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This study examines the relationship between U.S. output growth and its volatility over the period 
1875:Q1 to 2008:Q2. We examine the data for outliers and apply corrections when found. Next, 
we search for possible effects of structural breaks in the growth rate and its volatility. In so doing, 
we employ autoregressive generalized conditional heteroskedasticity and autoregressive 
exponential general conditional heteroskedasticity specifications of the process describing output 
growth rate and its volatility with and without structural breaks in the mean and volatility 
processes. We discover one break in the mean process – 1936:Q2 – and three breaks in the 
volatility process – 1916:Q4, 1950:Q3, and 1983:Q4 (or 1984:Q3). After accommodating the 
breaks in the mean and volatility processes, the integrated generalized autoregressive conditional 
heteroskedasticity effect proves spurious. Finally, our data analyses and empirical results suggest 
that higher output-growth volatility stimulates output growth and that higher output growth 
reduces its volatility. Moreover, the evidence shows that the time-varying variance falls sharply 
once we incorporate the three structural breaks in the unconditional variance of output.  
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1. Introduction 

Researchers occasionally consider the possible structural changes in the duration of recessions and 

expansions. For example, Diebold and Rudebusch (1992), Cover and Pecorino (2005), and Young 

and Du (2008) all investigate the possibility of break points in the business cycle, examining the 

duration of recessions and expansions. Diebold and Rudebusch (1992) and Cover and Pecorino 

(2005) use the NBER reference cycle data in their analysis. Young and Du (2008) also examine 

detrended real GDP growth in addition to the NBER reference cycles. 

Researchers more frequently explore the possible structural change in the volatility of real 

GDP growth. For example, Kim and Nelson (1999), McConnell and Perez-Quiros (2000), 

Blanchard and Simon (2001), and Ahmed et al. (2004), among others, document a structural 

change in the volatility of U.S. GDP growth, finding a rather dramatic reduction in GDP volatility 

that some have labeled the Great Moderation. Stock and Watson (2003), Bhar and Hamori (2003), 

Mills and Wang (2003), and Summers (2005) show a structural break in the volatility decline of the 

output growth rate for Japan and other G7 countries, although the break occurs at different times.  

Researchers now most frequently employ an autoregressive model for the mean equation 

of real GDP growth and some form of a generalized autoregressive conditional heteroskedasticity 

(GARCH) modeling strategy to examine the volatility of real GDP growth. Most such studies, 

however, assume a stable GARCH or exponential GARCH (EGARCH) process, capturing the 

movement in volatility. The neglect of potential structural breaks in the unconditional or 

conditional variances of output growth leads to high persistence in the conditional volatility or 

integrated GARCH (IGARCH). That is, typically all persistence measures fall close to one. 

The evidence of a structural change in output growth volatility combined with finding high 

persistence in conditional volatility motivates us to revisit the issue of conditional volatility in real 
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GDP growth rates for the US, using a much longer time-series data set – 1875:Q1 to 2008:Q2.1 We 

report that three structural breaks exist in the variance resulting in high volatility persistence – 

1916:Q4, 1950:Q3, and 1983:Q4 (or 1982:Q3). This issue is well known at the theoretical level;2 

but, the only empirical examination for the U.S. appears in Fang and Miller (2008). This paper 

contributes to the literature by providing some new evidence from the US that focuses on a longer 

time horizon extending back to the last quarter of the 19th century. First, excess kurtosis in the 

growth rate drops substantially or disappears in GARCH or EGARCH models, once we modify 

outliers in the data set. Non-normally distributed residuals may emerge by not modeling the 

extraordinary change in the growth series. Second, the IGARCH effect or high volatility 

persistence remains, when we introduce one structural break in the mean equation. Third, the 

time-varying variance falls sharply, only when we incorporate the three breaks in the variance 

equation. The IGARCH effect proves spurious due to nonstationary variance of output growth. 

Fourth, the GARCH(1, 1) model finds significant effects of our more correct specification of 

output volatility on output growth or of output growth on its volatility.  

Using U.S. quarterly real GDP data, Fang and Miller (2008) report that the long-term 

                                                 
1 The sample ends at the beginning of the financial crisis and the Great Recession, which may emerge as another break 
point in output growth and its volatility. 
2 Diebold (1986) first argues that structural changes may confound persistence estimation in GARCH models. He 
notes that Engle and Bollerslev’s (1986) integrated GARCH (IGARCH) may result from instability of the constant 
term of the conditional variance (i.e., nonstationarity of the unconditional variance). Neglecting such changes can 
generate spuriously measured persistence with the sum of the estimated autoregressive parameters of the conditional 
variance heavily biased towards one. Lamoureux and Lastrapes (1990) provide confirming evidence that ignoring 
discrete shifts in the unconditional variance, the misspecification of the GARCH model can bias upward GARCH 
estimates of persistence in variance. Including dummy variables to account for such shifts diminishes the degree of 
GARCH persistence. More recently, Mikosch and Stărică (2004) prove that the IGARCH model makes sense when 
non-stationary data reflect changes in the unconditional variance. Hillebrand (2005) shows that in the presence of 
neglected parameter change-points, even a single deterministic change-point can cause GARCH  to measure volatility 
persistence inappropriately. Alternatively, Hamilton and Susmel (1994) and Kim et al. (1998) suggest that the 
long-run variance dynamics may include regime shifts, but within a given regime, it may follow a GARCH process. 
Kim and Nelson (1999), Bhar and Hamori (2003), Mills and Wang (2003), and Summers (2005) apply this approach of 
Markov switching heteroskedasticity with two states to examine the volatility of real GDP growth and identify 
structural changes. 
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growth rate of output does not shift and its variance declines. This combination may imply 

immediately a weak relationship between growth and volatility.3 In contrast, for our much longer 

time-series data set from 1875:Q1 to 2008:Q2 rather than the post-WWII sample of Fang and 

Miler (2008), we find that structural changes emerge in the variance as well as the mean of the real 

GDP growth rate identified by the multiple structural change test of Bai and Perron (1998, 2003). 

If the long-term mean growth rate fell substantially, which we find, the implication of the Great 

Moderation for the relationship between output growth and its volatility is not straightforward and 

requires model-based calculations.  

The rest of the paper unfolds as follows. Section 2 discusses the data, detects and corrects 

outliers, models the unstable GARCH process of output growth volatility, and identifies the break 

dates in the mean and the conditional variance. Section 3 presents empirical results with changes in 

the mean and the variance and identifies two areas of misspecification of the GARCH modeling of 

output growth volatility. Section 4 considers evidence on the relationship between the output 

growth rate and its volatility. Finally, Section 5 concludes.  

2. Data Analysis and Modeling 

Output growth rates ( ty ) equal the percentage change in the logarithm of seasonally adjusted 

quarterly real GDP ( tY ) with base year 2000 over the period 1875:Q1 to 2008:Q2. That is, we 

create the quarterly real GDP series, involving one splice. The original data come from Balke and 

Gordon (1986) from 1875:Q1 to 1983:Q4 (base year = 1972) and the US Bureau of Economic 

Analysis from 1947:Q1 to 2008:Q2 (base year = 2000). We splice the 1875:Q1 to 1983:Q4 real 

GDP series to the 1947:Q1 to 2008:Q2 real GDP series in 1947:Q1, measured in 2000 prices.  

                                                 
3 Stock and Watson (2003) interpret the moderation in output volatility with no change in the mean growth rate as 
shorter recessions and longer expansions in the US, linking to the literature on durations of recessions and expansions.. 
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Descriptive Statistics 

Table 1 reports descriptive statistics for the growth rate of the spliced quarterly real GDP. The US 

experiences a mean growth rate of 0.82 percent for the full 134-year sample with the highest rate of 

7.96 in 1879:Q4 and the lowest rate of -8.76 in 1893:Q3. Output volatility, represented by the 

standard deviation, equals 2.24. Under the assumptions of normality, standard measures of 

skewness and kurtosis possess asymptotic distributions of N(0, 6/T) and N(0, 24/T), respectively, 

where T(=533) equals the sample size. The skewness statistic displays an asymmetric distribution 

characterized by negative skewness, meaning that in the sample period, a greater probability exists 

of large decreases in real GDP growth than large increases. The kurtosis statistic exhibits 

leptokurticity with fat tails, meaning that extreme changes occur more frequently with a higher 

kurtosis. The Jarque-Bera test rejects normality. Ljung-Box Q and Q2 statistics test for 

autocorrelation up to nine lags. The Ljung-Box statistics (LB Q ) indicate autocorrelation in the 

growth rates, while the Ljung-Box statistics for squared rates (LB Q2) suggest time-varying 

variance in the series. Autocorrelation and heteroskedasticity suggest ARMA processes for the 

mean and the variance equations to capture the dynamic structure and to generate white-noise 

residuals.  

Autoregressive Model of Output Growth Rate 

Table 1 also reports the results of the AR model constructed for the growth rate series. Based on the 

Schwarz Bayesian Criterion (SBC), four lags, an AR(4) process, prove adequate to capture growth 

dynamics and produce uncorrelated residuals. That is, the mean growth rate equation equals the 

following: 

4
i 1t 0 i t i ty a a y ε= −= + +∑ ,       (1) 

where the growth rate )ln(ln100 1−−×≡ ttt YYy , tYln  equals the natural logarithm of real GDP, 
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and tε  equals the serially uncorrelated error term.  

The AR(4) model proves problematic in several areas. First, we reject normality of the 

error term with significant skewness and kurtosis. Second, the significant Ljung-Box Q-statistics 

for squared rates indicate time-varying variance in the series, although the insignificant Ljung-Box 

Q-statistics suggest no autocorrelation. We expect to resolve these two issues of misspecification 

by modeling outliers and changes in the mean and the variance equations. That is, the likelihood of 

biasing the estimated volatility persistence parameters toward one and the skewness and 

leptokurtosis in the distribution of output growth should vanish after adjustment of the GARCH 

model with various changes.  

Outlier Detection and Correction 

Economic and financial time series frequently include outliers.4 An outlier observation appears 

inconsistent with other observations in the growth rates. To the best of our knowledge, however, 

researchers typically overlook their existence and effect when modeling output growth and its 

volatility.5 The combined task of detecting outliers and correcting them faces similar problems to 

the lag-length selection process in time-series modeling. Too many outliers in a data series 

deteriorate the quality of that data; too few (i.e., correcting too many outliers) may prevent the 

capture of important structural changes in the data series.  

Table A1 in the Appendix identifies the outliers in the growth rate of real GNP, using the 

                                                 
4 Balke and Fomby (1994) analyze fifteen post-World War II U.S. macroeconomic time series using the outlier 
identification procedure based on Tsay (1988) and find that outliers may prove important for U.S. macroeconomic data, 
and such aberrant observations may lead to large ARCH test statistics. van Dijk, Franses, and Lucas (1999) 
demonstrate that neglecting additive outliers frequently leads to a rejection of the null hypothesis of homoskedasticity, 
when it is in fact true. Tolvi (2001) and Charles and Darné (2006), however, show another possibility. That is, outliers 
can hide the ARCH tests of the series. After correcting the data for outliers, returns series sometimes display strong 
evidence of ARCH. Franses and Ghijsels (1999) and Charles and Darné (2005, 2006) apply the method of Chen and 
Liu (1993) to correct for additive outlier and show that correcting for additive outliers reduces excess kurtosis in 
GARCH models and improves forecasts of stock market volatility. 
5 Fang and Miller (2008) provide an exception. They develop the method that we generally follow in this paper. 
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following selection criterion: t y Mean k SD− > ⋅ , where k measures the stringency imposed on 

outlier detection. When k=4, we identify only one outlier and when k=2, we indentify 45 outliers. 

Finally, with k=3, we find 11 outliers. We focus on the results for k=3. Of the 11 outliers, three 

represent high growth rates, while eight represent low (negative) growth rates. 

We apply the Franses and Ghijsels (1999) method to correct additive outliers in GARCH 

models. In the correction process, we, first, estimate the AR(4)-GARCH(1,1) model for the growth 

rate series and replace the observed growth rates with outlier-corrected values. 

Table 2 reports descriptive statistics for the outlier-corrected growth rate. Comparing Table 

2 to Table 1, we corrected eight negative outliers but only three positive outliers and the skewness 

statistic moves form a significant negative value in Table 1 to an insignificant positive value in 

Table 2. Nonetheless, even though the test statistics both decrease in value, we still observe 

significant kurtosis and non-normality in the outlier-corrected growth rate series. 

Table 2 also reports the results of estimating the AR(4) model for the growth rate of real 

GNP assuming a homoskedastic error process. We note that the error process does not exhibit 

skewness or kurtosis and we cannot reject the null hypothesis of a normal error structure. We do 

find evidence of heteroskedastic errors, which leads to our analysis of a GRACH process for the 

error process in the AR(4) mean equation. 

Identifying Structural Change 

Using the outlier-corrected data, we look for structural changes in the volatility for GDP growth in 

sequential steps. First, we estimate equation (1) allowing for the possibility of structural breaks in 

its intercept and slope coefficients. Specifically, we use the statistical techniques of Bai and Perron 

(1998, 2003) to estimate multiple break dates without prior knowledge of when those breaks occur. 

After finding any breaks in the mean of ty , we use that model specification to obtain series of 
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estimated residuals, tε̂ . Second, we search for breaks in the variance by testing for parameter 

constancy in the conditional mean of the absolute value of the residuals tε̂  as shown in Cecchetti 

et al. (2005) and Herrera and Pesavento (2005).   

Bai and Perron (1998, 2003) propose several tests for multiple breaks. We adopt one 

procedure and sequentially test the hypothesis of m breaks versus m+1 breaks using 

)1(sup mmF +  statistics, which detects the presence of m+1 breaks conditional on finding m 

breaks and the supremum comes from all possible partitions of the data for the number of breaks 

tested. In the application of the test, we search for up to five breaks. If we reject the null of no break 

at the 5-percent significance level, we, then, estimate the break date using least squares, to divide 

the sample into two subsamples according to the estimated break date, and to perform a test of 

parameter constancy for both subsamples. We repeat this process by sequentially increasing m 

until we fail to reject the hypothesis of no additional structural change. In the process, rejecting m 

breaks favors a model with m+1 breaks, if the overall minimal value of the sum of squared 

residuals over all the segments, including an additional break, falls sufficiently below the sum of 

squared residuals from the model with m breaks. The break dates selected include the ones 

associated with this overall minimum. We search for multiple breaks in the series of output growth 

using the GAUSS code made available by Bai and Perron (2003).  

Table 3 displays the results of testing for breaks in the mean and the variance, their critical 

values at the 5-percent significance level (in brackets). Pure and partial structural breaks refer to 

the situations where the test permits all coefficients to change (pure) and only the intercept 

coefficient to change (partial). When testing for pure structural breaks, the value of the )05(sup F  

test proves significant for m=5, suggesting the existence of at least one break in the growth rate 

series. The sequential )1(sup mmF +  exhibits significance only for m=1. That is, given the 
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existence of one break, sup F( 2 1) 16.6217=  suggests that only one break exists. The break date 

occurs at 1936:Q2 with 95% confidence interval [1912:Q3 to 1962:Q2]. The procedure also 

identifies three structural breaks in the variance of growth rates at 1916:Q4, 1950:Q3, and 

1982:Q4 with 95-percent confidence intervals [1905:Q4 to 1922:Q4], [1948:Q4 to 1956:Q1], and 

[1982:Q2 to 1990:Q3]. Thus, three structural changes in the GARCH process govern volatility.  

Considering partial structural breaks leads to the following conclusions. First, we do not 

find a break in the intercept of the mean equation. That is, the structural break in the mean equation 

reflects entirely shifts in the slope coefficients of the AR(4) process, that is, coefficients of the 

second, third, and fourth lags (see Tables 5 and 6). We still identify three structural breaks in the 

variance at 1916:Q4, 1950:Q3 and 1982:Q3 with 95-percent confidence ranges of [1906:Q1 to 

1920:Q4], [1949:Q2 to 1956:Q1], and [1979:Q3 to 1990:Q1]. 

Table 4 reports the structural stability tests for the unconditional variance as well as the 

mean of the growth rate by splitting the sample into sub-periods according to the break dates. 

Panels A and B report the pure and partial structural breaks, respectively. For the unconditional 

mean, a t-statistic tests for the equality of means under unequal variances for two different samples, 

while a variance-ratio statistic tests for the equality of the unconditional variances.  

In Panel A, the mean growth rates in each sub-sample do not differ significantly, since the 

t-statistic cannot reject the null hypothesis of equal means. The structural break identified in the 

mean for the pure structural break test occurs only in the slope coefficients and not the intercept 

(see Tables 5 and 6). The standard deviations significantly differ between all four sub-periods. The 

standard deviation rises from 1.5877 between 1876:Q1 and 1916:Q4 to 2.4199 between 1917:Q1 

to 1950:Q3 and then falls to 1.1303 between 1950:Q4 to 1983:Q4 before falling further during the 

Great Moderation to 0.5232 between 1982:Q4 to 2008:Q2. In panel B, no structural break exists 
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for the mean equation. The standard deviations, once again, significantly differ between all four 

sub-periods. The standard deviation rises from 1.5877 between 1876:Q1 and 1916:Q4 to 2.4199 

between 1917:Q1 to 1950:Q3 and then falls to 1.1333 between 1950:Q4 to 1982:Q3 before falling 

further during the Great Moderation to 0.5648 between 1982:Q4 to 2008:Q2. 

Figure 1 plots the observed real GDP growth rate. The eye can catch the decrease in the 

volatility around 1950 and then another decrease around 1982. The increase in volatility 

documented around 1916 does not appear so obvious. 

GARCH Modeling of Output Volatility 

To consider the effect of the Great Moderation on the volatility persistence of output growth in 

GARCH specifications, we include dummy variables in the conditional variance equation, which 

equal unity from the break date forward, zero otherwise, in the GARCH and EGARCH processes, 

respectively, as follows: 

2 2 2
t 0 1 t 1 1 t 1 1 1 2 2 3 3 D D D ,σ α α ε β σ γ γ γ− −= + + + + +     (2) 

t 12 2t 1
t 0 1 2 1 t 1 1 1 2 2 3 3

t 1 t 1

log  log  D D D ,
ε εσ α α α β σ ggg 
σ σ

− −
−

− −

= + + + + + +   (3) 

where 1D = 1 for t 1916 : Q3> , 0, otherwise; 2D = 1 for t 1950 : Q2> , 0, otherwise; and 3D = 1 

for t 1983 : Q3> , 0, otherwise. The dummy variables accommodate the extraordinary changes. 

Since the volatility first increases and then declines twice, we expect a significant positive estimate 

for 1γ  and significant negative estimates for 2γ  and 3γ  to capture the break in the variance process. 

In equation (3), asymmetry in the response exists if 02 ≠α . Moreover, negative (positive) shocks 

generate higher volatility than positive (negative) shocks of the same magnitude when 02 <α  

( 2 0α > ). 

Although the data do not suggest a significant change in the mean of the growth rate of real 
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GNP, we do find a significant change in the structure of the mean equation, that is, the coefficients 

of the AR(4) process shift in 1936:Q2. To accommodate the structural change in the mean equation, 

we specify that equation as follows: 

4 4
t 0 i t i 0 i t i ti 1 i 1

y a a y d D d Dy ε− −= =
= + + + +∑ ∑ ,    (4) 

where we define i i ib a d , i 0,1,2,3,4, = + = and D =1 for t 1936 : Q1> , 0, otherwise. 

Tables 5 and 6 report the results of estimating the mean equation in an AR(4) process and 

its volatility as a GARCH(1,1). Column 1 reports the results for the raw, uncorrected data whereas 

column 2 reports the results for the outlier corrected data, where we replace 11 quarterly growth 

rates with adjusted values. Columns 3 and 4 lists the results for the outlier corrected data and 

incorporating the mean structural shift dummy variable (column 3) and then both the mean and 

variance shift dummy variables (column 4).  

Estimating the mean model with a GARCH(1,1) specification for the error term (column 1) 

leads to an IGARCH outcome with significant skewness and kurtosis as well as non-normality. 

When we use the outlier-corrected data (column 2), we still experience the IGARCH outcome but 

the significant skewness and kurtosis disappear and normality appears. The IGARCH remains 

when we also accommodate the structural shift in the mean equation (column 3).  

Including both the structural shifts in the mean and the volatility equations (column 4) 

eliminates the IGARCH. The coefficients of the structural dummy variables in the volatility 

equation (i.e., γ s) prove significant. We see a significant increase in the volatility between the 

1876:Q1 to 1916:Q4 and the 1917:Q1 to 1950:Q3 periods. Then we find significant decreases in 

volatility between the 1917:Q1 to 1950:Q3 and 1950:Q4 to 1983:Q4 periods and between the 

1950:Q4 to 1983:Q4 and the 1984:1 to 2008:Q2 periods. Further, the Ljung-Box Q-statistics of the 

standardized residuals and the squared standardized residuals show no evidence of autocorrelation 
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and heteroskedasticity, providing support for the specification of the GARCH or the EGARCH. 

The significant LR statistic at the 5-percent level indicates no IGARCH effect.  

The results of the symmetric or asymmetric GARCH models suggest that the time-varying 

variance in the growth rate may reflect major structural changes in the implementation of 

monetary policy, although other rationalizations may make sense as well. The first period between 

1876:Q1 to 1916:Q4 reflects the gold standard and that ended with the start of WWI. The second 

sub-period between 1917:Q1 to 1950:Q3 include the two World Wars and the inter-War period 

where countries sought unsuccessfully to return to the gold standard. The third sub-period between 

1950:Q4 to 1983:Q4 begins near the Treasury Federal Reserve Accord whereby the Federal 

Reserve System received more independence in the conduct of monetary policy. Finally, the last 

period, called the Great Moderation, begins shortly after the drastic reduction in deflation 

engineered by the Volker Federal Reserve though early 2008.  

In sum, previous studies assume implicitly that a stable GARCH process governs 

conditional growth volatility. The neglect of the structural breaks in the variance implies 

misspecification of the conditional variance. This leads to the conclusion of a significant IGARCH 

effect. Moreover, taking no account of possible outliers and breaks in the growth rates entails 

excess kurtosis, and, thus, a significant Jarque-Bera test. Fang and Miller (2008) pioneered the 

adjustment for outliers and the inclusion of structural breaks in the volatility of the output growth 

rate, leading to the disappearance of the IGARCH effect. In fact, they found for post WWII data 

that the proper specification reduced to a simple ARCH model. We extend the method of Fang and 

Miller (2008) to a longer data series and find four periods of different volatility identified by break 

points in 1916:Q4, 1950:Q3, and 1983:Q3. Our findings still imply an AR-GARCH or 

AR-EGARCH specification. 
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4. Relationship between Output Volatility and Economic Growth 

The prior section considers the appropriate time-series specification of the volatility of the growth 

rate of real GDP. A number of authors examine the issue of how this volatility affects the growth 

rate of GDP. That is, does the decreased real GDP growth rate volatility cause a higher or lower 

real GDP growth rate? For example, applying a GARCH in mean (GARCH-M) model (Engle et al., 

1987) and using post-war real quarterly GDP data, Henry and Olekalns (2002) discover a 

significant asymmetric GARCH effect and a negative link between volatility and real GDP growth 

for the U.S. without consideration of structural shift in the volatility process. In contrast, Fang and 

Miller (2008) find a weak GARCH effect and no link between volatility and growth for the U.S. 

with a structural break in the volatility process. This section pursues this question with our more 

appropriate time-series specification of the real GDP growth rate volatility. This issue is important 

because structural break in variance biases upward GARCH estimates of persistence in variance 

and, thus, vitiates the use of GARCH to estimate its mean effect.  

In this section, the mean growth rate shown in equation (4) translates into the following: 

4 4
t 0 i t i 0 i t i t ti 1 i 1

y a a y d D d Dy λσ ε− −= =
= + + + + +∑ ∑    (5) 

where tσ  equals the standard deviation of the conditional variance, 2
tσ , λ  measures the volatility 

effect in the mean, and D =1 for t 1936 : Q1> , 0, otherwise. 

Alternative theoretical models imply different results -- negative, positive, or independent 

relationships between output growth volatility and output growth. For example, the 

misperceptions theory, proposed originally by Friedman (1968), Phelps (1968), and Lucas (1972), 

argues that output fluctuates around its natural rate, reflecting price misperceptions due to 

monetary shocks. The long-run growth rate of potential output, however, reflects technology and 

other real factors. The standard dichotomy in macroeconomics implies no relationship between 
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output volatility and its growth rate (i.e., λ =0). Martin and Rogers (1997, 2000) argue that 

learning-by-doing generates growth whereby production complements productivity-improving 

activities and stabilization policy can positively affect human capital accumulation and growth. 

One natural conclusion, therefore, implies a negative relationship between output growth volatility 

and growth (i.e., λ <0). In contrast, Black (1987) argues that high output volatility and high 

growth coexist. According to Blackburn (1999), a relative increase in the volatility of shocks 

increases the pace of knowledge accumulation and, hence, growth, implying a positive relation 

between output growth volatility and growth (i.e., λ >0).  

More recently, Fountas et al. (2006) consider the possibility of a two-way relationship 

between output growth and its volatility. The authors first estimate a bivariate GARCH 

specification of output growth and inflation. And then they recover the means and conditional 

variances for output growth and inflation to run a second-stage four-variable vector-autoregressive 

model to conduct Granger-causality tests. Using G7 examples, they find that output growth 

volatility positively affects output growth in all the seven countries, except Japan, and output 

growth negatively affects output growth volatility in Japan, Germany, and the U.S. and a zero 

effect in the rest of the countries. That is, a bi-directional causality between output growth and its 

volatility exists in Germany and the U.S., and one-way causality in Japan and the other four 

countries. 

In a GARCH-M model, if output growth partly determines its volatility but is excluded in 

the variance equation, then the conditional variance equation is misspecified and GARCH-M 

estimates are not consistent (see Pagan and Ullah, 1988). Fountas and Karanasos (2006) and Fang 

and Miller (2008) develop a structural specification that incorporates the contemporaneous 

conditional volatility into the mean equation for output growth and lagged output growth into the 
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conditional variance equation in their GARCH-M models. Contrary to Fountas et al. (2006), 

Fountas and Karanasos (2006) find, using annual industrial production data from 1860 to 1999, 

that the output growth rate volatility exhibits no effect on the growth rate, but the output growth 

rate affects its volatility negatively in the US. Similarly, Fang and Miller (2008), using quarterly 

post-WWII US data on real GDP growth, report that output growth rate volatility does not affect 

output growth, but that output growth does negatively affect its volatility. 

To avoid the GARCH-M model suffering from an endogeneity bias, we augment the 

variance equations (4) and (5) to include lagged output growth, respectively, as follows: 

2 2 2
t 0 1 t 1 1 t 1 t 1 1 1 2 2 3 3 y  D D D ,σ α α ε β σ θ γ γ γ− − −= + + + + + +    (6) 

t 12 2t 1
t 0 1 2 1 t 1 t 1

t 1 t 1

1 1 2 2 3 3

log  log  y

                                     D D D ,

ε εσ α α α β σ θ
σ σ

ggg 

− −
− −

− −

= + + + +

+ + +

   (7) 

where θ  measures the level effect of the output growth in variance. To the best of our knowledge, 

no economic theory models explicitly the effect of output growth on its volatility. Theoretically, 

the sign of θ  is unknown. Intuitively, Fountas et al. (2006) argue that either a negative or a 

positive relation may occur. That is, an increase in output growth leads to more inflation, if both 

the Friedman (1977) hypothesis and the Taylor (1979) effect hold, then higher inflation raises 

inflation volatility and higher inflation volatility trades off with output volatility. Thus, output 

growth and its volatility are negatively related (i.e., θ <0). Ungar and Zilberfarb (1993), however, 

show that higher inflation reduces inflation volatility, and thus a positive relation (i.e., θ >0) may 

also occur. 

Tables 5 and 6 report the GARCH and EGARCH results, where we include the structural 

shift in the mean equations well as the three-time structural break in the variance process. Columns 

5 and 6 report the results for the level effect in the variance equation only and the GARCH-M 
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effect in the mean equation only, respectively. Column 7 lists the results for both the level effect in 

the variance equation and the GARCH-M effect in the mean equation simultaneously. Whether 

separate or together, Table 5 shows that the coefficient of the level effect in the variance equation 

and the GARCH-M effect in the mean equation prove significantly negative and positive, 

respectively, in the GARCH model. In sum, a higher variability leads to a higher growth rate and a 

higher growth rate leads to a lower variance. These findings match our period-by-period 

calculations of the mean values. That is, the second sub-period exhibited a higher variability and 

growth when compared to the first sub-period. Then the third and fourth sub-periods experienced 

lower variability and growth than their preceding sub-periods. These results, however, differ from 

those of Fountas and Karanasos (2006) and Fang and Miller (2008). Fountas and Karanasos (2006) 

use a long-sample of over 100 years, but they use annual data on industrial production. Fang and 

Miller (2008) do use quarterly data, but only for the post-WWII period. 

Table 6 shows that the level and GARCH-M effects in the variance and mean equations, 

respectively, completely disappear in the EGARCH specification. In addition, the effect of 

innovations on the mean equation exert different effects on the logarithm of the standard deviation, 

where negative shocks exhibit a larger effect than positive shocks. That is, we find significant 

evidence of asymmetric effects. Moreover, the function value suggests that the AR-EGRACH 

specification dominates the AR-GARCH specification. As a consequence, our results suggest that 

prior findings of feedback between the volatility of the output growth rate and the output growth 

rate and vice versa may occur because researchers did not accommodate asymmetric responses in 

an EGARCH model. 

4. Conclusion 

This paper examines the effect of the Great Moderation on the relationship between quarterly real 
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GDP growth rate and its volatility in the U.S. over the period 1875:Q1 to 2008:Q2. First, we 

inspect the data for outliers and apply appropriate corrections on the outliers discovered. Second, 

we perform tests for structural breaks in the growth rate and its volatility. In so doing, we employ 

AR-GARCH and AR-EGARCH specifications of the process describing output growth rate and its 

volatility with and without structural breaks in the mean and volatility processes. Third, we 

identify one break in the mean process – 1936:Q2 – and three breaks in the volatility process – 

1916:Q4, 1950:Q3, and 1983:Q4 (or 1984:Q3). After accommodating the breaks in the mean and 

volatility processes, the IGARCH effect proves spurious. Finally, our data analyses and empirical 

results suggest that output growth volatility positively affects output growth and that higher output 

growth negatively affects its volatility. Moreover, the evidence shows that the time-varying 

variance falls sharply once we incorporate the three structural breaks in the unconditional variance 

of output. 

The independence between the output growth and its volatility needs careful interpretation. 

Endogenous growth theory, for example, does not imply any importance for the second moment. 

Blackburn and Galindev (2003) and Blackburn and Pelloni (2004) model the link between the 

mean and variance of the output growth rate explicitly. Different mechanisms of endogenous 

technological change and nominal or real shocks can lead to positive or negative relationship 

between growth and volatility. In his model, Blackburn (1999) shows for a linear endogenous 

learning function, the effect of the output growth-rate volatility on the output growth rate equals 

zero. A concave (convex) learning function generates a negative (positive) effect. That is, an 

independent relationship may exist with or without the Great Moderation. The disagreements 

between published findings highlights the sensitivity of the results to the country considered, the 

time period examined, the frequency of the data, and the methodology employed. This apparent 
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inconclusiveness warrants further investigation of the relationship between growth and its 

volatility. Nevertheless, we conclude with a cautionary note that failure to model structural breaks 

in the volatility of output growth and/or failure to model volatility asymmetries may lead 

researchers to conclude falsely that output volatility affects output growth. 
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Table 1:  Descriptive Statistics for Quarterly Real GNP, 1875:Q1-2008:Q2 
 
Panel A. Quarterly Real GNP Growth 
Sample size 533 LB Q (1) 81.6645* 

[0.0000] 
LB Q2 (1) 63.0489* 

[0.0000] 
Mean 0.8228 LB Q (2) 87.5309* 

[0.0000] 
LB Q2 (2) 89.3816* 

[0.0000] 
Standard deviation 2.2383 LB Q (3) 98.0657* 

[0.0000] 
LB Q2 (3) 115.7437* 

[0.0000] 
Maximum 7.9649 LB Q (4) 98.6400* 

[0.0000] 
LB Q2 (4) 131.9787* 

[0.0000] 
Minimum -8.7565 LB Q (5) 103.6247* 

[0.0000] 
LB Q2 (5) 152.5296* 

[0.0000] 
Skewness -0.5790* 

[0.0000] 
LB Q (6) 103.6517* 

[0.0000] 
LB Q2 (6) 168.8023* 

[0.0000] 
Kurtosis 2.8927* 

[0.0000] 
LB Q (7) 103.7492* 

[0.0000] 
LB Q2 (7) 182.4710* 

[0.0000] 
Normality test 215.6173* 

[0.0000] 
LB Q (8) 103.8328* 

[0.0000] 
LB Q2 (8) 253.3080* 

[0.0000] 
ADF(n) -10.8341(3)* LB Q (9) 108.0243* 

[0.0000] 
LB Q2 (9) 268.1344* 

[0.0000] 
Panel B. Quarterly Real GNP Growth AR(4) Estimates 

ti itit yaay ε+∑+= = −
4

10  

0a  1a  2a  3a  4a     

0.5205* 
(0.1001) 

0.4427* 
(0.0429) 

-0.1269* 
(0.0461) 

0.2050* 
(0.0460) 

-0.1612* 
(0.0428) 

   

LB Q (6) LB Q (12) LB Q2 (6) LB Q2 (12) Skewness Kurtosis Normality  
0.9081 

[0.9888] 
10.8531 
[0.5415] 

120.1226* 
[0.0000] 

200.3953* 
[0.0000] 

-0.3407* 
[0.0014] 

3.6410* 
[0.0000] 

302.4423* 
[0.0000] 

 
 

LM (1) LM (2) LM (3) LM (4) LM (5) LM (6)   
24.2678* 
[0.0000] 

46.6051* 
[0.0000] 

59.2766* 
[0.0000] 

59.5945* 
[0.0000] 

61.1667* 
[0.0000] 

62.3875* 
[0.0000] 

  

Note:  Standard errors appear in parentheses; p-values appear in brackets; 0.0000 indicates less than 0.00005. The 
measures of skewness and kurtosis are normally distributed as N( 0,6 / T )  and N( 0, 24 / T ) , respectively, 
where T equals the number of observations. ADF(n) equals the augmented Dickey-Fuller unit-root test 
with lags n selected by the SBC. LB Q( k )  and LB 2Q ( k )  equal Ljung-Box Q-statistics distributed 
asymptotically as 2χ  with k degrees of freedom, testing for level and squared terms for autocorrelations up 
to k lags.  

* denotes 5-percent significance level. 
** denotes 10-percent significance level. 
 



 

Table 2:  Descriptive Statistics for Quarterly Real GNP, 1875:Q1-2008:Q2  
(Critical Value by k=3) 
 

Panel A. Quarterly Real GNP Growth 
Sample size 533 LB Q (1) 88.3310* 

[0.0000] 
LB Q2 (1) 73.3568* 

[0.0000] 
Mean 0.9163 LB Q (2) 103.3467* 

[0.0000] 
LB Q2 (2) 108.7103* 

[0.0000] 
Standard deviation 1.6246 LB Q (3) 117.0545* 

[0.0000] 
LB Q2 (3) 166.0098* 

[0.0000] 
Maximum 5.7512 LB Q (4) 117.3284* 

[0.0000] 
LB Q2 (4) 214.9633* 

[0.0000] 
Minimum -4.2890 LB Q (5) 122.1291* 

[0.0000] 
LB Q2 (5) 232.7550* 

[0.0000] 
Skewness 0.0383 

[0.7188] 
LB Q (6) 122.2763* 

[0.0000] 
LB Q2 (6) 259.6555* 

[0.0000] 
Kurtosis 0.5496* 

[0.0100] 
LB Q (7) 122.3000* 

[0.0000] 
LB Q2 (7) 270.8399* 

[0.0000] 
Normality test 6.8386* 

[0.0327] 
LB Q (8) 122.3246* 

[0.0000] 
LB Q2 (8) 305.5707* 

[0.0000] 
ADF(n) -14.9648(0)* LB Q (9) 126.5871* 

[0.0000] 
LB Q2 (9) 331.8204* 

[0.0000] 
 
Panel B. Quarterly Real GNP Growth AR(4) Estimates 

ti itit yaay ε+∑+= = −
4

10  

0a  1a  2a  3a  4a     

0.5185* 
(0.0827) 

0.4143* 
(0.0430) 

-0.0330 
(0.0462) 

0.1405* 
(0.0460) 

-0.0948* 
(0.0429) 

   

LB Q (6) LB Q (12) LB Q2 (6) LB Q2 (12) Skewness Kurtosis Normality  
9.9923 

[0.1249] 
15.9125 
[0.1952] 

291.1085* 
[0.0000] 

505.8934* 
[0.0000] 

0.0757 
[0.4781] 

0.2343 
[0.2744] 

1.7164 
[0.4239] 

 
 

LM (1) LM (2) LM (3) LM (4) LM (5) LM (6)   
38.8847* 
[0.0000] 

77.2316* 
[0.0000] 

94.7072* 
[0.0000] 

110.8972* 
[0.0000] 

115.6021* 
[0.0000] 

117.2286* 
[0.0000] 

  

Note:  See Table 1. 
*  denotes 5-percent significance level. 
**  denotes 10-percent significance level. 



 

Table 3: Bai and Perron (1998) Structural Break Test and Break Date 
 

 Pure Structural Break Partial Structural Break 
 Mean Variance Mean Variance 

)( 01FSup  14.0145 
[18.2300] 

73.4623* 
[8.5800] 

2.0179 
[8.5800] 

76.7664* 
[8.5800] 

)( 02FSup  15.5203 
[15.6200] 

51.3302* 
[7.2200] 

1.7890 
[7.2200] 

54.9842* 
[7.2200] 

)( 03FSup  14.0973* 
[13.9300] 

81.1428* 
[5.9600] 

1.7463 
[5.9600] 

62.9688* 
[5.9600] 

)( 04FSup  13.2340* 
[12.3800] 

60.9688* 
[4.9900] 

1.6418 
[4.9900] 

49.6966* 
[4.9900] 

)( 05FSup  13.5140* 
[10.5200] 

48.2529* 
[3.9100] 

0.9565 
[3.9100] 

39.8136* 
[3.9100] 

MaxUD  15.5203 
[18.4200] 

81.1428* 
[8.8800] 

2.0179 
[8.8800] 

76.7664* 
[8.8800] 

MaxWD  23.4183* 
[19.9600] 

116.8129* 
[9.9100] 

2.8229 
[9.9100] 

90.6498* 
[9.9100] 

)( 12FSup  16.6217 
[19.9100] 

43.7844* 
[10.1300] 

1.5136 
[10.1300] 

32.3612* 
[10.1300] 

)( 23FSup  12.1317 
[20.9900] 

43.7844* 
[11.1400] 

1.6373 
[11.1400] 

35.6135* 
[11.1400] 

)( 34FSup  5.5802 
[21.7100] 

2.8801 
[11.8300] 

1.4164 
[11.8300] 

0.0713 
[11.8300] 

)( 45FSup  － 0.2401 
[12.2500] 

－ 0.0713 
[12.2500] 

Break date 1936:2 1916:4 
1950:3 
1983:4 

NA 1916:4 
1950:3 
1982:3 

95% Confidence Interval 1912:3-1962:4 1905:4-1922:4 
1948:4-1956:1 
1982:2-1990:3 

NA 1906:1-1920:4 
1949:2-1956:1 
1979:3-1990:1 

Note:  Critical values for the 5-percent significance level appear in parentheses. In the detection process, we require 
15% of the full sample as the minimal length of any partition. Thus, － indicates that no more place exists to 
insert an additional break given the minimal length requirement. 

*  denotes 5-percent significance level. 



 

Table 4. Cross-Sample Structural Stability Test 
 

Panel A. Pure Structural Break Specification 
 Sub-sample Sub-sample 1 

(1876:1-1936:2) 
Sub-sample 2 

(1936:2-2008:2)   

Mean Sub-sample 1 
(1876:1-1936:2) 

0.9124 
 

   

Sub-sample 2 
(1936:2-2008:2) 

-0.0491 
[0.9607] 

0.9196   

 Sub-sample Sub-sample 1 
(1876:1-1916:4) 

Sub-sample 2 
(1917:1-1950:3) 

Sub-sample 3 
(1950:4-1983:4) 

Sub-sample 4 
(1984:1-2008:2) 

Standard 
Deviation 

Sub-sample 1 
(1876:1-1916:4) 

1.5877    

Sub-sample 2 
(1917:1-1950:3) 

0.4304* 
[0.0000] 

2.4199   

Sub-sample 3 
(1950:4-1983:4) 

1.9728* 
[0.0000] 

4.5831* 
[0.0000] 

1.1303  

Sub-sample 4 
(1984:1-2008:2) 

9.2063* 
[0.0000] 

21.3875* 
[0.0000] 

4.6665* 
[0.0000] 

0.5232 

 
Panel B. Partial Structural Break Specification 

 Sub-sample Sub-sample 1 
(1876:1-1916:4) 

Sub-sample 2 
(1917:1-1950:3) 

Sub-sample 3 
(1950:4-1982:3) 

Sub-sample 4 
(1982:4-2008:2) 

Standard 
Deviation 

Sub-sample 1 
(1876:1-1916:4) 

1.5877    

Sub-sample 2 
(1917:1-1950:3) 

0.4304* 
[0.0000] 

2.4199   

Sub-sample 3 
(1950:4-1982:3) 

1.9624* 
[0.0000] 

4.5591* 
[0.0000] 

1.1333  

Sub-sample 4 
(1982:4-2008:2) 

7.8999* 
[0.0000] 

18.3526* 
[0.0000] 

4.0254* 
[0.0000] 

0.5648 

Note:  P-values appear in brackets; 0.0000 indicates less than 0.00005. A t-statistic under unequal variances tests 
for structural change in the unconditional mean between the different regimes. F test equals the 
unconditional variance ratio test between the samples i and j, and is asymptotically distributed as 

),( jdfidfF , where df denotes the degrees of freedom. 
*  denotes 5-percent significance level. 
**  denotes 10-percent significance level. 



Table 5: GARCH Model Estimation 
 (1) (2) (3) (4) (5) (6) (7) 

0a  0.4892* 
(0.0735) 

0.5031* 
(0.0702) 

0.5663* 
(0.1317) 

0.6164* 
(0.1299) 

0.5842* 
(0.1306) 

0.2497 
(0.2206) 

0.1891 
(0.2246) 

1a  0.3941* 
(0.0504) 

0.3482* 
(0.0461) 

0.4204* 
(0.0645) 

0.4142* 
(0.0633) 

0.4135* 
(0.0636) 

0.4418* 
(0.0634) 

0.4298* 
(0.0637) 

2a  0.0549 
(0.0569) 

0.0921* 
(0.0471) 

-0.0331 
(0.0654) 

-0.0411 
(0.0646) 

-0.0374 
(0.0656) 

-0.0574 
(0.0637) 

-0.0453 
(0.0642) 

3a  -0.0012 
(0.0491) 

0.0034 
(0.0470) 

0.1118** 
(0.0646) 

0.1243** 
(0.0698) 

0.1314** 
(0.0697) 

0.1172** 
(0.0690) 

0.1194** 
(0.0690) 

4a  -0.0780 
(0.0479) 

-0.0664 
(0.0438) 

-0.1959* 
(0.0661) 

-0.1940* 
(0.0690) 

-0.1904* 
(0.0688) 

-0.1995* 
(0.0671) 

-0.1647* 
(0.0679) 

0b    -0.1207 
(0.1589) 

-0.1504 
(0.1507) 

-0.1423 
(0.1519) 

-0.0053 
(0.1936) 

0.0826 
(0.1888) 

1b    -0.1117 
(0.0909) 

-0.0865 
(0.0880) 

-0.0947 
(0.0904) 

-0.0803 
(0.0887) 

-0.1328 
(0.0877) 

2b    0.2058* 
(0.0914) 

0.1930* 
(0.0913) 

0.20448* 
(0.0911) 

0.2187* 
(0.0901) 

0.2146* 
(0.0884) 

3b    -0.1739* 
(0.0909) 

-0.2073* 
(0.0916) 

-0.2173* 
(0.0923) 

-0.2076* 
(0.0905) 

-0.1770* 
(0.0913) 

4b    0.2291* 
(0.0884) 

0.2258* 
(0.0900) 

0.2351* 
(0.0905) 

0.2484* 
(0.0896) 

0.2081* 
(0.0890) 

λ       0.2630* 
(0.1206) 

0.2344* 
(0.1150) 

0α  0.0039 
(0.0069) 

0.0082 
(0.0067) 

0.0085 
(0.0063) 

0.5933* 
(0.2261) 

0.5937* 
(0.1680) 

0.3235* 
(0.1175) 

0.6130* 
(0.1582) 

1α  0.1219* 
(0.0279) 

0.1192* 
(0.0225) 

0.1264* 
(0.0225) 

0.0967* 
(0.0420) 

0.0825** 
(0.0493) 

0.0900* 
(0.0313) 

0.1158* 
(0.0422) 

1β  0.8889* 
(0.0206) 

0.8798* 
(0.0220) 

0.8732* 
(0.0213) 

0.6148* 
(0.1290) 

0.6787* 
(0.1157) 

0.7439* 
(0.0706) 

0.6497* 
(0.0890) 

1γ     0.6312* 
(0.2934) 

0.4318* 
(0.1925) 

0.2755* 
(0.1420) 

0.3807* 
(0.1812) 

2γ     -0.8755* 
(0.3436) 

-0.6697* 
(0.2408) 

-0.3995* 
(0.1585) 

-0.6143* 
(0.2107) 

3γ     -0.2816* 
(0.1326) 

-0.2313* 
(0.0867) 

-0.1710* 
(0.0755) 

-0.2503* 
(0.0844) 

δ      -0.0890* 
(0.0308) 

 -0.0960* 
(0.0243) 

LR 0.5551 
[0.4566] 

0.0092 
[0.9233] 

0.0009 
[0.9750] 

7.3333* 
[0.0070] 

8.7611* 
[0.0032] 

8.9238* 
[0.0029] 

11.5363* 
[0.0007] 

Function value -986.0413 -867.6055 -861.5766 -846.5214 -846.3065 -848.2876 -844.8263 
LB Q (6) 4.2322 

[0.6452] 
8.0472 

[0.2346] 
4.8343 

[0.5652] 
5.5430 

[0.4762] 
5.9473 

[0.4291] 
6.4416 

[0.3755] 
5.3606 

[0.4984] 
LB Q (12) 9.1435 

[0.6906] 
11.2388 
[0.5085] 

7.4793 
[0.8243] 

10.4005 
[0.5808] 

10.8923 
[0.5381] 

11.2514 
[0.5075] 

10.4588 
[0.5757] 

LB Q2 (6) 5.2126 
[0.5168] 

1.7684 
[0.9397] 

2.1661 
[0.9038] 

6.0501 
[0.4176] 

5.6035 
[0.4690] 

4.9441 
[0.5509] 

5.9228 
[0.4318] 

LB Q2 (12) 26.5926* 
[0.0088] 

5.6750 
[0.9315] 

5.1228 
[0.9537] 

13.6767 
[0.3218] 

11.0833 
[0.5217] 

8.0936 
[0.7777] 

9.8225 
[0.6315] 

Skewness -0.3502* 
[0.0010] 

-0.1422 
[0.1829] 

-0.1263 
[0.2366] 

-0.0621 
[0.5608] 

-0.0529 
[0.6199] 

-0.0391 
[0.7137] 

-0.0304 
[0.7753] 

Kurtosis 2.0828* 
[0.0000] 

0.0651 
[0.7611] 

0.1234 
[0.5649] 

-0.3234 
[0.1314] 

-0.3023 
[0.1585] 

-0.3657 
[0.1011] 

-0.3348 
[0.1183] 

Normality 106.4392* 
[0.0000] 

1.8770 
[0.3911] 

1.7441 
[0.4180] 

2.6456 
[0.2663] 

2.2622 
[0.3226] 

2.9756 
[0.2258] 

2.5530 
[0.2789] 

Note: Column (1) without outlier corrected, column (2)-(7) with outlier corrected. Standard errors appear in 
parentheses; p-values appear in brackets; LB )(kQ  and LB )(2 kQ  equal Ljung-Box Q-statistics, testing for 
standardized residuals and squared standardized residuals for autocorrelations up to k lags, where the 
degrees of freedom are reduced by the number of estimated coefficients in the mean equation. LR equals the 
likelihood ratio statistic, following a 2χ  distribution with one degree of freedom that tests for 111 =+ βα .  

* denotes 5-percent significance level. 
** denotes 10-percent significance level. 



 

Table 6: EGARCH Model Estimation  
 (1) (2) (3) (4) (5) (6) (7) 

0a  0.4474* 
(0.0749) 

0.4774* 
(0.0697) 

0.6217* 
(0.1155) 

0.5771* 
(0.1284) 

0.5885* 
(0.1237) 

0.2919 
(0.2335) 

0.3057 
(0.2236) 

1a  0.4323* 
(0.0543) 

0.3499* 
(0.0455) 

0.4476* 
(0.0626) 

0.4245* 
(0.0622) 

0.4493* 
(0.0609) 

0.4377* 
(0.0635) 

0.4582* 
(0.0612) 

2a  0.0402 
(0.0544) 

0.0949* 
(0.0468) 

-0.0489 
(0.0642) 

-0.0315 
(0.0657) 

-0.0507 
(0.0645) 

-0.0373 
(0.0652) 

-0.0515 
(0.0643) 

3a  -0.0042 
(0.0471) 

-0.0021 
(0.0473) 

0.0912 
(0.0665) 

0.1125 
(0.0714) 

0.1222** 
(0.0683) 

0.1189** 
(0.0650) 

0.1236** 
(0.0694) 

4a  -0.0699 
(0.0456) 

-0.0535 
(0.0437) 

-0.1927* 
(0.0632) 

-0.1937* 
(0.0667) 

-0.2198* 
(0.0616) 

-0.1964* 
(0.0650) 

-0.2282* 
(0.0607) 

0b    -0.2784* 
(0.1373) 

-0.1398 
(0.1491) 

-0.1393 
(0.1431) 

0.0292 
(0.1891) 

0.0226 
(0.1766) 

1b    -0.1288 
(0.0887) 

-0.1164 
(0.0860) 

-0.1569** 
(0.0861) 

-0.1323 
(0.0868) 

-0.1626** 
(0.0857) 

2b    0.2432* 
(0.0892) 

0.2060* 
(0.0910) 

0.2280* 
(0.0897) 

0.2114* 
(0.0905) 

0.2275* 
(0.0895) 

3b    -0.1538** 
(0.0888) 

-0.1958* 
(0.0927) 

-0.2060* 
(0.0902) 

-0.2050* 
(0.0916) 

-0.2119* 
(0.0907) 

4b    0.2560* 
(0.0863) 

0.2439* 
(0.0877) 

0.2665* 
(0.0836) 

0.2503* 
(0.0865) 

0.2773* 
(0.0830) 

λ       0.1848 
(0.1248) 

0.1882 
(0.1251) 

0α  -0.1967* 
(0.0312) 

-0.1679* 
(0.0313) 

-0.1475* 
(0.0301) 

0.0163 
(0.0635) 

-0.0256 
(0.0685) 

0.0119 
(0.0600) 

-0.0196 
(0.0660) 

1α  0.2714* 
(0.0474) 

0.2145* 
(0.0405) 

0.1873* 
(0.0384) 

0.1471* 
(0.0668) 

0.1306** 
(0.0715) 

0.1489* 
(0.0623) 

0.1362* 
(0.0658) 

2α  -0.0663** 
(0.0380) 

-0.0742* 
(0.0298) 

-0.1046* 
(0.0305) 

-0.1120* 
(0.0349) 

-0.2074* 
(0.0886) 

-0.1151* 
(0.0356) 

-0.2096* 
(0.0825) 

1β  0.9910* 
(0.0075) 

0.9847* 
(0.0096) 

0.9858* 
(0.0091) 

0.8171* 
(0.0657) 

0.8321* 
(0.0683) 

0.8224* 
(0.0585) 

0.8191* 
(0.0617) 

1γ     0.1236* 
(0.0577) 

0.1125* 
(0.0558) 

0.1066* 
(0.0518) 

0.1008* 
(0.0527) 

2γ     -0.2350* 
(0.0864) 

-0.2114* 
(0.0933) 

-0.2263* 
(0.0770) 

-0.2254* 
(0.0840) 

3γ     -0.2918* 
(0.1017) 

-0.2559* 
(0.0890) 

-0.2647* 
(0.0899) 

-0.2448* 
(0.0828) 

δ      0.0446 
(0.0341) 

 0.0446 
(0.0310) 

LR 1.4035 
[0.2367] 

2.4839 
[0.1156] 

2.3977 
[0.1221] 

7.7313* 
[0.0056] 

6.0353* 
[0.0144] 

9.1857* 
[0.0026] 

8.5627* 
[0.0036] 

Function value -986.3654 -865.5957 -857.5925 -843.9671 -842.5171 -842.7940 -841.2278 
LB Q (6) 4.6256 

[0.5926] 
8.2200 

[0.2224] 
5.5077 

[0.4805] 
5.5687 

[0.4731] 
4.8422 

[0.5642] 
5.4986 

[0.4816] 
4.8398 

[0.5645] 
LB Q (12) 10.1283 

[0.6047] 
11.4836 
[0.4879] 

8.2297 
[0.7669] 

10.5937 
[0.5640] 

9.7879 
[0.6345] 

10.6308 
[0.5607] 

9.8977 
[0.6249] 

LB Q2 (6) 5.4832 
[0.4834] 

2.3737 
[0.8823] 

1.9877 
[0.9208] 

4.6772 
[0.5858] 

3.8734 
[0.6938] 

4.3816 
[0.6251] 

3.6731 
[0.7208] 

LB Q2 (12) 34.1805* 
[0.0006] 

6.5298 
[0.8870] 

4.4710 
[0.9733] 

11.0131 
[0.5277] 

9.5219 
[0.6578] 

9.3488 
[0.6728] 

8.5080 
[0.7442] 

Skewness -0.4115* 
[0.0001] 

-0.1461 
[0.1713] 

-0.1297 
[0.2245] 

-0.0697 
[0.5300] 

-0.0839 
[0.4500] 

-0.0684 
[0.5380] 

-0.0842 
[0.4522] 

Kurtosis 2.3218* 
[0.0000] 

-0.0268 
[0.9002] 

-0.0438 
[0.8379] 

-0.3516 
[0.1150] 

-0.3613 
[0.1053] 

-0.3578 
[0.1087] 

-0.3621 
[0.1074] 

Normality 133.7566* 
[0.0000] 

1.8978 
[0.3871] 

1.5257 
[0.4663] 

2.9162 
[0.2326] 

3.2349 
[0.1983] 

2.9912 
[0.2241] 

3.1971 
[0.2021] 

Note: See Table 5. 
* denotes 5-percent significance level. 
** denotes 10-percent significance level. 



 

Table A1:  Outlier Information 
Panel A. Descriptive Statistics 

 Obs. Mean SD Q1 Q2 Q3 IQD 1f  3f  1F  3F  

Quarterly GDP Growth 533 0.8228 2.2383 0.0784 0.8632 1.8444 1.7660 -2.5706 4.4934 -5.2196 7.1424 

Panel B. Frequency of events: 
SDMean  ⋅>− kyt  =k 2 =k 3 =k 4 =k 5 

Quarterly GDP Growth 1932Q1 
1930Q1 
1934Q1 
1935Q4 
1941Q2 
1942Q4 
1934Q2 
1888Q1 
1931Q3 
1876Q1 
1938Q3 
1918Q4 
1946Q1 
1896Q1 
1938Q1 
1934Q3 
1936Q2 
1935Q1 
1897Q1 
1939Q4 
1914Q4 
1921Q1 
1930Q4 
1929Q4 
1901Q1 
1932Q2 
1930Q3 
1899Q1 
1920Q2 
1931Q4 
1933Q2 
1891Q3 
1920Q4 
1907Q4 
1933Q1 
1933Q3 
1908Q1 
1918Q2 
1879Q4 
1919Q1 
1945Q4 
1933Q4 
1945Q3 
1937Q4 
1893Q3 

1933Q1 
1933Q3 
1908Q1 
1918Q2 
1879Q4 
1919Q1 
1945Q4 
1933Q4 
1945Q3 
1937Q4 
1893Q3 

1893Q3 － 

 



Table A2: Outlier Information 

Date 1fyt ≤   Date 3fyt ≥   Date ty  Mean−ty  
1893Q3 -8.75653  1918Q1 4.512044  1932Q1 -3.67096 4.493761953 
1937Q4 -7.44208  1915Q4 4.575253  1930Q1 -3.69189 4.514693847 
1945Q3 -7.40205  1894Q4 4.597397  1934Q1 5.365708 4.542908248 
1933Q4 -7.29332  1922Q2 4.727923  1935Q4 5.402271 4.579470987 
1945Q4 -7.14014  1924Q4 4.981125  1941Q2 5.439613 4.616813279 
1919Q1 -6.4836  1941Q3 5.132264  1942Q4 5.464017 4.641217004 
1908Q1 -6.03746  1934Q1 5.365708  1934Q2 5.573941 4.751141175 
1933Q1 -5.99004  1935Q4 5.402271  1888Q1 -3.96425 4.787049654 
1907Q4 -5.69925  1941Q2 5.439613  1931Q3 -4.00449 4.827290495 
1920Q4 -5.62506  1942Q4 5.464017  1876Q1 5.66863 4.84583036 
1931Q4 -5.26931  1934Q2 5.573941  1938Q3 5.678989 4.856188877 
1920Q2 -5.14992  1876Q1 5.66863  1918Q4 -4.10921 4.932006244 
1930Q3 -5.01223  1938Q3 5.678989  1946Q1 -4.2563 5.079102959 
1932Q2 -5.00756  1936Q2 6.081649  1896Q1 -4.26888 5.091681146 
1929Q4 -4.82265  1935Q1 6.192347  1938Q1 -4.31652 5.139317996 
1930Q4 -4.74572  1897Q1 6.21144  1934Q3 -4.34376 5.16655683 
1921Q1 -4.65817  1939Q4 6.263423  1936Q2 6.081649 5.258848876 
1914Q4 -4.62649  1901Q1 6.627313  1935Q1 6.192347 5.369547142 
1934Q3 -4.34376  1899Q1 6.770195  1897Q1 6.21144 5.388640261 
1938Q1 -4.31652  1933Q2 6.961935  1939Q4 6.263423 5.440622852 
1896Q1 -4.26888  1891Q3 7.12518  1914Q4 -4.62649 5.449290714 
1946Q1 -4.2563  1933Q3 7.649726  1921Q1 -4.65817 5.480966947 
1918Q4 -4.10921  1918Q2 7.818015  1930Q4 -4.74572 5.568515057 
1931Q3 -4.00449  1879Q4 7.964976  1929Q4 -4.82265 5.645451233 
1888Q1 -3.96425     1901Q1 6.627313 5.8045127 
1930Q1 -3.69189     1932Q2 -5.00756 5.830355026 
1932Q1 -3.67096     1930Q3 -5.01223 5.835033189 
1932Q3 -3.55135     1899Q1 6.770195 5.947395048 
1946Q2 -3.3992     1920Q2 -5.14992 5.97272059 
1893Q4 -3.3346     1931Q4 -5.26931 6.092113299 
1924Q2 -3.19257     1933Q2 6.961935 6.139135088 
1903Q4 -3.10203     1891Q3 7.12518 6.302380216 
1940Q1 -2.93112     1920Q4 -5.62506 6.447861121 
1958Q1 -2.71872     1907Q4 -5.69925 6.52205031 

      1933Q1 -5.99004 6.812839527 
      1933Q3 7.649726 6.826925919 
      1908Q1 -6.03746 6.860256347 
      1918Q2 7.818015 6.995214788 
      1879Q4 7.964976 7.142176493 
      1919Q1 -6.4836 7.306395305 
      1945Q4 -7.14014 7.962940516 
      1933Q4 -7.29332 8.116115799 
      1945Q3 -7.40205 8.22484672 
      1937Q4 -7.44208 8.264884475 
      1893Q3 -8.75653 9.579333878 

         

 

 



 

Table A3: Outlier Corrected by Franses and Ghijsels (1999) Additive Outlier Detection  
Quarterly GNP Growth AR(4)-GARCH(1,1) 

Location Date Value =k 3 Size Lambda 
231 1933Q4 -7.29332 ※ 107.488 12.6302 
70 1893Q3 -8.75653 ※ 71.55 9.10659 

229 1933Q2 6.961935  55.6713 7.5209 
278 1945Q3 -7.40205 ※ 50.7756 7.14605 
247 1937Q4 -7.44208 ※ 49.6185 7.29989 
62 1891Q3 7.12518  44.1903 6.79465 

234 1934Q3 -4.34376  33.2772 5.19547 
232 1934Q1 5.365708  33.6301 5.40379 
100 1901Q1 6.627313  32.1756 5.32333 
236 1935Q1 6.192347  32.1198 5.43303 
15 1879Q4 7.964976 ※ 31.5535 5.50271 
92 1899Q1 6.770195  30.9937 5.54228 
84 1897Q1 6.21144  30.7512 5.67833 
80 1896Q1 -4.26888  29.7588 5.68557 

127 1907Q4 -5.69925  29.1644 5.76458 
256 1940Q1 -2.93112  28.9075 5.82894 
171 1918Q4 -4.10921  28.5819 6.01163 
215 1929Q4 -4.82265  27.7132 6.0588 
228 1933Q1 -5.99004 ※ 25.6877 5.78083 
195 1924Q4 4.981125  24.9043 5.71216 
169 1918Q2 7.818015 ※ 22.3191 5.31931 
172 1919Q1 -6.4836 ※ 22.4206 5.478 
177 1920Q2 -5.14992  22.4714 5.65842 
222 1931Q3 -4.00449  20.9017 5.43069 
48 1888Q1 -3.96425  20.5925 5.45283 

179 1920Q4 -5.62506  18.9762 5.18591 
218 1930Q3 -5.01223  18.3766 5.18073 
193 1924Q2 -3.19257  17.7098 5.05962 
279 1945Q4 -7.14014 ※ 17.2481 5.07236 
241 1936Q2 6.081649  17.2423 5.20527 
128 1908Q1 -6.03746 ※ 16.5971 5.17551 
250 1938Q3 5.678989  16.3673 5.25823 
155 1914Q4 -4.62649  16.3767 5.4062 
255 1939Q4 6.263423  16.6695 5.60622 
223 1931Q4 -5.26931  16.395 5.74878 
230 1933Q3 7.649726 ※ 16.2552 5.87036(cv) 
111 1903Q4 -3.10203  13.8871 5.11026 
296 1950Q1 4.03606  12.0111 4.52453 
181 1921Q2 2.549648  12.0458 4.6522 
165 1917Q2 3.497603  11.3617 4.48978 
254 1939Q3 3.6776  10.9287 4.37755 
261 1941Q2 5.439613  10.4382 4.23318 
60 1891Q1 -2.43559  10.2445 4.23973 
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Figure 1. Real GNP Growth Rate 
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