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Abstract: This paper addresses two issues -- the time-inconsistency of optimal policy and the 
controllability of target variables within new-classical and new-Keynesian model structures. We 
can resolve both issues by delegation. That is, we design central bank loss functions by 
determining the two target values and the weight between the two targets. With a single decision 
maker, the time-inconsistency issue does not exist; the target controllability issue does. 
Delegating the long-run target values (target variables’ equilibriums under the Ramsey optimal 
policy) and the same weight as society to the central bank can achieve Ramsey optimality and 
path controllability. With multiple decision makers (game), both issues of time-inconsistency and 
target controllability exist and the delegation becomes more complicated. The long-run target 
values can only achieve asymptotic, not path, controllability. Path controllability requires the 
delegation of short-run target values, which commits or binds the central bank to follow exactly 
the Ramsey optimal paths. The short-run inflation target value conforms to the macroeconomic 
structure (i.e., Phillips curve). With path controllability, the constant average and state-contingent 
inflation biases are removed. To eliminate the stabilization bias, the delegated weight must differ 
from society in a dynamic game. When the Phillips curve exhibits output (inflation) persistence, 
the central bank must place more weight on output (inflation) stabilization. When the Phillips 
curve exhibits principally forward-looking behavior, the delegated weight can require a 
conservative or liberal central bank. In sum, delegating certain short-run target values and a 
different weight can cause discretionary monetary policy to prove Ramsey optimal and path 
controllable in a dynamic game. 
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1. Introduction 

Monetary economists continue to debate two long-standing policy issues -- the time- 

inconsistency of optimal policy (e.g., see Kydland and Prescott, 1977 and Calvo, 1978) and 

target controllability (e.g., see Kalman, 1960; Tinbergen, 1952, 1963; Preston 1974; and Aoki, 

1975). This paper tackles both issues, which usually receive separate treatment, making 

discretionary (time-consistent) policy Ramsey optimal and target controllable in dynamic 

models.1 

Researchers typically delegate a loss function to the central bank to solve the time- 

inconsistency of optimal policy, for instance, the conservative central banker of Rogoff (1985), 

the inflation contract of Walsh (1995), the employment contract of Chortareas and Miller (2003), 

the inflation target of Svensson (1997), the nominal income growth target of Beetsma and Jensen 

(1999) and Jensen (2002), the price-level target of Vestin (2006), and the consistent target of 

Yuan, et al. (2011), and so on. Though the various delegation schemes ostensibly differ and lead 

to different interpretations, many delegations prove identical in effect.2 

The delegation approach solves the time-inconsistency problem in a straightforward 

fashion. Under the delegated loss function, the central bank operates monetary policy with 

discretion. As a result, monetary policy is time-consistent. The main issue, however, is whether 

discretionary policy can approximate or even reproduce the Ramsey policy. 
                                                        
1 Yuan, et al. (2011) study both issues in static models. 
2 Yuan, et al. (2011) compare their designed loss function with the loss functions in Svensson (1997) without 
employment persistence, Walsh (1995), and Chortareas and Miller (2003), and show that the four loss functions 
generate identical results with respect to the policy decision. Svensson (1997) also observes that the inflation- 
target-conservative loss function without employment persistence mimics the linear inflation contract in Walsh 
(1995). 
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Brockett and Mesarović (1965) define three types of controllability (reproducibility): 

point, path, and asymptotic controllability.3 Point controllability means that the policy makers 

can achieve certain target values at a specified point in time. In practice, policy makers probably 

desire more than point controllability, that is, the stronger notion of path controllability. Path 

controllability means that policy makers can make target variables follow some prescribed 

trajectories over a certain time interval (see Aoki, 1975). Obviously, path controllability implies 

point controllability, whereas the converse generally does not hold. Asymptotic controllability 

means that policy makers can reach the target values at infinity. 

Path controllability plays a growing role in dynamic models of economic policy.4 To the 

best of our knowledge, the economics literature does not consider asymptotic controllability. 

This paper considers both path and asymptotic controllability, which prove useful concepts in 

describing the paths of target variables.5 

Our analysis proceeds in several steps. First, given a social loss function, we determine 

the Ramsey optimal policy path. This optimal trajectory determines the design of the central 

bank loss function. Second, we design the central bank loss function by determining three key 

                                                        
3  Brockett and Mesarović (1965) use “reproducibility” instead of “controllability”. The terminology 
“reproducibility” appears in the engineering literature, whereas the same concept of “controllability” appears in the 
economics literature. Also, they introduce four rather than three types: point, locally path, uniformly path, and 
asymptotic controllability. We here refer to both locally and uniformly path controllability as path controllability. In 
addition, the literature also calls path controllability, functional or perfect controllability. 
4 See, for example, Nyberg and Viotti (1978), Buiter and Gersovitz (1981, 1984), Wohltmann (1981, 1985), Tondini 
(1984), and Maas and Nijmeijer (1994). Besides extending Tinbergen’s “static controllability” to dynamic 
controllability (Preston 1974), the literature extends controllability from one-decision-maker to multiple-decision- 
makers (game) context. See Acocella and Di Bartolomeo (2006), Acocella et al. (2006, 2007), Hughes Hallett et al. 
(2010) for controllability in a game context. 
5 Phillips (1954) considers the time paths of economic variables as well as the static analysis of the final equilibrium. 
That is, his analysis involves the idea of path and asymptotic controllability. 

 3



parameters – the two target values (i.e., the inflation rate and output gap), and the weight 

between the two targets. Third, we determine the two target values. We find that the target 

variables’ equilibriums under the Ramsey policy prove jointly asymptotically controllable. We 

call these equilibrium values the long-run target values. The discretionary policy with these 

long-run target values, if the system converges, can only achieve asymptotic rather than path 

controllability. Fourth, to obtain path controllability, we adopt state-contingent, short-run target 

values. Intuitively, the existence of time-inconsistency lures the central bank to deviate from the 

Ramsey optimal paths each period. As a result, we must delegate state-contingent, short-run 

target values each period. They commit and bind the central bank to follow exactly the Ramsey 

optimal paths. The short-run target values converge to the long-run target values in a step-by-step 

process. Also, they, though state-contingent, are predetermined and, thus, feasible in practice. 

With the short-run target values, discretionary policy proves path controllable and, thus, 

eliminates “the constant average and state-contingent inflation biases” (Svensson, 1997, p104). 

Fifth, when shocks occur, stabilization bias arises under discretionary policy. We can eliminate 

the stabilization bias by delegating to the central bank a deliberate weight, which differs from the 

social weight. The central bank with a different weight makes a different trade-off between the 

inflation rate and the output gap and, thus, stabilizes the shocks in exactly a Ramsey optimal 

fashion. In sum, delegation of state-contingent, short-run target values and the correct weight 

parameter cause discretionary policy to follow the Ramsey optimal path. 

We determine the necessary and sufficient conditions for asymptotic controllability of 

constant target values. In contrast, the controllability literature generally considers the equations 
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of motion, the available instruments, and the initial state of the system. We demonstrate that the 

constant target values, if the system converges, are jointly asymptotically controllable if and only 

if they satisfy the macroeconomic structure (i.e., the Phillips curve in our models) in equilibrium. 

The result holds under commitment and under discretion. We state our findings in Propositions 1 

and 2. Intuitively, the macroeconomic structure (i.e., the Phillips curve) constrains the target 

variables and as a result, proper target values will exhibit the Phillips curve trade-off. The target 

variables’ equilibriums under the Ramsey policy, as an example of constant target values, satisfy 

the Phillips curve in equilibrium and, therefore, are jointly asymptotically controllable. 

The paper unfolds as follows. Section 2 determines the Ramsey optimal paths of target 

variables, using the social loss function with commitment, within new-classical and new- 

Keynesian models. We illustrate the time-inconsistency and target uncontrollability of Ramsey 

optimal policy, which leads to Proposition 1. Section 3 extends Proposition 1 to Proposition 2. 

We design the central bank loss functions by determining the long-run and short-run target 

values as well as the weight parameter in the two models. Section 4 discusses two situations 

where the delegated weight equals the social weight. Section 5 concludes. 

2. Time-Inconsistency and Target Controllability of Ramsey Optimal Policies 

New-Classical Model with Output Persistence 

The model follows Svensson (1997). We simply adopt it without much description. See Svensson 

(1997) for more details. 

Society minimizes the following intertemporal loss function 
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(1)  , 1
0

1

t
t

t

E Lβ
∞

−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑L

where β (0 < β < 1) is the discount factor and E is the expectations operator. The period loss 

function equals the following 

(2)  ( ) (2 2* *1
2t t tL xπ π λ⎡ ⎤= − + −⎢ ⎥⎣ ⎦)x , 

where π is the inflation rate, x is the output gap, *π  is the socially desirable inflation rate, *x  

is the socially desirable output gap, and λ is the social weight on output stabilization relative to 

inflation stabilization around their respective targets. 

The economic structure includes an expectations-augmented Phillips curve with output 

persistence and rational expectations 

(3)  ( )1
e

t t t t tx x uη α π π−= + − + , and 

(4)  1
e
t tE tπ π−= , 

where η (0≤η<1) measures the degree of output gap persistence, α is the response of output gap 

to unexpected inflation, e
tπ  denotes inflation expectations in period t−l of the inflation rate in 

period t, and ut is an i.i.d. supply shock with mean 0 and variance σ 2. 

Ramsey Optimal Policy. The central bank minimizes the social intertemporal loss function (1) 

with period loss function (2) subject to Eqs. (3) and (4). The socially optimal paths of target 

variables under commitment equal6 

(5a)  , and * *
t td uπ π= +

(5b)  *
1 (1 )t t tx x dη α−= + + u

                                                       

, where 

 
6 See Svensson (1997). 

 6



(6)  *
2 21

d λα
βη λα

= −
− +

. 

Time-Inconsistency of Ramsey Optimal Policy. Ramsey optimal policy equals an ex ante plan 

made by a social planner, who controls all instruments -- the instruments of the policy makers 

and the private sector. Such an ex ante plan, however, is not implementable. With multiple 

decision makers (game), policy makers cannot control other players’ instruments, and 

implements policies using discretion.7  Discretionary policies are time-consistent, but non- 

optimal. 

Target Controllability of Ramsey Optimal Policy. In addition to time-inconsistency, Ramsey 

optimal policy still faces target controllability. 

The Ramsey optimal paths of the target variables in Eqs. (5a) and (5b) consist of 

systematic and random components. We denote the systematic components as follows 

(7)  ( ) ( )*
1, ,t t tx xπ π η −= , 

and random components or reactions to supply shocks as follows 

(8)  ( ) ( )( ) ( )( )* *, , 1t t t t t tu x u d u d uπ α= + . 

Controllability is irrelevant to external shocks in our specific models with quadratic loss 

functions, linear Phillips curves, and additive shocks. Accordingly, we ignore shocks and 

consider the systematic components when we consider controllability. 

The systematic components converge to ( )* ,0π   

(9)  ( ) ( ) ( )*, lim , ,t tt
x xπ π π

→∞
≡ = 0

                                                       

, 

 
7 For discretionary policy, refer to Svensson (1997). 
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where π  (=π *) and x  (=0) denote the equilibriums (limits) of the inflation rate and the output 

gap, respectively. 

In addition, the convergence persistence of the inflation rate and the output gap equals 0 

and η, respectively. That is, the inflation rate hits its equilibrium, *π π= , immediately with zero 

persistence, and the output gap converges to its equilibrium, 0x = , with persistence η. 

Consider target controllability. Obviously, the policy maker can point control the inflation 

rate each period ( *
tπ π= ) and, thus, control its path. The policy maker cannot point control the 

output gap each period ( *
tx x≠ ) and cannot even asymptotically control the output gap ( *x x≠ , 

if ). To understand why the policy maker cannot asymptotically control the social output 

gap target value, if , consider the Phillips curve in Eq. (3) and the rational expectations 

assumption in Eq. (4). In equilibrium, ignoring shocks, 

* 0x ≠

* 0x ≠

1
e
t tEπ π π−= = , tπ π= , and the 

Phillips curve equals to 

(10)  x xη= , i.e., 0x = . 

That is, the output gap must equal zero in equilibrium. If we require asymptotic controllability of 

the output gap (i.e., *x x= ), then we must observe 

(11)  . * 0x =

On the contrary, if , then the policy maker can asymptotically control the zero target value 

because 

* 0x =

*x 0 x= =

                                                       

. In sum, Eq. (11) is the necessary and sufficient condition for asymptotic 

controllability of the output gap target value, x *.8 

 
8 In the simplicity of the new-classical model, the asymptotic controllability condition in Eq. (11) proves trivial. 
This condition is nontrivial, however, in the new-Keynesian model. 
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The target variables’ equilibriums, π  (=π *) and x  (=0), satisfy the necessary and 

sufficient condition and, thus, are jointly asymptotically controllable. They are the long-run 

target values according to the definition in the introduction. 

A Hybrid New-Keynesian Model  

Researchers developed and applied new-Keynesian models in the past decade. We adopt a hybrid 

new-Keynesian model, which combines the possibility of forward- and backward-looking 

inflation. This model reduces to a purely forward-looking or a purely backward-looking model 

by choosing the extreme values of the parameter that indexes expectations across the forward- 

and backward-looking dimensions. See Clarida et al. (1999) for more details. 

The social intertemporal loss function equals9 

(12)   0
0

t
t

t

E Lβ
∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑L

with the same period loss function as in Eq. (2). 

Aggregate supply equals an expectations-augmented Phillips curve with forward-looking 

expectations and endogenous inflation 

(13)  ( )1 11t t t t t tx E uπ κ φπ φ β π− += + + − + , 

where π, x, and β are defined as before, κ (κ >0) is the sensitivity of the inflation rate to the 

output gap, φ indexes the degree of lagged versus expected future inflation rates, ut is a cost-push 

shock that follows an AR(1) process 

                                                        
9 The expectation operator, Et (·), slightly differs from that in the new-classical model in that the private sector 
forms rational expectations in the new-Keynesian model at the beginning of the present period and in the 
new-classical model from the previous period. We just follow the usual definitions in literature for convenience. 
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(14)  1 ˆt tu u tuρ −= + , 

where 0 1ρ≤ < , and  is a white noise residual. ˆtu

We do not introduce aggregate demand (IS curve), which involves a nominal interest rate, 

the policy instrument. Once we determine the optimal paths for { } 0
,t t t
xπ ∞

=
 using the social loss 

function and the Phillips curve, both of which do not involve the interest rate, then we can pin 

down the optimal path of interest rates through the IS curve. So the Phillips curve proves critical 

for policy. 

Ramsey Optimal Policy. The consolidated first-order condition of optimal policy under the social 

intertemporal loss function (12) with period loss function (2) subject to the Phillips curve in Eq. 

(13) equals10 

(15a)  ( ) ( ) ( )* * *
0 0 1 0           for 0x x E x x tκφβ π π

λ
− − − = − − = , and 

( ) ( ) ( )( ) ( )* * * *
0 0 1 0 1 01    f  t t t tE x x E x x E x x E t(15b)  or 1.κφβ φ π π

λ+ −− − − − − − = − − ≥  

Combining the first-order conditions (15a) and (15b) and the Phillips curve (Eq. 13) leads to 

Ramsey optimal paths of target variables11 

(16a)  ( ) ( ) ( ) ( )*
0 01 x0 0 1 x h uφ κ+ − − +   , ππ π δ φ π π−

⎡− = −⎣ ⎤⎦ for 0t =

(16b)  ( ) ( ) ( )
( )

*
1*

0 0 21x 0 0x x x x
a

φκ π π
δ

λ φ β
−

⎡ ⎤−
⎢ ⎥− = − + +

− −⎢ ⎥⎣ ⎦
f u    

(17a)  

 , for 0t =

( ) ( ) ( ) ( )

( ) ( )
( )( )

( )

1 1

2
1

1

1 1 ,          or

1
   for 1;  and

ˆ1

t t t t

c t
t t

t

u u
d a

u
t

d a u

δρπ π δ π π φβρ φ
δρ

φ φ βρδρπ π δ π π
δρ φβρ

− −

−
−

− = − + − − −⎡ ⎤⎣ ⎦−

⎡ ⎤− −
⎢ ⎥− = − + ≥

− ⎢ ⎥+ −⎣ ⎦

 

                                                        
10 See Eqs. (A.3a) and (A.3b) in Appendix A. 
11 See Eqs. (A.14), (A.24), (A.35) and (A.39) and their derivation in Appendix A. 
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( ) ( ) ( )1t t tx x x x
d a

uκδρδ
λ δρ−− = − −

−
(17b)        

where 

for 1t ≥ ,

0 0 0 0, , , x h fπδ δ  are defined in Appendix A, and δ is a root of the characteristic equation 

(18a)  a  with 2 4 3 2 0a bβ δ βδ δ δ− + − + =

( )1a φ φ≡ −(18b)  , 

( )
2 2

22 1 2κ κ1 1b aφ β φ β β β+ + − = + + − ,  (18c)  
λ λ

≡ +

(18d)  ( ) ( )2 2 2d a bβ δ δρ ρ β δ ρ≡ + + − + , +

(18e)  
( )

( )

* *

22

1

1

x

a

κ κπ λφ β
π

κ λ β

⎡ ⎤+ −⎣ ⎦≡
+ −

, 

( )( )1 1
x

φ β
π

κ
− −

≡ , and (18f)  

2

1
1c

ρφ
βρ

−
≡

−
, and 0 1cφ< ≤(18g)  . 

For ng, new the purely forward-looki -Keynesian model (φ  = 0), the solution in Eqs. (17a) 

and (17b) reduces to the solution in Clarida et al. (1999, p1703-1704) by noting that12  

(19)  1
1d

δ
δβρ

=
−

, when φ = 0 and 1. 

Eqs. (18a), (18b), and (18c) determine, what we call, the system convergence persistence, 

δ. We cannot determine whether a root (0,1)δ ∈  exists for any (0,1)φ ∈ . But for the two 

es of φ = 0 and φ e characteris  (18a) reduces to , and a 

root

extreme cas  = 1, th tic Eq. 2βδ 1 0bδ− + =

 (0,1)δ ∈  does exist. That is, the system can converge under the Ramsey policy for the two 

                                                        
12 If φ = 0 or 1, then a = 0, ( )d b β δ ρ= − + , 2d bδ δ βδ δβρ= − − , and the characteristic equation reduces to 

. Thus, 2 1 0bβδ δ− + = 2 1δbδ β− = . Therefore, 1dδ δβρ= −  or ( )1 1d δ δβρ= − . 
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extreme cases. Whether a root (0,1)δ ∈  e uctural parameters 

(i.e., φ, β, κ, and λ), and does not relate to the persistence of the cost-pu ttribute 

the ir  of the cost-push shocks to the quadratic loss function and the linear Phillips curve 

with additive shocks. 

The critical value, φc, is meaningful. For convenience, we define the Phillips curve as 

principally forward-looking (backward-looking) if 0 c

xists, δ depends on the model str

sh shock. We a

relevance

φ φ≤ ≤  ( 1cφ φ≤ ≤ ). Whether the Phillips 

curve exhibits principally forwa ward-looking behavior results in different (negative or 

positive

rd- or back

) responses of the inflation rate to cost-push shocks and, we will see in next section, 

different short-run target values and weight parameter that are delegated to the central bank. 

The critical value φc depends on both the discount factor β and the cost-push shock 

persistence ρ, and responds to them as follows13 

(20a)  0cφ β∂ ∂ > , and 

(20b)  0.cφ ρ∂ ∂ <  

That is, a more important future and/or less persistent cost-push shocks lead to a higher critical 

, thus, the inflat r a given inflation rate persistence φ more likely exhibits 

 forward-looking behavior (

value and ion rate fo

principally φ ≤ cφ ). 

ara ters, since setting them equal to zero produces a 
                                                       

Accordingly, whether the Phillips curve exhibits principally forward- or backward- 

looking behavior depends on the three parameters, φ, β, and ρ, rather than merely φ. We refer to 

the parameters, φ, β, and ρ, as dynami mec p
 

13 
( )

( )
2

22

1
0

1
c ρ ρφ

β βρ

−∂
= >

∂ −
 and 

( ) ( )
( )

2

22

1 1
0   for 0 1

1
c β β ρφ

ρ
ρ βρ

− + −∂
= − < < <

∂ −
. 
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static model. As such, the dynamic parameters are β and η in the new-classical model, where 

supply shocks equal white noise. We will see that the delegated weight depends on dynamic 

parameters and/or the system convergence persistence in a dynamic game model and equals the 

social weight in a static model. 

Time-Inconsistency of Ramsey Optimal Policy. The first-order conditions (15a) and (15b) 

suggest the time-inconsistency of the Ramsey optimal solution. Ramsey optimal policy requires 

that the present period follows condition (15a) and that future periods follow condition (15b). In 

practice, however, the central bank re-minimizes the loss function each period and, thus, always 

follows the first-order condition (15a). 

Target Controllability of Timeless Perspective Optimal Policy. We adopt optimality from the 

timeless perspective,14 and analyze Eqs. (17a) and (17b) for 1t ≥ .  

The optimal paths of the target variables in Eqs. (17a) and (17b) consist of systematic 

components denoted as 

(21)  ( ) ( ) ( )( )1 1, , ,t t t tx x x xπ π δ π π δ− −= + − + −  

and random components related to cost-push shocks denoted as 

(22)  ( ))( )( ( ) ( ) ( )11 1 ,t t t t t t tu u u u
d a d a
δρ κδρφβρ φ

δρ λ δρ−

⎛ ⎞
= − − − −⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟− −⎝ ⎠

. 

Similarly, controllability does not depend on external shocks, and we consider the 

systematic components. The systematic components converge to

,u xπ

( ), xπ , if δ < 1, 

( ) ( ), lim ,t tt
x xπ π

→∞
= ,(23)   

                                                        
14 Woodford (1999) introduces the concept of optimality from a “timeless perspective,” which means the policy the 
central bank “to which it would have wished to commit itself to at a date far in the past.” (293, italics in original). 
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where Eqs. (18e) and (18f) define π  and x . So π  and x  are the equilibriums (limits) of 

the inflation rate and the output gap. The two target variab volve to tles e heir respective 

s with the same system convergence persistence, δ. equilibrium

Now, consider target controllability. The policy makers cannot point control both the 

inflation rate and the output gap each period, since *
tπ π≠  and *

tx x≠ . They also generally 

cannot asymptotically control the targets, since *π π≠  and *x x≠ .15 

Consider Eq. (18f). The equilibriums of the target variables satisfy the Phillips curve in 

equilibrium. That is,  

(24)  ( )1xπ κ φπ φ βπ= + + − . 

The two targets are jointly asymptotically controllable, if the two target values, π * and x *, 

satisfy the Phillips curve in equilibrium. That is,  

*( )* * * 1xπ κ φπ φ . (25)  βπ= + + −

We can easily verify this result. Rearranging Eq. (25) gives 

(26)  
( )( )* *1 1

x
φ β

π
κ

Substituting Eq. (26) into Eq. (18e) generates 

− −
= . 

( )
( )

( ) ( )( )

( )

* *
* *

*(27)  2 22 2

1 1
11

.
1 1

x

a a

φ β
κ κπ λφ β π

κ κπ λφ β κ
π π

κ λ β κ λ β

− −⎡ ⎤
+ −⎢ ⎥⎡ ⎤+ −⎣ ⎦ ⎣ ⎦≡ = =

+ − + −
 

oduces 

                                                       

Using Eqs. (18f), (27), and (26) in sequence pr

 
15 If φ = 0, then the policy makers can asymptotically control the inflation rate ( *π π= ). 
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( )( ) ( )( ) * *1 1 1 1
x x

φ β φ β
π π

κ κ
− − − −

≡ =(28)  = . 

That is, the two target values, π * and x *, are asymptotically controllable. Conversely, if the two 

target values, π * and x *, are asymptotically controllable (joint asymptotic controllability implies 

*π π=  and *x x= ), then they satisfy Eq. (25). 

In sum, Eq. (25) provides the necessary and sufficient condition for joint asymptotic 

controllability of the social target values, π * and x *. The target variables’ equilibriums, π  and 

x  defi Eqs. ecessary and sufficient condition and, thus, are 

jointly 

Jo

em. Rather, we find the necessary and sufficient condition for the 

of constant target values. We summarize the above results in 

 satisfy the Phillips curve in equilibrium. 

e in Eq. (25), then combining Eq. (25) 

ned in (18e) and (18f), satisfy the n

asymptotically controllable. They are the long-run target values according to the 

definition in the introduction. 

int Asymptotic Controllability 

The controllability literature usually considers the equations of motion, the available instruments, 

and the initial state of the syst

joint asymptotic controllability 

Proposition 1. 

Proposition 1. If the system converges under the Ramsey policy with period social loss function 

in Eq. (2) subject to a linear Phillips curve, π * and x * are jointly asymptotically controllable if 

and only if they

Proof. We prove the proposition in a more simple way. Take the hybrid new-Keynesian 

model as an example. 

Sufficiency. If π * and x * satisfy the Phillips curv

 15



and Eq. (13) produces the Phillips curve around its equilibrium as follows 

(29)  ( ) ( ) ( ) ( ) ( )* * * *
1 11t t t tt tx x Eκ φ π π φ β π π− += − + − + − − + . u

Now, th

usly, the optimal paths 

)*

π π−

e optimization problem equals the minimization of the social intertemporal loss function 

(12) with period loss function (2) subject to the Phillips curve (29). Obvio

( * ,t tx ( ),t tx−  xwill converge to (0, 0), if the system converges. That is, π π− π  converge to 

( )* *, xπ . Therefore, π * and x * are jointly asymptotically controllable. 

Necessity. If π * and x * are jointly asymptotically controllable, *π π=  and *x x=  hold. 

e in equilibrium, which involves The Phillips curv π  and x , leads to the c n that π * and 

y the Phillips curve in equilibrium. 

onditio

x * satisf

3. 

icient con

alues generally do not satisfy this condition because 

sehold’s utility, Arrow’s (1951) social welfare 

 function by determining the three key parameters – 

the two

Designing Central Bank Loss Functions 

Though we determine the necessary and suff dition for jointly asymptotically 

controllable target values, the social target v

the social loss function (e.g., the representative hou

function, or Rawls’s (1971) maximin criterion) reflects a normative problem in philosophy and 

usually does not relate to economic models. 

Proposition 1, however, provides a way to design the central bank loss function. We 

extend Proposition 1 to discretionary policy under a central bank loss function. As noted in the 

introduction, we design the central bank loss

 target values of the inflation rate and the output gap denoted as ( ),b bxπ  and the weight 

on output stabilization relative to inflation stabilization denoted as bλ . Thus, the central bank 

period loss function equals 

 16



(30)  ( ) ( )2 21
2

b b b b
t t tL x xπ π λ⎡ ⎤= − + −⎢ ⎥⎣ ⎦

. 

Proposition 2. If the system converges under the discretionary policy with period central bank 

loss function in Eq. (30) subject to a linear Phillips curve, π b and x b are jointly asymptotically 

tisfy the Phillips curve in equilibrium. controllable if and only if they sa

The proof is similar to Proposition 1 by noting that the difference between Ramsey policy 

and discretionary policy merely reflects the different sequence of optimizations of decision 

makers. 

For convenience, denote the equilibriums of the inflation rate and the output gap under 

the discretionary policy with the central bank loss function, respectively, as π  and x , which 

are the co  and xπunterparts of , the equilibriums under the Ramsey policy with th ial loss 

functio

e soc

n. On the one hand, we require that the discretionary policy is Ramsey optimal (i.e., at 

least π π=  and x x= ); on the other hand, we require that the constant target values are 

asymptotically controlla le (i.e., bb π π=  and bx x= ). As a result,  

(31)  ( ) ( ), ,b bx xπ π= . 

Since π  and x  satisfy the Phillips curve in equilibrium, π  and x  are jointly 

asymptotically controllable under the discretionary policy if the system π converges. Thus,  and 

x  are also the long-run target values under the discretionary policy. 

We ee rg

th  to social losses. The loss 

functio

 will s that the discretionary policy with the long-run ta et values, however, is 

generally not path controllable in the two example models, where the desired trajectories equal 

eir respective Ramsey optimal paths. Path uncontrollability leads

n in Eq. (30) still needs improvement. 
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The long-run target values cannot achieve path controllability (or point controllability 

each period). Intuitively, the existence of time-inconsistency lures the central bank to deviate 

from the Ramsey optimal paths each period. As a result, we must delegate short-run target values 

each period. They commit and bind the central bank to follow exactly the Ramsey optimal paths. 

Path controllability requires that ( ),t txπ , which denote the systematic paths of the 

inflation rate and the output gap under the discretionary policy with the designed loss function, 

replicate ( ),t txπ  for each period t. At the same time, we require that the short-run target values, 

denoted as b
tπ  and b

tx , are controllable. That is, ( ) ( ), ,b b
t t t tx xπ π= . As a result, 

(32)  ( ) ( ), ,b b
t t t tx xπ π= . 

The corresponding loss function equals  

(33)  ( ) ( )2 21
2

b b b b
t t t t tL x xπ π λ ⎤= − + − ⎥⎦

⎡
⎢⎣

. 

ugh the short-run targ  values are state-contingent, they are predetermined because Tho et

tπ  ( tx ) is the weighted average of lagg 1tπ − ( 1tx −ed values, ), and long-run target values, π  

x  ( 1tx −), and the weight on ( 1tπ − ) equals the conver ence persistence under the Ramsey 

optimal policy. The predetermined target values are feasible in practice. 

With the short-run target values, discretionary policy is path controllable and, thus, 

eliminates the constant average and state-contingent inflation biases. This leaves the stabilization 

bias. We can eliminate this bias by determining a proper weight, λb, such that 

(34)  

g

( ) ( )( ) ( ) ( )( ), ,t t t t t tu x u u x uπ π= , 

( ) ( )( ),t t tu x uπ  where denote the reactions to shocks under the discretionary policy with the 

designed loss function. Actually, we pin down the weight through one of the two equations, 
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( ) ( )t tu uπ π=  or ( ) ( )t t t tx u x u= . Once one equation holds, the other equation also holds 

 inflation rate and the output gap are linked through the Phillips curve. 

Now, we desig

Designing the Central Bank Loss F

because the

n central bank loss functions using the above approach for the two 

different models. 

unction in the New-Classical Model with Output Persistence 

Asymptotic Controllability under Discretion with the Long-Run Target Values. By Eqs. (9) and 

(31),  

bπ 0bx x= =*(35)  π π= = , and . 

The corresponding central bank period loss function equals 

(36)  ( )2* 21
2

b b
t t tL xπ π λ⎡ ⎤= − +⎢ ⎥⎣ ⎦

. 

The outcomes under the discretionary policy with period loss function (36) equal16 

t , and (37a)  1 du− +*
t tcxπ π= −

(37b)  1 (1 )t t tx x d uη α−= + + , where 

( )22 2 21 1 1 4
2

bc 2βη βη λ α β
αβη

⎡ ⎤= − − − −⎢ ⎥⎣ ⎦
(38a)  η , and 

2

2 2 2 .
1

b

b

cd
c

λ α βα
βη λ α 2α

+
= −

− +
 

note the systematic paths a

(38b)  
β+

De s 

( ) ( )*
1 1, ,t t t tx cx xπ π η− −= − .(39)   

Obviously, 

                                                        
16 See the discretionary policy in Svensson (1997). Our notation differs slightly from his. Setting the employment 
gap (output gap) target value to zero and replacing λ with λb and ρ with η creates the results in Eqs. (37) and (38). 
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( ) ( ) ( )*, lim , ,0t tt
x xπ π π

→∞
≡ = .(40)   

That is, π ∗ and 0 are jointly asymptotically controllable under the discretionary policy. 

By Eqs. (7) and (39), generally 

(41)  ( ) ( ), ,t t t tx xπ π≠ . 

That is, the discretionary policy is path uncontrollable, where the desired trajectories equal the 

Ramsey optimal paths. 

Path Controllability with the State-Contingent, Short-Run Target Values. By Eqs. (7) and (32), 

(42)  *b
t tπ π π= = , and 1

b
t t tx x xη −= = . 

The corresponding central bank period loss function equals 

(43)  ( ) ( )2 21
2 ⎣ ⎦

*
1

b b
t t t tL x xπ π λ η −

⎡ ⎤= − + −⎢ ⎥ . 

Intuitively, with the short-run natural output gap ηxt−1 as the output gap target, the central 

bank does not possess an incentive to produce surprise inflation ( )e
t tπ π−  to raise the output 

gap above the short-run natural gap 1txη − . As a result, the central bank can jointly realize the 

target values *
1 and txπ η − . The fo lation of discretionary policy ith the target values 

verifies the intuition. The discretionary outcomes equal17 

(44a)  , and 

(44b)  

rmal calcu  w

*
t tduπ π= +

1 t(1 )t tx x dη α−= + + ,u  

where with the same notation  without causing confusion d

(45)  21 bd
bλ α
λ α

= −
+

. 

                                                        
17 See Eqs. (B.11a) and (B.11b) and their derivation in Appendix B. Multiple equilibriums exist. We report one here. 
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Denote the systematic paths and the reaction paths respectively as 

( ) ( )*
1, ,t t tx xπ π η −=(46)  , and 

(47)  ( ) ( )( ) ( ), , (1 )t t t t t tu x u du d uπ α+ . Thus, =

( ) ( ), ,t t t tx xπ π= ,(48)   

which means path controllability and, thus, eliminates the constant average and state-contingent 

inflation biases. 

Elimination of Stabilization Bias. ( ) ( )t t t tu uπ π= To eliminate stabilization bias, we set . That is, 

, which produces18 *d d=

(49)  21
1bλ λ
βη

=
−

. 

The coefficient of the central bank’s weight depends only on the dynamic parameters, β 

k must exhibit 

weight ise, it must exhibit weight-liberal behavior,21 contrary to the usual 

ation of appointin a (weight-) conservative central banker. Intuitively, since the 

output gap persists, a current output gap deviation from its target value will persist into the future 

and, thus, cause losses. To reduce losses, the central bank must place more weight on the output 

gap target (i.e., 

and η.19 If β and/or η equal zero (i.e., the model is static), the central ban the same 

 as society;20 otherw

recommend g 

bλ λ> ).  

                                                        
18 Yuan and Miller (2010) also obtain the result in Eq. (49). 

hus, the weight does not reflect the characteristic of the 

he white-noise shocks. Policy 

ay emerge under certain circumstances 

19 Here, we assume that supply shocks equal white noise. T
supply shocks. We discuss the persistence of shocks in the new-Keynesian model. 
20 Yuan, et al. (2011) “…attribute the identical weight to the static models and/or t
makers do not face a trade-off between targets and/or between periods if the government delegates the correct target 
values to the central bank in static models with white-noise shocks.” (p. 84). 
21 We will see that a weight-liberal or weight-conservative central banker m
in the new-Keynesian model. 
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In sum, the discretionary policy proves path controllable (removing the constant average 

and state-contingent inflation biases), and eliminates stabilization bias under the loss function in 

Eq. (43) with λb defined in Eq. (49), resulting in Ramsey optimality. 

Designing Centr k Losal Ban s Functions in a Hybrid New-Keynesian Model 

Divergence/Convergence under Discretion with the Long-Run Target Values. By Eq. (31),  

(50)  bπ π= , and bx x= , 

where π  and x  are defined in Eqs. (18e) and (18f). The corresponding central bank period 

loss function equals 

(51)  ( ) ( )2 21
2

b b
t t tL x xπ π λ⎡ ⎤= − + −⎣ ⎦ . 

The nder d on outcomes u iscreti ary policy with period loss function (51) equal22 

 (52a) ( ) ( )1t t tx x x x fuδ −− = − + , and 

(52b)  ( ) ( ) ( )1 1
b

t t tf uλπ δ π π φβρ
κ−= − − − , 

where 

π −

δ  is a root of the characteristic equation 

2
2 3 2 21 0ba κβ δ βδ φ β δ φ

λ
⎛ ⎞

− + + + − =⎜ ⎟
⎝ ⎠

(53a)  , and 

( ){ }
.

1b
f

a

δκ

λ β δ ρ δβρ φ
=

⎡ ⎤− + −⎣ ⎦

 (53b)  

D haracteristic equation (53a)? Consider the two 

ses of φ = 0 and φ = 1. For the case φ = 0, th acteristic equation (53a) reduces to 

oes a less-than-one root exist for the c

extreme ca e char

( )2 21 0bβδ κ λ δ− + = , and its two roots are 0δ = , which is a degenerative solution, and 

                                                        
22 See Eqs. (C.9), (C.13), (C.14) and (C.16) and their derivation in Appendix C. 
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( )2 1bλ β > . The system diverges under the discretionary policy when φ = 0, in 

contrast to converging under the Ramsey policy. For the case φ =1, the characteristic equation 

(53a) reduces to 

(54)  

1δ κ= +

2
2 1 1 0.b β δ

λ
+ + + =⎟

⎠
 

 bigger root exceeds one and the smaller root lies between zero and one. 

The system can converge under discretion when φ = 1. Actually, time-inconsistency does not 

exist in the case 

κβδ
⎛ ⎞

− ⎜
⎝

We can show that the

φ =1, and we discuss this special case further in the next subsection. When the 

 goes from 0 to 1, the system changes from divergence to convergence. The system 

may also go through divergence, convergence, divergence, convergence, and so on. For the case 

0<φ<1, we can conclude that 

lag index φ

 and xπ  are jointly asymptotically controllable, if the 

characteristic equation (53a) does have a root that less than one, 1δ < . 

Generally, the system is not path controllable under the discretionary policy with the 

long-run target values since δ δ≠  where and δ δ  are determined respectively by Eqs. (53a) 

and (18a). 

Path Controllability with the Long-Run Target Values When φ=1. For the case φ =1, we obtain an 

interesting result. That is, when the Phillips curve in Eq. (13) exhibits purely backward-looking 

behavior with no expectations 

(55)  t1t t tx uπ κ π −= + + , 

we delegate to the central bank a simple loss function with the long-run target values ( bπ π=  

) and the same weight (λb=λ) as follows and bx x=

 23



(56)  ( ) ( )2 2 .tx xλ ⎤+ − ⎦  

mple loss function (Eq. 56), the discretionary policy proves path controllable and 

When the Phillips curve equals Eq. (55), which does not involve expectations, the 

blem reduces to a control theory, rather than game theory, problem. That is, only one 

 the consolidated first-order conditions under the Ramsey optimal 

policy. 

1
2

b
t tL π π⎡= −⎣

With the si

eliminates stabilization bias! 

optimal pro

decision maker exists rather than multiple decision makers. Time-inconsistency does not exist. 

We demonstrate this through

The condition for t=0 (Eq. 15a) equals the condition for t≥1 (Eq. 15b), when φ=1. That is, 

the Ramsey policy is time-consistent. As a result, we do not need to delegate to the central bank 

the short-run target values, which commit or bind central bank behavior. In addition, the 

stabilization bias does not exist either. Accordingly, the central bank adopts the same weight 

(λb=λ). When λb=λ,23 

(57)  1δ δ φ= ⇔ = , and 

(58)  ( ) ( )( ) ( ) ( )( ), , .t t t t t t t tu x u u x uπ π=  

That is, the policy under the delegation of the long-run target values ( bπ π=  and bx x= ) and 

the same weight (λb=λ) proves path controllable and of no stabilization bias, when φ =1. 

ugh time-inconsis does not exist, the issue of target controllability does. The 

bles' equilibriums in Eqs. (18e) and (18 ith φ =1 equal 

Tho tency 

target varia f) w

(59)  ( ) ( )* *, 1 ,0x xλπ π β⎛ ⎞= + −⎜ ⎟ . Thus, 
κ⎝ ⎠

                                                        
23 See Eqs. (C.25) and (C.30) and their derivation in Appendix C. 
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(60)  ( ) ( )* * *, ,   if 0.x x xπ π≠ ≠  

That is, the social target values, π * and x *, are uncontrollable, if x *≠0. The long-run target values, 

1δ <  π  and x , however ntrollabl, prove asymptotically co e, since from Eq. (54). 

In sum, when φ =1, time-inconsistency does not exist and we only tackle the issue of 

controllability. We solve it by delegating the long-run target values and the same weight to the 

central bank. 

Path Controllability with Lagged, Short-Run Target Values When φc≤φ≤1. Whether or not the 

system converges with the long-run target values under the discretionary policy, we consider 

delegating short-run target values. By Eqs. (21) and (32), 

(61a)  ( ) ( )1 1 1b
t t t tπ π π δ π π δπ δ π− −= = + − = + − , and 

(61b)  ( ) ( )1 1 1 .b
t t t tx x x x x x xδ δ− −= = + − = + −  δ

The short-run target value, ( )b b
t txπ , equals the weighted average of the lagged value, ( )1 1t txπ − − , 

and the long-run target value, ( )xπ . The weight on the lagged value is the system

persistence, δ. The corresponding central bank period loss function equals 

(62)  

 convergence 

( ) ( ) ( ) ( ){ }2 2
1 1

1
2t t t t t− −

b bL x x x xπ π δ π π λ δ= − − − + − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

Because shocks do not affect controllability in the model with a quadratic loss function, a 

linear the Phillips curve, and additive shocks, we set 0tu =  and determine the outcomes under 

a discretionary policy with period loss function (62) as follows24 

(63a)  ( ) ( )1t tπ π δ π π−− = − , and 

                                                        
24 See Eqs. (D.10) and (D.12) and their derivation in Appendix D. 
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(63b)  ( ) ( )1 .t tx x x xδ −− = −  

That is, th olicy, were exists a discretionary p hich proves path controllable and, thus, eliminates 

nt average and state-contin lation biases. the consta gent inf

When 0tu ≠ , the stabilization bias arises. To eliminate biases, using ( ) ( )t t t tu uπ π=  

and ( ) ( )t t t tx u x u=  produces25 

( ) ( )
( )21

1

βρ
b

cλ φ φ λ
−

, (64)  
ρ φβρ

= −
−

where φc is defined in Eq. (18g). 

b =λ λ  when 1=φ . That is, whe φ=1, either the long-run or the short-run target values 

nd the delegated weight always equals the social weight. 

Econom

n 

can achieve path controllability, a

ical feasibility requires 0bλ ≥ . Thus, 

(65)  .cφ φ≥  

Path C hort-R arget Value When 0≤φ≤φontrollability with Expected, S un Inflation T c. Now, 

he target v lues, if determine t a cφ φ≤ . Consider more carefully the loss function and the Phillips 

curve. In the new-classical model with output persistence, the central bank’s optimal and 

controllable loss function involve a term, 1txη − , which is the important characteristic of the 

Phillips curve. Accordingly, we guess that the central bank loss function in the principally 

forward-looking, new-Keynesian model m involve a term, 1t tEust π + , which is the main 

characteristics of the Phillips curve. At the same time, we require path controllability. That is, we 

require that the target variables evolve at the persistence, δ. As a result, we construct the 

                                                        
25 See Eq. (D.13) and its derivation in Appendix D. 
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short-run target values as follows 

(66a)  ( ) ( )1 1 1
1 1 1b

t t t t tE Eπ π δ π π δ π δ π− − −
+ += + − = + − , and 

(66b)  ( ) ( )1 1 1 .b
t t tx x x x x xδ δ δ− −= + − = + −  

The short-run inflation target value equals the ‘weighted’ ( ) average of the expected 

ate and the long-run target value. Using an expectation as a target value seems 

 strange, but we argue that its rationality depends on the forward-looking Phillips curve. 

 of “im

1 1δ − >

inflation r

somewhat

Also, the expected inflation target value demonstrates the idea plementing optimal policy 

through inflation-forecast targeting” (Svensson and Woodford, 2005). The corresponding central 

bank period loss function equals 

(67)  ( ) ( ) ( ) ( ){ }2 21
1 1

1
2

b b
t t t t t tL E x x x xπ π δ π π λ δ−

+ −⎡ ⎤= − − − + − − −⎡ ⎤⎣ ⎦⎣ ⎦ . 

Once again, we do not consider shocks and set 0tu = . The outcomes under a 

discretionary policy with period loss function (67) equal26 

( ) ( )1t tπ π δ π π−− = −(68a)  , and 

(68b)  ( ) ( )1 .t tx x x xδ −− = −   

That is, there exists a discretionary policy, which proves path controllable. 

en , the stabilizatio  arises. To eliminate biases, using Wh n bias 0tu ≠ ( ) ( )t t t tu uπ π=  

and ( ) ( )t tt tx u x u=  produces27 

(69)  
( ) ( )
( )( )

21
.cb

φ φ βρ

1 1
λ λ

− −
=  

δ δβρ φβρ− −

Economical feasibility requires that . Thus, 
                                                       

0bλ ≥
 

26 See Eqs. (E.8) and (E.10) and their derivation in Appendix E. 
27 See Eq. (E.11) and its derivation in Appendix E. 
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(70) .c  φ φ≤

In sum, the short-run inflation target value conforms to the macroeconomic structure (i.e., 

Phillips curve). That is, it is lagged (expected), if the inflation rate in the Phillips curve exhibits 

principally backward-looking (forward-looking) behavior. With the delegated loss function, a 

discretionary policy proves path controllable (removing the constant average and state- 

contingent inflation biases), and eliminates stabilization bias, resulting in Ramsey optimality. 

The Delegated Weight for 0≤φ≤1. When the Phillips curve exhibits purely backward-looking 

behavior with no expectations (φ=1), the time-inconsistency problem does not exist and neither 

does the stabilization bias. Thus, λb=λ. 

When the Phillips curve exhibits principally backward-looking behavior with an element 

of expectations ( 1cφ φ≤ < ), the time-inconsistency problem and, thus, the stabilization bias exist, 

and the delegated weight must differ from the social weight (λb≠λ). The coefficient of the weight 

λb depends only on the dynamic parameters (φ, β, and ρ), and does not relate to the system 

convergence persistence, δ. By Eq. (64), 

(71)  
( ) ( )

( )
( )
( )

2

1 .
1 1

1 1cb
φ φ βρ φ

λ λ λ λ
ρ φβρ ρ φβρ

= = − <⎢ ⎥− −⎣ ⎦

herefore, the central bank must exhibit conservatism ( b

− − ⎡ ⎤−
 

T λ λ< ). Intuitively, if the inflation rate 

persists ( 1cφ φ≤ < ), then current inflation rate deviation f  its target value will persist into 

se losses. To reduce these losses, we m ce more weight on the inflation 

rate targ

rom

ust plfuture and, athus, cau

et (i.e., bλ λ< ). In the new-classical model with t persistence, we must place 

more weight on the output gap because of output gap persistence. 

 outpu
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When the Phillips curve exhibits principally forward-looking behavior ( 0 cφ φ< ≤ ), the 

weight in Eq. (69) depends not only on the dynamic parameters but also on the system 

convergence persistence. The weight becomes subtle because of forward-looking behavior. No 

analytical way exists to discuss the relationship of the weight with model parameters. 

For the purely forward-looking case (φ=0), the central bank exhibit weight-conservative 

(weight-liberal) behavior, if the cost-push shock more (less) persists. The delegated weight in Eq. 

(69) reduces to 

(72)  
( )
( )
1

.b ρ
1

λ λ
−

=  
δ δβρ−

We report the following conditions 

(73a)          if b
cλ λ ρ< > , ρ

(73b)          if b
cλ λ ρ= = ρ , and 

        if b
cλ λ ρ> <(73c)  ρ , where 

(74)  2

1
1c

δρ
βδ−
−

= , and 0  1.cρ< <

The critical value, ρc, depends on model parameters. The central bank is weight- 

conservative (weight-liberal), if cost-push shock persistence is greater (less) than the critical 

value. Actually, 0bλ ρ∂ ∂ < .28 A more persistent cost-push shock implies less weight on output 

. To see this, iterate hillips cu  (Eq. 13) with φ=0 forward as follows 

(75) 

stabilization  the P rve

 ( ).iE x uπ β κ
∞

= +∑  

                                                       

0
t t t i t i

i
+ +

=

 

( ) ( )21 1bλ ρ λ βδ δ δβρ⎡ ⎤∂ ∂ = − − − <⎣ ⎦
 28 0
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Inflation depends entirely on current and expected future output gaps and cost-push 

shocks, because of the purely forward-looking nature of the Phillips curve. Thus, more persistent 

hocks imply that more losses occur because more inflation increases emerge, driven 

by current and future cost-push shocks. To reduce the losses caused by current and future 

inflation, the policy makers must place more weight on inflation stabilization and, thus, less 

weight on output stabilization. 

4. Situations of the Same Weight (λb=λ) 

A summary of the situations of the same weight (λb=λ) provides more insight about delegation. 

We determine two situations where λb=λ -- static models in a game context and models in a 

one-decision-maker context. 

Static Models in a Game Context 

Consider the delegated weight, 

cost-push s

( )21bλ λ βη= − , in the new-classical model with output 

persistence. Obviously, λb=λ, when β=0 and/or η=0. 

When the central bank does not care about future losses (β=0), the model, which includes 

the loss function, the Phillips curve, and rational expectations, is essentially static even if the 

Phillips curve exhibits output persistence (η≠0). When persistence does not enter the Phillips 

curve (η=0), the model is also essentially static even if the central bank cares about the future 

losses (β≠0). In a word, the model is static when β=0 and/or η=0. The time-inconsistency 

problem, however, always exists because of the assumption of rational expectations. 

We know that the stabilization bias arises, which requires a different weight to eliminate 

it, when the time-inconsistency problem exists. Why does the delegated weight equal the social 

 30



one? We argue that discretionary policy need not trade off over time with a static model and need 

not alter the balance between inflation and output-gap stabilization when we delegate the correct 

short-run target values ( *b
tπ π=  and 1

b
t tx xη −= ). As a result, λb=λ. 

The correct target values are important as the literature stresses. An overly ambitious 

output (employment) target value produces inflation bias. Rogoff’s (1985) weight-conservative 

approach tackles this overly ambitious employment target value by placing less (more) weight on 

the employment (inflation) stabilization. Rather than adjusting the weight, we tackle the problem 

directly by correcting the overly ambi loyment target valuetious emp . With correct target values, 

the cen

ybrid new-Keynesian model with φ=1. In this situation, λb=λ. When φ=1, the 

Phillips

e hybrid new-Keynesian model with β=0. When β=0, the 

, thus, the time-inconsistency problem does not exist. 

tral bank does not need a different weight to balance two target variables’ stabilization in 

a static model. 

The two static game models in Yuan, et al. (2011), where the time-inconsistency problem 

exists, also demonstrate that the delegated weight equal the social weight when we delegate the 

central bank the correct target values. 

Models in a One-Decision-Maker Context 

Consider the h

 curve contains no expectations and, thus, the time-inconsistency problem and the 

stabilization bias do not exist. As a result, the central bank adopts the same weight as society. 

As an exercise, we consider th

Phillips curve contains no expectations and
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Thus, λb=λ in this situation.29 

Based on the two situations of λb=λ -- static models in a game context and models with 

one decision maker, we conclude that λb≠λ in a dynamic game model. Moreover, the coefficient 

of the delegated weight depends on dynamic parameters and/or the system convergence 

persiste

y – in two dynamic models. Time-inconsistency results from expectations (multiple 

controllability arises because the target variables must conform to the 

nary policy, constant target values are jointly asymptotically controllable if and 

only if

                                                       

nce. 

5. Conclusion 

In this paper, we tackle two issues in policymaking – time-inconsistency and target 

controllabilit

decision makers). Target 

constraint imposed by the economic model (the Phillips curve). We can resolve both issues by 

delegating a loss function, which differs from the social loss function, to the central bank. The 

delegation scheme is simple with one decision maker whereas it is relatively complicated in a 

game context. 

We obtain propositions about target controllability. That is, if the system, which consists 

of a quadratic loss function and a linear Phillips curve, converges under the Ramsey policy or 

under discretio

 they satisfy the Phillips curve in equilibrium. We find that the target variables’ 

equilibriums under the Ramsey policy satisfy the Phillips curve in equilibrium and, thus, are 

jointly asymptotically controllable. We call these equilibrium values the long-run target values. 

With one decision maker as in the hybrid new-Keynesian model with φ=1, the model 
 

29 See Eq. (F.9) in Appendix F for the derivation. 
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involves no expectations and exhibits purely backward-looking behavior. In this context, the 

time-inconsistency problem does not exist, and we only need to tackle the target controllability 

problem

llability. As a result, we delegate short-run, state-contingent target values to the central 

bank to

. Delegating the long-run target values (the target variables’ equilibriums under the 

Ramsey policy) to the central bank can produce not only asymptotic but also path controllability. 

Delegating short-run target values proves unnecessary because time-inconsistency does not exist. 

Moreover, the central bank adopts the same weight as society because stabilization bias does not 

exist. 

With multiple decision makers where the model involves expectations and, thus, time- 

inconsistency exists, the long-run target values can only achieve asymptotic rather than path 

contro

 obtain path controllability. They commit and bind the central bank to follow exactly the 

Ramsey optimal paths. The short-run inflation target value conforms to the macroeconomic 

structure (i.e., Phillips curve). That is, it is lagged (or expected, or exactly the social target value) 

if the inflation rate exhibits principally backward-looking (or forward-looking, or rational 

expectations) behavior in the Phillips curve.30 Specifically, the short-run inflation target value 

equals the weighted (or ‘weighted’ in form) average of the lagged (or the expected) value and its 

long-run target value, if the inflation rate exhibits principally backward-looking (or forward- 

looking) behavior in the Phillips curve as in the new-Keynesian model with 1cφ φ≤ <  (or 

0 cφ φ≤ ≤ ). The weight on the lagged value equals the system convergence persistence under the 

                                                        
30 In a model (Phillips curve) with principally forward-looking behavior, the delegated inflation target value is 
expected, demonstrating the idea of “implementing optimal policy through inflation-forecast targeting” (Svensson 
and Woodford, 2005). 

 33



Ramsey policy whereas the ‘weight’ on the expected value equals the reciprocal of the 

persistence. The inflation target value always equals the social target value, if the ctor 

onally expectations about the inflation as in the new-classical model. With regards to 

the output gap, the short-run target value equals the weighted average of the lagged value and its 

long-run target value. In a word, the short-run target values converge to the long-run target 

values and, though state-contingent, are predetermined. With the short-run target values, the 

discretionary policy proves path controllable and, thus, eliminate the constant average and 

state-contingent inflation biases. 

Delegating a different weight to the central bank can eliminate stabilization bias in a 

dynamic game model. When the output gap exhibits persistent, the central bank must place more 

weight on the output gap stabili

private se

forms rati

zation as in the new-classical model. When the inflation rate 

exhibits more persistence than expectation, the central bank must place more weight on inflation 

rate stabilization as in the hybrid new-Keynesian model with 1cφ φ≤ < . The intuition is 

straightforward. When the output gap (inflation rate) exhibits persistent, current deviation from 

its target value will persist into future, and induce losses. To reduce the losses, the central bank 

must place more weight on output-gap (inflation) stabilization. More  coefficients of the 

weights in these two situations depend only on the dynamic parameters, and do not relate to the 

system convergence persistence. 

When the inflation rate exhibits principally forward-looking behavior as in the hybrid 

new-Keynesian model with 0 c

over, the

φ φ≤ ≤ , the delegated weight becomes subtle and the central 

bank may adopt a liberal or conservative weight, depending on both the dynamic parameters and 
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the sys

ations wh

fer from society (λb≠λ) in a dynamic game model. The 

coeffic

-contingent inflation biases) and eliminates stabilization bias, resulting 

in Ram

he Phillips curve (Eq. 13). Its Lagrangian expression equals the following 

(A.1)  

tem convergence persistence. 

We determine two situ ere the delegated weight equals the social weight (λb=λ) 

-- static models in a game context and models with one decision maker. As a result, we conclude 

that the delegated weight must dif

ient of the delegated weight depends on dynamic parameters and/or the system 

convergence persistence. 

In sum, we can solve both issues – time-inconsistency and target controllability – by 

delegation. Through delegation, discretionary policy proves path controllable (removing the 

constant average and state

sey optimality. 

Appendix A: Ramsey Optimal Solution in a Hybrid New-Keynesian Model 

The optimization problem minimizes the social intertemporal loss function (12) with period loss 

function (2) subject to t

( ) ( )2 2* *1
t tt

x xπ π λ∞
⎧ ⎫⎡ ⎤− + −⎪ ⎪⎢ ⎥

( )0
1 11t

t t t t t tx uψ κ φπ φ βπ π=
− +

⎪ ⎪+ + + − + −⎡ ⎤⎣ ⎦⎩ ⎭

The first-order conditions equal 

0 2 .E β ⎣ ⎦= ⎨ ⎬∑L  

( ){ }*
0 0t

t t
t

E x x
x

β λ κψ∂ ⎡ ⎤= − +⎣ ⎦∂
L(A.2a)  =    , 

(A.2b)  

for 0t ≥

( )*
0 0 0

0

E
π ⎣∂ 1 0π π ψ βφψ∂ ⎡ ⎤= − − + =⎦
L    for 0t = , and 

( )
( )

*

0 1 1
1 1

(A.2c)  0  
1

t
t t

t t
t t t

E
β π π ψ

π β φψ β φ βψ+ −
+ −

⎧ ⎫⎡ ⎤− −∂ ⎪ ⎪⎣ ⎦= =⎨ ⎬∂ + + −⎪ ⎪⎩ ⎭

L for 1t ≥ . 
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E ives the coliminating the multipliers from Eqs. (A.2) g nsolidated first-order conditions 

as follows 

( ) ( ) ( )* *
0 0 1 0x x E x x *κφβ π

λ
− − − = − − π       for 0t =(A.3a)  , and 

(A.3b)  ( ) ( ) ( )( ) ( )* * * *
0 0 1 0 1 01t t t tE x x E x x E x x Eκφβ φ π π

λ+ −− − − − − − = − −  for 1t ≥ . 

Combining Eqs. (A.3a) and (A.3b) with the Phillips curve (Eq. 13) produces 

( )( )
(A.4a)  

( )( ) ( ) ( ) ( )

2
22

0 2 0 1 0 0 1

* * 2 *

1 1

1 1 1 1 1 0  for 0,  and

a E x E x x

x x t

κβ β φ β
λ λ λ

κφ β π φ β φ φ β
λ

⎡ ⎤
− + + + −⎢ ⎥

⎣ ⎦
⎡ ⎤ ⎡ ⎤− − − + − − − + − = =⎣ ⎦⎢ ⎥⎣ ⎦

 

(A.4b)  

*uκ κφ π π −+ − −

( )( ) ( )

2
0 2 0 1 0 0 1 0 2

* *
0            1 1 1 0           for 1,  where

t t t t t

t

a E x E x bE x E x aE x

x E u t

β β
κ κφ β π φ β
λ λ

+ + − −− + − +

⎡ ⎤− − − + − + = ≥⎢ ⎥⎣ ⎦

 

( )1a φ φ≡ −  (A.5a)  

( )
2 2

221 1 1b aκ κ(A.5b)  2φ β φ β β
λ λ

≡ + + + − = + + − β , and 

(A.5c)  

Solve Eqs. (A.4a) and (A.4b) backwards. Assume that δ equals a root of the characteristic 

a

t

1 0x− ≡ . 

equation 

(A.6)  −2 4 3 2 0.a bβ δ βδ δ δ+ − + =  

Assume that the solution of Eq. (A.4b) for t≥1 takes the following form: 

(A.7)  1 .t tx x e fuδ −= + +  

Using Eq. (A.7) and 10 0t tE u E uρ −=  leads to 

(A.8a)  0 0 1 0 1t t tE x E x e f E uδ ρ− −= + + , 
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(A.8b)  ( ) ( )2
0 1 0 1 0 11t t tE x E x e f Eδ δ δ ρ ρ+ −= + + + + u − , and 

(A.8c) ( ) ( )2
1 0 1t

3 2 2
0 2 0 1 .ttE x E eδ δ δ+ = + +x f E uδ δρ ρ ρ− + + + +   −

bstituting Eqs. (A.8a), (A.8b), (A.8c), and 10 0t tE u E uρ −=  into Eq. (A.4b) results in Su

( )

( )( ) ( )

2 3 2
0 1 0 2 0 1

* *

1

                       1 1 1 0,  where

t t ta b E x aE x df E u

ce x

κ ρ
(A.9)  

β δ βδ δ
λ

κφ β π φ β
λ

− − −
⎛ ⎞− + − + + +⎜ ⎟
⎝ ⎠

⎡ ⎤+ − − − + − =⎢ ⎥⎣ ⎦

 

(A.10a)  ( ) ( )2 2 1 1c a bβ δ δ β δ≡ + + − + + , and 

 ( ) ( )2 2 2 .d a bβ δ δρ ρ β δ ρ≡ + + − +  (A.10b) +

Transforming Eq. (A.9) and noting that ( )2 3 21 1a b aβ δ βδ δ δ− − + − =  from Eq. 

(A.11)  

(A.6) produces 

( )( ) ( )* *
0 1 0 2

0 1

1 1 1

                              .

t t

t

x E x ce x
a

df E u
a

δ κδ φ β π φ β
λ

ρ
λ

− −

−

⎧ ⎫⎡ ⎤= + − − − + −⎨ ⎬E ⎢ ⎥⎣
δ κ

⎦⎩ ⎭

+ +⎜ ⎟
⎝ ⎠

 

Comparing Eq. (A.11) with Eq. (A.7) implies 

⎛ ⎞

(A.12a)  
( )( ) ( )* *1 1

1e x
c a

δ φ β κ π φ β
δ λ
− − ⎡ ⎤= + −⎢ ⎥− ⎣ ⎦

, and 

(A.12b)  
( )

.f
d aλ δρ −

 κδρ
= −

t the constant e in Eq. (A.7), we comput

(A.13)  

To interpre e 

( )( )
( )( ) ( )* *1 1

1 .e
1 1

x
c a

δ φ β κ π φ β
δ δ δ λ

− − ⎡ ⎤≡ = + −x ⎢ ⎥− − − ⎣ ⎦
 

With the notation x , the solution of the output gap for  equals 

(A.14)  

1t ≥

( ) ( )1t t tx x x xδ −− = − + , fu
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xwhere δ,  and f are defined respectively in Eqs. (A.6), (A.13 or A.19) and (A.12b). 

To obtain another form of x , compute 

a

Noting that a from Eq. (A.6), (A.15) becomes 

(A.16)  

( ) ( )

( )

2 2

2 3 2 2 2 2

1 1

,  and

c a a b a

a b a a

δ δ β δ δ β δ

β δ βδ δ β δ β δ βδ

⎡ ⎤− = + + − + + −⎣ ⎦

= − + + + − −
 (A.15)  

2 4 3 2a bβ δ βδ δ δ− + = −  

( ) ( )2 4 3 2 2 3 2 2 2

2 3 2 2 2 .

c a a b a a a

a a a a

δ δ β δ βδ δ β δ β δ βδ δ

δ β δ β δ βδ δ

− = − + + + − −

= − + + − −
 

Subtracting Eq. (A.16) from Eq. (A.15) gives 

(A.17)  ( )1 .c a)( ) ( 21a a bδ δ β β= + − − δ− − +  

( )
2

22 1 1a b a aκβ β β
λ

+ − − + = + −  Substituting from Eq. (A.5b) into Eq. (A.17) yields 

(A.18)  ( )( ) ( )
2

21 1 .c a aκδ δ β δ
⎡ ⎤

− − = + −⎢ ⎥  
λ⎣ ⎦

Substituting Eq. (A.18) into Eq. (A.13) gives 

(A.19)  ( )( ) ( )
( )

*

22

1
1 1 .

1 1

*xex
a

κπ λφ β
φ β

δ κ λ β

⎡ ⎤+ −
≡ = − − ⎢ ⎥

− + −⎢ ⎥⎣ ⎦
 

x0. Applying expectations E0 to Eq. (A.7) for t=1 and t=2 generates 

(A.20a)

Solve for 

  ( )0 1 0 0 0 1 0E x x e f u x x f uδ ρ δ δ ρ= + + = + − + , and 

 ( ) ( )2 2 2
0 2 0 1 0 0 01 .E x E x e f u x x f uδ ρ δ δ δ ρ ρ= + + = + −(A.20b) + +  

Substituting ( )( ) ( ) ( )
2

2* *1 1 1 1x a xκ κφ β π φ β β
⎡

λ λ
⎤⎡ ⎤− − + − = + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 from Eq. (A.19), 

A.20b) into Eq. (A.4a) for t=0 leads to Eqs. (A.20a) and (
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( )

( )

( ) ( )

2
22 2

0

2
2 2 2

a x

a a a xκβ δ βδ β β

⎧ ⎫⎪ ⎪
⎨ ⎬

⎡ ⎤⎛ ⎞
− − + + + −⎢ ⎥⎜ ⎟

*
1

2 * 2
0 0 0

1 1

1 0.a x a f u f u u

κβ δ βδ φ β
λ

κφ π π
λ λ

κφ β β δ ρ ρ βρ
λ

−

⎡ ⎤
− + + + −⎢ ⎥

⎪ ⎪⎣ ⎦⎩ ⎭

− −
⎝ ⎠⎣ ⎦

− − − + + − + =

 

 

(A.21)   

( )
2

2 21 1 bκ φ β φ
λ

+ + − = − β  and 
2

2 1a bκβ β
λ

+ − = −Substituting  from Eq. (A.5b), 

af dκ
λ δρ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 from Eq. (A.12b) and d in Eq. (A.10b) into Eq. (A.21) generates 

(A.22)   
( )( ) ( )( )

( )

2 2 2 2 *
0

* 2 2                   .

b x x a x x

aa b fu

β δ βδ φ β φ β

κφ π π β δ βδ

− + − − − −

⎛ ⎞
+ − + − + −

 

Denote 

1 0

1a

λ δρ−

= −

⎜ ⎟
⎝ ⎠

(A.23a)  
( )

( )
2

0 2 2 2

1
x

a

a b

φ β
δ

β δ βδ φ β

− −
=

− + −
, and 

(A.23b)  
( )

( )
( )( )

2 2
2 2

0 2 2 2 2 2 2
.

aa b a b a
f f

a b a b d

β δ βδ κ β δ βδ δρδρ
β δ βδ φ β λ β δ βδ φ β δρ

⎛ ⎞
− + −⎜ ⎟ ⎡ ⎤− + −⎝ ⎠ ⎣≡ = −
− + − − + − −

 
a

⎦

With the notations, Eq. (A.22) becomes 

(A.24)   ( ) ( ) ( )
( )

*
1*

0 0 0 02
.

1xx x x f u
a

φκ π π
δ

λ φ β
−

⎡ ⎤−
⎢ ⎥− = − + +

− −⎢ ⎥⎣ ⎦
 x

( ) ( )*
0 0x x x xδ− = − +Note that 0xδ δ=  and Eq. (A.24) reduces to fu , when φ=0. 

ow, solve for πt. Combining Eqs. (A.3a) and (A.3b) with the Phillips curve (Eq. 13) and 

using 

N

0 1 0t tE u E uρ+ =  generates 
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(A.25a)  
( )

( ) ( )

2
2 2

0 2 0 1 0 0

* * *
1

1 1

           1 1 0    for 0, and

a E Eπ β− u

x x t

κβ π φ β π φβρ
λ

κκ π φ β φπ φ κ
λ −

⎛ ⎞
+ + + − −⎜ ⎟

⎝ ⎠
⎡ ⎤− + − − − − = =⎢ ⎥⎣ ⎦

 

(A.25b)  
( ) ( ) ( )

2
0 2 0 1 0 0 1 0 2

* *
0 0 1         1 1 1 0   for 1,

t t t t t

t t

a E E bE E aE

x E u E u

β π β π π π π
κκ π φ β φβρ φ
λ

+ + − −

−

− + − +

⎡ ⎤− + − − − + − =⎢ ⎥⎣ ⎦

 
t ≥

where a and b are defined, respectively, in Eqs. (A.5a) and (A.5b). 

istic equation of Eq. (A.25b) 

equals 

Solve Eqs. (A.25a) and (A.25b) backwards. The character

Eq. (A.6). Assume that the solution of Eq. (A.25b) takes the following form 

(A.26)  ( ) ( )1 11 1t t t tg h u uπ δπ φβρ φ− −= + + − − −⎡ ⎤⎣ ⎦ , 

where δ is a root of the characteristic equation (A.6). 

Using Eq. (A.26) and 0 0 1t tE u E uρ −=  leads to 

(A.27a) ( ) ( ) 01 1 tg h E uρ φ+ + − − −0 0 1 0 1t t tE E E uπ δ π φβρ− −= 2−⎡ ⎤⎣ ⎦ , 

(A.27b) ( ) ( ) ( ) ( )2
0 1 0 1 0 1 0 21 1 1t t tE E g h E u E uπ δ π δ δ ρ ρ φβρ φ+ − −= + + + + − −− t−⎡ ⎤⎣ ⎦ , and 

u
(A.27c) 

( )
( ) ( ) ( )

3 2
0 2 0 1

2 2
0 1 0 2

1

                              1 1 .

t t

t t

E E g

h E u E

π δ π δ δ

δ δρ ρ ρ φβρ φ

+ −

− −

= + + +

+ + + − − −⎡ ⎤⎣ ⎦
 

Substituting Eqs. (A.27a) to (A.27c), and 10 0t tE u E uρ −=  into Eq. (A.25b) results in 

(A.28)  
( ) ( )2 3 2 * *

0 11 1t ta b E aE xκβ δ βδ δ π π φ β− −

( ) ( ) ( )

0 2

0 1 0 2                       1 1 1 0,t t

cg

dh E u E u

π κ
λ

ρ φβρ φ− −

⎡ ⎤− + − + + −+ − ⎢ ⎥⎣ ⎦
+ − − − − =⎡ ⎤⎣ ⎦

 

where c and d are defined respectively in Eqs. (A.10a) and (A.10b). 

Transforming Eq. (A.28) and noting that ( )2 31 a 2 1b aβ δ β− − δ δ δ+ − =  from Eq. 

(A.6) produces 
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(A.29)  
( )

( ) ( ) ( )

* *
0 1 0 2

0 1 0 2

1

                       1 1 1 .

t t

t t

E E cg x
a

dh E u E u
a

δ κπ δ π κ π φ β
λ

δ ρ φβρ φ

− −

− −

⎧ ⎫⎡ ⎤= + − + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

+ − − − −⎡ ⎤⎣ ⎦

 

Comparing Eq. (A.29) with Eq. (A.26) implies 

(A.30a)  ( )* *1g x
c a
κδ κ π φ β

δ λ
⎡ ⎤= + −⎢ ⎥− ⎣ ⎦

, and 

(A.30b)  .h
d a
δρ

δρ
=

−
 

Substituting 
( )

( )
( )22

1

1c a a

λ δδ
δ κ λ β

−
=

− + −
 from Eq. (A.18) into Eq. (A.30a) produces 

(A.31)  ( ) ( )
( )

* *

22

1
1 .

1

x
g

a

κπ λφ β
κ δ

κ λ β

⎡ ⎤+ −
= − ⎢ ⎥

+ −⎢ ⎥⎣ ⎦
 

Denote 

(A.32)  
( )
( )

* *

22

1
.

1 1

xg
a

κπ λφ β
π κ

δ κ λ β

⎡ ⎤+ −
≡ = ⎢ ⎥

− + −⎢ ⎥⎣ ⎦
 

Using the AR(1) process of shocks in Eq. (14), the term that involves shocks in Eq. (A.26) 

produces 

(A.33)  ( ) ( ) ( )( ) ( )2
1 1 ˆ1 1 1 1t t c tu u u tuφβρ φ φ φ βρ φβρ− −− − − = − − + − , where 

(A.34)  2

1
1c

ρφ
βρ

−
=

−
, and 0 1cφ< ≤ . 

With the notation π , the solution of the inflation in Eq. (A.26) for  equals 1t ≥

(A.35)  
( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

1 1

2
1 1

1 1 ,      or

ˆ1 1

t t t t

t t c t

h u u

h u

π π δ π π φβρ φ

π π δ π π φ φ βρ φβρ

− −

− −

− = − + − − −⎡ ⎤⎣ ⎦

,tu⎡ ⎤− = − + − − + −⎣ ⎦
 

where δ, π , φc, and h are defined respectively in Eqs. (A.6), (A.32), (A.34) and (A.30b). 

Solve for π0. Applying expectations E0 to Eq. (A.35) for t=1 and t=2 generates 
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(A.36a)  ( ) ( )( )2
0 1 0 01 1cE h uπ δπ δ π φ φ βρ= + − + − − , and 

(A.36b)  ( ) ( ) ( )( )2 2 2
0 2 0 01 1c .E h uπ δ π δ π δ ρ φ φ βρ= + − + + − −  

Substituting ( ) ( )
2

2* *1 1x aκ κκ π φ β β
λ λ

π
⎡ ⎤⎡ ⎤+ − = + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 from Eq. (A.32), Eqs. (A.36a) 

and (A.36b) into Eq. (A.25a) for t=0 and arranging leads to 

(A.37)  

( ) ( ) ( )( ) ( ){ }

2 2
2 2 2 2 2

0

* 2
1 0

1 2

1 1 1 1c

a a a

x a h u

κ κβ δ βδ φ β π β δ βδ β β π
λ λ

φπ φ κ β β δ ρ φ φ βρ φβρ−

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞
− + + + − − + + + −⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

− − − − − + − − + − =⎡ ⎤⎣ ⎦ 0.

a
⎤
⎥
⎦  

Substituting ( )
2

221 1bκ φ β φ
λ

+ + = − − β  and 
2

2a bκβ β
λ

1+ − = −  from Eq. (A.5b) 

into Eq. (A.37) yields 

(A.38)  
( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ){ }

22 2
0

* 2
1 0

1 1 1 1

1 1 1 1c

a b a

x a h u

β δ βδ φ β π π π φ φ βπ

φπ φ κ β β δ ρ φ φ βρ φβρ−

⎡ ⎤− + − − − + − − − −⎣ ⎦

− − − − − + − − + − =⎡ ⎤⎣ ⎦ 0.
 

From Eqs. (A.19) and (A.32), ( )( )1 1xκ φ β π= − − . Thus, ( ) ( )1 1 xφ βπ φ π κ− = − − . 

Substituting it into Eq. (A.38) produces 

(A.39)  ( ) ( ) ( ) ( )*
0 0 1 0 01 ,x x h uππ π δ φ π π φ κ−

⎡ ⎤− = − + − − +⎣ ⎦   where  

(A.40a) 
( )0 22 2

1
1a b

πδ
β δ βδ φ

≡
− + − − β

, and 

(A.40b) 
( ) ( )( ) ( )

( )

2

0 22 2

1 1
.

1
ca h

h
a b

1β β δ ρ φ φ βρ φβρ

β δ βδ φ β

− + − − + −⎡ ⎤⎣ ⎦≡
− + − −

 

Note that 0xδ δ=  and Eq. (A.39) reduces to ( ) ( )0 1 h uπ π δ π π−− = − + 0 0 , when φ=1. 
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Appendix B: Discretionary Policy with State-Contingent, Short-Run Target Values 

in the New-Classical Model with Output Persistence 

The following specifies the problem of the central bank with discretion 

(B.1)  
{ }

( ) ( )

( )
1

2 21 *
0 1

1

1

1

1min
2

,
  . .

.

t t

t b
t t t

t

e
t t t t t

e
t t t

E x

x x u
s t

E

π
β π π λ η

η α π π

π π

∞
=

∞
−

−
=

−

−

x⎧ ⎫⎡ ⎤− + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎧ = + − +⎪
⎨

=⎪⎩

∑
 

The Bellman equation for determining the discretionary policy equals 

(B.2)  ( ) ( )
2 2*

1 1 1
1( ) min ( )
2t

b
t t t t t tV x E x x V x

π
π π λ η β− − −

⎧ ⎫⎡ ⎤= − + − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 with 

(B.3)  ( ) 2
0 1 2

1 .
2t tV x x xγ γ γ= + + t  

Its first-order condition becomes 

(B.4)  ( ) ( )*
1 1 2 0.b

t t tx x xπ π λ α η βα γ γ−− + − + + =t  

Substituting the Phillips curve (Eq. 3) into Eq. (B.4) produces 

(B.5)  ( )( ) ( )* 2
1 2 1 2 2 0.b e b

t t t tx uπ π αβγ βγ αη α λ βγ π π α λ βγ−− + + + + − + + =t

1

 

Taking expectations Et-1 of Eq. (B.5) gives 

(B.6)  *
1 2 .e

t txπ π αβγ βγ αη −= − −  

Substituting Eq. (B.6) into Eq. (B.5) leaves 

(B.7)  
( )

( )
2*

1 2 1 2
2

.
1

b

t t b tx u
α λ βγ

π π αβγ βγ αη
α λ βγ−

+
= − − −

+ +
 

Substituting Eqs. (B.6) and (B.7) into Eq. (3) results in 

(B.8)  
( )1 2

2

1 .
1t t b tx x uη

α λ βγ−= +
+ +
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Now, computing ( )1
b

t t tE L V xβ− ⎡ +⎣ ⎤⎦  using the solutions in Eqs. (B.7) and (B.8) and 

comparing the coefficients of the result with ( )1tV x −  produces 

(B.9a)  ( )2
2 1 11 α βγ γ βη γ+ =  and 

(B.9b)  ( )2
2 2 21 .α βγ γ βη γ+ =  Therefore,  

(B.10)  1 2 0γ γ= =  or 2 2 2

1 βηγ
α β η

−
=

 
and 1 anythingγ = . 

Corresponding to 1 2 0γ γ= = , the discretion solutions in Eqs. (B.7) and (B.8) become 

(B.11a)  *
21

b

t tb uαλπ π
α λ

= −
+

, and 

(B.11b) 1 2

1 .
1t t b tx x uη

α λ−= +
+

 

Appendix C: Discretionary Policy with Long-Run Target Values 

in a Hybrid New-Keynesian Model 

The central bank operates with discretion, and always re-minimizes each period, subject to the 

Phillips curve (Eq. 13), the expectation of the intertemporal loss function 

(C.1)  , 0
0

b t
t

t

E Lβ
∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑L b

with the period loss function in Eq. (51).  

Combining the Phillips curve and its equilibrium in Eqs. (13) and (24) defines the 

Phillips curve around its equilibrium 

(C.2)  ( ) ( ) ( ) ( ) ( )1 11 .t t t t t tx x Eπ π κ φ π π φ β π π− +− = − + − + − − + u  

The Lagrangian expression of the problem equals 
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(C.3)  
( ) ( )

( ) ( )
( ) ( ) ( )

2 2

0
10

1

1
2

.

1

b
t t

t

t tt
t

t t t t

x x

E x x

E u

π π λ

β κ φ π π
ψ

φ β π π π π

∞

−=

+

⎧ ⎫⎡ ⎤− + −⎪ ⎪⎣ ⎦⎪ ⎪= ⎨ ⎬− + −⎡ ⎤
⎪ ⎪+ ⎢ ⎥
⎪ ⎪+ − − + − −⎢ ⎥⎣ ⎦⎩ ⎭

∑L  

As the central bank re-formulates policy each period, we compute the first-order 

conditions with respect to π0, x0, and x1, and eliminate the multipliers from the first-order 

conditions leads to the consolidated first-order condition 

(C.4)  ( ) ( ) ( )0 0 0 .
b b

1x x E xλ λπ π φβ
κ κ

− = − − + − x  

We write the consolidated first-order condition in t period 

(C.5)  ( ) ( ) ( )1 .
b b

t t t tx x E xλ λπ π φβ
κ κ +− = − − + − x  

Solve for xt. Lagging and leading one period of Eq. (C.5) gives 

(C.6)  ( ) ( ) ( )1 1 1

b b

t t t tx x E xλ λπ π φβ
κ κ− − −− = − − + − x , and 

(C.7)  ( ) ( ) ( )1 1 .
b b

t t t t t tE E x x E xλ λπ π φβ
κ κ+ +− = − − + −2 x+  

Substituting Eqs. (C.5) to (C.7) into the Phillips curve in Eq. (C.2), applying Et-1 and 

arranging produces 

(C.8)  
( ) ( ) ( )

( )

2
2 2

1 2 1 1 1

1 1

1

                          0.

t t t t t tb

t t tb

a E x x E x x E x x

x x E u

κβ β φ β
λ

κφ
λ

− + − + −

− −

⎛ ⎞
− − − + + + −⎜ ⎟

⎝ ⎠

− − + =

 

Assume that the solution of Eq. (C.8) takes the form 

(C.9)  ( ) ( )1 1 .t t t t tE x x x x fE uδ− −− = − + 1−  

Leading one and two periods of Eq. (C.9) and applying expectations as well as using 
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1 1 1t t tE u E utρ− + −=  generate 

(C.10)  ( ) ( )1 1 1 1t t t t tE x x E x x f E uδ ρ− + − −− = − + t , and 

(C.11)  ( ) ( ) ( ) ( )2 2
1 2 1 1 1 1 1 .t t t t t t t t t tE x x E x x f E u E x x f E uδ ρ δ δ ρ− + − + − − −− = − + = − + + ρ  

Substituting Eqs. (C.10) and (C.11) into (C.8) produces 

(C.12)  
( )

( ) ( )1 1

1 2
2 2 2

1
.

1

 

t tb

t t

b

tx x a f E
E x x

a

κφ β δ ρ βρ
λ

κβ δ βδ φ β
λ

− −

−

⎧ ⎫⎡ ⎤− + − + −⎨ ⎬⎣ ⎦⎩ ⎭− =
⎛ ⎞

− + + +⎜ ⎟
⎝ ⎠

u

 

Comparing Eq. (C.12) with Eq. (C.9) produces 

(C.13)  
2

2 3 2 21 ba κβ δ βδ φ β δ
λ

⎛ ⎞
− + + + =⎜ ⎟

⎝ ⎠
φ , and 

(C.14)  
( ){ }

.
1b

f
a

δκ

λ β δ ρ δβρ φ
=

⎡ ⎤− + −⎣ ⎦

 

Now, solve for tπ . By Eqs. (C.5) and (C.6), we can derive 

(C.15)  ( ) ( )
( ) ( )

( ) ( )
1 1

1 1

1 1 1

.
b t t t

t t t

t t t t

E x x x x
E

E x x E x x

δλπ π δ π π
κ φβ δ

− −

− −

− + −

⎧ ⎫⎡ ⎤− − −⎪⎣ ⎦− − − = − ⎪
⎨ ⎬

⎡ ⎤− − − −⎪ ⎪⎣ ⎦⎩ ⎭
 

Substituting Eqs. (C.9) and (C.10) into Eq. (C.15) gives 

(C.16)  ( ) ( ) ( )1 1 1
b

t t t tE fλπ π δ π π φβρ
κ− −− = − − − 1 tE u− , 

where δ  and f are defined in Eqs. (C.13) and (C.14). 

Eqs. (C.9) and (C.16) are the solutions. Does a less-than-one root exist for the 

characteristic equation (C.13)? Consider the two extreme cases of φ = 0 and φ = 1. For the case φ 

= 0, the characteristic equation (C.13) reduces to ( )2 21 bβδ κ λ δ 0− + = , and its two roots are 
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0δ = , which is a degenerative solution, and ( )21 bδ κ λ β 1= + > . The system diverges when 

φ = 0. 

For the case φ =1, the characteristic equation (C.13) reduces to 

(C.17)  
2

2 1 1b

κβδ β δ
λ

⎛ ⎞
− + + + =⎜ ⎟

⎝ ⎠
0.  

We can show that the bigger root exceeds one and the smaller root lies between zero and one. 

The system can converge when φ = 1. 

As a result, when the lag index φ goes from 0 to 1, the system changes from divergence to 

convergence. Or, the system may diverge, converge, diverge, converge and so on. We can 

conclude that π  and x  are asymptotically controllable, if the characteristic equation (C.13) 

possesses a root that is less than one, 1δ < . 

Furthermore, consider whether discretionary policy with the long-run target values can 

achieve path controllability (i.e., δ δ= ). Now, derive the conditions for δ δ= , using the two 

characteristic equations, Eqs. (C.13) and (18a), under both discretionary policy and Ramsey 

policy. When δ δ= , the characteristic equation (Eq. C.13) becomes 

(C.18)  
2

2 3 2 21 .ba κβ δ βδ φ β δ φ
λ

⎛ ⎞
− + + + =⎜ ⎟

⎝ ⎠
 

After substitution from Eq. (18c), the characteristic equation (18a) equals 

(C.19)  ( ) ( )
2

22 3 2 2 21 1 1a κβ δ βδ φ β δ δ φ βδ δ φ φ
λ

⎧ ⎫⎡ ⎤⎪ ⎪− + + + + − − + − =⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

0.  

Assuming  

(C.20)  bλ λ=  
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and substituting Eq. (C.18) into Eq. (C.19) and arranging gives 

(C.21)   ( ) ( ) 21 1φ φ βδ δ φ⎡ ⎤− − − + =⎣ ⎦ 0.

Eq. (C.21) gives rise to the conditions for δ δ=  and bλ λ=  

(C.22a)  1φ = , and/or 

(C.22b)  ( )2 21 .φ βδ δ βδ− = −  

Now, prove that ( )2 21φ βδ δ βδ− ≠ −  for (0,1)φ ∈  by contradiction. Assume Eq. 

(C.22b) holds. Substituting Eqs. (18b) and (18c) into Eq. (18a) and arranging produces 

(C.23)  ( )( ) ( ) ( )
222 2 21 1 κφ φ βδ δ δ βδ δ βδ δ

λ
− − + − − − + =2 0.  

Substituting Eq. (C.22b) into Eq. (C.23) and arranging produces 

(C.24)  ( ) ( )
2

2 2 2 21 0κδ βδ δ βδ φ βδ δ
λ

⎡ ⎤− − − − +⎣ ⎦ .=  

Using Eq. (C.22b), Eq. (C.24) reduces to 2 2 0.κ δ λ =  Thus, 0.δ =

(0,

 With δ=0 the 

characteristic equation (18a) reduces to a=0. a=0 contradicts with 1)φ ∈ . Therefore, 

( )2 21φ βδ δ βδ− ≠ −  for (0,1)φ ∈ . 

In sum, if bλ λ= , then 

(C.25)   1δ δ φ= ⇔ =

We proved that . We can easily show that 1δ δ φ= ⇒ = 1φ δ δ= ⇒ =  by noting that 

Eq. (C.13) equals Eq. (18a) when λb=λ and φ=1. Eq. (C.25) means that discretionary policy 

proves path controllable, when φ = 1. Now, we prove that the stabilization bias does not exist 

when φ = 1 under discretionary policy with ( ) ( ),b b ,x xπ π=  and bλ λ= . 
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With λb=λ, φ = 1, and δ δ= , Eq. (C.14) becomes 

(C.26)  
( )

.
1

f κδ
λ δβρ

= −
−

 

From Eq. (C.16), 

(C.27)  ( ) ( ) ( )
( )

1
1 .

1t t t tu f u
δ βρλπ βρ

κ δ
−

= − − =
−

u
βρ

 Thus, 

(C.28)  ( ) ( )( ) ( )
( ) ( )

1
, ,

1 1t t t t t tu x u u u
δ βρ κδπ

δβρ λ δβρ
⎛ ⎞−

= −⎜ ⎟⎜ ⎟− −⎝ ⎠
.  

With φ = 1, Eq. (22) reduces to 

(C.29)  ( ) ( )( ) ( )1, 1 ,t t t t t tu x u u u
d d

κπ βρ
λ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

, 

Noting ( )1 1d δ δβρ= −  in Eq. (19) and comparing Eq. (C.28) with Eq. (C.29) yields 

(C.30)  ( ) ( )( ) ( ) ( )( ), ,t t t t t t t tu x u u x uπ π= .

b

 

Appendix D: Discretionary Policy with Lagged, Short-Run Target Values 

in a Hybrid New-Keynesian Model 

The central bank operates with discretion, and always re-minimizes each period, subject to the 

Phillips curve (Eq. 13) or the Phillips curve around its equilibrium in Eq. (C.2), the expectation 

of the intertemporal loss function 

(D.1)  , 0
0

b t
t

t

E Lβ
∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑L

with the period loss function in Eq. (62).  

The Lagrangian expression of the problem equals 
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(D.2)  

( ) ( )

( ) ( )
( ) ( )
( ) ( ) ( )

2
1

2
1

0
0

1

1

1
2

.

1

t t

b
t t t

t
t t

t
t t t t

x x x xE
x x

E u

π π δ π π

λ δβ
κ φ π π

ψ
φ β π π π π

−

∞
−

=
−

+

⎧ ⎫⎧ ⎫− − −⎡ ⎤⎪⎣ ⎦ ⎪⎪ ⎪⎨ ⎬⎪ ⎪+ − − −⎡ ⎤⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭= ⎨ ⎬
⎪ ⎪− + −⎡ ⎤
⎪ ⎪+ ⎢ ⎥

+ − − + − −⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

∑L  

As the central bank re-formulates policy each period, we only calculate the first-order 

conditions with respect to π0, x0, and x1, and eliminate the multipliers ψ 0 and ψ 1 leads to the 

consolidated first-order condition 

(D.3)  

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

0 1

0 1 0

0 1

0 1 0

2
0 2 0 1

                  =0.b

E

x x x x

E x x x x

E x x E x x

−

−

⎧ ⎫− − −⎡ ⎤⎪⎣ ⎦ ⎪
⎨ ⎬

− − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫− − −⎡ ⎤⎣ ⎦⎪ ⎪⎪ ⎪+ − + − − −⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪

+ − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

π π δ π π
κ

βδ π π δ π π

δ

λ β φ δ δ

φβ δ δ

 

We write the consolidated first-order condition in t period 

(D.4)  

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

1

1

1

1

2
2 1

                  =0.

t t

t t t

t t

b
t t t

t t t t

E

x x x x

E x x x x

E x x E x x

−

+

−

+

+ +

⎧ ⎫− − −⎡ ⎤⎪⎣ ⎦ ⎪
⎨ ⎬

− − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫− − −⎡ ⎤⎣ ⎦⎪ ⎪⎪ ⎪+ − + − − −⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪

+ − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

π π δ π π
κ

βδ π π δ π π

δ

λ β φ δ δ

φβ δ δ

 

Transforming the Phillips curve in Eq. (C.2) and lagging one and leading one and two 

period produces 

(D.5a)  ( ) ( ) ( ) ( ) ( )1 11t t t t t tx x Eκ π π φ π π φ β π π− +− = − − − − − − − u ,  

(D.5b)  ( ) ( ) ( ) ( ) ( )1 1 2 11t t t t t 1tx x Eκ π π φ π π φ β π π− − − −− = − − − − − − − u − , 

(D.5c)  ( ) ( ) ( ) ( ) ( )1 1 21t t t t t t t t t 1E x x E E E uκ π π φ π π φ β π π+ + +− = − − − − − − − + , and 
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(D.5d)  ( ) ( ) ( ) ( ) ( )2 2 1 31 .t t t t t t t t t t 2E x x E E E E uκ π π φ π π φ β π π+ + + +− = − − − − − − − +  

Using Eqs. (D.5a) to (D.5d), compute 

(D.6a)  

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) (

1

1 1 2

1 11 ,

t t

t t t t

t t t t t t

x x x x

E E u

κ δ

π π δ π π φ π π δ π π

φ β π π δ π π δ

−

− − −

+ −

− − − =⎡ ⎤⎣ ⎦
− − − − − − −⎡ ⎤ ⎡⎣ ⎦ ⎣

− − − − − − −⎡ ⎤⎣ ⎦ )1u −

⎤⎦ , 

(D.6b)  

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1 1

2 1 11 ,

t t t

t t t t t

t t t t t t t

E x x x x

E

E E E u u

κ δ

π π δ π π φ π π δ π π

φ β π π δ π π δ

+

+ −

+ + +

− − − =⎡ ⎤⎣ ⎦
− − − − − − −⎡ ⎤ ⎡⎣ ⎦ ⎣

− − − − − − −⎡ ⎤⎣ ⎦  and

⎤⎦  

(D.6c)  

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) (

2 1

2 1 1

3 2 21 .

t t t t

t t t t t t t

t t t t t t t t

E x x E x x

E E E

E E E u E u

κ δ

)1

π π δ π π φ π π δ π π

φ β π π δ π π δ

+ +

+ + +

+ + +

− − − =⎡ ⎤⎣ ⎦
− − − − − − −⎡ ⎤ ⎡⎣ ⎦ ⎣

− − − − − − −⎡ ⎤⎣ ⎦ +

⎤⎦  

Multiplying Eq. (D.4) by κ and substituting Eqs. (D.6a) to (D.6c) into it produces 

(D.7)  

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( )

12

1

1 1 2

1 1 1

1 1

2 1

1

1

t t

t t t

t t t t

t t t t t t

t t t t tb

t t t t

E

E E u u

E

E E

π π δ π π
κ

βδ π π δ π π

π π δ π π φ π π δ π π

φ β π π δ π π δ

π π δ π π φ π π δ π π
λ β φ δ

φ β π π δ π π

−

+

− − −

+ − −

+ −

+ +

⎧ ⎫− − −⎡ ⎤⎪⎣ ⎦ ⎪
⎨ ⎬

− − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫− − − − − − −⎡ ⎤ ⎡ ⎤⎪⎣ ⎦ ⎣ ⎦⎪
⎨ ⎬

− − − − − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

− − − − − − −⎡ ⎤ ⎡⎣ ⎦ ⎣+ − +
− − − − −⎡⎣ ( )

⎤⎦

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2 1 12

3 2 2 1

=0.

1

t t t

t t t t t t t

t t t t t t t t

E u u

E E E

E E E u E u

δ

π π δ π π φ π π δ π π
φβ δ

φ β π π δ π π δ

+

+ + +

+ + + +

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎧ ⎫⎪ ⎪ ⎪
⎨ ⎨ ⎬

− −⎤⎪ ⎪ ⎪⎦⎩ ⎭
⎪ ⎪

⎧ ⎫− − − − − − −⎡ ⎤ ⎡⎪ ⎪⎪⎣ ⎦ ⎣ ⎦⎪+⎪ ⎨ ⎬⎪
− − − − − − −⎡ ⎤⎪ ⎪ ⎪⎪⎣ ⎦⎩ ⎭⎩ ⎭

⎪
⎬
⎪

⎤

 

Assume that  and the solution without shocks, ut, takes the form 0tu =

(D.8)  ( ) ( )1 .t tπ π δ π π−− = −  

Using Eq. (D.8) and , Eq. (D.7) becomes 0tu =
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(D.9)  

( )( ) ( )( )

( )( ) ( )( )

( ) ( )( )

( )
( )( ) ( )( )

( ) ( )( )

( )( ) ( )( )

( ) ( )( )

2
1

1 2

1

1

12

2

1

=0.
1

1

t t

t t

t

t tb

t

t t

t

κ δ δ π π βδ δ δ π π

δ δ π π φ δ δ π π

φ β δ δ π π

δ δ π π φ δ δ π π
λ β φ δ

φ β δ δ π π

δ δ π π φ δ δ π π
φβ δ

φ β δ δ π π

−

− −

−

+

+

+

⎡ ⎤− − − − −⎣ ⎦
⎧ ⎫⎡ ⎤− − − − −
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥− − − −⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤− − − − −⎪ ⎪⎢ ⎥+ − +⎨ ⎬⎢ ⎥− − − −⎪ ⎪⎣ ⎦⎪ ⎪

⎡ ⎤⎪ ⎪− − − − −
⎢ ⎥⎪ ⎪+
⎢ ⎥⎪ ⎪− − − −⎣ ⎦⎩ ⎭

 

Obviously, δ δ=  solves Eq. (D.9). Now, Eq. (D.8) equals 

(D.10)  ( ) ( )1 .t tπ π δ π π−− = −  

Using Eq. (D.10), (D.4) reduces to 

(D.11)  
( ) ( ) ( ) ( ) ( )

( ) ( )
1 1

2
2 1

=0.
                   

t t t t t

t t t t

x x x x E x x x x

E x x E x x
− +

+ +

⎧ ⎫− − − − + − − −⎡ ⎤ ⎡⎪⎣ ⎦ ⎣ ⎦⎪
⎨ ⎬

+ − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

δ β φ δ δ

φβ δ δ

⎤
 

Obviously, one of the solutions of Eq. (D.11) equals 

(D.12)  ( ) ( )1 .t tx x x xδ −− = −  

By Eqs. (D.10) and (D.12), the discretionary policy proves path controllable. 

When , the stabilization bias exists. Now, determine the weight parameter, λb, to 

see if a proper weight can eliminate the stabilization bias. To eliminate biases, 

0tu ≠

( ) ( )t t t tu uπ π=  

and ( ) ( )t tt tx u x u=  must hold. That is, Eqs. (17a) and (17b) must satisfy the consolidated first- 

order condition (Eq. D.4). Applying Et-1 to Eq. (D.4) and using Eqs. (17a) and (17b) determine 

(D.13)  ( )
( )
( )

21
.

1
b

c

βρ
λ φ φ λ

ρ φβρ

−
= −

−
 

 

 

 52



Appendix E: Discretionary Policy with Expected, Short-Run Inflation Target Value 

in a Hybrid New-Keynesian Model 

The expectation of the intertemporal loss function equals 

(E.1)  , 0
0

b t
t

t

E Lβ
∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑L b

with the period loss function in Eq. (67).  

The Lagrangian expression of the problem equals 

(E.2)  

( ) ( )

( ) ( )
( ) ( )
( ) ( ) ( )

21
1

2
1

0
0

1

1

1
2

.

1

t t

b
t t t

t
t t

t
t t t t

x x x xE
x x

E u

π π δ π π

λ δβ
κ φ π π

ψ
φ β π π π π

−
+

∞
−

=
−

+

⎧ ⎫⎧ ⎫⎡ ⎤− − −⎪ ⎪⎣ ⎦⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪+ − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭= ⎨ ⎬
⎪ ⎪− + −⎡ ⎤
⎪ ⎪+ ⎢ ⎥

+ − − + − −⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

∑L  

As the central bank re-makes policy each period, we only calculate the first-order 

conditions with respect to π0, x0, and x1, and eliminate the multipliers ψ 0 and ψ 1 leads to the 

consolidated first-order condition 

(E.3)  ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

0 1

1
0 0 1 0 1 0

2
0 2 1

0.b

x x x x

E E x x

E x x x x

−

−

⎧ ⎫− − −⎡ ⎤⎣ ⎦⎪ ⎪⎪ ⎪⎡ ⎤− − − + − + − − − =⎡ ⎤⎨ ⎬⎣ ⎦⎣ ⎦
⎪ ⎪

+ − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

δ

κ π π δ π π λ β δ φ δ

φβ δ δ

x x  

We write the consolidated first-order condition in t period. Multiplying the condition by δ 

and transforming gives 

(E.4)  ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1

1 1

2
2 1

.
t t

b
t t t t t t

t t t

x x x x

E E x

E x x x x

δ

κ π π δ π π λ δ β δ φ δ

φβ δ δ

−

+ +

+ +

x x x

⎧ ⎫− − −⎡ ⎤⎣ ⎦⎪ ⎪⎪ ⎪− − − = − + − − −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪

+ − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

 

Multiplying Eq. (E.4) by κ and substituting Eqs. (D.6a) to (D.6c) into it produces 
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(E.5)  

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) (

2
1

1 1 2

1 1 1

1 1

2 1 1

2

1

1

t t t

t t t t

t t t t t t

t t t t tb

t t t t t t t

E

E E u u

E

E E E u

κ π π δ π π

π π δ π π φ π π δ π π

φ β π π δ π π δ

π π δ π π φ π π δ π π
λ δ β δ φ

φ β π π δ π π δ

φβ δ

+

− − −

+ − −

+ −

+ + +

− − − =⎡ ⎤⎣ ⎦

⎧ ⎫− − − − − − −⎡ ⎤ ⎡ ⎤⎪⎣ ⎦ ⎣ ⎦⎪
⎨ ⎬

− − − − − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫− − − − − − −⎡ ⎤ ⎡⎪⎣ ⎦ ⎣ ⎦ ⎪− + ⎨ ⎬

− − − − − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

+

)u

⎤

( ) ( ) ( ) ( )
( ) ( ) ( ) (

2 1 1

3 2 2

.

1
t t t t t t t

t t t t t t t t

E E E

E E E u E u

π π δ π π φ π π δ π π

φ β π π δ π π δ
+ + +

+ + +

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪

⎧ ⎫− − − − − − −⎡ ⎤ ⎡⎪ ⎪⎪⎣ ⎦ ⎣ ⎦⎪
⎪ ⎨ ⎬

− − − − − − −⎡ ⎤⎪ ⎪ ⎪⎣ ⎦⎩ ⎭⎩ ⎭)1+

⎤
⎪
⎪

 

Assume  and the solution takes the form 0tu =

(E.6)  ( ) ( )1 .t tπ π δ π π−− = −  

When , Eq. (E.5) becomes 0tu =

(E.7)  

( )( )

( )( ) ( )( )

( ) ( )( )

( )
( )( ) ( )( )

( ) ( )( )

( )( ) ( )( )

( ) ( )( )

2

1 2

1

1

1
2

2

1

1

1

t

t t

t

t t
b

t

t t

t

κ δ δ π π

δ δ π π φ δ δ π π

φ β δ δ π π

δ δ π π φ δ δ π π
λ δ β δ φ

φ β δ δ π π

δ δ π π φ δ δ π π
φβ δ

φ β δ δ π π

− −

−

+

+

+

⎡ ⎤− − =⎣ ⎦
⎧⎧ ⎫⎡ ⎤ ⎡ ⎤− − − − −⎪⎣ ⎦ ⎣ ⎦⎪

⎨ ⎬
⎡ ⎤− − − −⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤ ⎡− − − − −⎪⎣ ⎦ ⎣ ⎦⎪− + ⎨ ⎬
⎡ ⎤− − − −⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤ ⎡ ⎤− − − − −⎪⎣ ⎦ ⎣ ⎦⎪+ ⎨ ⎬
⎡ ⎤− − − −⎪ ⎪⎣ ⎦⎩ ⎭

.

⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

⎤  

Obviously, δ δ=  solves Eq. (E.7). Now, Eq. (E.6) equals 

(E.8)  ( ) ( )1 .t tπ π δ π π−− = −  

Using Eq. (E.8), (E.4) reduces to 

(E.9)  
( ) ( ) ( ) ( ) ( )

( ) ( )
1 1

2
2 1

0.
                 

t t t t t

t t t

x x x x E x x x x

E x x x x
− +

+ +

⎧ ⎫− − − − + − − −⎡ ⎤ ⎡⎪⎣ ⎦ ⎣ ⎦⎪ =⎨ ⎬
+ − − −⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

δ β δ φ δ

φβ δ δ

⎤
 

Obviously, one of the solutions of Eq. (E.9) equals 
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(E.10)  ( ) ( )1 .t tx x x xδ −− = −  

By Eqs. (E.8) and (E.10), the discretionary policy proves path controllable. 

When , the stabilization bias arises. Now, determine the weight parameter, λb, to 

see if a proper weight can eliminate the stabilization bias. To eliminate biases, 

0tu ≠

( ) ( )t t t tu uπ π=  

and ( ) ( )t tt tx u x u=  must hold. That is, Eqs. (17a) and (17b) must satisfy the consolidated first- 

order condition (Eq. E.4). Applying Et-1 to Eq. (E.4) and using Eqs. (17a) and (17b) determine 

(E.11)  
( ) ( )
( )( )

21
.

1 1
cb

φ φ βρ
λ λ

δ δβρ φβρ

− −
=

− −
 

Appendix F: The Delegation in the Hybrid New-Keynesian Model with β=0 

When the discount factor equals zero (β=0), the social loss function equals 

(F.1)  ( ) (2 2* *1
2t t tL xπ π λ⎡ ⎤= − + −⎢ ⎥⎣ ⎦)x

t

, 

and the hybrid new-Keynesian Phillips curve equals 

(F.2)  1 .t t tx uπ κ φπ −= + +  

If φ=0, the model is apparently static. If φ≠0, the model is essentially static, since the central 

bank only cares about the present period loss and we can treat πt-1 as a predetermined variable. In 

addition, the model in Eqs. (F.1) and (F.2) contains no expectations and, thus, the time- 

inconsistency problem does not exist. 

The Lagrangian expression of the problem equals 

(F.3)  ( ) ( ) ( )2 2* *
1

1 .
2 t t t t t tx x x u tπ π λ ψ κ φπ π−

⎡ ⎤= − + − + + + −⎢ ⎥⎣ ⎦
L  

Computing the first-order conditions with respect to πt and xt and eliminating the 

multiplier ψ t leads to the consolidated first-order condition 
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(F.4)   ( ) ( )* * 0.t tx xλ κ π π− + − =

Simultaneously solving the consolidated first-order condition (Eq. F.4) and the Phillips 

curve (Eq. F.2) produces 

(F.5a)  2t tuλπ π
λ κ

= +
+

, and 

(F.5b)  2t tx x uκ
λ κ

= −
+

, where 

(F.6a)  
( )* *

1
2 2

t
xκ λ κπ λφπ

π
λ κ λ κ

−
+

≡ +
+ +

, and 

(F.6b)  
* *

1
2 2 .txx

κφπλ κπ
λ κ λ κ

−+
≡ −

+ +
 

π  and x  are the equilibriums under the social loss function (F.1). Generally, *π π≠  and 

*x x≠ . That is, π * and x* are not controllable.  

Now, assume the central bank loss function as follows 

(F.7)  ( ) ( )2 21 .
2

b b b
t t tL xπ π λ⎡ ⎤= − + −⎢ ⎥⎣ ⎦

bx  

Under the loss function (Eq. F.7), the optimal outcomes, which mimic Eqs. (F.5a) and 

(F.5b), equal 

(F.8a)  
( ) 1

2 2

b b b b b
t

t tb b b

x
u

κ λ κπ λ φπ λπ 2λ κ λ κ λ κ
−

+
= + +

+ + +
, and 

(F.8b)  1
2 2 .

b b b
t

t tb b b

x
2x u

κφπλ κπ κ
λ κ λ κ λ κ

−+
= − −

+ + +
 

To eliminate the stabilization bias, comparing Eq. (F.8a) with Eq. (F.5a) produces 

(F.9)  .bλ λ=  

Adopt 

(F.10)  bπ π=  and .bx x=   
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Using Eqs. (F.9), (F.10), (F.6a) and (F.6b), Eqs. (F.8a) and (F.8b) equal Eqs. (5a) and (5b). 

That is, π  and x  are jointly controllable and stabilization bias disappears under the loss 

function in Eq. (F.7) with bπ π= , bx x= , and bλ λ= . 
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