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Abstract
We test the assumption of conditional symmetry used to identify and estimate

parameters in regression models with endogenous regressors without making any
distributional assumptions. The specification test proposed here is computation-
ally tractable, does not require nonparametric smoothing,and can detect n1/2-
deviations from the null. Since the limiting distribution of the test statistic turns
out to be a non-pivotal gaussian process, the critical values for implementing the
test are obtained by simulation. In a Monte Carlo study we usethe approach
proposed here to test the assumption of conditional symmetry maintained in the
seminal paper of Powell (1986b). Results from this finite sample experiment sug-
gest that our test can work very well in moderately sized samples.

Journal of Economic Literature Classification: C12, C14
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1. Introduction

Let (Y,X)1+dim(X)×1 be an observed random vector and µ a real valued function of X

known up to a finite dimensional parameter such that for some θ0 ∈ Θ ⊂ Rdim(Θ),

Y = µ(X, θ0) + ε. (1.1)

The unobserved “error” ε represents the aggregate effect of all factors affecting Y that are

not part of the model and may therefore be correlated with some or all coordinates of X, i.e.,

the explanatory variables may be potentially endogenous. We assume that ε is continuously

distributed with full support on R.

To identify θ0, the parameter of interest in (1.1), we assume the existence of a ran-

dom vector Wdim(W )×1 (the instrumental variables for X) such that the unknown conditional

distribution of ε given W is symmetric about the origin, i.e., the null hypothesis is that

H0 : Law(ε|W ) = Law(−ε|W ). (1.2)

W and X can have elements in common because the exogenous coordinates of X act as their

own instruments. If all regressors are exogenous then, of course, W = X. For notational ease,

the vector containing the distinct coordinates of X and W is written simply as (X,W ).

The main objective of this paper is to propose a smoothing-free test for (1.2) against

the alternative that it is false, i.e., the alternative hypothesis is that

H1 : ∀θ ∈ Θ, Law(ε(θ)|W ) 6= Law(−ε(θ)|W ), (1.3)

where ε(θ) := Y − µ(X, θ) (of course, ε(θ0) = ε).

Symmetry is a powerful shape restriction because it unambiguously fixes the location un-

der minimal assumptions, e.g., ε need not possess any moments. Moreover, it yields additional

information about the underlying distribution in the form of an infinite number of moment

conditions (namely, that the mean of every odd functions vanishes) that can be exploited to

increase the efficiency of estimators. These fundamental properties are essentially the rea-

son why symmetry is often imposed on statistical models to identify parameters and estimate

them more efficiently; cf., e.g., Bickel (1982), Powell (1986b), Newey and Powell (1987), and

Newey (1988). Symmetry considerations can also play important roles in economic modeling.

For instance, since constraints in the nominal wage adjustment process can affect the smooth

functioning of labor markets, much attention has been paid in empirical labor economics to

determine whether the changes in nominal wages are symmetrically distributed in order to test

the hypothesis that nominal wages are downwards rigid, cf., e.g., Card and Hyslop (1996),

Christofides and Stengos (2001), and Stengos and Wu (2004). In empirical finance, the pricing

of risky assets depends upon the skewness of the distribution of their returns, i.e., assets that

make the portfolio returns more left (right) skewed command higher (lower) expected returns,
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cf. Harvey and Siddique (2000) and the references therein. Additional examples of symmetry

restrictions in empirical macroeconomics and finance can be found in Bai and Ng (2001).

Since symmetry restrictions are widely used, it is not surprising that nonparametric

tests to determine whether the assumption of symmetry is supported by the data have been

extensively studied. For instance, there is a large statistical literature on testing symmetry

in univariate models; cf. Randles and Wolfe (1979, Section 3.5) and the references therein.

For multivariate models, Fan and Gencay (1995), Ahmad and Li (1997), and Zheng (1998)

use kernel smoothing, Bai and Ng (2001) employ the martingale transformation proposed by

Khmaladze (1993), and Neumeyer, Dette, and Nagel (2005), Delgado and Escanciano (2007),

and Neumeyer and Dette (2007) rely on empirical process theory. While the smoothing ap-

proach leads to tests that are consistent against fixed alternatives, these tests possess zero

power against n1/2-deviations from the null and moreover they depend upon smoothing param-

eters which are not always easy to choose. Khmaladze’s transformation leads to distribution

free tests which have power against n1/2-alternatives, although it too requires nonparametric

smoothing. The empirical process based tests require no smoothing but are not distribution

free so that critical values for implementing the test cannot be tabulated in advance; instead,

they are obtained by simulation.

Although our test is also based on comparing two empirical processes, it differs from

the aforementioned papers in some important ways. First, unlike these papers, we allow the

regressors in our model to be endogenous. This is a non-trivial extension because endogeneity of

regressors does affect the limiting distribution of the test statistics (cf. Example 3.1). Second,

the Kolmogorov-Smirnov (KS) type statistic we propose is computationally more tractable

than the one proposed in these papers because it only requires a search over a finite number of

points (cf. Section 2). By contrast, the KS statistics in Delgado and Escanciano and Neumeyer

et al are implemented by searching over the uncountable set Rd, where d depends upon the

dimension of the variables involved. Third, unlike the earlier papers who only use the empirical

distribution function to construct the test statistic, our technical treatment is very general and

encompasses a large class of test functions allowing us to determine the asymptotic properties

of a large class of test statistics in a unified manner. Finally, in the simulation experiment

in Section 6 we study how the approach proposed here can be used to test the assumption of

conditional symmetry maintained in Powell (1986b). To the best of our knowledge, this issue

appears not to have been examined earlier in the literature (except perhaps for a brief mention

in Powell (1986a, p. 155) suggesting a quantile matching approach to test for symmetry).

The remainder of the paper is organized as follows. Section 2 motivates the test statistic,

and its large sample behavior under the null hypothesis is described in Sections 3. As the

limiting distribution of the test statistic turns out to be non-pivotal, Section 4 shows how to

simulate the critical values. In Section 5 we demonstrate that our test is consistent against
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fixed alternatives and possesses non-trivial power against sequences of alternatives that are

n1/2-distant from the null. Small sample properties of the test are examined in Section 6.

Finally, Section 7 concludes the paper. All proofs are in the appendices.

2. The test statistic

Our test for conditional symmetry is easy to motivate and is based on the almost obvious

fact (whose proof, for the sake of completeness, is provided in the appendix) that

Law(ε|W ) = Law(−ε|W ) ⇐⇒ (ε,W )
d
= (−ε,W ), (2.1)

where “
d
=” is shorthand for “equal in distribution”. This suggests that a test for (1.2) can be

obtained by comparing the empirical distributions of Z := (ε,W )1+dim(W )×1 and Zr := (−ε,W ),

where Zr denotes Z with its first coordinate reflected about the origin. Since Z and Zr are

unobserved as they depend upon ε, we compare the empirical distributions of their feasible

versions Ẑ := (ε̂,W ) and Ẑr := (−ε̂,W ) instead, where ε̂ := Y − µ(X, θ̂) and θ̂ is an estimator

of θ0, e.g., the IV estimator, obtained using data (Y1, X1,W1), . . . , (Yn, Xn,Wn).

Given z ∈ R1+dim(W ), let (−∞, z] := (−∞, z(1)]× . . . (−∞, z(1+dim(W ))] denote the closed

lower orthant in R1+dim(W ). Then one possible statistic for testing (1.2) is

R̂ := sup
z∈R1+dim(W )

|n−1

n∑
j=1

1(−∞,z](Ẑj)− n−1

n∑
j=1

1(−∞,z](Ẑ
r
j)|,

which resembles the usual KS statistic for testing whether two samples come from the same

distribution (here 1 is the indicator function). The null hypothesis is rejected if the observed

value of R̂ is large enough. The computational cost of implementing R̂ can be reduced by

restricting search to the finite subset Ẑ := {Ẑ1, . . . , Ẑn} that in a certain sense becomes dense

in supp(Z), the support of Z, as the sample size increases. Therefore, motivated by Andrews

(1997), we focus our attention on

R̂max := max
z∈Ẑ
|n−1

n∑
j=1

1(−∞,z](Ẑj)− n−1

n∑
j=1

1(−∞,z](Ẑ
r
j)|.

It will be shown later that R̂ and R̂max behave similarly in large samples. [Note that since Ẑ
consists of estimated observations (unlike the statistic in Andrews’s paper which is maximized

over the “true” observations), the effect of estimating θ0 has to be taken into account when

showing that Ẑ is dense in supp(Z) as n→∞; cf. Lemma F.3 for exact details.]

As far as checking the equality of two probability measures is concerned, it is worth

keeping in mind that the lower orthants used in the construction of R̂ and R̂max can be substi-

tuted by any measure determining class of sets. For instance, letting Sdim(W ) denote the unit
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sphere in R1+dim(W ), (1.2) could also be tested with

Ĥ := sup
(z,t)∈Sdim(W )×R

|n−1

n∑
j=1

1H(z,t)(Ẑj)− n−1

n∑
j=1

1H(z,t)(Ẑ
r
j)|,

which employs closed half-spaces H(z, t) := {s ∈ R1+dim(W ) : s′z ≤ t} instead of orthants. Anal-

ogous statistics when closed/open lower orthants are replaced by closed/open upper orthants

or when closed half-spaces are replaced by open half-spaces etc. follow mutatis mutandis.

It is useful to consider the statistics described above as special cases of a general statistic

so that asymptotic properties of a large class of test statistics can be investigated in a unified

manner. To accomplish this goal we introduce some compact notation. Henceforth, let PU
be the distribution of a random vector U and P̂U denote the empirical measure induced by

n observations on U , i.e., P̂U := n−1
∑n

j=1 δUj where δUj is the Dirac (i.e., point) measure

at Uj; e.g., P̂Ẑ := n−1
∑n

j=1 δẐj and P̂Ẑr := n−1
∑n

j=1 δẐr
j

are the empirical measures induced

by Ẑ1, . . . , Ẑn and Ẑr
1, . . . , Ẑ

r
n, respectively. Let F be a collection of “test” functions from

R1+dim(W ) → R and `∞(F) denote the set of bounded functions from F → R. We often

use linear functional notation to write the integral of f ∈ F with respect to PZ as PZf :=∫
f(z)PZ(dz) =

∫
f(u,w)Pε,W (du, dw). [If the region of integration is omitted it means that

integration is over the support of Z.]

A general KS statistic for testing (1.2) can now be defined as

K̂SF := sup
f∈F
|P̂Ẑf − P̂Ẑrf | = sup

f∈F
|(P̂Ẑ − P̂Ẑr)f |. (2.2)

The statistics described earlier are encompassed by K̂SF for appropriately chosen F . For

instance, if F1 := {1(−∞,z] : z ∈ R1+dim(W )} is the set of indicator functions of lower orthants

in Z, then K̂SF1 = R̂. Similarly, if F2 := {1H(z,t) : (z, t) ∈ Sdim(W ) × R} is the collection

of indicators of closed half-spaces in R1+dim(W ), then K̂SF2 = Ĥ. Although R̂max can also be

written as K̂SF̂1
with F̂1 := {1(−∞,z] : z ∈ Ẑ}, for technical reasons we prefer that F not

be random. Hence, we will deal with R̂max separately when showing that it has the same

asymptotic properties as R̂.

The expression for K̂SF in (2.2) can be further simplified. In particular, instead of

expressing K̂SF as a contrast between P̂Ẑ and P̂Ẑr as we do in (2.2), there is an equivalent

representation in terms of a single measure. To see this, let f r(Z) := f(Zr). Then,

K̂SF = sup
f∈F
|P̂Ẑ(f − f r)|. (2.3)

Besides reducing computational cost (only one empirical measure has to be calculated instead

of two), this equivalence also simplifies some technical arguments (e.g., showing the asymptotic

tightness of K̂SF) because we only have to deal with one measure instead of two. Notice that



6

since f − f r is antisymmetric in its first coordinate, K̂SF will be small (ideally zero) if the null

hypothesis is true. Hence, (2.3) also has an appealing interpretation.

The following additional notation is used for the remainder of the paper: A(θ) :=

(ε(θ), X,W ) is the random vector containing ε(θ) and the distinct coordinates of X and W ;

hence, if all regressors are exogenous, i.e., W = X, then A(θ) = (ε(θ), X). We write A0 := A(θ0)

for notational convenience. Keeping in mind that ε(θ) is continuously distributed whereas X

and W may have discrete components, pA(θ)(u, x, w) du κ(dx, dw) := PA(θ)(du, dx, dw) denotes

the density of PA(θ), where the dominating measure κ is a mixture of the Lebesgue and counting

measures. Given a random vector U , L2(PU) is the set of real-valued functions of U that are

square-integrable with respect to PU . The L2(PU) inner product and norm are 〈a1, a2〉PU :=∫
a1(u)a2(u)PU(du) and ‖a‖2,PU := 〈a, a〉1/2PU . The euclidean norm is ‖ · ‖ and B(θ, ε) is the

open ball of radius ε centered at θ; its ‖ · ‖-closure is B(θ, ε).

Throughout the paper we maintain the assumption that the observations (Yj, Xj,Wj),

j = 1, . . . , n, are iid. Unless stated otherwise, all limits are taken as the sample size n→∞.

3. Large sample results under the null

In this section, we derive the asymptotic distribution of K̂SF when the null hypothesis is

true. To do so, we make use of the notion of convergence in distribution of stochastic processes

taking values in `∞(F). Cf. Chapter 1.5 of van der Vaart and Wellner (1996), henceforth

referred to as V&W, for details regarding convergence in distribution in `∞(F).

If θ0 is known and H0 is true, then (P̂Ẑ − P̂Ẑr)f = (P̂Z − PZ)(f − f r) for f ∈ F . Hence,

under standard conditions on F , it can be shown that the process {n1/2(P̂Ẑ − P̂Ẑr)f : f ∈ F}
converges in distribution in `∞(F) to a mean zero gaussian process {G0f : f ∈ F} with

covariance function EG0f1G0f2 = E((f1 − f r
1)(Z)(f2 − f r

2)(Z)), f1, f2 ∈ F . Consequently,

n1/2K̂SF converges in distribution to the random variable supf∈F |G0f |. Of course, in practice

θ0 is unknown and has to be estimated. As we now show, the estimation error from using θ̂

instead of θ0 shifts the limiting distribution of P̂Ẑ − P̂Ẑr and, hence, K̂SF .

For maximum generality, we try to impose as few restrictions as possible on our model.

For instance, we do not require µ to be smooth in θ; instead, we only assume that µ(x, ·) is

mean-square differentiable at θ0, i.e.,

Assumption 3.1. There exists a neighborhood of θ0 such that for all θ in this neighborhood,

µ(x, θ) = µ(x, θ0) + µ̇′(x, θ0)(θ − θ0) + ρ(x, θ, θ0) where µ̇ : Rdim(X) × Rdim(Θ) → Rdim(Θ) sat-

isfies
∫
‖µ̇(x, θ0)‖2 PX(dx) < ∞ and the remainder term ρ : Rdim(X) × Θ → R is such that∫

supθ∈B(θ0,δ)
ρ2(x, θ, θ0)PX(dx) = o(δ2) as δ → 0. [Note that ρ is identically zero if µ is linear

in parameters.]
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Since mean-square differentiability is weaker than pointwise differentiability, our setup

allows for kinks in the functional forms for µ.

Let ∂1 denote partial differentiation with respect to the first argument. The next as-

sumption stipulates that

Assumption 3.2. (i) u 7→ pε|X=x,W=w(u) is differentiable a.e. on R and the conditional second

moment of ∂1pε|X=x,W=w, denoted by vA0(x,w) :=
∫

(∂1 log pε|X=x,W=w)2(u) pε|X=x,W=w(u) du,

is uniformly bounded, i.e., ‖vA0‖∞ := sup(x,w)∈supp(X)×supp(W ) |vA0(x,w)| < ∞. (ii) The condi-

tional distribution of ε|X,W is Lipschitz, i.e., there exists a nonnegative ζ ∈ L2(PX,W ) such

that |
∫

(−∞,t1]
pε|X=x,W=w(u) du−

∫
(−∞,t2]

pε|X=x,W=w(u) du| ≤ ζ(x,w)|t1 − t2| for all t1, t2 ∈ R.

(i) implies (cf. Hájek, 1972, Lemma A.3) that the square-root density p
1/2
ε|X=x,W=w is

mean-square differentiable, i.e., given δ ∈ L2(PX,W ),

p
1/2
ε|X=x,W=w(u+ δ(x,w))− p1/2

ε|X=x,W=w(u)

p
1/2
ε|X=x,W=w(u)

=
1

2

∂1pε|X=x,W=w(u)

pε|X=x,W=w(u)
δ(x,w) + r(δ(x,w), u, x, w), (3.1)

where, for each ε > 0,
∫
r2(δ(x,w), u, x, w)Pε|X=x,W=w(du) ≤ εδ2(x,w). As a consequence,

‖r(δ, ·, ·, ·)‖2,PA0
= o(‖δ‖2,PX,W ) as ‖δ‖2,PX,W → 0. This fact is used to bound remainder terms

for (B.3) in the proof of Lemma 3.1. (ii) implies that F1 and F2 satisfy Assumption 3.3(v).

The requirements on the class of test functions are as follows:

Assumption 3.3. (i) F separates probability measures on R1+dim(W ), i.e., if P1 6= P2 are

probability measures on R1+dim(W ) then P1f 6= P2f for some f ∈ F . (ii) F has a bounded

envelope, i.e., MF := sup(f,z)∈F×R1+dim(W ) |f(z)| <∞. (iii) F is PA0-Donsker. (iv) Elements of

F are stable with respect to perturbations in their first argument in the sense that f ∈ F =⇒
f(· + t, ·) ∈ F for all t ∈ R. (v) There exists a continuous function q : [0,∞) → [0,∞) such

that q(0) = 0, supf∈F ‖f(· − ∆(X, θ, θ0), ·) − f(·, ·)‖2,PA0
≤ q(‖θ − θ0‖), and supf∈F ‖f r(· −

∆(X, θ, θ0), ·)− f r(·, ·)‖2,PA0
≤ q(‖θ − θ0‖), where ∆(X, θa, θb) := µ(X, θa)− µ(X, θb).

(i) is necessary because we employ elements of F to distinguish between the distributions

of Z and Zr (cf. the proof of Theorem 5.1). F1 and F2 satisfy (i) due to the fact that orthants

and half-spaces separate probability measures. (ii), clearly satisfied by indicator functions,

helps to uniformly (in F) bound remainder terms in (B.3) in the proof of Lemma 3.1. In

(iii), F is required to be Donsker with respect to the “bigger” measure PA0 rather than PZ in

order to control the estimation uncertainty (from estimating θ0) associated with the endogenous

components of X. (iii), which implies that F r := {f r : f ∈ F} is also PA0-Donsker because F
and F r are covered by the same number of L2(PA0)-brackets, is used in the proof of Lemma 3.2
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to show that P̂Ẑ− P̂Ẑr converges in distribution in `∞(F). Following V&W (Example 2.5.4), F1

(hence F r
1) is PA0-Donsker because its L2(PA0)-bracketing entropy is finite; the same argument

shows that F2 (hence F r
2) is PA0-Donsker. (iv) implies that test functions with estimation error

as an argument are still test functions. To see this, let f ∈ F1 so that f = 1(−∞,τ ]×(−∞,v] for

some (τ, v) ∈ R × Rdim(W ). Then f(Y − µ(X, θ̂),W ) = 1(−∞,τ ]×(−∞,v](ε − ∆(X, θ̂, θ0),W ) =

1(−∞,τ+∆(X,θ̂,θ0)]×(−∞,v](ε,W ), implying that f(Y −µ(X, θ̂),W ) ∈ F ; the same argument works

for F2 as well. (v) is similar to (2.7) of Khmaladze and Koul (2004) and (3) of van der Vaart

and Wellner (2007). Under Assumption 3.2(ii), F1 and F2 satisfy (v) with q(t) ∝ t1/2 (cf.

Lemma F.2). (iii)–(v) plus an asymptotic equicontinuity argument helps uniformly (in F)

bound (B.2) in the proof of Lemma 3.1.

We also assume that θ̂ is a consistent estimator of θ0, i.e.,

Assumption 3.4. plim(θ̂) = θ0.

We are now ready to describe how estimation of θ0 affects the empirical distributions of

Ẑ and Ẑr; this will help us derive the limiting distribution of K̂SF . Henceforth, µ̇0(·) := µ̇(·, θ0)

and the symbol oPr◦ indicates asymptotic negligibility in outer probability (Pr◦) to take care

of measurability issues that may arise when taking the supremum over an uncountable set.

Lemma 3.1. Let Assumptions 3.1–3.4 hold. Then,

sup
f∈F
|(P̂Ẑ − P̂Z)f − 〈f, (∂1 log pA0)µ̇

′
0〉PA0

(θ̂ − θ0)| = oPr◦(n
−1/2) + oPr(‖θ̂ − θ0‖)

sup
f∈F
|(P̂Ẑr − P̂Zr)f − 〈f r, (∂1 log pA0)µ̇

′
0〉PA0

(θ̂ − θ0)| = oPr◦(n
−1/2) + oPr(‖θ̂ − θ0‖).

The term 〈·, (∂1 log pA0)µ̇
′
0〉PA0

(θ̂−θ0), which vanishes if θ̂ = θ0, captures the uncertainty

arising from estimating θ0. It is useful to note that Lemma 3.1 holds whether the null hypothesis

(1.2) is true or not (provided θ0 is suitably redefined, cf. Section 4). We will exploit this fact

in showing the consistency of K̂SF (cf. Lemma F.1).

Next, we derive limiting distribution of K̂SF . Begin by observing that since n1/2K̂SF :=

supf∈F |n1/2(P̂Ẑ − P̂Ẑr)f | is a functional of the stochastic process {n1/2(P̂Ẑ − P̂Ẑr)f : f ∈ F},
its distribution is determined by the distribution of {n1/2(P̂Ẑ − P̂Ẑr)f : f ∈ F}. The latter

can be identified from the joint distribution of its marginals. Towards this end, fix f ∈ F and

write (P̂Ẑ − P̂Ẑr)f = (P̂Ẑ − P̂Z)f − (P̂Ẑr− P̂Zr)f + (P̂Z − P̂Zr)f . Hence, since PZ = PZr by (1.2),

under the hull hypothesis we have that

(P̂Ẑ − P̂Ẑr)f = ((P̂Ẑ − P̂Z)f − 〈f, (∂1 log pA0)µ̇
′
0〉PA0

(θ̂ − θ0))

− ((P̂Ẑr − P̂Zr)f − 〈f r, (∂1 log pA0)µ̇
′
0〉PA0

(θ̂ − θ0))

+ (P̂Z − PZ)f − (P̂Zr − PZr)f + 〈f − f r, (∂1 log pA0)µ̇
′
0〉PA0

(θ̂ − θ0).



9

Then, by Lemma 3.1 and the fact that (P̂Z − PZ)f − (P̂Zr − PZr)f = (P̂Z − PZ)(f − f r),

n1/2(P̂Ẑ − P̂Ẑr)f = X̂0(f) + oPr◦(1) + oPr(‖n1/2(θ̂ − θ0)‖) unif. in f ∈ F , (3.2)

where X̂0(f) := n1/2(P̂Z − PZ)(f − f r) + 〈f − f r, (∂1 log pA0)µ̇
′
0〉PA0

n1/2(θ̂ − θ0). Notice that

since (P̂Ẑ − P̂Ẑr)f = (P̂Ẑ − PZ)(f − f r) under the null, we can rewrite (3.2) as

n1/2(P̂Ẑ − PZ)(f − f r) = n1/2(P̂Z − PZ)(f − f r) + 〈f − f r, (∂1 log pA0)µ̇
′
0〉PA0

n1/2(θ̂ − θ0)

+ oPr◦(1) + oPr(‖n1/2(θ̂ − θ0)‖) unif. in f ∈ F .

This leads to a nice interpretation of (3.2), namely, that (3.2) represents a linearization of the

process {n1/2(P̂Ẑ − PZ)g : g ∈ AF} about θ0, where AF := {f − f r : f ∈ F} is the set of

functions generated by F that are antisymmetric in their first coordinate.

To identify the marginal distribution of X̂0, we need some additional information about

θ̂. In particular, we assume that

Assumption 3.5. θ̂ is asymptotically linear with influence function ϕ, i.e., n1/2(θ̂ − θ0) =

n−1/2
∑n

j=1 ϕ(Yj, Xj,Wj, θ0) + oPr(1), where Eϕ(Y,X,W, θ0) = 0 and E‖ϕ(Y,X,W, θ0)‖2 <∞.

Thus, by the CLT for iid random vectors, (n1/2(P̂Z−PZ)(f −f r), n1/2(θ̂−θ0)) is asymp-

totically multivariate normal. In particular, n1/2(θ̂− θ0) converges in distribution in Rdim(Θ) to

Nϕ0

d
= N(0dim(Θ)×1,Eϕ0ϕ0

′), where ϕ0 := ϕ(Y,X,W, θ0). Hence, for all f ∈ F ,

X̂0(f)
d−→ X0(f) in R, (3.3)

where X0(f) := G0f + 〈f − f r, (∂1 log pA0)µ̇
′
0〉PA0

Nϕ0 and G0 is the gaussian process defined

earlier. Since the remainder terms in (3.2) are asymptotically negligible in probability uniformly

in f ∈ F , the process {n1/2(P̂Ẑ − P̂Ẑr)f : f ∈ F} will converge in distribution in `∞(F) to the

limiting process {X0(f) : f ∈ F} provided {X̂0(f) : f ∈ F} is asymptotically tight. As the

next result shows, this is indeed the case.

Lemma 3.2. Let Assumptions 3.1–3.5 hold and (1.2) be true. Then,

{n1/2(P̂Ẑ − P̂Ẑr)f : f ∈ F} d−→ {X0(f) : f ∈ F} in `∞(F).

Since x 7→ supf∈F |x(f)| (being a norm) is continuous on `∞(F) and the limiting process

in Lemma 3.2 takes values in `∞(F), an application of the continuous mapping theorem (V&W,

Theorem 1.3.6) yields the limiting distribution of n1/2K̂SF := supf∈F |n1/2(P̂Ẑ − P̂Ẑr)f |.

Theorem 3.1. Let Assumptions 3.1–3.5 hold and (1.2) be true. Then, the random variable

n1/2K̂SF converges in distribution to the random variable supf∈F |X0(f)|.

This leads immediately to the asymptotic distribution of n1/2R̂ = n1/2K̂SF1 .
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Corollary 3.1. Let the conditions of Theorem 3.1 hold. Then, n1/2R̂ converges in distribution

to the random variable

R0 := sup
z∈R1+dim(W )

|G01(−∞,z] + 〈1(−∞,z] − 1r
(−∞,z], (∂1 log pA0)µ̇

′
0〉PA0

Nϕ0 |.

Example 3.1 (No endogenous regressors). The limiting distribution of the test statistics sim-

plifies if there are no endogenous regressors. To see this, suppose that all regressors are exoge-

nous, i.e., W = X, so that A0 = Z. Since 2f = (f+f r)+(f−f r) and (1.2) implies that ∂1pZ is

antisymmetric in its first coordinate, it follows from Corollary 3.1 that n1/2R̂ converges in dis-

tribution to the random variable supz∈R1+dim(X) |G01(−∞,z] + 2〈1(−∞,z], (∂1 log pZ)µ̇′0〉PZNϕ0|. �

We also expect n1/2R̂max to converge in distribution to R0 under the null hypothesis

because F̂1 is dense in F1 with probability approaching one (w.p.a.1) (cf. Lemma F.3). The

next result confirms this intuition (cf. Andrews, 1997, p. 1105).

Lemma 3.3. Let the conditions of Theorem 3.1 hold. Then, n1/2R̂max and n1/2R̂ both converge

in distribution to the same random variable, i.e., R0.

Now that we know how R̂max behaves in large samples, a size-α test, α ∈ (0, 1), for (1.2)

based on R̂max can be formalized as follows: Reject H0 if n1/2R̂max ≥ cα, where cα is the 1− α
quantile of R0. However, cα cannot be obtained from a table because the distribution of R0

depends upon θ0 (via Nϕ0) and PA0 ; i.e., in other words, n1/2R̂max is not an asymptotically

pivotal statistic. Instead, quantiles of R0 can be simulated as described in Section 4.

4. The test using simulated critical values

Simulated critical values for specification tests have been used earlier; cf., e.g., Su and

Wei (1991), Hansen (1996), Neumeyer, Dette, and Nagel (2005), Delgado, Domı́nguez, and

Lavergne (2006), and Delgado and Escanciano (2007). Intuitively, the basic idea behind simu-

lating critical values for R̂max is to introduce additional randomness in the data and construct

an artificial random variable (say R̂∗max) that has the same distribution as R̂max under the null

hypothesis. Repeated draws of R̂∗max then yield a random sample from the distribution of R̂max

under the null, which can be used to estimate the quantiles of R̂max to any desired level of

accuracy since the number of draws is in control of the researcher.

The test using the simulated critical values is implemented as follows:

(i) Use θ̂ and the residuals ε̂j := Yj − µ(Xj, θ̂), j = 1, . . . , n, to calculate n1/2R̂max.

(ii) Independent of the observed data Dn := {(Yj, Xj,Wj) : 1 ≤ j ≤ n}, use a random number

generator to generate R1, . . . , Rn
iid∼ Rademacher and define Y ∗j := µ(Xj, θ̂) + Rj ε̂j, j =

1, . . . , n. [Recall that a random variable R is said to have the Rademacher or symmetric

Bernoulli distribution if PR := (δ−1 + δ1)/2, i.e., R takes values −1 and 1 with equal
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probability.] Since Law(Rε̂|W1, . . . ,Wn) = Law(−Rε̂|W1, . . . ,Wn) by construction, the

simulated sample {(Rj ε̂j,Wj) : 1 ≤ j ≤ n} satisfies the null hypothesis.

(iii) Re-estimate θ0 using (Y ∗j , Xj,Wj), j = 1, . . . , n to make the estimation error in the sim-

ulated sample resemble the estimation error in the data. Denote the resulting estimator

by θ̂∗ and let ε̂∗j := Y ∗j − µ(Xj, θ̂
∗), j = 1, . . . , n, be the corresponding residuals.

(iv) Calculate n1/2R̂∗max := n1/2 maxz∈Ẑ∗ |n−1
∑n

j=1 1(−∞,z](Ẑ
∗
j )−n−1

∑n
j=1 1(−∞,z](Ẑ

∗r
j )|, where

Ẑ∗ := {Ẑ∗1 , . . . , Ẑ∗n}, Ẑ∗ := (ε̂∗,W ), and Ẑ∗r := (−ε̂∗,W ). As shown subsequently,

n1/2R̂∗max has the same limiting distribution as n1/2R̂max when the null hypothesis is true.

(v) Repeat (ii)–(iv) B times, to get B random draws from the distribution of n1/2R̂max under

the null hypothesis. Calculate the 1− α sample quantile (c∗α,B) for these draws.

(vi) The decision rule “Reject H0 if the value of n1/2R̂max observed in (i) exceeds c∗α,B” then

leads to a size-α test for (1.2). Alternatively, the p-value can be obtained by calculating

the fraction of draws in (v) that exceed the observed value of n1/2R̂max.

We now show that (vi) is justified asymptotically. To summarize our approach, we

first prove that n1/2K̂S
∗
F := n1/2 supf∈F |(P̂Ẑ∗ − P̂Ẑ∗r)f | has a well defined limiting distribu-

tion irrespective of whether the null hypothesis is true or not. From this it will follow that

n1/2R̂∗ := n1/2 supz∈R1+dim(W ) |n−1
∑n

j=1 1(−∞,z](Ẑ
∗
j )− n−1

∑n
j=1 1(−∞,z](Ẑ

∗r
j )| has the same lim-

iting distribution as n1/2R̂ under the null and is bounded in probability otherwise. The proof

ends by showing that n1/2R̂∗max has the same limiting distribution as n1/2R̂∗ whether the null

is true or not, implying in particular that n1/2R̂∗max (hence its quantiles) is bounded in proba-

bility even when the null is false. Therefore, the test using critical values from the simulated

distribution of n1/2R̂∗max is consistent, i.e., it rejects a false null w.p.a.1, because n1/2R̂max →∞
w.p.a.1 when the null hypothesis is false (cf. Section 5).

We begin by assuming that θ̂ and θ̂∗ have a well defined limit even when the null

hypothesis is false, i.e., irrespective of whether (1.2) is true or not,

Assumption 4.1. plim((θ̂∗, θ̂)− (θ1, θ1)) = 0 for some θ1 ∈ Θ.

θ1 is called the “pseudo-true value” and it exists under very general conditions (of course,

if the null is true then θ1 = θ0). Let Z(θ) := (ε(θ),W ), Zr(θ) := (−ε(θ),W ), A1 := A(θ1), and

let R denote the linear operator that “Rademacherizes” the first component of its argument,

e.g., R(Ẑ) := (Rε̂,W ) and R(A1) := (Rε(θ1), X,W ). Given f ∈ F , we can write (cf. the

remark at the end of this section)

(P̂Ẑ∗ − P̂Ẑ∗r)f = (P̂R(Z(θ1)) − P̂R(Zr(θ1)))f + (P̂Ẑ∗ − P̂R(Z(θ1)))f − (P̂Ẑ∗r − P̂R(Zr(θ1)))f

= (P̂R(Z(θ1)) − PR(Z(θ1)))(f − f r)

+ (P̂Ẑ∗ − P̂R(Z(θ1)))f − (P̂Ẑ∗r − P̂R(Zr(θ1)))f. (4.1)
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To get some intuition behind why it makes sense to center the last two terms about P̂R(Z(θ1)) and

P̂R(Zr(θ1)), respectively, notice that ε̂∗ = Rε̂−∆(X, θ̂∗, θ̂) = Rε(θ1)−∆(X, θ̂∗, θ̂)−R∆(X, θ̂, θ1).

Hence, P̂Ẑ∗ − P̂R(Z(θ1)) captures the estimation error from re-estimating θ0 using the simulated

sample; a similar interpretation holds for P̂Ẑ∗r − P̂R(Zr(θ1)).

To study the properties of P̂Ẑ∗ and P̂Ẑ∗r without assuming the null to be true, we

strengthen Assumptions 3.1–3.3 as follows.

Assumption 4.2. (i) There exists a neighborhood of θ1 such that for each θ in this neighbor-

hood, µ(x, θ̂∗) = µ(x, θ) + µ̇′(x, θ)(θ̂∗ − θ) + ρ(x, θ̂∗, θ) with ‖ supθ̃∈B(θ,δ) ρ(·, θ̃, θ)‖2,PX = o(δ)

as δ → 0, ‖µ̇(·, θ1)‖ ∈ L2(PX), and ‖µ̇(·, θ̂) − µ̇(·, θ1)‖2,PX = oPr(1). (ii) pε(θ1)|X,W satisfies

Assumption 3.2. (iii) Assumption 3.3 holds with PA0 replaced by PR(A1) and ∆(X, θ, θ0) re-

placed by ∆̃(−1, X, θ̂∗, θ̂, θ1) and ∆̃(1, X, θ̂∗, θ̂, θ1), where ∆̃(R,X, θa, θb, θ1) := ∆(X, θa, θb) +

R∆(X, θb, θ1).

Since plim(θ̂) = θ1 by Assumption 4.1, (i) implies that, w.p.a.1, µ(x, θ̂∗) = µ(x, θ̂) +

µ̇′(x, θ̂)(θ̂∗ − θ̂) + ρ(x, θ̂∗, θ̂) and ‖ sup
θ̃∈B(θ̂,‖θ̂∗−θ̂‖) ρ(·, θ̃, θ̂)‖2,PX = o(‖θ̂∗ − θ̂‖). Under (iii),

‖f θ̂∗,θ̂ − f θ1,θ1‖2,PR(A1)
≤ q(‖(θ̂∗, θ̂) − (θ1, θ1)‖). These facts help prove the first result in this

section, which shows how the re-estimation step affects the empirical distributions of Ẑ∗ and

Ẑ∗r (cf. Lemma 3.1 for a comparison). Henceforth, let µ̇1(·) := µ̇(·, θ1) and, for f ∈ F ,

f θa,θb(Rε(θ1), X,W ) := f(Rε(θ1)− ∆̃(R,X, θa, θb, θ1),W )

f rθa,θb(Rε(θ1), X,W ) := f r(Rε(θ1)− ∆̃(R,X, θa, θb, θ1),W ).

Lemma 4.1. Let Assumptions 4.1 and 4.2 hold. Then, whether or not the null is true,

sup
f∈F
|(P̂Ẑ∗ − P̂R(Z(θ1)))f − PR(A1)(f

θ̂,θ̂ − f θ1,θ1)

− 0.5〈f − f r, (∂1 log pA1)µ̇
′
1〉PA1

(θ̂∗ − θ̂)| = oPr◦(n
−1/2) + oPr(‖θ̂∗ − θ̂‖)

and

sup
f∈F
|(P̂Ẑ∗r − P̂R(Zr(θ1)))f − PR(A1)(f

rθ̂,θ̂ − f rθ1,θ1)

− 0.5〈f r − f, (∂1 log pA1)µ̇
′
1〉PA1

(θ̂∗ − θ̂)| = oPr◦(n
−1/2) + oPr(‖θ̂∗ − θ̂‖).

As shown in the appendix,

PR(A1)(f
θ̂,θ̂ − f θ1,θ1) = PR(A1)(f

rθ̂,θ̂ − f rθ1,θ1). (4.2)

Therefore, by (4.1) and Lemma 4.1 and irrespective of whether the null is true or not,

n1/2(P̂Ẑ∗ − P̂Ẑ∗r)f = X̂∗1(f) + oPr◦(1) + oPr(‖n1/2(θ̂∗ − θ̂)‖) unif. in f ∈ F ,
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where

X̂∗1(f) := n1/2(P̂R(Z(θ1)) − PR(Z(θ1)))(f − f r) + 〈f − f r, (∂1 log pA1)µ̇
′
1〉PA1

n1/2(θ̂∗ − θ̂). (4.3)

The empirical process {n1/2(P̂R(Z(θ1)) − PR(Z(θ1)))(f − f r) : f ∈ F} converges in distri-

bution in `∞(F) to G1, a mean zero gaussian process with covariance function EG1f1G1f2 =

E((f1 − f r
1)(Z(θ1))(f2 − f r

2)(Z(θ1))), f1, f2 ∈ F ; cf. the proof of Lemma 4.2. X̂∗1 is thus a

simulated version of X̂ that remains well defined even if the null hypothesis is false. This also

illustrates the importance of re-estimating θ0 using the simulated sample: If θ0 was not re-

estimated, i.e., set θ̂∗ = θ̂ in (4.3), then X̂∗1 would not mimic X̂ under the null and there would

be no reason to believe why n1/2K̂S
∗
F would possess the same limiting distribution as n1/2K̂SF

when the null hypothesis is true.

Let Pr∗ and E∗ stand for probability and expectation conditional on Dn, i.e., integrals

with respect to the Rademacher distribution (because given Dn, the only source of randomness

in (Y ∗, X,W, θ̂) is R). Stochastic order symbols under Pr∗ are written as oPr∗ and OPr∗ .

To derive the distribution of {X̂∗1(f) : f ∈ F}, we assume that

Assumption 4.3. (i) Conditional on Dn, θ̂∗ is asymptotically linear with influence function

ϕ∗, i.e., n1/2(θ̂∗ − θ̂) = n−1/2
∑n

j=1 ϕ
∗(Y ∗j , Xj,Wj, θ̂) + oPr∗(1), where E∗ϕ∗(Y ∗, X,W, θ̂) = 0

and E∗‖ϕ∗(Y ∗, X,W, θ̂)‖2 < ∞. (ii) Lindeberg’s condition is satisfied, i.e., for all ε > 0 and

λ ∈ Rdim(Θ), E∗[|λ′ϕ∗(Y ∗, X,W, θ̂)|21(|λ′ϕ∗(Y ∗, X,W, θ̂)| > εn1/2σ∗λ)] = o(σ∗λ
2) , where σ∗λ

2 :=

E∗[n−1/2
∑n

j=1 λ
′ϕ∗(Y ∗j , Xj,Wj, θ̂)]

2. (iii) σ∗λ
2 = E[λ′ϕ1]2 + oPr(1), where ϕ1 := ϕ(Y,X,W, θ1)

and ϕ is the influence function defined earlier in Assumption 3.5.

This assumption is straightforward to verify if µ is linear in parameters, cf. Neumeyer,

Dette, and Nagel (2005, p. 705). Conditional on Dn, n1/2λ′(θ̂∗− θ̂)/σ∗λ converges in distribution

to a standard gaussian random variable by (i), (ii), and Lindeberg’s CLT. Hence, by (iii),

n1/2(θ̂∗− θ̂) converges in distribution, conditional on Dn, to Nϕ1 , a mean zero gaussian random

vector with variance E[ϕ1ϕ
′
1]. A dominated convergence argument (Andrews, 1997, p. 1101,

footnote 2) then implies that n1/2(θ̂∗− θ̂) also converges in distribution unconditionally to Nϕ1 .

This leads to the following result about the limiting distribution of P̂Ẑ∗ − P̂Ẑ∗r .

Lemma 4.2. Let Assumptions 4.1–4.3 hold. Then, whether the null hypothesis is true or

not, {n1/2(P̂Ẑ∗ − P̂Ẑ∗r)f : f ∈ F} d−→ {X1(f) : f ∈ F} in `∞(F) conditionally on Dn, hence

unconditionally, where X1(f) := G1f + 〈f − f r, (∂1 log pA1)µ̇
′
1〉PA1

Nϕ1.

It follows by the continuous mapping theorem that

Corollary 4.1. Under the assumptions maintained in Lemma 4.2, n1/2K̂S
∗
F converges in dis-

tribution to supf∈F |X1(f)| whether the null hypothesis is true or not. Consequently, letting
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F = F1, the same holds for n1/2R̂∗, i.e., it converges in distribution to the random variable

R1 := sup
z∈R1+dim(W )

|G11(−∞,z] + 〈1(−∞,z] − 1r
(−∞,z], (∂1 log pA1)µ̇

′
1〉PA1

Nϕ1 |.

Therefore, n1/2R̂∗ has the same limiting distribution as n1/2R̂ under the null (because

then θ1 = θ0) and is bounded in probability otherwise. Finally, we have that

Lemma 4.3. Under Assumptions 4.1–4.3, n1/2R̂∗max and n1/2R̂∗ have the same limiting distri-

bution whether or not the null hypothesis is true.

Since n1/2R̂max and n1/2R̂ have the same asymptotic distribution under the null (cf.

Lemma 3.3), it follows by Corollary 4.1 and Lemma 4.3 that n1/2R̂∗max has the same limiting

distribution as n1/2R̂max when the null hypothesis is true and is bounded in probability oth-

erwise. Therefore, under the null, the simulated critical value c∗α,B converges in probability

(conditional on Dn) to cα, the 1− α quantile of R0, provided B →∞ as n→∞ (cf. Andrews,

1997, p. 1108). This completes our argument justifying the use of simulated critical values.

Remark. By Rademacherization, (Rε(θ1),W )
d
= (−Rε(θ1),W ). Thus, for f ∈ F ,

PR(Z(θ1))f = Ef(R(Z(θ1))) = Ef(Rε(θ1),W )

= Ef(−Rε(θ1),W ) = Ef r(Rε(θ1),W ) = PR(Z(θ1))f
r.

Hence, PR(Z(θ1))(f − f r) = 0. Moreover,

f(R(Zr(θ1))) = f(−Rε(θ1),W ) = f r(Rε(θ1),W ) = f r(R(Z(θ1)))

=⇒ P̂R(Zr(θ1))f = n−1

n∑
j=1

f(R(Zr
j)) = n−1

n∑
j=1

f r(R(Zj(θ1))) = P̂R(Z(θ1))f
r.

Therefore, (P̂R(Z(θ1)) − P̂R(Zr(θ1)))f = (P̂R(Z(θ1)) − PR(Z(θ1)))(f − f r).

5. Large sample results under the alternative

We begin by showing that our test is consistent, i.e., it rejects any deviation from

conditional symmetry with w.p.a.1.

Theorem 5.1. Let (1.3) be true and Assumptions 3.1–3.4 hold with (θ0, ε) replaced by (θ1, ε(θ1)).

Then, limn→∞ n
1/2K̂SF =∞ w.p.a.1.

Hence, n1/2K̂SF will reject (1.2) w.p.a.1 as n→∞ because the simulated critical values

are bounded in probability (cf. Section 4). Letting F = F1 in Theorem 5.1, we have that n1/2R̂

is consistent. With a little additional effort, we can also show that

Theorem 5.2. limn→∞ n
1/2R̂max =∞ w.p.a.1 under the conditions of Theorem 5.1.
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Hence, n1/2R̂max is consistent against fixed alternatives as well. Next, we derive the

power of n1/2K̂SF against a sequence of alternatives that lie in a n1/2-neighborhood of the

null. To create the local alternatives of interest, begin by assuming that the null hypothesis

is true, i.e., PZ = PZr . Next, let θn be a sequence in Θ such that limn→∞ θn = θ0 and assume

that An := (ε(θn), X,W ) is drawn from the perturbed measure PAn := PA0(1 + n−1/2h), where

h : R1+dim(W ) → R is such that ‖h‖∞ := supR×supp(W ) |h(u,w)| < ∞ and
∫
h dPZ = 0 (these

conditions ensure that PAn is a probability measures for n ≥ ‖h‖2
∞). Reflecting the first

coordinate about the origin, this leads to a sequence of distributions for Z(θn) := (ε(θn),W )

and Zr(θn) := (−ε(θn),W ) given by

H1n : PZ(θn) := PZ(1 + n−1/2h) & PZr(θn) := PZ(1 + n−1/2hr). (5.1)

Henceforth, let hr 6= h. Then, for f ∈ F ,

(5.1) =⇒ (PZ(θn) − PZr(θn))f = n−1/2PZ(h− hr)f =: n−1/2Γh(f)

and supf∈F |Γh(f)| > 0 because F is measure determining and h is not symmetric in its first

coordinate. Thus, (5.1) defines a sequence of local alternatives for (2.1).

Since observations under H1n are independently but not identically distributed because

the underlying measures PZ(θn) and PZr(θn) depend upon n, the assumptions introduced in

Section 3 have to be strengthened in order to derive the distribution of n1/2K̂SF under H1n.

We begin with Assumption 3.1.

Assumption 5.1. There exists a neighborhood of θ0 such that for each θn in this neigh-

borhood, µ(x, ·) is mean-square differentiable at θn, i.e., µ(x, θ) = µ(x, θn) + µ̇′(x, θn)(θ −
θn) + ρ(x, θ, θn) with ‖ supθ∈B(θn,δ)

ρ(·, θ, θn)‖2,PX = o(δ) as δ → 0, ‖µ̇(·, θ0)‖ ∈ L2(PX), and

‖µ̇(·, θn)− µ̇(·, θ0)‖2,PX = o(1).

Next, we strengthen Assumption 3.2.

Assumption 5.2. (i) There exists a neighborhood of θ0 such that for each θn in this neigh-

borhood, pε(θn)|X=x,W=w is a.e. differentiable on R and the conditional second moment of the

derivative is uniformly bounded on N × supp(X) × supp(W ). (ii) For each θn in the afore-

mentioned neighborhood, the conditional distribution of ε(θn) given (X,W ) is Lipschitz and the

nonnegative Lipschitz constants (ζn) are such that supn ζn ∈ L2(PX,W ).

Assumption 3.3 is modified as follows:

Assumption 5.3. (i), (ii), and (iv) are same as (i), (ii), and (iv) of Assumption 3.3. (iii) The

bracketing integral
∫∞

0
supn∈N

√
logN[ ](ε,F , L2(PAn)) dε <∞. (v) Same as Assumption 3.3(v)

but with (PA0 , θ0) replaced by (PAn , θn).
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F1 and F2 satisfy (iii) because indicators of orthants and half-spaces are VC, hence,

universally Donsker (V&W, Example 2.5.4 and Problem 2.6.14). The argument in Lemma F.2

shows that F1 and F2 also satisfy (v) under Assumption 5.2(ii). By V&W (Theorem 2.8.4),

(ii) and (iii) imply that F is Donsker and pre-gaussian uniformly in (PAn). Since F and −F r

are covered by the same number of (pointwise) L2(PAn)-brackets,

N[ ](ε,F − F r, L2(PAn)) ≤ N[ ](ε,F , L2(PAn))×N[ ](ε,−F r, L2(PAn)) = N2
[ ](ε,F , L2(PAn)).

Hence, by (iii),∫ ∞
0

sup
n∈N

√
logN[ ](ε,F − F r, L2(PAn)) dε ≤

∫ ∞
0

sup
n∈N

√
2 logN[ ](ε,F , L2(PAn)) dε <∞.

Therefore, by V&W (Theorem 2.8.4), F −F r is Donsker and pre-gaussian uniformly in (PAn).

This fact is used in the proof of Lemma 5.2.

Finally, Assumption 3.4 becomes

Assumption 5.4. plim(θ̂ − θn) = 0.

Under these conditions it is straightforward to show that Lemma 3.1 remains valid

with θ0 replaced by θn (the proof of the following result is virtually identical to the proof of

Lemmas 3.1 and 4.1 and is therefore omitted), i.e.,

Lemma 5.1. Let Assumptions 5.1–5.4 hold. Then, under H1n,

sup
f∈F
|(P̂Ẑ − P̂Z(θn))f − 〈f, (∂1 log pAn)µ̇′0〉PAn (θ̂ − θn)| = oPr◦(n

−1/2) + oPr(‖θ̂ − θn‖)

sup
f∈F
|(P̂Ẑr − P̂Zr(θn))f − 〈f r, (∂1 log pAn)µ̇′0〉PAn (θ̂ − θn)| = oPr◦(n

−1/2) + oPr(‖θ̂ − θn‖).

As in Section 3, we use Lemma 5.1 to derive the distribution of n1/2K̂SF under H1n.

Begin by observing that

P̂Ẑ − P̂Ẑr = (P̂Ẑ − P̂Z(θn))− (P̂Ẑr − P̂Zr(θn)) + (P̂Z(θn) − PZ(θn))− (P̂Zr(θn) − PZr(θn))

+ (PZ(θn) − PZr(θn)).

Hence, by (5.1) and Lemma 5.1,

n1/2(P̂Ẑ − P̂Ẑr)f = X̂θn(f) + Γh(f) + oPr◦(1) + oPr(‖n1/2(θ̂ − θn)‖) unif. in f ∈ F ,

where X̂θn(f) := n1/2(P̂Z(θn)−PZ(θn))(f−f r)+〈f−f r, (∂1 log pAn)µ̇′〉PAnn
1/2(θ̂−θn). To identify

the marginal distribution of X̂θn assume that (cf. Andrews, 1997, Assumption E2(i)):

Assumption 5.5. (i) Assumption 3.5 holds with θ0 replaced by θn. (ii) The Lindeberg condition

E[|λ′ϕn|21(|λ′ϕn| > εn1/2σλ,n)] = o(σ2
λ,n) holds for all ε > 0 and λ ∈ Rdim(Θ), where ϕn :=

ϕ(Y,X,W, θn) and σ2
λ,n := E[λ′ϕn]2 → E[λ′ϕ0]2.
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By Assumption 5.5, n1/2(θ̂−θn) converges in distribution to Nϕ0 by Lindeberg’s CLT for

inid random variables. Let ∂1h exist and ‖∂1h‖∞ <∞. Since log pAn = log pA0 +log(1+n−1/2h)

(the second term is well defined for n ≥ ‖h‖2
∞),

〈f − f r, (∂1 log pAn)µ̇0〉PAn = 〈f − f r, (∂1 log pA0)µ̇0〉PAn + n−1/2〈f − f r, (∂1h)µ̇0〉PA0

so that, by Cauchy-Schwarz,

‖〈f − f r, (∂1 log pAn)µ̇0〉PAn − 〈f − f
r, (∂1 log pA0)µ̇0〉PA0

‖

≤ n−1/2〈f − f r, (h+ ∂1h)(∂1 log pA0)µ̇0〉PA0

≤ n−1/2‖f − f r‖2,PA0
‖h+ ∂1h‖∞ ‖vA0‖∞ ‖(µ̇′0µ̇0)1/2‖2,PX .

Hence, for each f ∈ F , X̂θn(f) converges in distribution to X0(f) by Lindeberg’s CLT. There-

fore, n1/2(P̂Ẑ− P̂Ẑr)F converges in distribution in `∞(F) because (X̂θn +Γh)F is asymptotically

tight.

Lemma 5.2. Let Assumptions 5.1–5.5 hold. Then, under H1n,

{n1/2(P̂Ẑ − P̂Ẑr)f : f ∈ F} d−→ {X0(f) + Γh(f) : f ∈ F} in `∞(F).

Consequently, by the continuous mapping theorem we have the limiting distribution of

n1/2K̂SF under H1n.

Theorem 5.3. Let Assumptions 5.1–5.5 hold. Then, under H1n, the random variable n1/2K̂SF
converges in distribution to the random variable supf∈F |X(f) + Γh(f)|.

Letting F = F1 in Theorem 5.3, we immediately get that

Corollary 5.1. If Assumptions 5.1–5.5 hold then, under H1n, the random variable n1/2R̂ con-

verges in distribution to the random variable

sup
z∈R1+dim(W )

|G01(−∞,z] + 〈1(−∞,z] − 1r
(−∞,z], (∂1 log pA0)µ̇

′
0〉PA0

Nϕ0 + Γh(1(−∞,z])|.

Given that we know that n1/2R̂max and n1/2R̂ behave similarly under the null, it is also

not surprising that

Lemma 5.3. Under the conditions of Theorem 5.3, n1/2R̂max and n1/2R̂ have the same limiting

distribution under H1n.

Finally, as in Andrews (1997, p. 1114), it can be shown that n1/2K̂SF is asymptotically

locally unbiased (the same argument works for n1/2R̂max as well). Indeed, since (F , ‖ · ‖2,PA0
) is

totally bounded (cf. the proof of Lemma 3.2), there exists a sequence of increasing finite sets

(Fj) whose limit ∪∞j=1Fj is dense (in the ‖ · ‖2,PA0
norm) in F . Hence,

sup
f∈F
|(X0 + Γh)f | = sup

f∈∪∞j=1Fj
|(X0 + Γh)f | = sup

f∈∪∞j=1Fj
|(X0 + Γh)f |,
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where the second equality follows because X0 + Γh is ‖ · ‖2,PA0
-continuous on F w.p.1. [Almost

all sample paths of X0(F) are uniformly ‖ · ‖2,PA0
-continuous by V&W (Addendum 1.5.8), and

uniform ‖ · ‖2,PA0
-continuity of Γh follows because |Γh(f)| ≤ 2‖h‖∞ ‖f‖2,PA0

for all f ∈ F , i.e.,

Γh is a bounded linear functional on F .] Therefore, if B →∞ as n→∞,

lim
n→∞

PrH1n(n1/2K̂SF > c∗α,B) = Pr(sup
f∈F
|(X0 + Γh)f | > cα)

= Pr( sup
f∈∪∞j=1Fj

|(X0 + Γh)f | > cα)

= lim
j→∞

Pr(sup
f∈Fj
|(X0 + Γh)f | > cα) (continuity of prob. meas.)

≥ lim
j→∞

Pr(sup
f∈Fj
|X0(f)| > cα) (Anderson’s lemma)

= Pr( sup
f∈∪∞j=1Fj

|X0(f)| > cα) (continuity of prob. meas.)

= Pr(sup
f∈F
|X0(f)| > cα) = α.

Hence, our test has non-trivial power against the local alternatives.

6. Monte Carlo study

In a seminal paper, Powell (1986b) showed how to identify and estimate censored or

truncated regression models under the assumption that the error term in the latent regression

model is symmetrically distributed conditional on the regressors (no additional distributional

assumptions are needed). Applications of Powell’s symmetric trimming approach that we are

aware of, e.g., Levitt (1996), Chay and Powell (2001), Jacoby, Murgai, and Rehman (2004),

and Kopczuk (2007), to name a few, simply assume the aforementioned conditional symmetry

condition. However, since the latter is critical for Powell’s approach to go through, it is impor-

tant to have a test to determine whether the conditional symmetry assumption maintained in

Powell’s paper is supported by the data. In this section we demonstrate how our test can be

applied for this purpose (we use the simulation designs in Powell’s paper).

We begin by setting up Powell’s model in our notation. Consider the linear regression

model Y 0 = X ′θ0 + U0, where the response variable Y 0 is latent and U0 is continuously

distributed on R. [Powell uses a “∗” superscript to denote latent variables but we avoid this

because in our paper a “∗” superscript indicates simulated random variables, cf. Section 4.]

Instead of observing Y 0, the researcher only observes its left-censored version

Y :=

Y 0 if Y 0 > 0

0 otherwise
⇐⇒ U =

U0 if U0 > −X ′θ0

−X ′θ0 otherwise,
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where U := Y −X ′θ0 is the residual from the censored regression. We focus on left-censoring

because we replicate Powell’s simulation design; extension to right-censoring or truncation

follows mutatis mutandis.

In his paper, Powell showed that if the structural error term U0 in the latent model

is symmetrically distributed about the origin conditional on the regressors, all of which were

assumed to be exogenous, i.e.,

U0|X d
= −U0|X, (6.1)

then θ0 is identified and the symmetrically censored least-squares (SCLS) estimator θ̂, defined

via equation 2.10 of his paper, converges almost surely to θ0.

Let V denote the symmetrically recensored version of U in Powell’s approach, i.e.,

V :=

U if U < X ′θ0

X ′θ0 otherwise
=


U0 if −X ′θ0 < U0 < X ′θ0

X ′θ0 if U0 ≥ X ′θ0

−X ′θ0 if U0 ≤ −X ′θ0.

(6.2)

Since the conditional distribution of V |X has support [−X ′θ0, X
′θ0], it is necessary to assume

that X ′θ0 > 0 (at least with positive probability) to ensure that the support is not empty,

cf. Powell (1986b, p. 1440). We use R̂max to test (6.1) with the understanding that now ε̂ in

the definition of R̂max is replaced by an estimator of V , namely,

V̂ :=

Û if Û < X ′θ̂

X ′θ̂ if Û ≥ X ′θ̂,

where θ̂ is Powell’s SCLS estimator, Û := Y − X ′θ̂, and all regressors are exogenous, i.e.

W = X; thus, here

R̂max := max
(v,x)∈{(V̂1,X1),...,(V̂n,Xn)}

|n−1

n∑
j=1

1(−∞,v]×(−∞,x](V̂j, Xj)− n−1

n∑
j=1

1(−∞,v]×(−∞,x](−V̂j, Xj)|.

The motivation behind using R̂max comes from the fact that, given X, the recensored residual

V is symmetrically distributed about the origin if and only if U0 is symmetrically distributed

on [−X ′θ0, X
′θ0], i.e.,

V |X d
= −V |X on [−X ′θ0, X

′θ0] ⇐⇒ U0|X d
= −U0|X on [−X ′θ0, X

′θ0].

Indeed, the conditional density of V |X = x (with respect to a dominating measure that is a

mixture of the Lebesgue measure on R and the counting measure on {−x′θ0, x
′θ0}) is given by

pdfV |X=x(t) := pdfU0|X=x(t)1(−x′θ0,x′θ0)(t) + PU0|X=x(U
0 ≤ −x′θ0)1{−x′θ0}(t)

+ PU0|X=x(U
0 ≥ x′θ0)1{x′θ0}(t), t ∈ R. (6.3)
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Hence, pdfV |X=x is symmetric on its support (which is [−x′θ0, x
′θ0]) if and only if pdfU0|X=x(t) =

pdfU0|X=x(−t) for t ∈ (−x′θ0, x
′θ0) and PU0|X=x(U

0 ≤ −x′θ0) = PU0|X=x(U
0 ≥ x′θ0). This

makes it clear that the symmetrically censored residuals in Powell’s approach can only be used

to test whether (6.1) holds on the support of Law(V |X).

The main technical difficulty in applying our test to verify Powell’s conditional sym-

metry assumption comes from the fact that in Section 1 the error term ε was assumed to be

continuously distributed with full support on R whereas the symmetrically recensored residual

relevant for Powell’s approach, defined in (6.2), has bounded support conditional on the regres-

sors. However, as shown in Appendix E, our technical arguments still go through under some

additional regularity conditions.

Before presenting the finite sample results we recall Powell’s experimental setup; addi-

tional details can be found in Section 4 of his paper. Powell’s latent model is the simple linear

regression Y 0 = θ0 + θ1X + U0 with X
d
= Unif(−1.7, 1.7) and U0 d

= N(0, σ2). The simulation

results reported in Tables 1 and 2 are for testing that V |X d
= −V |X. Since Powell imposes

independence between U0 and X in his simulation design, by (6.3) this is equivalent to testing

that U0 d
= −U0 on the support of Law(V |X).

The empirical size of n1/2R̂max is reported in Table 1 for three different sample sizes,

namely, n = 50, 100, 200, and three specifications: (θ0, θ1, σ
2) ∈ {(0, 1, 2), (0, 1, 1), (1, 1, 1)}.

These specifications are designs 3, 1 and 4 in Powell’s paper and correspond to the cases when

censoring is high (50%) and the scale of U0 is high (σ2 = 2), censoring is high and scale is low

(σ2 = 1), and censoring is low (25%) and scale is low. To keep the running time manageable,

the results in Tables 1 and 2 are based on 300 simulations and 500 replications per simulation

for simulating the critical values as described in Section 4 (i.e., we create a simulated sample

(Y ∗, X) with Y ∗ := X ′θ̂ + RÛ and use it to re-estimate θ∗ by symmetric censoring to get θ̂∗,

Û∗ and thus V̂ ∗; the latter in turn is used to construct R̂∗max for simulating the critical values).

Code for the simulation was written in R and is available from the authors.

The results in Table 1 suggest that our test is working pretty well. For each sample

size we fail to reject the hypothesis that the true size is statistically different (at 5% level of

significance) from its nominal value as the corresponding t-statistics are all bounded by 2. This

finding holds whether censoring and scale are high or low suggesting that the size of n1/2R̂max

also appears to be fairly robust to the degree of censoring and the scale of U0.

We also carried out a small simulation to examine the power of n1/2R̂max in finite sam-

ples. The latent response in Powell’s design was generated with U0 d
= LogNormal(µ, σ2) (an

asymmetric distribution) and the parameters θ0, θ1, µ, σ
2 were chosen to produce three levels

of censoring, namely, ≈ 3% (low), ≈ 25% (medium), and ≈ 50% (high), and three levels of

skewness of V , namely, ≈ −0.2 (low), ≈ −0.5 (medium), and ≈ 0.9 (high). Since increasing

the skewness of V should make the asymmetry of U0 easier to detect, the least favorable model
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Table 1. Empirical size of n1/2R̂max.

Nominal size (α)

Design n 0.01 0.05 0.10

50 .01
(.006)

.037
(.013)

.077
(.017)

censoring = 50%, scale = 2 100 .02
(.006)

.06
(.013)

.113
(.017)

200 .013
(.006)

.05
(.013)

.097
(.017)

50 .003
(.006)

.047
(.013)

.08
(.017)

censoring = 50%, scale = 1 100 .013
(.006)

.057
(.013)

.12
(.017)

200 .013
(.006)

.04
(.013)

.087
(.017)

50 .003
(.006)

.057
(.013)

.087
(.017)

censoring = 25%, scale = 1 100 .01
(.006)

.033
(.013)

.087
(.017)

200 .013
(.006)

.05
(.013)

.087
(.017)

The last three columns report the fraction of simulations for which n1/2R̂max > c∗α,B .

Monte Carlo standard errors in parenthesis.

in Table 2 is Design 3 (corresponding to high censoring and low skewness) whereas the most

favorable one is Design 1 (low censoring and medium skewness). The results in Table 2 suggest

that censoring and skewness of V both seem to affect the power of the test. Rejection rates

are high for the low censoring level even when n = 50. Keeping the skewness of V fixed,

an increase in the censoring reduces power although the rejection rates are close to ideal for

n = 200. Overall, these results suggest that n1/2R̂max appears to have good power for moderate

sample sizes even when the censoring is high and V is not very skewed.

7. Conclusion

We have shown how to test for conditional symmetry in the presence of endogenous

regressors without making any distributional assumptions and without doing nonparametric

smoothing. The Kolmogorov-Smirnov type statistic we propose is easy to implement, does not

require optimization over an uncountable set, and can detect n1/2-deviations from the null.

Results from a simulation experiment suggest that our test can work very well in moderately

sized samples even under nonstandard conditions.
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Table 2. Empirical power of n1/2R̂max.

Nominal size (α)

Design n 0.01 0.05 0.10

50 .513 .763 .847

1 θ0 = 1, θ1 = 1 censoring = 3% 100 .937 .993 1

µ = 0, σ2 = 1 skewness = 0.56 200 1 1 1

50 .453 .707 .8

2 θ0 = 2, θ1 = 4.5 censoring = 27% 100 .917 .983 .997

µ = 0, σ2 = 1 skewness = −0.26 200 1 1 1

50 .11 .307 .483

3 θ0 = −0.5, θ1 = 1.25 censoring = 48% 100 .457 .707 .81

µ = −1, σ2 = 1 skewness = −0.25 200 .857 .94 .98

50 .27 .527 .687

4 θ0 = −0.5, θ1 = 3 censoring = 49% 100 .74 .913 .957

µ = −1, σ2 = 1 skewness = −0.53 200 .99 1 1

50 .413 .63 .757

5 θ0 = 0, θ1 = 1 censoring = 50% 100 .883 .96 .98

µ = −5, σ2 = 1 skewness = 0.94 200 1 1 1
The last three columns report the fraction of simulations for which n1/2R̂max > c∗α,B .

Appendix A. Proofs for Section 2

Proof of (2.1). Let pε,W denote the density of (ε,W ) with respect to an appropriate dominat-

ing measure. Then,

(ε,W )
d
= (−ε,W ) ⇐⇒ pε,W (u,w) = p−ε,W (u,w) ∀(u,w) ∈ R× supp(W )

⇐⇒ pε|W=w(u)pW (w) = p−ε|W=w(u)pW (w) ∀(u,w) ∈ R× supp(W )

⇐⇒ pε|W=w(u) = p−ε|W=w(u) ∀(u,w) ∈ R× supp(W )

⇐⇒ ε|W d
= −ε|W. �

Appendix B. Proofs for Section 3

Proof of Lemma 3.1. Let mA0
:= (∂1 log pA0)µ̇0. We only show that

sup
f∈F
|(P̂Ẑ − P̂Z)f − 〈f,m′A0

〉PA0
(θ̂ − θ0)| = oPr◦(n

−1/2) + oPr(‖θ̂ − θ0‖). (B.1)



23

Since (P̂Ẑr − P̂Zr)f = (P̂Ẑ − P̂Z)f r, the corresponding result for P̂Ẑr − P̂Zr follows by replacing

f with f r in (B.1). So let f ∈ F and recall that ∆(X, θ, θ0) := µ(X, θ)− µ(X, θ0). Since

f(Y − µ(X, θ),W ) = f(ε−∆(X, θ, θ0),W ) =: f θ(ε,X,W ),

we have

(P̂Ẑ − P̂Z)f = n−1

n∑
j=1

[f(εj −∆(Xj, θ̂, θ0),Wj)− f(εj −∆(Xj, θ0, θ0),Wj)]

= n−1

n∑
j=1

[f θ̂(εj, Xj,Wj)− f θ0(εj, Xj,Wj)]

= P̂A0(f
θ̂ − f θ0).

Hence, we can write (P̂Ẑ − P̂Z)f = (P̂A0 − PA0)(f
θ̂ − f θ0) + PA0(f

θ̂ − f θ0). Consequently, to

prove (B.1) it suffices to show that

sup
f∈F
|n1/2(P̂A0 − PA0)(f

θ̂ − f θ0)| = oPr◦(1) (B.2)

sup
f∈F
|PA0(f

θ̂ − f θ0)− 〈f,m′A0
〉PA0

(θ̂ − θ0)| = oPr(‖θ̂ − θ0‖). (B.3)

We will use equicontinuity of the empirical process n1/2(P̂A0 − PA0) to demonstrate (B.2) and

mean-square differentiability of p
1/2
A0

to show that (B.3) holds. [Cf. the proof of Proposition 2.2

in Khmaladze and Koul (2004) for a similar approach.]

We begin with (B.2). Given f ∈ F , we know that f θ, f θ0 ∈ F by Assumption 3.3(iv)

and ‖f θ − f θ0‖2,PA0
≤ q(‖θ − θ0‖) by Assumption 3.3(v), where q is continuous and passes

through the origin, i.e., q(0) = 0. Hence, as

|(P̂A0 − PA0)(f
θ − f θ0)| ≤ sup

fθ,fθ0∈F :‖fθ−fθ0‖2,PA0
≤q(‖θ−θ0‖)

|(P̂A0 − PA0)(f
θ − f θ0)|

≤ sup
g,h∈F :‖g−h‖2,PA0

≤q(‖θ−θ0‖)
|(P̂A0 − PA0)(g − h)|

and the right hand side does not depend upon f ,

sup
f∈F
|(P̂A0 − PA0)(f

θ − f θ0)| ≤ sup
g,h∈F :‖g−h‖2,PA0

≤q(‖θ−θ0‖)
|(P̂A0 − PA0)(g − h)|. (B.4)

Since F is PA0-Donsker by Assumption 3.3(iii), the empirical process {n1/2(P̂A0−PA0)f : f ∈ F}
is asymptotically equicontinuous (V&W, Section 2.1.2), i.e., ∀ε > 0,

lim
θ→θ0

lim sup
n→∞

Pr◦( sup
g,h∈F :‖g−h‖2,PA0

≤q(‖θ−θ0‖)
|n1/2(P̂A0 − PA0)(g − h)| > ε) = 0. (B.5)



24

Therefore, (B.2) follows by (B.4) and (B.5) because θ̂ is a consistent estimator of θ0 (Assump-

tion 3.4).

Next, we show (B.3). Begin by observing that, for θ ∈ Θ,

PA0f
θ =

∫
f(u−∆(x, θ, θ0), w)PA0(du, dx, dw)

=

∫
f(u−∆(x, θ, θ0), w)pA0(u, x, w) du κ(dx, dw)

=

∫
f(t, w)pA0(t+ ∆(x, θ, θ0), x, w) dt κ(dx, dw)

by the translation invariance of Lebesgue measure. Hence,

PA0(f
θ̂ − f θ0) =

∫
f(t, w)[pA0(t+ ∆(x, θ̂, θ0), x, w)/pA0(t, x, w)− 1]PA0(dt, dx, dw). (B.6)

Since

p
1/2
A0

(u+ ∆(x, θ, θ0), x, w)− p1/2
A0

(u, x, w)

p
1/2
A0

(u, x, w)

(3.1)
=

1

2

∂1pA0(u, x, w)

pA0(u, x, w)
∆(x, θ, θ0)

+ r(∆(x, θ, θ0), u, x, w),

it follows that

pA0(t+ ∆(x, θ̂, θ0), x, w)

pA0(t, x, w)
− 1 = (∂1 log pA0(t, x, w))∆(x, θ̂, θ0)

+ 0.25(∂1 log pA0(t, x, w))2∆2(x, θ̂, θ0)

+ r2(∆(x, θ̂, θ0), t, x, w) + 2r(∆(x, θ̂, θ0), t, x, w)

+ r(∆(x, θ̂, θ0), t, x, w)(∂1 log pA0(t, x, w))∆(x, θ̂, θ0). (B.7)

We use the decomposition in (B.7) to handle (B.6). By Assumption 3.1,

∫
f(t, w)(∂1 log pA0(t, x, w))∆(x, θ̂, θ0)PA0(dt, dx, dw)

=

∫
f(t, w)(∂1 log pA0(t, x, w))µ̇′0(x)(θ̂ − θ0)PA0(dt, dx, dw)

+

∫
f(t, w)(∂1 log pA0(t, x, w))ρ(x, θ̂)PA0(dt, dx, dw).
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By Assumptions 3.2 and 3.3(ii), ‖vA0‖∞ ∨MF <∞. Hence, by Jensen and Assumption 3.1,

|
∫
f(t, w)(∂1 logpA0(t, x, w))ρ(x, θ̂)PA0(dt, dx, dw)|2

≤M2
F

∫
(∂1 log pA0(t, x, w))2 ( sup

θ∈B(θ0,‖θ̂−θ0‖)

|ρ(x, θ, θ0)|)2 PA0(dt, dx, dw)

= M2
F

∫
vA0(x,w) sup

θ∈B(θ0,‖θ̂−θ0‖)

ρ2(x, θ, θ0)PX,W (dx, dw)

≤M2
F ‖vA0‖∞

∫
sup

θ∈B(θ0,‖θ̂−θ0‖)

ρ2(x, θ, θ0)PX(dx)

= o(‖θ̂ − θ0‖2). (B.8)

Therefore,

sup
f∈F
|
∫
f(t, w)(∂1 log pA0(t, x, w))∆(x, θ̂, θ0)PA0(dt, dx, dw)

− 〈f,m′A0
〉PA0

(θ̂ − θ0)| = o(‖θ̂ − θ0‖). (B.9)

Next, by Assumption 3.1,

|
∫
f(t, w)(∂1 log pA0(t, x, w))2∆2(x, θ̂, θ0)PA0(dt, dx, dw)|

≤ 2MF

∫
(∂1 log pA0(t, x, w))2(‖µ̇0(x)‖2 ‖θ̂ − θ0‖2 + ( sup

θ∈B(θ0,‖θ̂−θ0‖)

|ρ(x, θ, θ0)|)2)PA0(dt, dx, dw)

= 2MF

∫
vA0(x,w)(‖µ̇0(x)‖2 ‖θ̂ − θ0‖2 + sup

θ∈B(θ0,‖θ̂−θ0‖)

ρ2(x, θ, θ0))PX,W (dx, dw)

≤ 2MF‖vA0‖∞
∫

(‖µ̇0(x)‖2 ‖θ̂ − θ0‖2 + sup
θ∈B(θ0,‖θ̂−θ0‖)

ρ2(x, θ, θ0))PX(dx)

≤ 2MF‖vA0‖∞(

∫
‖µ̇0(x)‖2 PX(dx) + o(1))‖θ̂ − θ0‖2.

Therefore,

sup
f∈F
|
∫
f(t, w)(∂1 log pA0(t, x, w))2∆2(x, θ̂, θ0)PA0(dt, dx, dw)| = O(‖θ̂ − θ0‖2)

= oPr(‖θ̂ − θ0‖) (B.10)
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because plim(θ̂) = θ0. Next, let ε > 0. Then, by Assumption 3.1 and (3.1),

|
∫
f(t, w)r2(∆(x, θ̂, θ0),t, x, w)PA0(dt, dx, dw)|

≤MF

∫
r2(∆(x, θ̂, θ0), t, x, w)PA0(dt, dx, dw)

≤MFε

∫
∆2(x, θ̂, θ0)PX(dx)

≤ 2MFε

∫
(‖µ̇0(x)‖2 ‖θ̂ − θ0‖2 + sup

θ∈B(θ0,‖θ̂−θ0‖)

ρ2(x, θ, θ0))PX(dx)

≤ 2MFε(

∫
‖µ̇0(x)‖2 PX(dx) + o(1))‖θ̂ − θ0‖2.

Therefore, since ε was arbitrary,

sup
f∈F
|
∫
f(t, w)r2(∆(x, θ̂, θ0), t, x, w)PA0(dt, dx, dw)| = o(‖θ̂ − θ0‖2). (B.11)

A similar argument using Jensen’s inequality reveals that

sup
f∈F
|
∫
f(t, w)r(∆(x, θ̂, θ0), t, x, w)PA0(dt, dx, dw)| = o(‖θ̂ − θ0‖). (B.12)

Finally, since

|
∫
f(t, w)r(∆(x, θ̂, θ0), t, x, w)∂1 log pA0(t, x, w)∆(x, θ̂, θ0)PA0(dt, dx, dw)|

≤ (

∫
|f(t, w)|r2(∆(x, θ̂, θ0), t, x, w)PA0(dt, dx, dw))1/2

× (

∫
|f(t, w)|(∂1 log pA0(t, x, w))2∆2(x, θ̂, θ0)PA0(dt, dx, dw))1/2

by Cauchy-Schwarz, the arguments leading to (B.11) and (B.10) show that

sup
f∈F
|
∫
f(t, w)r(∆(x, θ̂, θ0), t, x, w)(∂1 log pA0(t, x, w))∆(x, θ̂, θ0)PA0(dt, dx, dw)|

= o(‖θ̂ − θ0‖2). (B.13)

Therefore, (B.3) follows by (B.6)–(B.13). �

Proof of Lemma 3.2. Recall that X̂0(f) := n1/2(P̂Z−PZ)(f−f r)+〈f−f r,m′A0
〉PA0

n1/2(θ̂−θ0),

f ∈ F . Assumption 3.3(ii) implies that the sample paths of X̂0 are bounded functions on F .

Hence, by V&W (Theorem 1.5.4), {X̂0(f) : f ∈ F} converges in distribution in `∞(F) to a

tight limit process {X0(f) : f ∈ F} ⊂ `∞(F) if {X̂0(f) : f ∈ F} is asymptotically tight and its

marginals X̂0(f1), . . . , X̂0(fk) converge in distribution in Rk to the marginals X0(f1), . . . ,X0(fk)

for every finite subset f1, . . . , fk of F . From (3.3) we know that the limiting process, if it exists,
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is given by X0(f) := G0f+〈f−f r,m′A0
〉PA0

Nϕ0 . To verify its existence, it only remains to show

that {X̂0(f) : f ∈ F} is asymptotically tight. We proceed as follows. First, for each f ∈ F ,

X̂0(f) is asymptotically tight in R by (3.3). Next, since F is PA0-Donsker (Assumption 3.3(iii)),

(F , ‖ · ‖2,PA0
) is totally bounded by Assumption 3.3(ii) and V&W (Problem 2.1.1). Hence, by

V&W (Theorem 1.5.7), {X̂0(f) : f ∈ F} is asymptotically tight if it is asymptotically uniformly

‖ · ‖2,PA0
-equicontinuous in probability, i.e., for all ε > 0,

lim
δ→0

lim sup
n→∞

Pr◦( sup
f,g∈Fδ,PA0

|X̂0(f − g)| > ε) = 0, (B.14)

where Fδ,PA0
:= {f, g ∈ F : ‖f − g‖2,PA0

≤ δ}. Thus, we are done if we can show (B.14). Since

(f − g)r = f r − gr, by definition of X̂0 and the triangle inequality

Pr◦( sup
f,g∈Fδ,PA0

|X̂0(f − g)| > 2ε) ≤ aδ,n + bδ,n,

where aδ,n := Pr◦(supf,g∈Fδ,PA0

|n1/2(P̂Z − PZ)((f − f r)− (g − gr))| > ε) and

bδ,n := Pr◦( sup
f,g∈Fδ,PA0

|〈(f − f r)− (g − gr),m′A0
〉PA0

n1/2(θ̂ − θ0)| > ε).

Now, F r is PA0-Donsker because this is equivalent to F being PA0-Donsker (Assumption 3.3(iii)).

Consequently, F−F r := {f−gr : f, g ∈ F} is PA0-Donsker by V&W (Theorem 2.10.2) because

the difference map is Lipschitz. Hence, since the empirical process n1/2(P̂Z − PZ)(F − F r) is

asymptotically tight under ‖ · ‖2,PA0
(V&W (2.1.8)),

lim
δ→0

lim sup
n→∞

aδ,n ≤ lim
δ→0

lim sup
n→∞

Pr◦( sup
f,g∈(F−Fr)δ,PA0

|n1/2(P̂Z − PZ)(f − g)| > ε) = 0.

Next, by repeated applications of Cauchy-Schwarz,

|〈(f − f r)− (g − gr),m′A0
〉PA0

(θ̂ − θ0)| ≤ ‖〈(f − g)− (f r − gr),mA0〉PA0
‖ ‖θ̂ − θ0‖

≤ 2‖f − g‖2,PA0
‖vA0‖∞ ‖(µ̇′0µ̇0)1/2‖2,PX ‖θ̂ − θ0‖

because ‖f r − gr‖2,PA0
= ‖f − g‖2,PA0

for all f, g ∈ F under the null hypothesis. Indeed,

‖f r − gr‖2
2,PA0

=

∫
(f − g)2(−u,w)Pε,X,W (du, dx, dw)

=

∫
(f − g)2(−u,w)Pε,W (du, dw) (marginal integration)

=

∫
(f − g)2(u,w)Pε,W (du, dw) (change of variables and (2.1))

=

∫
(f − g)2(u,w)Pε,X,W (du, dx, dw) (marginal integration)

= ‖f − g‖2
2,PA0

.
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Hence,

lim
δ→0

lim sup
n→∞

bδ,n ≤ lim
δ→0

lim sup
n→∞

Pr◦(ε < 2δ‖vA0‖∞ ‖(µ̇′0µ̇0)1/2‖2,PX ‖n1/2(θ̂ − θ0)‖) = 0

because θ̂ is a n1/2-consistent estimator of θ0 (Assumption 3.5). Therefore, (B.14) holds. �

Proof of Lemma 3.3. We follow the approach taken by Andrews (1997) in proving his The-

orem A.2 while accounting for the fact that (unlike Andrews) our statistic is optimized over

the estimated set of observations Ẑ. We prove the stated result by showing that the cdf of the

nonnegative random variable n1/2R̂max converges pointwise to the cdf of R0. In particular, we

show that for all c ∈ [0,∞),

lim sup
n→∞

Pr(n1/2R̂max > c) ≤ Pr(R0 > c) ≤ lim inf
n→∞

Pr(n1/2R̂max > c). (B.15)

The first inequality is easy: Since R̂max ≤ R̂, it follows by Corollary 3.1 that

lim sup
n→∞

Pr(n1/2R̂max > c) ≤ lim sup
n→∞

Pr(n1/2R̂ > c) = Pr(R0 > c). (B.16)

The second inequality requires a bit more effort. Let Ŷ := n1/2(P̂Ẑ− P̂Ẑr) and for g ∈ F1 define

BPA0
(g, ε) := {h ∈ F1 : ‖g − h‖2,PA0

< ε}. By Lemma F.3, given f ∈ F1 and r > 0 there exists

f̂ ∈ F̂1 ∩BPA0
(f, r) w.p.a.1. Consequently, w.p.a.1,

inf
g∈BPA0

(f,r)
|Ŷ(g)| ≤ |Ŷ(f̂)| ≤ max

h∈F̂1

|Ŷ(h)| = n1/2R̂max.

In fact, since the upper bound does not depend upon f , it follows that given T ∈ N and

f1, . . . , fT ∈ F1, the event

En := {max
t≤T

inf
g∈BPA0

(ft,r)
|Ŷ(g)| ≤ n1/2R̂max}

holds w.p.a.1. Now,

Pr(max
t≤T

inf
g∈BPA0

(ft,r)
|Ŷ(g)| > c,En) ≤ Pr(n1/2R̂max > c,En)

or equivalently

Pr(max
t≤T

inf
g∈BPA0

(ft,r)
|Ŷ(g)| > c)− Pr(max

t≤T
inf

g∈BPA0
(ft,r)
|Ŷ(g)| > c,E{n)

≤ Pr(n1/2R̂max > c)− Pr(n1/2R̂max > c,E{n).
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Hence, since limn→∞ Pr(E{n) = 0,

lim inf
n→∞

Pr(n1/2R̂max > c) ≥ lim inf
n→∞

Pr(max
t≤T

inf
g∈BPA0

(ft,r)
|Ŷ(g)| > c)

= Pr(max
t≤T

inf
g∈BPA0

(ft,r)
|X0(g)| > c) (B.17)

≥ sup
T∈N

sup
r>0

Pr(max
t≤T

inf
g∈BPA0

(ft,r)
|X0(g)| > c), (B.18)

where (B.17) follows by Lemma 3.2 applied to F1 plus the continuous mapping theorem and

(B.18) is the tightest lower bound. From the proof of Lemma 3.2 we know that (F1, ‖ · ‖2,PA0
)

is totally bounded, i.e., given r > 0, there exists Tr < ∞ such that F1 ⊂ ∪Trt=1BPA0
(ft, r) with

f1, . . . , fTr ∈ F1. Moreover, from V&W (Addendum 1.5.8) it follows that almost all sample

paths of {X0(f) : f ∈ F1} are uniformly ‖ · ‖2,PA0
-continuous so that for all η > 0 there exists

rη > 0 such that the probability of the event

Uη := { sup
g,h∈F1:‖g−h‖2,PA0

<2rη

|X0(g)− X0(h)| < η}

approaches one as η → 0. Therefore, since being a convex functional of a gaussian process

the random variable R0 := supf∈F1
|X0(f)| is continuously distributed on (0,∞), cf. Davydov,

Lifshits, and Smorodina (1998, Theorem 11.1),

Pr(R0 > c) = lim
η→0

Pr( sup
f∈F1

|X0(f)| > c+ η)

≤ lim
η→0

Pr(max
t≤Trη

sup
f∈BPA0

(ft,rη)

|X0(f)| > c+ η)

= lim
η→0

Pr(max
t≤Trη

sup
f∈BPA0

(ft,rη)

|X0(f)| > c+ η, Uη)

≤ lim
η→0

Pr( sup
f∈BPA0

(ft,rη)

|X0(f)| > c+ η for some t ≤ Trη , Uη)

≤ lim
η→0

Pr( inf
f∈BPA0

(ft,rη)
|X0(f)| > c for some t ≤ Trη)

≤ lim
η→0

Pr(max
t≤Trη

inf
f∈BPA0

(ft,rη)
|X0(f)| > c)

≤ sup
T∈N

sup
r>0

Pr(max
t≤T

inf
f∈BPA0

(ft,r)
|X0(f)| > c). (B.19)

Hence, (B.15) follows by (B.16), (B.18), and (B.19). �



30

Appendix C. Proofs for Section 4

Proof of Lemma 4.1. For f ∈ F ,

(P̂Ẑ∗ − P̂R(Z(θ1)))f = n−1

n∑
j=1

[f(ε̂∗j ,Wj)− f(Rjεj(θ1),Wj)]

= n−1

n∑
j=1

[f(Rjεj(θ1)− ∆̃(Rj, Xj, θ̂
∗, θ̂, θ1),Wj)

− f(Rjεj(θ1)− ∆̃(Rj, Xj, θ1, θ1, θ1),Wj)]

= P̂R(A1)(f
θ̂∗,θ̂ − f θ1,θ1)

= (P̂R(A1) − PR(A1))(f
θ̂∗,θ̂ − f θ1,θ1) + PR(A1)(f

θ̂∗,θ̂ − f θ1,θ1).

Therefore,

(P̂Ẑ∗ − P̂R(Z(θ1)))f − PR(A1)(f
θ̂,θ̂ − f θ1,θ1)

= (P̂R(A1) − PR(A1))(f
θ̂∗,θ̂ − f θ1,θ1) + PR(A1)(f

θ̂∗,θ̂ − f θ̂,θ̂).

To prove the first result (we only show the first result as the proof of the second one is similar),

it thus suffices to show that

sup
f∈F
|n1/2(P̂R(A1) − PR(A1))(f

θ̂∗,θ̂ − f θ1,θ1)| = oPr◦(1) (C.1)

sup
f∈F
|PR(A1)(f

θ̂∗,θ̂ − f θ̂,θ̂)− 0.5〈f − f r, (∂1 log pA1)µ̇
′
1〉PA1

(θ̂∗ − θ̂)| = oPr(‖θ̂∗ − θ̂‖). (C.2)

As in the proof of Lemma 3.1, we use equicontinuity of the n1/2(P̂R(A1)−PR(A1)) process

to demonstrate (C.1) and mean-square differentiability of p
1/2
A1

to show (C.2). We begin with

the first claim. Given f ∈ F , we know that f θ̂
∗,θ̂, f θ1,θ1 ∈ F and

‖f θ̂∗,θ̂ − f θ1,θ1‖2,PR(A1)
≤ q(‖(θ̂∗, θ̂)− (θ1, θ1)‖) =: q̂

by Assumption 4.2(iii). Hence, as |(P̂R(A1) − PR(A1))(f
θ̂∗,θ̂ − f θ1,θ1)| is bounded from above by

supg,h∈F :‖g−h‖2,PR(A1)
≤q̂ |(P̂R(A1) − PR(A1))(g − h)| and the bound does not depend upon f ,

sup
f∈F
|n1/2(P̂R(A1) − PR(A1))(f

θ̂∗,θ̂ − f θ1,θ1)| ≤ sup
g,h∈F :‖g−h‖2,PR(A1)

≤q̂
|n1/2(P̂R(A1) − PR(A1))(g − h)|.

Then (C.1) follows because the empirical process {n1/2(P̂R(A1) − PR(A1))f : f ∈ F} is asymp-

totically equicontinuous (due to the fact that F is PR(A1)-Donsker by Assumption 4.2(iii)) and

plim(q̂) = 0 by Assumption 4.1 and the properties of q.
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Next, we show (C.2). Begin by observing that

PR(A1)f
θa,θb =

∫
f(su− ∆̃(s, x, θa, θb, θ1), w)PR(ds)PA1(du, dx, dw)

= 0.5

∫
f(u− ∆̃(1, x, θa, θb, θ1), w)pA1(u, x, w) du κ(dx, dw)

+ 0.5

∫
f(−u− ∆̃(−1, x, θa, θb, θ1), w)pA1(u, x, w) du κ(dx, dw)

= 0.5

∫
f(t, w)pA1(t+ ∆̃(1, x, θa, θb, θ1), x, w) dt κ(dx, dw)

+ 0.5

∫
f(t, w)pA1(−t− ∆̃(−1, x, θa, θb, θ1), x, w) dt κ(dx, dw)

=

∫
f(t, w)pA1(st+ s∆̃(s, x, θa, θb, θ1), x, w)PR(ds) dt κ(dx, dw), (C.3)

where the third equality follows by the translation invariance of the Lebesgue measure. Hence,

PR(A1)(f
θ̂∗,θ̂ − f θ̂,θ̂) =

∫
f(t, w)(pA1(st+ s∆̃(s, x, θ̂∗, θ̂, θ1), x, w)

− pA1(st+ ∆(x, θ̂, θ1), x, w))PR(ds) dt κ(dx, dw). (C.4)

Under Assumption 4.2(ii), p
1/2
A1

is mean-square differentiable. Hence, expanding as in (B.7)

while keeping st+ ∆(x, θ̂, θ1) fixed,

pA1(st+ s∆̃(s, x, θ̂∗, θ̂, θ1), x, w)− pA1(st+ ∆(x, θ̂, θ1), x, w)

= pA1(st+ ∆(x, θ̂, θ1) + s∆(x, θ̂∗, θ̂), x, w)− pA1(st+ ∆(x, θ̂, θ1), x, w)

= (∂1pA1(st+ ∆(x, θ̂, θ1), x, w))s∆(x, θ̂∗, θ̂)

+ 0.25(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))2p−1
A1

(st+ ∆(x, θ̂, θ1), x, w)(s∆(x, θ̂∗, θ̂))2

+ r2(s∆(x, θ̂∗, θ̂), st+ ∆(x, θ̂, θ1), x, w)pA1(st+ ∆(x, θ̂, θ1), x, w)

+ 2r(s∆(x, θ̂∗, θ̂), st+ ∆(x, θ̂, θ1), x, w)pA1(st+ ∆(x, θ̂, θ1), x, w)

+ r(s∆(x, θ̂∗, θ̂), st+ ∆(x, θ̂, θ1), x, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))s∆(x, θ̂∗, θ̂).

We use this decomposition to handle (C.4). First, by Assumption 4.2(i),∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))s∆(x, θ̂∗, θ̂)PR(ds) dt κ(dx, dw)

=

∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))sµ̇′(x, θ̂)(θ̂∗ − θ̂)PR(ds) dt κ(dx, dw)

+

∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))sρ(x, θ̂∗, θ̂)PR(ds) dt κ(dx, dw).
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By a change of variable,∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))sρ(x, θ̂∗, θ̂)PR(ds) dt κ(dx, dw)

= 0.5

∫
f(t, w)(∂1pA1(t+ ∆(x, θ̂, θ1), x, w))ρ(x, θ̂∗, θ̂) dt κ(dx, dw)

− 0.5

∫
f(t, w)(∂1pA1(−t+ ∆(x, θ̂, θ1), x, w))ρ(x, θ̂∗, θ̂) dt κ(dx, dw)

= 0.5

∫
f(u−∆(x, θ̂, θ1), w)(∂1pA1(u, x, w))ρ(x, θ̂∗, θ̂) du κ(dx, dw)

− 0.5

∫
f(−(u−∆(x, θ̂, θ1)), w)(∂1pA1(u, x, w))ρ(x, θ̂∗, θ̂) du κ(dx, dw)

= 0.5

∫
(f − f r)(u−∆(x, θ̂, θ1), w)(∂1 log pA1(u, x, w))ρ(x, θ̂∗, θ̂)PA1(du, dx, dw). (C.5)

Hence, following the argument leading to (B.8),

|
∫
f(t, w)(∂1pA1(st+∆(x, θ̂, θ1), x, w))sρ(x, θ̂∗, θ̂)PR(ds) dt κ(dx, dw)|2

≤M2
F ‖vA1‖∞

∫
sup

θ∈B(θ̂,‖θ̂∗−θ̂‖)

ρ2(x, θ, θ̂)PX(dx)

= oPr(‖θ̂∗ − θ̂‖2) (C.6)

by Assumption 4.2(i). Arguing similarly,

|
∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))s(µ̇(x, θ̂)− µ̇′(x, θ1))′(θ̂∗ − θ̂))PR(ds) dt κ(dx, dw)|

≤MF ‖vA1‖∞ ‖µ̇(·, θ̂)− µ̇(·, θ1)‖2,PX ‖θ̂∗ − θ̂‖

= oPr(‖θ̂∗ − θ̂‖) (C.7)

by Assumption 4.2(i). Therefore, by (C.6) and (C.7),

|
∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))s∆(x, θ̂∗, θ̂)PR(ds) dt κ(dx, dw)

−
∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))sµ̇′(x, θ1)(θ̂∗ − θ̂)PR(ds) dt κ(dx, dw)|

= oPr(‖θ̂∗ − θ̂‖). (C.8)

Now, the argument leading to (C.5) shows that∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))sµ̇′(x, θ1)(θ̂∗ − θ̂)PR(ds) dt κ(dx, dw)

= 0.5

∫
(f − f r)(u−∆(x, θ̂, θ1), w)(∂1 log pA1(u, x, w))µ̇′(x, θ1)(θ̂∗ − θ̂)PA1(du, dx, dw).
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Thus, by Assumption 4.2(iii) and Cauchy-Schwarz,

|
∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w)

− ∂1pA1(st, x, w))sµ̇′(x, θ1)(θ̂∗ − θ̂)PR(ds) dt κ(dx, dw)|

≤ q(‖θ̂ − θ1‖) ‖vA1‖∞ ‖(µ̇′1µ̇1)1/2‖2,PX ‖θ̂∗ − θ̂‖ = oPr(‖θ̂∗ − θ̂‖) (C.9)

because plim(θ̂) = θ1, q is continuous, and q(0) = 0. Therefore, by (C.8) and (C.9),

|
∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))s∆(x, θ̂∗, θ̂)PR(ds) dt κ(dx, dw)

−
∫
f(t, w)(∂1pA1(st, x, w))sµ̇′(x, θ1)(θ̂∗ − θ̂)PR(ds) dt κ(dx, dw)| = oPr(‖θ̂∗ − θ̂‖).

But as in (C.5),

∫
f(t, w)(∂1pA1(st, x, w))sµ̇(x, θ1)PR(ds) dt κ(dx, dw) = 0.5〈f − f r, (∂1 log pA1)µ̇1〉PA1

.

Therefore,

sup
f∈F
|
∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))s∆(x, θ̂∗, θ̂)PR(ds) dt κ(dx, dw)

− 0.5〈f − f r, (∂1 log pA1(u, x, w)µ̇1〉PA1
| = oPr(‖θ̂∗ − θ̂‖). (C.10)

Next, since R2 = 1, the argument leading to (C.5) reveals that

∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))2p−1

A1
(st+ ∆(x, θ̂, θ1), x, w)

× (s∆(x, θ̂∗, θ̂))2 PR(ds) dt κ(dx, dw)

= 0.5

∫
(f + f r)(u−∆(x, θ̂, θ1), w)(∂1 log pA1(u, x, w))2

×∆2(x, θ̂∗, θ̂)PA1(du, dx, dw).
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Hence, by Assumption 4.2(ii),

sup
f∈F
|
∫
f(t, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))2p−1

A1
(st+ ∆(x, θ̂, θ1), x, w)

× (s∆(x, θ̂∗, θ̂))2 PR(ds) dt κ(dx, dw)|

≤MF ‖vA1‖∞
∫

(‖µ̇(x, θ̂)‖2 ‖θ̂∗ − θ̂‖2 + sup
θ∈B(θ̂,‖θ̂∗−θ̂‖)

ρ2(x, θ, θ̂))PX(dx)

≤MF ‖vA1‖∞((‖µ̇(·, θ̂)− µ̇(·, θ1)‖2
2,PX + ‖µ̇(·, θ1)‖2

2,PX ) ‖θ̂∗ − θ̂‖2

+

∫
sup

θ∈B(θ̂,‖θ̂∗−θ̂‖)

ρ2(x, θ, θ̂)PA1(dx))

= OPr(‖θ̂∗ − θ̂‖2). (C.11)

Next, since∫
f(t, w)r2(s∆(x, θ̂∗, θ̂), st+ ∆(x, θ̂, θ1), x, w)

× pA1(st+ ∆(x, θ̂, θ1), x, w)PR(ds) dt κ(dx, dw)

= 0.5

∫
(f(u−∆(x, θ̂, θ1), w)r2(∆(x, θ̂∗, θ̂), u, x, w)

+ f r(u−∆(x, θ̂, θ1), w)r2(−∆(x, θ̂∗, θ̂), u, x, w))PA1(du, dx, dw),

following the argument leading to (C.11) we obtain that

sup
f∈F
|
∫
f(t, w)r2(s∆(x, θ̂∗, θ̂), st+ ∆(x, θ̂, θ1), x, w)

× pA1(st+ ∆(x, θ̂, θ1), x, w)PR(ds) dt κ(dx, dw)|

≤MF o(‖∆(·, θ̂∗, θ̂)‖2
2,PX ) = o(‖θ̂∗ − θ̂‖2). (C.12)

In a similar manner, it can be shown that

sup
f∈F
|
∫
f(t, w)r(s∆(x, θ̂∗, θ̂), st+ ∆(x, θ̂, θ1), x, w)

× pA1(st+ ∆(x, θ̂, θ1), x, w)PR(ds) dt κ(dx, dw)| = o(‖θ̂∗ − θ̂‖2) (C.13)

and

sup
f∈F
|
∫
f(t, w)r(s∆(x, θ̂∗, θ̂), st+ ∆(x, θ̂, θ1), x, w)(∂1pA1(st+ ∆(x, θ̂, θ1), x, w))

× s∆(x, θ̂∗, θ̂)PR(ds) dt κ(dx, dw)| = o(‖θ̂∗ − θ̂‖2). (C.14)

The desired result follows by (C.10)–(C.14). �
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Proof of (4.2). By (C.3) and the fact that R2 = 1,

PR(A1)f
θ̂,θ̂ =

∫
f(t, w)pA1(st+ ∆(x, θ̂, θ1), x, w)PR(ds) dt κ(dx, dw)

PR(A1)f
θ1,θ1 =

∫
f(t, w)pA1(st, x, w)PR(ds) dt κ(dx, dw).

Similarly, by a change of variable and the fact that supp(R) = {−1, 1},

PR(A1)f
rθ̂,θ̂ =

∫
f r(t, w)pA1(st+ ∆(x, θ̂, θ1), x, w)PR(ds) dt κ(dx, dw)

=

∫
f(−t, w)pA1(st+ ∆(x, θ̂, θ1), x, w)PR(ds) dt κ(dx, dw)

=

∫
f(u,w)pA1(−su+ ∆(x, θ̂, θ1), x, w)PR(ds) du κ(dx, dw)

=

∫
f(u,w)pA1(ru+ ∆(x, θ̂, θ1), x, w)PR(dr) du κ(dx, dw)

= PR(A1)f
θ̂,θ̂.

The desired result follows because PR(A1)f
rθ1,θ1 = PR(A1)f

θ1,θ1 by setting ∆ to be identically

zero in the preceding display. �

Proof of Lemma 4.2. Since F is PR(A1)-Donsker by Assumption 4.2(iii), tightness of X̂∗1 can

be established as in the proof of Lemma 3.2. It only remains to prove that the empirical process

{n1/2(P̂R(Z(θ1)) − PR(Z(θ1)))(f − f r) : f ∈ F} has the same limiting marginal distribution and

covariance function as G1. So let f ∈ F . Then, since (f − f r)(Zr(θ1)) = −(f − f r)(Z(θ1)) and

1{1}(R)− 1{−1}(R) = R,

P̂R(Z(θ1))(f − f r) = n−1

n∑
j=1

(f − f r)(R(Zj(θ1)))

= n−1

n∑
j=1

(f − f r)(Zj(θ1))1{1}(Rj) + (f − f r)(Zr
j(θ1))1{−1}(Rj))

= n−1

n∑
j=1

(1{1}(Rj)− 1{−1}(Rj))(f − f r)(Zj(θ1))

= n−1

n∑
j=1

Rj(f − f r)(Zj(θ1)).

Hence, as PR(Z(θ1))(f−f r) = 0 (cf. the remark at the end of Section 4), the CLT for iid random

variables shows that the empirical process {n1/2(P̂R(Z(θ1))− PR(Z(θ1)))(f − f r) : f ∈ F} has the

same limiting marginal distribution and covariance function as G1. �



36

Proof of Lemma 4.3. From Corollary 4.1 we know that n1/2R̂∗ converges in distribution to

R1 whether the null is true or not. Therefore, it suffices to prove the same for n1/2R̂∗max. In

particular, we show that for all c ∈ [0,∞),

lim sup
n→∞

Pr(n1/2R̂∗max > c) ≤ Pr(R1 > c) ≤ lim inf
n→∞

Pr(n1/2R̂∗max > c).

This follows exactly as in the proof of Lemma 3.3 provided F̂∗1 := {1(−∞,z] : z ∈ Ẑ∗} is dense

in F1 in the sense that for each f ∈ F1 and ε > 0,

lim
n→∞

Pr(∃f̂ ∈ F̂∗1 : ‖f̂ − f‖2,PR(A1)
∨ ‖f̂ r − f r‖2,PR(A1)

< ε) = 1.

But the denseness result above follows as in the proof of Lemma F.3 upon replacing ε by

ε∗ := Rε(θ1), Z by Z∗ := (ε∗,W ), Ẑ by Ẑ∗ := (ε̂∗,W ) with ε̂∗ as defined in Section 4,

∆(X, θ̂, θ0) by ∆̃(R,X, θ̂∗, θ̂, θ1) (because ε̂∗−ε∗ = −∆̃(R,X, θ̂∗, θ̂, θ1)), and using the fact that

plim(θ̂∗, θ̂) = (θ1, θ1) by Assumption 4.1. �

Appendix D. Proofs for Section 5

Proof of Theorem 5.1. Under the alternative, PZ(θ) 6= PZr(θ) for each θ ∈ Θ; in particular,

PZ(θ1) 6= PZr(θ1). Now write

sup
f∈F
|(P̂Ẑ − P̂Ẑr)f | = sup

f∈F
|(PZ(θ1) − PZr(θ1))f |+ ∆̂1(F) + ∆̂2(F),

where ∆̂1(F) := supf∈F |(P̂Ẑ − P̂Ẑr)f | − supf∈F |(P̂Z(θ1) − P̂Zr(θ1))f | and

∆̂2(F) := sup
f∈F
|(P̂Z(θ1) − P̂Zr(θ1))f | − sup

f∈F
|(PZ(θ1) − PZr(θ1))f |.

By the reverse triangle inequality and Lemma F.1,

|∆̂1(F)| ≤ sup
f∈F
||(P̂Ẑ − P̂Ẑr)f | − |(P̂Z(θ1) − P̂Zr(θ1))f ||

≤ sup
f∈F
|(P̂Ẑ − P̂Ẑr)f − (P̂Z(θ1) − P̂Zr(θ1))f |

≤ sup
f∈F
|(P̂Ẑ − P̂Z(θ1))f |+ sup

f∈F
|(P̂Ẑr − P̂Zr(θ1))f |

= oPr◦(1). (D.1)
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Next, since F is PA(θ1)-Donsker =⇒ F and F r are PA(θ1)-Glivenko-Cantelli =⇒ F and F r

are PZ(θ1)-Glivenko-Cantelli,

|∆̂2(F)| ≤ sup
f∈F
||(P̂Z(θ1) − P̂Zr(θ1))f | − |(PZ(θ1) − PZr(θ1))f ||

≤ sup
f∈F
|(P̂Z(θ1) − P̂Zr(θ1))f − (PZ(θ1) − PZr(θ1))f |

≤ sup
f∈F
|(P̂Z(θ1) − PZ(θ1))f |+ sup

f∈F
|(P̂Z(θ1) − PZ(θ1))f

r|

= sup
f∈F
|(P̂Z(θ1) − PZ(θ1))f |+ sup

f∈Fr

|(P̂Z(θ1) − PZ(θ1))f |

= oPr◦(1). (D.2)

Hence,

K̂SF := sup
f∈F
|(P̂Ẑ − P̂Ẑr)f | = sup

f∈F
|(PZ(θ1) − PZr(θ1))f |+ oPr◦(1). (D.3)

Since F is measure determining, supf∈F |(PZ(θ1) − PZr(θ1))f | = 0 =⇒ PZ(θ1) = PZr(θ1). There-

fore, under the alternative hypothesis, supf∈F |(PZ(θ1)−PZr(θ1))f | > 0. It follows by (D.3) that,

under the alternative, n1/2K̂SF is unbounded w.p.a.1. �

Proof of Theorem 5.2. Let Ψ(f) := |(PZ(θ1) − PZr(θ1))f | for notational convenience. Then,

with ∆̂1 and ∆̂2 as defined in the proof of Theorem 5.1,

R̂max := sup
f∈F̂1

|(P̂Ẑ − P̂Ẑr)f | = sup
f∈F̂1

Ψ(f) + ∆̂1(F̂1) + ∆̂2(F̂1).

The argument leading to (D.1) shows that

|∆̂1(F̂1)| ≤ sup
f∈F̂1

|(P̂Ẑ − P̂Z(θ1))f |+ sup
f∈F̂1

|(P̂Ẑr − P̂Zr(θ1))f |

≤ sup
f∈F1

|(P̂Ẑ − P̂Z(θ1))f |+ sup
f∈F1

|(P̂Ẑr − P̂Zr(θ1))f | (F̂1 ⊂ F1)

= oPr◦(1),

Similarly, the argument leading to (D.2) shows that

|∆̂2(F̂1)| ≤ sup
f∈F1

|(P̂Z(θ1) − PZ(θ1))f |+ sup
f∈Fr

1

|(P̂Z(θ1) − PZ(θ1))f | = oPr◦(1).

Therefore, letting ∆̂3 := supf∈F̂1
Ψ(f)− supf∈F1

Ψ(f),

R̂max = sup
f∈F̂1

Ψ(f) + oPr◦(1) = sup
f∈F1

Ψ(f) + ∆̂3 + oPr◦(1).

Since supf∈F Ψ(f) > 0 under the alternative hypothesis, n1/2R̂max will be unbounded under the

alternative (hence consistent) provided ∆̂3 = oPr(1). To show the latter, let ε > 0 and observe
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that ∆̂3 ≤ ε is always true because F̂1 ⊂ F1. Next, by definition of the supremum, there exists

gε ∈ F1 such that supf∈F1
Ψ(f)− ε < Ψ(gε). For η > 0, consider the event

Êη := {∃hη ∈ F̂1 : ‖hη − gε‖2,PA(θ1)
∨ ‖hr

η − gr
ε‖2,PA(θ1)

< η}.

If Êη is true, then there exists hη ∈ F̂1 such that ‖hη − gε‖2,PA(θ1)
+ ‖hr

η − gr
ε‖2,PA(θ1)

< 2η. But,

sup
f∈F1

Ψ(f)− ε < Ψ(gε) ≤ |Ψ(gε)−Ψ(hη)|+ Ψ(hη) ≤ |Ψ(gε)−Ψ(hη)|+ sup
f∈F̂1

Ψ(f)

and

|Ψ(gε)−Ψ(hη)| ≤ |(PZ(θ1) − PZr(θ1))(gε − hη)| (reverse triangle inequality)

≤ |PZ(θ1)(gε − hη)|+ |PZ(θ1)(g
r
ε − hr

η)|

≤ ‖gε − hη‖2,PA(θ1)
+ ‖gr

ε − hr
η‖2,PA(θ1)

(Jensen).

Hence, choosing η ≤ ε,

Êη =⇒ sup
f∈F̂1

Ψ(f)− ε < 2η + sup
f∈F̂1

Ψ(f) ⇐⇒ ∆̂3 ≥ −ε− 2η ≥ −3ε =⇒ |∆̂3| ≤ 3ε.

As we proved (F.1), we can show that limn→∞ Pr(Êη) = 1 under Assumptions 3.1, 3.2(ii), and

3.4 with (θ0, ε) replaced by (θ1, ε(θ1)). [Note that Lemma F.3 holds irrespective of whether the

null hypothesis is true or not.] It follows that limn→∞ Pr(|∆̂3| ≤ 3ε) = 1 which is equivalent to

∆̂3 = oPr(1) because ε was arbitrary. �

Proof of Lemma 5.2. The approach (and notation) here is very similar to the proof of

Lemma 3.2, the main difference being that we now use empirical process results that al-

low the underlying data generating measures to depend upon n. Recall that X̂θn(f) :=

n1/2(P̂Z(θn) − PZ(θn))(f − f r) + 〈f − f r,m′An〉PAnn
1/2(θ̂ − θn), where mAn := (∂1 log pAn)µ̇0

and f ∈ F . To prove that (X̂θn + Γh)F is asymptotically tight, it suffices to show (V&W,

Section 2.8.3) that limn→∞ supf,g∈F |‖f − g‖2,PAn − ‖f − g‖2,PA0
| = 0 and, for all ε > 0,

lim
δ→0

lim sup
n→∞

Pr◦( sup
f,g∈Fδ,PAn

|(X̂θn + Γh)(f − g)| > ε) = 0. (D.4)

The first condition follows immediately because for all f, g ∈ F ,

(‖f − g‖2,PAn − ‖f − g‖2,PA0
)2 ≤ |‖f − g‖2,PAn − ‖f − g‖2,PA0

| × |‖f − g‖2,PAn + ‖f − g‖2,PA0
|

= |‖f − g‖2
2,PAn − ‖f − g‖

2
2,PA0
|

= n−1/2

∫
(f − g)2h dPA0

≤ 2M2
F‖h‖∞ n−1/2.
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To show (D.4), begin by observing that

Pr◦( sup
f,g∈Fδ,PAn

|(X̂θn + Γh)(f − g)| > 3ε) ≤ tδ,n(1) + tδ,n(2) + tδ,n(3),

where tδ,n(1) := Pr◦(supf,g∈Fδ,PAn
|n1/2(P̂Z(θn) − PZ(θn))((f − f r)− (g − gr))| > ε),

tδ,n(2) := Pr◦( sup
f,g∈Fδ,PAn

|〈(f − g)− (f r − gr),m′An〉PAnn
1/2(θ̂ − θn)| > ε),

and tδ,n(3) := 1(supf,g∈Fδ,PAn
|Γh(f − g)| > ε) because Γh(f − g) is nonstochastic. Now,

lim
δ→0

lim sup
n→∞

tδ,n(1) ≤ lim
δ→0

lim sup
n→∞

Pr◦( sup
f,g∈(F−Fr)δ,PAn

|n1/2(P̂Z(θn) − PZ(θn))(f − g)| > ε) = 0

because F−F r is asymptotically equicontinuous uniformly in (PAn) which follows because F−
F r is Donsker and pre-gaussian uniformly in (PAn) by Assumptions 5.3(ii) and (iii); cf. V&W

(Section 2.8.3). Next, for the remainder of the proof, let f, g ∈ Fδ,PAn . By Assumption 5.2(ii),

‖〈(f − g)− (f r − gr),mAn〉PAn‖ ≤ (‖f − g‖2,PAn + ‖f r − gr‖2,PAn ) ‖vAn‖∞ ‖(µ̇′0µ̇0)1/2‖2,PX .

Moreover, recalling that PZ = PZr was assumed to create the local alternatives,

‖f r − gr‖2
2,PAn =

∫
(f − g)2(−u,w)(1 + n−1/2h(u,w))PA0(du, dx, dw)

=

∫
(f − g)2(−u,w)(1 + n−1/2h(u,w))PZ(du, dw) (marginal integration)

=

∫
(f − g)2(u,w)(1 + n−1/2h(−u,w))PZ(du, dw) (change of variables)

=

∫
(f − g)2(u,w)(

1 + n−1/2h(−u,w)

1 + n−1/2h(u,w)
)PAn(du, dx, dw) (marginal integration)

≤ (
1 + n−1/2‖h‖∞
1− n−1/2‖h‖∞

) ‖f − g‖2
2,PAn (for n ≥ ‖h‖2

∞)

≤ (
1 + n−1/2‖h‖∞
1− n−1/2‖h‖∞

) δ2.
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Hence, limδ→0 lim supn→∞ tδ,n(2) = 0 because ‖n1/2(θ̂ − θn)‖ is bounded in probability by

Assumption 5.5. Finally, by marginal integration and Jensen,

|Γh(f − g)| ≤
∫
|(f − g)(h− hr)| dPA0 =

∫
|(f − g)(h− hr)|

1 + n−1/2h
dPAn

≤ 2‖h‖∞
1− n−1/2‖h‖∞

∫
|f − g| dPAn (for n ≥ ‖h‖2

∞)

≤ 2‖h‖∞
1− n−1/2‖h‖∞

‖f − g‖2,PAn

≤ 2‖h‖∞
1− n−1/2‖h‖∞

δ.

Hence, limδ→0 lim supn→∞ tδ,n(3) = 0 as well. Therefore, (D.4) holds. �

Proof of Lemma 5.3. In the proof of Lemma 3.3, replace references to Corollary 3.1 by

Corollary 5.1, Lemma 3.2 by Lemma 5.2, and X0 by X0 + Γh. The argument leading to (B.19)

goes through because: (a) the denseness result in Lemma F.3 continues to hold under H1n

and Assumptions 5.1, 5.2(ii), 5.4; (b) almost all sample paths of (X0 + Γh)F1 are uniformly

‖ · ‖2,PA0
-continuous; and (c) supf∈F1

(X0 + Γh)f is continuously distributed. �

Appendix E. Justification behind simulating Powell’s model

As mentioned earlier, the main technical difficulty in applying our test to Powell’s model

stems from the fact that the symmetrically censored residual defined in (6.2) has bounded

support conditional on the regressors. In this section we describe how the limiting distribution

of R̂max can be obtained under (6.1). We begin by showing how to verify (B.2) and (B.3),

and thus Lemma 3.1, for Powell’s model. Since the proof of Lemma 4.1 is very similar to that

of Lemma 3.1, the same argument can be used to prove the validity of the simulated critical

values as well.

Define V (θ) := Y − X ′θ if Y − X ′θ < X ′θ and X ′θ otherwise so that V (θ̂) = V̂ and

V (θ0) = V . To simplify the algebraic details, we assume that X ′θ > 0 w.p.1 for each θ in a small

enough neighborhood of θ0 (although Powell only requires Pr(X ′θ > 0) > 0, the presence of the

indicator function 1(X ′θ > 0) to accommodate this everywhere makes the calculations much

more tedious). Define B(V,X, θ, θ0) := V (θ) − V and let f ∈ F1 so that f = 1(−∞,s]×(−∞,t]

for some (s, t) ∈ R × Rdim(X). Since f(V (θ), X) = f(V + B(V,X, θ, θ0), X) =: f θ(V,X),

f θ(v, x) = 1(−∞,s]×(−∞,t](v + B(v, x, θ, θ0), x) = 1(−∞,s−B(v,x,θ,θ0)](v)1(−∞,t](x). Furthermore,

as supθ̃∈B(θ0,‖θ−θ0‖) |V (θ̃) − V (θ0)| ≤ ‖X‖ ‖θ − θ0‖ by equation A.11 of Powell’s paper, ((s −
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B(v, x, θ, θ0)) ∧ s, (s−B(v, x, θ, θ0)) ∨ s] ⊂ (s− ‖x‖‖θ − θ0‖, s+ ‖x‖‖θ − θ0‖]. Hence,

‖f θ̂ − f θ0‖2
2,PV,X ≤

∫ ∫
1(s−‖x‖‖θ̂−θ0‖,s+‖x‖‖θ̂−θ0‖](v)PV |X=x(dv)PX(dx)

≤
∫ ∫

1(s−‖x‖‖θ̂−θ0‖,s+‖x‖‖θ̂−θ0‖](v) pdfU0|X=x(dv)PX(dx) (by (6.3))

+

∫
1(s−‖x‖‖θ̂−θ0‖,s+‖x‖‖θ̂−θ0‖](−x

′θ0)PX(dx)

+

∫
1(s−‖x‖‖θ̂−θ0‖,s+‖x‖‖θ̂−θ0‖](x

′θ0)PX(dx)

=: aθ̂1(s) + aθ̂2(s) + aθ̂3(s).

Assume that the conditional cdf of U0|X = x is Lipschitz on R with Lipschitz constant ζ(x)

satisfying
∫
ζ(x)‖x‖PX(dx) <∞. Then, sups∈R a

θ̂
1(s) ≤ 2‖θ̂−θ0‖

∫
ζ(x)‖x‖PX(dx). Similarly,

under certain conditions it can be shown that sups∈R a
θ̂
2(s)∨sups∈R a

θ̂
3(s) ≤ const. ‖θ̂−θ0‖. [For

instance, if the conditional distribution of Q2 := X ′θ0 given Q1 := ‖X‖ is absolutely continu-

ous with respect to the Lebesgue measure such that supq2∈R pdfQ2|Q1=q1(q2) ≤ ξ(q1) for some ξ

satisfying
∫
ξ(q1)q1 PQ1(dq1) < ∞, then aθ̂3(s) =

∫
1(s−q1‖θ̂−θ0‖,s+q1‖θ̂−θ0‖](q2)PQ2,Q1(dq2, dq1) ≤∫

ξ(q1)
∫
1(s−q1‖θ̂−θ0‖,s+q1‖θ̂−θ0‖](q2) dq2 PQ1(dq1) = 2‖θ̂ − θ0‖

∫
ξ(q1)q1 PQ1(dq1) and the desired

conclusion is obtained as the right hand side does not depend upon s.] It follows that

supf∈F1
‖f θ̂ − f θ0‖2,PV,X ≤ const. ‖θ̂ − θ0‖1/2. Consequently, the argument leading to (B.5)

goes through unchanged so that we obtain (B.2) for Powell’s model, i.e.,

sup
f∈F1

|n1/2(P̂V,X − PV,X)(f θ̂ − f θ0)| = oPr◦(1)

sup
f∈F1

|n1/2(P̂V,X − PV,X)(f rθ̂ − f rθ0)| = oPr◦(1).
(E.1)

[The second result follows from the first upon replacing f by f r.] To verify (B.3) for Powell’s

model, begin by observing that

B(V,X, θ̂, θ0) =


X ′(θ̂ − θ0) if Y −X ′θ̂ ≥ X ′θ̂ and Y −X ′θ0 ≥ X ′θ0

X ′(θ0 − θ̂) if Y −X ′θ̂ < X ′θ̂ and Y −X ′θ0 < X ′θ0

X ′θ̂ − Y +X ′θ0 if Y −X ′θ̂ ≥ X ′θ̂ and Y −X ′θ0 < X ′θ0

Y −X ′θ̂ −X ′θ0 if Y −X ′θ̂ < X ′θ̂ and Y −X ′θ0 ≥ X ′θ0.

The last two cases are determined by the events 0 < 2X ′θ̂ ≤ Y < 2X ′θ0 and 0 < 2X ′θ0 ≤ Y <

2X ′θ̂, the probabilities of which go to zero as θ̂ → θ0. Consequently, B(V,X, θ̂, θ0) = ±X ′(θ̂−θ0)

w.p.a.1 because the SCLS estimator is strongly consistent for θ0. Furthermore, as will become

clear from subsequent results, PV,Xf θ̂ depends upon θ̂ only through θ̂−θ0 which in large samples

behaves like a gaussian random vector centered at zero, i.e., asymptotically, the distribution
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of θ̂ − θ0 is symmetric about the origin. Therefore, without loss of generality, the probability

calculations for the remainder of this section are conditional on the first two cases and we

can replace B(V,X, θ̂, θ0) by ∆(X, θ̂, θ0) = X ′(θ̂ − θ0) mimicking our earlier notation. So let

r(x) := PU0|X=x(U
0 ≤ −x′θ0) = PU0|X=x(U

0 ≥ x′θ0). Then, by (6.3),

PV,Xf θ̂ =

∫
supp(X)

∫
[−x′θ0,x′θ0]

f(v + ∆(x, θ̂, θ0), x)PV |X=x(dv)PX(dx)

=

∫ ∫ x′θ0

−x′θ0
f(v + ∆(x, θ̂, θ0), x)pU0|X=x(v) dv PX(dx)

+

∫
f(−x′θ0 + ∆(x, θ̂, θ0), x)r(x)PX(dx) +

∫
f(x′θ0 + ∆(x, θ̂, θ0), x)r(x)PX(dx)

=

∫ ∫ x′θ0+∆(x,θ̂,θ0)

−x′θ0+∆(x,θ,θ0)

f(t, x)pU0|X=x(t−∆(x, θ̂, θ0)) dtPX(dx)

+

∫
f(−x′θ0 + ∆(x, θ̂, θ0), x)r(x)PX(dx) +

∫
f(x′θ0 + ∆(x, θ̂, θ0), x)r(x)PX(dx)

=

∫ ∫ x′θ0

−x′θ0
f(t, x)pU0|X=x(t−∆(x, θ̂, θ0))dtPX(dx)

+

∫ ∫ x′θ0+∆(x,θ̂,θ0)

x′θ0

f(t, x)pU0|X=x(t−∆(x, θ̂, θ0)) dtPX(dx)

−
∫ ∫ −x′θ0+∆(x,θ̂,θ0)

−x′θ0
f(t, x)pU0|X=x(t−∆(x, θ̂, θ0)) dtPX(dx)

+

∫
f(−x′θ0 + ∆(x, θ̂, θ0), x)r(x)PX(dx) +

∫
f(x′θ0 + ∆(x, θ̂, θ0), x)r(x)PX(dx).
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Therefore,

PV,X(f θ̂ − f θ0) =

∫ ∫ x′θ0

−x′θ0
f(t, x)[pU0,X(t−∆(x, θ̂, θ0), x)/pU0,X(t, x)− 1]PU0,X(dt, dx)

+

∫ ∫ x′θ0+∆(x,θ̂,θ0)

x′θ0

f(t, x)pU0|X=x(t−∆(x, θ̂, θ0)) dtPX(dx)

−
∫ ∫ −x′θ0+∆(x,θ̂,θ0)

−x′θ0
f(t, x)pU0|X=x(t−∆(x, θ̂, θ0)) dtPX(dx)

+

∫
f(−x′θ0 + ∆(x, θ̂, θ0), x)r(x)PX(dx)

+

∫
f(x′θ0 + ∆(x, θ̂, θ0), x)r(x)PX(dx)

−
∫
f(−x′θ0, x)r(x)PX(dx)

−
∫
f(x′θ0, x)r(x)PX(dx)

=: bθ̂1(f) + bθ̂2(f)− bθ̂3(f) + bθ̂4(f) + bθ̂5(f)− b6(f)− b7(f).

As with (B.6), we can show that bθ̂1(f) = −〈f,1(−X′θ0,X′θ0)m
′
U0,X〉PU0,X

(θ̂ − θ0) + o(‖θ̂ − θ0‖)
uniformly in f ∈ F1, where mU0,X := (∂1 log pU0,X)X. Therefore

sup
f∈F1

|PV,X(f θ̂ − f θ0) + 〈f,1(−X′θ0,X′θ0)m
′
U0,X〉PU0,X

(θ̂ − θ0)

− (bθ̂2(f)− bθ̂3(f) + bθ̂4(f) + bθ̂5(f)− b6(f)− b7(f))| = o(‖θ̂ − θ0‖).

Similarly, replacing f by f r,

sup
f∈F1

|PV,X(f rθ̂ − f rθ0) + 〈f r,1(−X′θ0,X′θ0)m
′
U0,X〉PU0,X

(θ̂ − θ0)

− (bθ̂2(f r)− bθ̂3(f r) + bθ̂4(f r) + bθ̂5(f r)− b6(f r)− b7(f r))| = o(‖θ̂ − θ0‖).

Therefore, since b6(f) = b7(f r) and b7(f) = b6(f r),

sup
f∈F1

|PV,X(f θ̂ − f rθ̂) + 〈f − f r,1(−X′θ0,X′θ0)m
′
U0,X〉PU0,X

(θ̂ − θ0)

− bθ̂2(f − f r) + bθ̂3(f − f r)− (bθ̂4(f)− bθ̂5(f r))− (bθ̂5(f)− bθ̂4(f r))| = o(‖θ̂ − θ0‖). (E.2)

By (E.1) and (E.2), n1/2(P̂V̂ ,X − P̂V̂ r,X)f = X̂0(f) + oPr(1), where

X̂0(f) := n1/2(P̂V,X − PV,X)(f − f r) + 〈f − f r,1(−X′θ0,X′θ0)m
′
U0,X〉PU0,X

n1/2(θ̂ − θ0)

− n1/2(bθ̂2 − bθ̂3)(f − f r)− n1/2(bθ̂4(f)− bθ̂5(f r))− n1/2(bθ̂5(f)− bθ̂4(f r)).
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Consequently, n1/2(P̂V̂ ,X− P̂V̂ r,X) converges in distribution provided X̂0 is asymptotically tight.

Since tightness of n1/2(P̂V,X − PV,X)(f − f r) − 〈f − f r,1(−X′θ0,X′θ0)m
′
U0,X〉PU0,X

n1/2(θ̂ − θ0)

follows directly from Lemmas 3.2 and 3.3, it suffices to show that the remaining terms are

asymptotically tight. Assume that pU0|X is differentiable with derivative ṗU0|X satisfying

supt∈R |ṗU0|X=x(t)| ≤ c1(x) and
∫
c1(x)‖x‖2 PX(dx) < ∞. Then, uniformly in f ∈ F1, bθ̂2(f) =∫ ∫ x′θ0+∆(x,θ̂,θ0)

x′θ0
f(u, x)pU0|X=x(u) duPX(dx) + o(‖θ̂ − θ0‖). [A similar result holds for bθ3(f) as

well.] Therefore,

(bθ̂2−bθ̂3)(f−f r) =

∫ ∫ x′θ0+∆(x,θ̂,θ0)

x′θ0−∆(x,θ̂,θ0)

(f(u, x)−f r(u, x))pU0|X=x(u) duPX(dx)+o(‖θ̂−θ0‖) (E.3)

holds uniformly in f ∈ F1. To prove that (bθ̂2 − bθ̂3)(·) is tight, it suffices to show the tightness

of the process {
∫ ∫ x′θ0+∆(x,θ̂,θ0)

x′θ0−∆(x,θ̂,θ0)
f(u, x)pU0|X=x(u) duPX(dx) : f ∈ F1}. So let f, g ∈ F1. Then,∫ ∫ x′θ0+∆(x,θ̂,θ0)

x′θ0−∆(x,θ̂,θ0)

(f(u, x)− g(u, x))pU0|X=x(u) duPX(dx)

=

∫
1

2∆(x, θ̂, θ0)

∫ x′θ0+∆(x,θ̂,θ0)

x′θ0−∆(x,θ̂,θ0)

(f(u, x)− g(u, x))pU0|X=x(u) du 2∆(x, θ̂, θ0)PX(dx)

≤ 2‖θ̂ − θ0‖
∫
Hx(f − g)(x′θ0)‖x‖PX(dx)

≤ 2‖θ̂ − θ0‖(
∫
H2
x(f − g)(x′θ0)PX(dx))1/2 (

∫
‖x‖2 PX(dx))1/2,

where Hx(f)(t) := supr>0
1
2r

∫ t+r
t−r |f(u, x)|pU0|X=x(u) du is the Hardy-Littlewood maximal func-

tion with respect to the Lebesgue measure. If sup(x,t)∈supp(X)×supp(X′θ0) pX|X′θ0=t(x) < ∞ and

supt∈supp(X′θ0) pX′θ0(t) <∞, then∫
H2
x(f − g)(x′θ0)PX(dx) =

∫
(

∫
H2
x(f − g)(t) pX|X′θ0=t(x) dx) pX′θ0(t) dt

≤ const.

∫ ∫
H2
x(f − g)(t) dt dx

≤ const.

∫ ∫
(f − g)2(t, x)p2

U0|X=x(t) dt dx

≤ const. ‖f − g‖2
2,PU0,X

,

where the second inequality follows by the boundedness of the Hardy-Littlewood operator

(Stein, 1970, Theorem I.1) and the third by assuming that sup(t,x)∈R×supp(X) pU0|X=x(t) < ∞
and infx∈supp(X) pX(x) > 0. Hence,

|
∫ ∫ x′θ0+∆(x,θ̂,θ0)

x′θ0−∆(x,θ̂,θ0)

(f(u, x)− g(u, x))pU0|X=x(u) duPX(dx)| ≤ const. ‖f − g‖2,PU0,X
‖θ̂ − θ0‖;
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consequently, the process {n1/2(bθ̂2 − bθ̂3)(f − f r) : f ∈ F1} is asymptotically tight (cf. the

argument at the end of the proof of Lemma 3.2). We can use the same argument to show that

n1/2(bθ̂2 − bθ̂3) is linear in n1/2(θ̂ − θ0). Indeed, by dominated convergence and the Lebesgue

differentiation theorem (Stein, 1970, Corollary I.1) applied to (E.3),

n1/2(bθ̂2 − bθ̂3)(f − f r) = 2〈(f − f r)(X ′θ0, X), pU0|X(X ′θ0)X ′〉PXn1/2(θ̂ − θ0)

+ o(‖n1/2(θ̂ − θ0)‖) unif. in f ∈ F1.

Finally, under certain conditions it can be shown that the map t 7→
∫
f(x′θ0 + t)r(x)PX(dx) is

uniformly differentiable in the sense that there exists g ∈ L2(PU0,X) such that∫
f(x′θ0 + ∆(x, θ̂, θ0), x)r(x)PX(dx)

=

∫
f(x′θ0, x)r(x)PX(dx) + 〈f, g′〉PU0,X

(θ̂ − θ0) + o(||θ̂ − θ0||) unif. in f ∈ F1.

[To get some intuition behind this condition, consider the case when f takes only one argument

and belongs to the class of trapezoidal functions. Let q(u) := E[r(X)|X ′θ0 = u]pX′θ0(u) so that∫
f(x′θ0 + t)r(x)PX(dx) =

∫
f(u + t)q(u) du. By a Taylor expansion,

∫
f(u + t)q(u) du =∫

f(u)q(u) du + t
∫
f ′(u)q(u) du because the second derivative of trapezoidal functions is zero

almost everywhere. If the density of X ′θ0 vanishes at the boundary of its support then (do-

ing integration by parts)
∫
f ′(u)q(u) du = −

∫
f(u)S(u)PU0(du) with S(u) := q′(u)/pU0(u).

Consequently,
∫
f(x′θ0 + t)r(x)PX(dx) =

∫
f(x′θ0)r(x)PX(dx)−〈f, S〉PU0 t. The corresponding

result when f is an indicator function now follows because indicators can be approximated

arbitrarily well by trapezoids.] From this condition we have that

n1/2(bθ̂5(f)− bθ̂4(f r)) = n1/2(bθ̂4(f)− bθ̂5(f r)) = 2〈f, g′〉PU0,X
n1/2(θ̂ − θ0) + o(||n1/2(θ̂ − θ0)||)

uniformly in f ∈ F1, implying that n1/2(bθ̂4(f) − bθ̂5(f r)) and n1/2(bθ̂5(f) − bθ̂4(f r)) are asymp-

totically tight as well. Therefore, combining results, {X̂0(f) : f ∈ F1} is asymptotically tight

implying that {n1/2(P̂V̂ ,X − P̂V̂ r,X)f : f ∈ F1} converges in distribution in `∞(F1). The lim-

iting process is gaussian because the finite dimensional distributions of {X̂0(f) : f ∈ F1} are

gaussian due to the fact that

X̂0(f) = n1/2(P̂V,X − PV,X)(f − f r) + 〈f − f r,1(−X′θ0,X′θ0)m
′
U0,X〉PU0,X

n1/2(θ̂ − θ0)

− 2〈(f − f r)(X ′θ0, X), pU0|X(X ′θ0)X ′〉PXn1/2(θ̂ − θ0)− 4〈f, g′〉PU0,X
n1/2(θ̂ − θ0)

and n1/2(θ̂ − θ0) is asymptotically linear (cf. equation A.15 in Powell’s paper). Applying the

denseness result (Lemma F.3), it follows that the limiting distribution of n1/2R̂max is the norm

of the aforementioned process.
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Appendix F. Auxiliary results

Lemma F.1. Under the conditions of Theorem 5.1,

sup
f∈F
|(P̂Ẑ − P̂Z(θ1))f | = oPr◦(1) & sup

f∈F
|(P̂Ẑr − P̂Zr(θ1))f | = oPr◦(1).

Proof of Lemma F.1. Since the proof of Lemma 3.1 only requires the existence of plim(θ̂),

the argument leading to (B.1) can be replicated word for word with (θ0, ε) replaced by (θ1, ε(θ1))

and A0 replaced by A(θ1) to show that

sup
f∈F
|(P̂Ẑ − P̂Z(θ1))f − 〈f, (∂1 log pA(θ1))µ̇

′
1〉PA(θ1)

(θ̂ − θ1)| = oPr◦(n
−1/2) + oPr(‖θ̂ − θ1‖).

Therefore, supf∈F |(P̂Ẑ − P̂Z(θ1))f | = oPr◦(1). The second result follows from the first upon

noting that (P̂Ẑr − P̂Zr(θ1))f = (P̂Ẑ − P̂Z(θ1))f
r. �

Lemma F.2. Under Assumption 3.1 and 3.2(ii), F1 and F2 satisfy Assumption 3.3(v) with

q(t) ∝ t1/2.

Proof of Lemma F.2. If f ∈ F1, then f = 1(−∞,τ ]×(−∞,v] for some (τ, v) ∈ R× Rdim(W ) and

f(u−∆(x, θ, θ0), w) = 1(−∞,τ ]×(−∞,v](u−∆(x, θ, θ0), w) = 1(−∞,τ+∆(x,θ,θ0)](u)1(−∞,v](w).

Since |1(−∞,a] − 1(−∞,b]| = 1(a∧b,a∨b] and a ∨ b− a ∧ b = |a− b|, it follows that∫
(f(u−∆(x, θ, θ0), w)− f(u,w))2 Pε|X=x,W=w(du)

=

∫
((τ+∆(x,θ,θ0))∧τ,(τ+∆(x,θ,θ0))∨τ ]

Pε|X=x,W=w(du)1(−∞,v](w)

≤ ζ(x,w)|∆(x, θ, θ0)| (by Assumption 3.2(ii))

≤ ζ(x,w)(‖µ̇0(x)‖ ‖θ − θ0‖+ |ρ(x, θ, θ0)|) (by Assumption 3.1)

≤ ζ(x,w)(‖µ̇0(x)‖ ‖θ − θ0‖+ sup
θ̃∈B(θ0,‖θ−θ0‖)

|ρ(x, θ̃, θ0)|).

Hence, by Cauchy-Schwarz and Assumption 3.1, for all ε > 0,∫
(f(u−∆(x, θ, θ0), w)− f(u,w))2 PA0(du, dx, dw)

≤ ‖ζ‖2,PX,W (‖(µ̇′0µ̇0)1/2‖2,PX ‖θ − θ0‖+ ‖ sup
θ̃∈B(θ0,‖θ−θ0‖)

|ρ(·, θ̃, θ0)‖2,PX )

≤ ‖ζ‖2,PX,W (‖(µ̇′0µ̇0)1/2‖2,PX + ε)‖θ − θ0‖.

Therefore, since the right hand side does not depend upon (τ, v),

sup
f∈F1

‖f(· −∆(X, θ, θ0), ·)− f(·, ·)‖2,PA0
≤ ‖ζ‖1/2

2,PX,W (‖(µ̇′0µ̇0)1/2‖2,PX + ε)1/2‖θ − θ0‖1/2;
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i.e., F1 satisfies Assumption 3.3(v) with q(t) ∝ t1/2. Since f ∈ F1 =⇒ f r = 1[−τ,∞)×(−∞,v] and

Pε|X,W ({−τ}) = 0, the above argument shows that Assumption 3.3(v) is also satisfied with f r

and q(t) ∝ t1/2. The same reasoning works for F2 as well. �

The following result may be of independent interest.

Lemma F.3. Let Assumptions 3.1, 3.2(ii), and 3.4 hold. Then, F̂1 is dense in F1 in the

following sense: For each f ∈ F1 and ε > 0,

lim
n→∞

Pr(∃f̂ ∈ F̂1 : ‖f̂ − f‖2,PA0
∨ ‖f̂ r − f r‖2,PA0

< ε) = 1. (F.1)

Proof of Lemma F.3. We make use of the following fact (van der Vaart, 1998, Theorem 19.1):

Given ε > 0 and any cdf F , there exists a partition {−∞ =: t0 < t1 < . . . < tK := ∞} of

R such that F (tl−) − F (tl−1) < ε for each l (points at which F jumps more than ε belong

to the partition). Hence, letting Fε and FW (i) denote the marginal cdfs of ε and W (i) and

working coordinate by coordinate, we can create a partition of R× Rdim(W ) denoted by Zπ :=

{τ0 < τ1 < . . . < τK} × ×dim(W )
i=1 {ϑ(i)

0 < ϑ
(i)
1 < . . . < ϑ

(i)
Ki
} such that Fε(τl) − Fε(τl−1) < ε

and FW (i)(ϑ
(i)
l −)− FW (i)(ϑ

(i)
l−1) < ε for each l (remember that ε is assumed to be continuously

distributed). For the remainder of the proof, let c := 1 + dim(W ) and d := dim(W ).

Fix f ∈ F1. Then, f = 1(−∞,u]×(−∞,v] for some (u, v) ∈ R× Rd and f r = 1[−u,∞)×(−∞,v].

We begin by showing that, given Zπ, there exist functions fπ and f̃π such that

d(f, fπ; f r, f̃π) := ‖f − fπ‖2,PA0
∨ ‖f r − f̃π‖2,PA0

< (cε)1/2. (F.2)

Since Zπ partitions R × Rd, we can find zπ := (τl, ϑ
(1)
l1
, . . . , ϑ

(d)
ld

) ∈ Zπ such that (u, v) ∈
[τl, τl+1) × ×di=1[ϑ

(i)
li
, ϑ

(i)
li+1). Similarly, there exists z̃π := (τl̃, ϑ

(1)
l1
, . . . , ϑ

(d)
ld

) ∈ Zπ such that

(−u, v) ∈ [τl̃, τl̃+1)××di=1[ϑ
(i)
li
, ϑ

(i)
li+1). Now, if (Ai)

k
i=1 and (Bi)

k
i=1 are subsets of R then using the

fact that (∩iAi)4(∩iBi) ⊂ ∪i(Ai4Bi), where Ai4Bi := (Ai \Bi) ∪ (Bi \Ai) is the symmetric

difference of Ai and Bi, it is straightforward to show that 1(×ki=1Ai)4(×ki=1Bi)
≤

∑k
i=1 1Ai4Bi .

Hence, letting ϑ := (ϑ
(1)
l1
, . . . , ϑ

(d)
ld

), fπ := 1(−∞,τl]×(−∞,ϑ], and f̃π := 1[τl̃,∞)×(−∞,ϑ], we have that

|f − fπ|2 = |1(−∞,u]×(−∞,v] − 1(−∞,τl]×(−∞,ϑ]|2 = 1(−∞,u]×(−∞,v]4(−∞,τl]×(−∞,ϑ]

≤ 1(−∞,u]4(−∞,τl] +
d∑
i=1

1
(−∞,v(i)]4(−∞,ϑ(i)li ]

= 1(u∧τl,u∨τl] +
d∑
i=1

1
(v(i)∧ϑ(i)li ,v

(i)∨ϑ(i)li ]

≤ 1(τl,τl+1) +
d∑
i=1

1
(ϑ

(i)
li
,ϑ

(i)
li+1)

. (F.3)
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Similarly,

|f r − f̃π|2 = 1[−u,∞)×(−∞,v]4[τl̃,∞)×(−∞,ϑ] ≤ 1[−u∧τl̃,−u∨τl̃) +
d∑
i=1

1
(v(i)∧ϑ(i)li ,v

(i)∨ϑ(i)li ]

≤ 1[τl̃,τl̃+1) +
d∑
i=1

1
(ϑ

(i)
li
,ϑ

(i)
li+1)

.

Let supp(W ) := ×di=1[a(i), b(i)] with the convention that [−∞,∞] := (−∞,∞), [−∞, ·] :=

(−∞, ·], and [·,∞] := [·,∞) so that coordinates of W are allowed to have unbounded support

under this notation. By (F.3),

‖f − fπ‖2
2,PA0

≤
∫ τl+1

τl

dPε +
d∑
i=1

∫
1

(ϑ
(i)
li
∨a(i),ϑ(i)li+1∧b(i))

dPW (i) (F.4)

≤ Fε(τl+1)− Fε(τl) +
d∑
i=1

FW (i)(ϑ
(i)
li+1 ∧ b

(i)−)− FW (i)(ϑ
(i)
li
∨ a(i)) < cε.

Similarly, using the fact that Fε(τl̃+1)− Fε(τl̃) < ε,

‖f r − f̃π‖2
2,PA0

< cε. (F.5)

Therefore, (F.2) is proved. Next, note that since ϑ
(i)
li

and ϑ
(i)
li+1 enter (F.4) only via ϑ

(i)
li
∨a(i) and

ϑ
(i)
li+1∧b(i), we can assume without loss of generality that each v(i) ∈ [ϑ

(i)
li
∨a(i), ϑ

(i)
li+1∧b(i)) so that

(u, v) ∈ Eπ ×Wπ ⊂ R× supp(W ) and (−u, v) ∈ Ẽπ ×Wπ with Eπ := [τl, τl+1), Ẽπ := [τl̃, τl̃+1),

Wπ := ×di=1[ϑ
(i)
li
∨a(i), ϑ

(i)
li+1∧ b(i)), Pε,W (Eπ×Wπ) > 0, and Pε,W (Ẽπ×Wπ) > 0. Next, replacing

(u, v) by Zj := (εj,Wj) and (−u, v) by Zr
j := (−εj,Wj) in the argument leading to (F.5), we

get that for fj := 1(−∞,Zj ] = 1(−∞,εj ]×(−∞,Wj ],

Zj ∈ Eπ ×Wπ =: Sπ & Zr
j ∈ Ẽπ ×Wπ =: S̃π =⇒ d(fj, fπ; f r

j , f̃π) < (cε)1/2. (F.6)

Recall that Ẑj := (ε̂j,Wj) and Ẑr
j := (−ε̂j,Wj) and let f̂j := 1(−∞,Ẑj ] = 1(−∞,ε̂j ]×(−∞,Wj ]. To

prove (F.1), it suffices to show that

lim
n→∞

Pr(∪nj=1{d(f̂j, fj; f̂
r
j , f

r
j ) ≤ (cε)1/2 & (Zj, Z

r
j) ∈ Sπ × S̃π}) = 1. (F.7)

This is because (F.6), (F.7), and the triangle inequality imply that the event

Kn := {d(f̂j, fπ; f̂ r
j , f̃π) < 2(cε)1/2 for some j ≤ n}

holds w.p.a.1. Moreover,

d(f̂j, f ; f̂ r
j , f

r) ≤ d(f̂j, fπ; f̂ r
j , f̃π) + (cε)1/2 (by (F.2))

< 3(cε)1/2 for some j ≤ n (if Kn is true.)
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Therefore, since Kn holds w.p.a.1,

1 = lim
n→∞

Pr(Kn) ≤ lim
n→∞

Pr(d(f̂j, f ; f̂ r
j , f

r) < 3(cε)1/2 for some j ≤ n)

and (F.1) follows because ε was arbitrary.

So we now prove (F.7). Since ε̂j = εj −∆(Xj, θ̂, θ0) and

|f̂j − fj| = |1(−∞,Ẑj ] − 1(−∞,Zj ]| ≤ |1(−∞,ε̂j ] − 1(−∞,εj ]| = 1(ε̂j∧εj ,ε̂j∨εj ],

we have that∫
|f̂j − fj|2 dPε|X=x,W=w ≤

∫ ε̂j∨εj

ε̂j∧εj
dPε|X=x,W=w

≤ ζ(x,w)|∆(Xj, θ̂, θ0)| (by Ass. 3.2(ii))

≤ ζ(x,w)(‖µ̇0(Xj)‖ ‖θ̂ − θ0‖+ |ρ(Xj, θ̂, θ0)|) (by Ass. 3.1)

≤ ζ(x,w)(‖µ̇0(Xj)‖ ‖θ̂ − θ0‖+ sup
θ̃∈B(θ0,‖θ̂−θ0‖)

|ρ(Xj, θ̃, θ0)|).

Similarly,

|f̂ r
j − f r

j | = |1[−ε̂j ,∞)×(−∞,Wj ] − 1[−εj ,∞)×(−∞,Wj ]| ≤ |1[−ε̂j ,∞) − 1[−εj ,∞)| = 1[−ε̂j∧−εj ,−ε̂j∨−εj)

implies that∫
|f̂ r
j − f r

j |2 dPε|X=x,W=w ≤ ζ(x,w)(‖µ̇0(Xj)‖ ‖θ̂ − θ0‖+ sup
θ̃∈B(θ0,‖θ̂−θ0‖)

|ρ(Xj, θ̃, θ0)|).

Hence,

d
2(f̂j, fj; f̂

r
j , f

r
j ) ≤ ‖ζ‖2,PX,W (‖µ̇0(Xj)‖ ‖θ̂ − θ0‖+ sup

θ̃∈B(θ0,‖θ̂−θ0‖)

|ρ(Xj, θ̃, θ0)|). (F.8)

Consequently, for each r, η > 0,

{d2(f̂j, fj; f̂
r
j , f

r
j ) > r} ∩ {‖θ̂ − θ0‖ < η}

⊂ {‖ζ‖2,PX,W (‖µ̇0(Xj)‖ η + sup
θ̃∈B(θ0,η)

|ρ(Xj, θ̃, θ0)|) > r},

which, by (F.8), implies that for each j,

({d2(f̂j, fj; f̂
r
j , f

r
j ) > r} ∪ {(Zj, Zr

j) 6∈ Sπ × S̃π}) ∩ {‖θ̂ − θ0‖ < η}

⊂ {‖ζ‖2,PX,W (‖µ̇0(Xj)‖ η + sup
θ̃∈B(θ0,η)

|ρ(Xj, θ̃, θ0)|) > r} ∪ {(Zj, Zr
j) 6∈ Sπ × S̃π}.
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Hence, we have that

∩nj=1 ({d2(f̂j, fj; f̂
r
j , f

r
j ) > r} ∪ {(Zj, Zr

j) 6∈ Sπ × S̃π}) ∩ {‖θ̂ − θ0‖ < η}

⊂ ∩nj=1{‖ζ‖2,PX,W (‖µ̇0(Xj)‖ η + sup
θ̃∈B(θ0,η)

|ρ(Xj, θ̃, θ0)|) > r} ∪ {(Zj, Zr
j) 6∈ Sπ × S̃π}.

Therefore, since the observations are iid and p := Pr((Zj, Z
r
j) ∈ Sπ × S̃π) > 0 for all j,

Pr(∩nj=1({d2(f̂j, fj; f̂
r
j , f

r
j ) > r} ∪ {(Zj, Zr

j) 6∈ Sπ × S̃π}) ∩ {‖θ̂ − θ0‖ < η})

≤ (Pr(‖ζ‖2,PX,W (‖µ̇0(X1)‖ η + sup
θ̃∈B(θ0,η)

|ρ(X1, θ̃, θ0)|) > r) + 1− p)n

≤ (r−1‖ζ‖2,PX,W (E‖µ̇0(X1)‖ η + E sup
θ̃∈B(θ0,η)

|ρ(X1, θ̃, θ0)|) + 1− p)n

≤ (r−1‖ζ‖2,PX,W (‖(µ̇′0µ̇0)1/2‖2,PX + 1)η + 1− p)n,

where the second inequality is by Chebychev and the third by Jensen and Assumption 3.1. Let

r := cε and choose η small enough so that r−1‖ζ‖2,PX,W (‖(µ̇′0µ̇0)1/2‖2,PX +1)η+1−p < 1. Then,

∞∑
n=1

Pr(∩nj=1({d2(f̂j, fj; f̂
r
j , f

r
j ) > cε} ∪ {(Zj, Zr

j) 6∈ Sπ × S̃π}) ∩ {‖θ̂ − θ0‖ < η}) <∞.

Hence, by Borel-Cantelli,

Pr(∩nj=1({d2(f̂j, fj; f̂
r
j , f

r
j ) > cε} ∪ {(Zj, Zr

j) 6∈ Sπ × S̃π}) ∩ {‖θ̂ − θ0‖ < η} i.o.) = 0

⇐⇒

Pr(∪nj=1({d2(f̂j, fj; f̂
r
j , f

r
j ) ≤ cε} ∩ {(Zj, Zr

j) ∈ Sπ × S̃π}) ∪ {‖θ̂ − θ0‖ ≥ η} a.b.f.m n) = 1,

where “a.b.f.m n” is short for “all but finitely many n.” Therefore, since limn→∞ Pr(‖θ̂−θ0‖ ≥
η) = 0 by Assumption 3.4, it follows that

lim
n→∞

Pr(∪nj=1{d(f̂j, fj; f̂
r
j , f

r
j ) ≤ (cε)1/2 & (Zj, Z

r
j) ∈ Sπ × S̃π}) = 1. �
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