − − −⎡ ⎤∂ ⎣ ⎦=
∂ −⎡ ⎤⎣ ⎦

− −
= <

−

 

Differentiating λb with respect to λ leads to 

(J.4)  
( )( )

( )

21
0

1

b
cφ φ βρλ

λ ρ φβρ

− −∂
= >

∂ −
. 

Differentiating λb with respect to κ results in 
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(J.5)  0
bλ

κ
∂

=
∂

. 

Differentiating λb with respect to ρ produces 

(J.6)  

( ) ( ) ( ) ( ) ( )
( )

( )( )
( )

( )

2

2

1 2 1 1 1 1 2

1

1 1 2
0 as 1 2 0.

1

b φβρ ρ φβρ ρ φβρ φ φβρλ
ρ ρ φβρ

φ φβρ
φβρ

ρ φβρ

− − − − − − −⎡ ⎤∂ ⎣ ⎦=
∂ −⎡ ⎤⎣ ⎦

> >⎧ ⎫ ⎧ ⎫
− − ⎪ ⎪ ⎪ ⎪= = − =⎨ ⎬ ⎨ ⎬

−⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎣ ⎦ < <⎩ ⎭ ⎩ ⎭

. 

Appendix K: When Does the Weight Response Equal λ in the Forward-Looking 

Model (0 < φ <φc) 

We begin with equation (4.14) as follows: 

(K.1)  
( ) ( )
( ) ( )

21

1 1
cb

φ φ βρ
λ λ

δ δβρ φβρ

− −
=

− −
 

Note that λb does depend on δ, which depends on model parameters. 

We solve for the coefficient of λ equal to one as follows: 

(K.2)  
( )( )
( )( )

21
1

1 1
b

b

c λ λ

λ λ

φ φ βρ

δ δβρ φ βρ
=

=

− −
=

− −
. 

We can show that the following result holds: 

(K.3)  
( )

( ) ( )2

(1 ) 1

1 1
bλ λ

ρ δ δβρ
φ

βρ δβρ δβρ=

− − −
=

⎡ ⎤− − −⎣ ⎦
, 

where bλ λ
φ

=
 equals the value of φ, where λb = λ. The parameter bλ λ

φ
=

may take on positive or 

negative values as well as exceeding or falling short of 2

)
)

(1
(1c

ρφ
βρ

−
=

−
. We cannot compare λb 

and λ. 
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