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Abstract 

 

Proponents of energy service companies (ESCOs) argue that these firms provide a crucial 
instrument for delivering improved energy efficiency in public and private sectors, thus 
contributing to carbon dioxide (CO2) emissions reduction around the world. Do ESCOs reduce 
CO2 emissions? To answer this question, we develop an estimating equation, which approximates 
the IPAT model, from a simple model of production. Based on the modified dynamic IPAT model, 
using the panel data of 129 countries over the period 1980 to 2007, we provide significant 
evidence to show that the ESCOs effectively reduce CO2 emissions and this effect increases over 
time. These findings also prove robust to the inclusion of a set of control variables, different dates 
of the first ESCO, and the Kyoto Protocol. Finally, we discuss energy policy implications.  
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1. Introduction  

The 1992 international environmental treaty, United Nations Framework Convention on Climate 

Change (UNFCCC), aimed to stabilize greenhouse gas (GHG) concentrations in the atmosphere at 

a level that would prevent dangerous anthropogenic interference with the climate system. The 1997 

Kyoto Protocol established legal obligations for most developed countries and some central 

European transition economies (defined as Annex B countries) to reduce their GHG emissions, on 

average, to 6 to 8 percent below 1990 levels between 2008 and 2012. Investment in 

energy-efficiency technologies provides a key component to achieve global commitments to 

reduce GHG emissions and global warming (Popp, 2004, 2010; Linares and Perez-Arriaga, 2009; 

Linares and Labandeira, 2010; Sarkar and Singh, 2010). One mechanism to promote investment in 

energy-efficiency technologies and, thus, to reduce GHG emissions engages energy performance 

contracting (EPC) undertaken by energy service companies (ESCOs). Since the early 1970s, high 

energy prices, greater energy demand, climate change, global warming, emerging carbon markets, 

environmental concerns, and international agreements, such as the Kyoto Protocol, created 

opportunities for the development of ESCO business (Goldman et al., 2005; Vine, 2005; Bertoldi 

et al., 2006; Kiss et al., 2007; Urge-Vorsatz et al., 2007; Ellis, 2010). This paper examines the 

effect of ESCO activities on global carbon dioxide (CO2) emissions, which the Intergovernmental 

Panel on Climate Change (IPCC, 2007) identifies as the most important anthropogenic GHGs. 

An ESCO offers energy-efficiency technologies, including development and design of 

energy efficiency and emission reduction projects, installation and maintenance of energy efficient 

equipment, monitoring and verification of the project’s energy savings, and finally, a guarantee of 

the savings for clients in the public, industrial, commercial or residential sector (Vine, 2005; WEC, 

2008; Ellis, 2010). The ESCO’s revenue directly links to the amount of energy saved through the 
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EPC. Two main EPC models exist: the shared savings model and the guaranteed savings model 

(Bertoldi et al., 2006; Okay et al, 2008). In the first model, the ESCO and the client share the cost 

savings at a pre-determined percentage for a fixed number of years. In the guaranteed savings 

model, the ESCO guarantees a certain level of energy savings to the customer. Financing for the 

investment can either come from the internal funds of the ESCO, from the customer, or from a 

third-party funding source, where a financial institution allows a credit for the ESCO or directly to 

its client. A guarantee for the projected energy or cost savings given by the ESCO backs the loan. 

ESCOs emerged in the US in the 1970s after the oil crisis, which led to increasing energy 

prices. They grew during the utility integrated resource planning and demand side management 

(DSM) era of the late 1980s and early 1990s. Now, the US possesses the most mature ESCO 

market in the world. Energy-efficiency technologies represent a major share of the industry activity, 

accounting for 75 percent of ESCO revenues in 2008 (Goldman et al., 2005; Urge-Vorsatz et al., 

2007; Satchwell et al., 2010). The concept gradually spread to Europe and Japan (Vine et al., 1998; 

Shito, 2003; Vine, 2005; Bertoldi et al., 2006; Patlitzianas et al., 2006; Kiss et al., 2007; 

Patlitzianas and Psarras, 2007). For example, Italian ESCO activity began in the early 1980s (Vine, 

2005), and now, ESCOs account for 90 percent of energy-efficiency activity (Linares and 

Perez-Arriaga, 2009). In the 1990s, the ESCOs emerged in developing countries (Davies and Chan, 

2001; Lee et al., 2003; Okay et al., 2008; Ellis, 2010). By 2008, China housed the largest ESCO 

industry in the developing world by total investment (Taylor et al., 2008). Today, international 

agencies view the ESCO industry as the new business model to promote energy efficiency in the 

world (Bleyl, 2009; Limaye and Limaye, 2009; Singh et al., 2009; Sarkar and Singh, 2010; Ellis, 

2010). Some key international agencies involved in ESCO development include the World Bank, 

the Asian Development Bank, and the US Agency for International Development (ESMAP, 2006; 
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ADB, 2009; USAID, 2010).  

Vine (2005) and Goldman et al. (2005) analyze the results of a survey on ESCO activity in 

38 countries outside of the US and the US, respectively. Vine (2005, Table 7) gives details on most 

important barriers facing the ESCO industry in various countries such as customers and 

engineering companies unfamiliar with or uninterested in ESCOs and EPC, lack of financing, low 

energy prices, lack of government support, commitment, and leadership by example, and so on. In 

some countries, ESCO-industry associations; financing, measurement and verification protocols; 

and information and education programs are some key mechanisms for promoting ESCO projects. 

Moreover, countries that remove subsidies, and privatize the energy industry and the power sector 

will lead the development of the ESCO industry. Goldman et al. (2005) find that EPC overcomes 

market barriers for energy-efficiency investments among large, institutional, public-sector 

customers in the US. Recently, Sarkar and Singh (2010) provide ideas for scaling up 

energy-efficiency investments through EPCs. They propose an innovative public-private 

partnership business model (i.e., a Super ESCO) to bundle public facilities to lower transaction 

costs, bring in economies-of-scale, and attract large service providers into the markets. 

Using the international survey data from Vine (2005), Okay and Akman (2010) plot 

relationships among a set of ESCO indicators (age of ESCO market, number of ESCO companies, 

total value of ESCO projects, and sectors targeted by ESCOs) and country indicators (per capita 

GDP, energy consumptions, CO2 emissions, and global innovation index). They find important 

dependences between ESCO activity indicators and country indicators such as the global 

innovation index. In their descriptive study, the positive slope (or correlation) of each of the ESCO 

indicators with respect to CO2 emissions leads the authors to conclude the ineffectiveness of 

ESCOs in most of the countries. 
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Do ESCOs reduce CO2 emissions? To answer this question, we use an empirical approach 

to examine the effect of ESCOs on CO2 emissions. To the best of our knowledge, we provide the 

first econometric analysis of this issue. Based on the IPAT formula (Ehrlich and Holdren, 1971; 

1972; Commoner et al., 1971), we derive an estimating equation from a simple production model 

of CO2 emissions. We estimate a dynamic panel model for a sample of 129 countries from 1980 to 

2007. We provide new evidence that ESCOs effectively reduce CO2 emissions and this result 

proves robust to the inclusion of a set of control variables, different dates of the first ESCO, and 

the Kyoto Protocol. Moreover, the ESCO effect increases over time. 

The rest of the article flows as follows. Section 2 presents a brief review of the dynamic 

IPAT model and its properties. Section 3 describes the data, reports and discusses the results. 

Section 4 concludes. 

2. A dynamic IPAT model 

The well-known IPAT (or I=PAT) model tries to identify the environmental impact (I) of the 

product of three factors: population size (P), affluence of the economy (A) measured by per capita 

GDP, and the existing technology (T) measured by the environmental impact per unit of economic 

activity. The Kaya identity (Yamaji et al., 1991; Raupach et al., 2007) provides a specific 

application of the IPAT identity. It decomposes the global CO2 emissions driving forces into four 

multiplicative factors: global population, global GDP per capita (i.e., GDP/Population), energy 

intensity of world GDP (i.e., Energy/GDP), and carbon intensity of energy (i.e., CO2/Energy). In 

the same form, Waggoner and Ausubel (2002) developed the ImPACT model to predict total CO2 

emissions. While the ImPACT model identifies some factors that when reduced, can reduce CO2 

emissions, like the IPAT and the Kaya identities, the ImPACT model also is a definition and does 

not emerge from some underlying theoretical model. Rather, it is an ad hoc identity that does not 
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permit hypothesis testing for the underlying driving forces of environmental change. These 

equations, however, may help assess the effect of ESCO activity as another indicator of the 

technological factor on environmental degradation.  

To estimate the effects of population, affluence, and technology on CO2 emissions, Dietz 

and Rosa (1994, 1997) and York et al. (2003) reformulate IPAT into a stochastic impacts by 

regression on population, affluence, and technology (STIRPAT) model as follows: 

i
d

i
c
i

b
ii eTAaPI = ,               (1) 

where the subscript i denotes the country; a, b, c and d are parameters to be estimated; ei is the 

error term. After taking natural logarithms, the model becomes:  

ln ln ln ln lni i i i iI a b P c A d T ε= + + + + ,          (2) 

where εi = ln e i  

We now propose a simple model of CO2 that generates an estimating equation similar to 

that of equation (2). First, we formulate the problem as a production process for CO2 emissions. 

Such emissions come from the use of energy resources. We propose a simple Cobb-Douglas 

production function for CO2 emissions as follows: 

i
i i iI a E eea= ,              (3) 

where  I = CO2 emissions; 

  a = the technological, structural, and other effects; 

  E = energy use; 

  e = the Euler’s number, and 
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  ε = the error term. 

Demographic and economic developments play a crucial role in determining CO2 emissions. 

We can augment this equation by dividing both sides of this production function for CO2 emissions 

by population and then real GDP as follows: 

(1 ) (1 )
1 1

i i ii
i i i

i i i ii i i

EI E E Ya e a e a e
P P P P Y P P

a aa a aa
eee 

− −
          = = =          

          
  (4) 

where  P = population; and 

  Y = real GDP. 

Thus, taking natural logarithms gives us 

ln ln (1 ) ln ln ln ;  ori i i
i i i

I Y Ea P
P P Y

a a a ε     = − − + + +     
     

    (5) 

ln ln ln ln lni i i i
i i

Y EI a P
P Y

a a a ε   = + + + +   
   

.      (6) 

Equation (6) matches equation (2), where b = c = d = a. That is, we can characterize the 

literature’s STIRPAT model as the simple production function (for CO2 in this case), where the 

restrictions on the coefficients of population, real GDP per capita, and energy use per real GDP 

(i.e., energy intensity) are relaxed. Note that the translation of variables from our formulation to 

STIRPAT is as follows:  

A = and    i i
i i

Y ET
P Y

   =   
   

           (7) 

Furthermore, one can think of additional control variables that can affect CO2 emissions 
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through the constant term as follows: 

 or ln ln lng
i i i ia aX a a g X= = +           (8) 

In the additive regression (6), we express all variables in natural logarithmic form to 

facilitate estimation and hypothesis testing, where ai includes all variables other than population. 

real GDP per capita, and energy use per real GDP. Researchers use the STIRPAT model to analyze 

the effects of different driving forces on a variety of environmental effects (Shi, 2003; York et al., 

2003; Cole and Neumayer, 2004; Martinez-Zarzoso et al., 2007; Grunewald and Martinez-Zarzoso, 

2009; Iwata and Okada, 2010; Poumanyvong and Kaneko, 2010; Martinez-Zarzoso and Maruotti, 

2011). For example, Shi (2003) argues that the difference in energy intensity, which is T in the 

IPAT equation, could depend on the differences in economic structures between countries. 

Countries whose GDP depends heavily on manufacturing will use more energy and will produce 

higher CO2 emissions; whereas countries whose GDP depends largely on services will use less 

energy and will produce lower emissions. Shi (2003), thus, specifies two variables: the share of the 

industry and service sectors in GDP in the STIRPAT model to examine the effect of population on 

global CO2 emissions. Poumanyvong and Kaneko (2010) employ the STIRPAT model and add 

urbanization as an additional variable to investigate its impact on CO2 emissions. 

The IPAT model views population coupled with growing affluence as the primary forces 

driving adverse environmental effects (Dietz and Rosa, 1997; Shi, 2003; York et al., 2003; 

Martinez-Zarzoso et al., 2007). Another category of work, the environmental Kuznets curve (EKC), 

focuses on an inverted-U relationship between environmental degradation and economic growth. 

That is, pollutants such as CO2 emissions worsen in the early stages of growth, but eventually peak 

and start declining as income passes a certain threshold level (Grossman and Krueger, 1995; 

Dasgupta et al., 2002; Dinda, 2004; Stern, 2004; Brock and Taylor, 2010; Carson, 2010; Kijima et 
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al., 2010). Empirical models, which test for the EKC hypothesis, typically regress CO2 emissions 

per capita on per capita GDP and a squared term of per capita GDP along with other explanatory 

variables. If the coefficient of the squared term proves significantly negative and the estimated 

extreme point falls within the data range, it concludes that an inverted-U relationship exists. The 

existing findings generally show that CO2 emissions increase monotonically with per capita 

income, start declining at income levels well beyond the observed range, or depend on different 

income levels and regions (Holtz-Eakin and Eslden, 1995; Cole et al., 1997; Lee et al., 2009; 

Caviglia-Harris et al., 2009; Gassebner et al., 2011). No unanimous evidence supports the 

inverted-U relationship yet. 

Both population and per capita income lead to environmental pressure in either total or per 

capita CO2 emissions. We focus on the total measure of the pollutant because it directly links to 

climate change and global warming. In the IPAT framework, the technology factor critically 

determines environmental improvement. Technological advance must control global CO2 

emissions to offset, at least partly, the adverse effect of population and per capita income growth to 

achieve a sound process of sustainable world development. ESCOs can contribute to the effort by 

developing public and private projects designed to improve energy efficiency. 

Empirical implementations of the STIRPAT model employ panel data techniques to 

ameliorate a number of statistical problems with cross-country investigations (Shi, 2003; Cole and 

Neumayer, 2004; Martinez-Zarzoso et al., 2007; Iwata and Okada, 2010; Poumanyvong and 

Kaneko, 2010; Martinez-Zarzoso and Maruotti, 2011). To examine the effect of ESCOs on CO2 

emissions, we develop a dynamic, panel-data IPAT model that explicitly captures the dynamics of 

adjustment in the CO2 .series. The idea is straightforward. It takes time to reach any of the GHG 

emissions reductions targets such as the levels proposed by the Kyoto Protocol. The process of 
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moving toward the target gradually implies that current and lagged CO2 emissions are correlated. 

This dependency suggests using a dynamic model to capture the lagged effect. And finally, adding 

a variable to capture ESCO activity completes our estimation equation as follows:  

1ln ln ln ln ln
                                       ln

it i t it it it it

it it

I b I c P d A e T
f ESCO g X

µ η
e

−= + + + + +
+ + +

       (9) 

where the subscript t denotes the year. Note that with panel data, our constant ln a in equation (8) 

becomes a country-specific fixed-effect, iµ , along with a year-specific fixed-effect, tη , and the 

error term, itε . 

In the dynamic panel-data model, itI  ( 1−itI ) equals CO2 emissions in kilotons (kt) in 

country i at year t ( 1−t ). itP  is total population. itA  is real per capita GDP in PPP (purchasing 

power parity 2005 constant international dollars). itT  is energy intensity defined as the amount of 

energy use per unit of real GDP in PPP (2005 constant international dollars). The ESCO dummy 

variable equals one beginning in the year the country started its ESCO business; zero otherwise. 

We also modify this specification and include the number of years of ESCO activities and its 

squared term to examine the ESCO effect over time. itX  is a set of control variables: per capita 

GDP squared to test for the EKC hypothesis (Caviglia-Harris et al., 2009, Gassebner et al., 2011), 

the percentage share of industry (including manufacturing) and service sectors value added in GDP 

to account for the effect of economic structure (Shi, 2003), the percentage of total population 

living in urban areas to measure the effect of urbanization (Poumanyvong and Kaneko, 2010; 

Martinez-Zarzoso and Maruotti, 2011), and the Kyoto dummy variable, which equals one 

beginning in the year of treat’s adoption; zero otherwise, to evaluate the role of the Kyoto Protocol 

(Iwata and Okada, 2010; Almer and Winkler, 2011). 

The inclusion of 1ln −itI  as a regressor leads to biased and inefficient OLS estimates due to 
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correlation between the lagged dependent variable and the error term. Moreover, two additional 

econometric problems may arise from estimating equation (9): the explanatory variables are 

probably endogenous and the country-specific effect may correlate with the explanatory variables. 

To solve these problems, we use the generalized method of moments (GMM) difference estimator 

proposed in Arellano and Bond (1991) (see Roodman, 2009, for applications). This method takes 

the first differences of equation (9) to remove the country-specific fixed-effect and permits the use 

of lags of the levels of regressors and the dependent variable as instrumental variables, and thereby 

provides more precise estimates of the relationship. The regression needs to pass two standard 

specification tests: Sargan and serial correlation. The null hypothesis of the former states that the 

instruments do not correlate with the residuals from the respective regression. The null hypothesis 

of the latter states that the errors in the first-difference regression exhibit no second-order serial 

correlation (significant negative first-order serial correlation is allowed). Evidence that supports 

the efficacy of ESCOs in reducing CO2 emissions emerges when the coefficient of the ESCO 

dummy variables proves significantly negative (i.e., f < 0). 

3. Data, estimation results and discussion 

Data description 

We use a panel dataset of 129 countries covering the period from 1980 to 2007. ESCOs first 

appeared in the late 1970s and early 1980s in a few countries such as Canada, Sweden, the UK, 

and the US. Most ESCO activities began in the late 1980s and 1990s, and the number of ESCO 

countries continued to grow in the 2000s. In equation (9), we proxy for ESCO activity with the 

dummy variable, which equals one the year ESCO activity began in the country; zero otherwise. In 

his international survey, Vine (2005) lists 38 countries (outside of the US) that became involved in 

ESCO activities with the initial year or range of years when that activity began. Given the ranges, 



 12 

we use the mid-point as the starting year. For example, the range for Argentina and Philippines is 

the 1990s, then we adopt 1995 as the time of the first ESCO, Germany’s range equals 1990 to 1995, 

meaning that we adopt 1993 as the starting year, Italy’s range equals the early 1980s, which we 

translate into 1983 as the starting year, and finally, Hungary’s range of the late 1980s to the early 

1990s leads us to adopt 1990 as the starting year. In a pan-European survey of ESCOs, Kiss et al. 

(2007) provide some new European ESCO countries in addition to starting dates for ESCO activity 

that differ from those in Vine (2005) for some countries. We use these alternative dates as a 

robustness check on our results. Table 1 lists the ESCO countries and their starting years from Vine 

(2005) and Kiss et al. (2007). The US started its ESCOs in the 1970s (Urge-Vorsatz et al. 2007). To 

avoid confusion, we refer to the different dates as the Vine or Kiss starting years. In the model 

estimation, the latter is eventually composed of Kiss et al. (2007) pan-European data plus countries 

outside of Europe in Vine (2005) and the US. Table 1 also lists 39 countries and the years they 

ratified the Kyoto Protocol.1 These countries approved the quantified emission limitation or 

reduction commitments, which are legally binding. 

The data on CO2 emissions, population, per capita GDP, energy intensity, urbanization, the 

share of the industry and service sectors value added in GDP come from the World Development 

Indicators published by the World Bank.2 The data on CO2 emissions and total energy use 

originally come from the Carbon Dioxide Information Analysis Center of Oak Ridge National 

Laboratory and the International Energy Agency (IEA), respectively. Table 2 reports a detailed 

description of the variables, preliminary statistics of the data, and simple correlation coefficients 

between the variables in the model.  

The highly significant positive correlation (= 0.9989) between current (I) and the lagged 
                                                 
1 Data downloaded from http://unfccc.int. 
2 Data downloaded from http://data.worldbank.org/data-catalog. 

http://unfccc.int/
http://data.worldbank.org/data-catalog
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( 1−tI ) CO2 suggests a dynamic model. The positive correlations between CO2 emissions and each 

of the other variables studied accords with priors, since all human activities increase CO2 

emissions. Okay and Akman (2010), based on the positive correlations between per capita CO2 

emissions and three ESCO indicators -- the age of the ESCO market, the number of ESCOs, and 

total value of ESCO projects -- conclude that ESCOs contributed to the more CO2 emissions. 

Drawing conclusions based on bivariate correlations can lead to erroneous conclusions, as we will 

demonstrate. We use an aggregate ESCO measure (the dummy variable) and employ an empirical 

approach (the dynamic IPAT model) to examine the effect of ESCOs on CO2 emissions. We have 

derived an estimating equation similar to the stochastic IPAT model based on a production model 

of CO2 emissions. 

Estimation results 

Table 3 reports the results from the difference GMM estimator.3 First, we estimate equation (9), 

where we regress CO2 emissions (It) on lagged CO2 emissions ( 1−tI ), population (P), real per 

capita GDP (A), and energy intensity (T) (Model 1) with standard errors in parentheses, statistics 

for the Sargan and autocorrelation tests, and p-values in brackets. This baseline model incorporates 

only the basic elements from our theoretically derived and modified IPAT framework. The results 

indicate that all four explanatory variables are statistically significant at the 1-percent level and 

display the expected signs. The lagged dependent variable explains the largest part of current CO2 

emissions, lending support to the dynamic specification. A 1-percent increase in population 

associates with a 0.3389-percent increment in CO2 emissions. In the log-log specification, the 

coefficient estimates represent elasticities or the ratios of percent changes. The CO2- real per capita 

GDP elasticity equals 0.6165, or a 1-percent increase in real per capita GDP associates with a 

                                                 
3 We estimate the GMM results using the Stata command xtabond2 (see Roodman, 2009).  
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0.6165 percent increase in CO2 emissions. Energy intensity exhibits an elasticity for CO2 emission 

of 0.5060. Note that in our dynamic IPAT model, the estimates report short-run elasticities. The 

long-run elasticities take the short-run parameters and divide them by 1 minus the coefficient on 

the lagged CO2 variable. Thus, they are 1.2013, 2.1963 and 1.8026, respectively, for population, 

real per capita GDP, and energy intensity. The regression passes the standard specification tests: 

the two-step Sargan test for over-identification does not reject the null, and the test for first-order 

serial correlation rejects the null of no first-order serial correlation, but it does not reject the null of 

no second-order serial correlation. 

Second, we estimate the dynamic IPAT model by including the dummy variable for ESCO 

activity in Model 2, where we still exclude the other explanatory variables. The dummy equals one 

from the year of the first ESCO activity, zero otherwise, based on Vine’s (2005) ESCO country 

data in Table 1. The coefficient of the ESCO dummy proves significantly negative at the 1-percent 

level. All other estimates and the diagnostic statistics match those in the baseline Model 1. These 

results suggest that ESCOs effectively reduce CO2 emissions. York et al. (2003) interpret the 

coefficient of the dummy variable as follows. The negative sign indicates that CO2 emissions 

decrease. The antilog of the coefficient for the ESCO dummy variable shows the ratio of CO2 

emissions with ESCO activity to that without such activity. For example, the antilog of the 

coefficient of -0.0615 equals 0.9404, indicating that ESCO countries produce about 94 percent of 

the CO2 emissions of non-ESCO countries, controlling for other factors. In other words, ESCO 

countries exhibit approximately 6-percent lower CO2 emissions.  

Recent studies also debate the existence of an effect of the Kyoto Protocol on CO2 

emissions. Third, to examine this issue, Model 3 adds the dummy variable for the Protocol to 

Model 2. The coefficient of the KYOTO proves significantly negative at the 5-percent level, 
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suggesting that the Kyoto Protocol does reduce CO2 emissions. Moreover, the coefficient for 

ESCO dummy variable remains negative and significant at the 1-percent level. Note that the 

estimate of ESCO (= -0.0678) is much higher than the estimate of KYOTO (= -0.0123). The ESCO 

industry provides a more effective tool than the international agreement of the Kyoto Protocol to 

reduce global CO2 emissions. The Kyoto Protocol reduces CO2 emissions by approximately 1.12 

percent. 

Fourth, we estimate equation (9) where we include all the other variables, but still use the 

Vine dating of ESCO adoption. Does the significant negative CO2 -ESCO relationship still hold, if 

we accommodate the potential linkages between squared per capita GDP, urbanization, industry 

share, service share, and CO2 emissions. We address this concern with Model 4.4 The estimates 

indicate that the other factors do produce significant effects on CO2 emissions, except for the 

population living in urban areas. Also, the KYOTO dummy variable now becomes insignificant. 

Adding other factors to the model does not alter in any major way the coefficients for the lagged 

dependent variable, population, technology, and ESCO. The positive coefficient for real per capita 

GDP suggests that CO2 emissions initially rise with per capita GDP, and then eventually fall, given 

the negative coefficient on the squared real per capita GDP term, tending to support the EKC 

hypothesis. The effect of the industrial sector exceeds the effect of service sector, not a surprise. 

The negative CO2 -ESCO relationship remains robust to the inclusion of the Kyoto Protocol and 

the set of other control variables. 

Fifth, to further check the robustness of the effect of ESCO activities on CO2 emissions, we 

ask whether the finding on the negative CO2 -ESCO relationship continues to hold if we use the 

different dates of the first ESCO activity. That is, we use the dates from Kiss et al. (2007) for the 

                                                 
4 This model resembles the specification that Poumanyvong and Kaneko (2010) use in their study, except ours adopts 
a dynamic specification. 
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pan-European ESCO countries data combined with the international data from outside Europe in 

Vine (2005), and the US date of the first ESCO activity from Urge-Vorsatz et al. (2007) to replace 

the Vine data used in Models 2, 3, and 4. That is, Models 5, 6, and 7 report the estimation results 

that correspond to Models 2, 3, and 4, except with the new pattern of dates in the Kiss data. In each 

of the three models, the coefficient of the ESCO dummy variable confirms a significant negative 

association between CO2 emissions and ESCOs at the 1-percent level. Thus, the model adjusting 

for different years of the first ESCO yields robust results with regard to the effect of ESCO 

activities on CO2 emissions.  

Finally, we use the number of years since the permitting of ESCO activities (year) and its 

squared term (year2) to examine the ESCO effect over time.5 At this stage, we take the most 

robust variables and estimate the final model. That is, we exclude the squared term of real GDP per 

capita and urbanization in the final model. Model 4 suggests a potential EKC. The estimated 

turning point occurs at a high level of per capita GDP (ln A = 14.53), which far exceeds the income 

range (ln A∈[5.49, 11.47]) in our sample. The negatively estimated coefficient on the squared 

affluence term proves insignificant in Model 7, where we only use different data set for the years 

of the first ESCO activity. Thus, no robust evidence supports the inverted-U relationship between 

CO2 emissions and real per capita GDP. Although urbanization positively influences CO2 

emissions, the coefficient is insignificant in Models 4 and 7, however.  

Table 4 reports the results. Models 8 and 11 re-estimate the specification with the ESCO 

dummy variable without the squared value of real GDP per capita and the urbanization variable.6 

                                                 
5 Our data on ESCOs only identifies when ESCO operations initiated in each country. We do not know exactly the size 
of these operations and/or how these activities changed over time after the initial adoption. Thus, we interact the ESCO 
dummy variable, since the initial permitting of ESCO activities, to examine the ESCO effect over time. 
6 Models 8, 9, and 10 use the Vine (2005) dating of ESCO whereas Models 11, 12, and 13 correspond to Models 8, 9, 
and 10, respectively, but use the modified dates on ESCO as reported by Kiss et al. (2007). 
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Removing these two factors does not substantively alter the size and significance of the 

coefficients for ESCO. Furthermore, adding other factors to the basic model (Model 1) does not 

dramatically change the coefficients for population, affluence and technology. The models with 

interaction terms fit the data well. All variables exhibit significant coefficients. To test for the null 

of no effect of ESCOs, we test if the estimates of ESCO and ESCO*year (ESCO, ESCO*year, and 

ESCO*year2) equal zero jointly in Models 9 and 12 (10 and 13) using a χ2-test. The high 

χ2-statistic rejects the null, suggesting the interaction effects of ESCOs in each of the four models. 

We, therefore, primarily focus our discussion on the final models.  

Discussion 

In the theoretically derived and modified dynamic IPAT model, lagged CO2 clearly and 

significantly predicts current CO2 emissions. In the six final models, the significant coefficient on 

lagged CO2 lies consistently around 0.67 at the 1-percent level. The models also consistently pass 

the two standard specification tests: no correlation between the instruments used with the residuals 

from the respective regression and no second-order serial correlation in the errors of the 

first-differenced regression, indicating that we achieve the appropriate specification of the dynamic 

model.  

Population generally associates with higher CO2 emissions. The population elasticity of 

effect for CO2 emissions (0.3755 in Model 10, for example) appears to fall below the estimate of 

1.123 in Dietz and Rosa (1997), 1.416 in Shi (2003), 0.976 in York et al. (2003), 1.103 in Cole and 

Neumayer (2004), and, more recently, 1.125 in Poumanyvong and Kaneko (2010). These studies 

all use a static STIRPAT model with different estimators, however. Since the authors did not 

include the lagged dependent variable in their models, the coefficient estimates reflect long-run 

elasticities. In our dynamic IPAT model, the short-run estimate in Model 10 implies a long-run 
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population elasticity of 1.1417 (= 0.3755/(1-0.6711)), which then matches closely to these studies. 

Additionally, the population estimate proves consistent with the coefficients estimated between 

0.198 to 0.319 in Martinez-Zarzoso and Maruotti (2011), who do adopt a dynamic model, but with 

different estimators.7 

The affluence coefficient exerts the most positive effect among all factors across models, 

meaning that growing affluence proves a major determinant of deteriorating CO2 emissions. The 

long-run affluence elasticity equals 1.8693 in Model 10, implying that a cleaner CO2 environment 

is a luxury good. The evidence on the robustness of the squared affluence term is weak. Hence, at 

least within the sample, the relationship between CO2 emissions and real GDP per capita 

approximates a concave curve rather than an inverted U-shape. This conclusion supports many 

studies such as Shi (2003), York et al. (2003), Caviglia-Harris et al. (2009), Gassebner et al, (2011) 

and Martinez-Zarzoso and Maruotti (2011).  

Energy intensity, the inverse of energy efficiency, exhibits significant coefficient estimates 

that fall within a narrow range in the final models from 0.4974 to 0.5367. Both coefficients of 

economic structure are significantly positive. The coefficient for industry value added as a percent 

of GDP always exceeds the coefficient for services value added as a percent of GDP. While 

different sample countries and sample periods, static or dynamic models, as well as different 

estimators may lead to different estimation results, our estimated coefficients for energy intensity 

and economic structure fall close to those in Martinez-Zarzoso et al. (2007) and Martinez-Zarzoso 

and Maruotti (2011), where the authors use a dynamic model specification and the GMM 

estimator. 

The effect of ESCOs on CO2 emissions is the focus of our study. The coefficient estimate is 
                                                 
7 The insignificant estimate in Model 7 also appears in Martinez-Zarzoso et al. (2007) and Martinez-Zarzoso and 
Maruotti (2011) when they use the difference GMM estimator for European countries and developing countries, 
respectively. 
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negative and significant in all the models when we add the ESCO dummy variable as an 

explanatory variable, indicating ESCO activities around the world effectively reduce CO2 

emissions. The estimates suggest that adoption of ESCO reduces CO2 emissions by around 5.0 

percent in Model 8 (a 3.8 percent reduction in Model 11), assuming implicitly the effect is constant. 

The ESCO-CO2 relationship varies over time as evidenced by the interaction terms. Consider 

Model 9, for example. Adopting ESCO reduces CO2 emissions, on average, by 2.2 percent, 

ignoring the time effect. Each additional year since the adoption reduces CO2 emissions by 0.3 

percent. According to the Vine’s starting years in Table 1, the mean value of the number of years 

since ESCO adoption is 15 years. Thus, in our sample 15 years after adoption yields a reduction of 

CO2 emissions by 6.7 percent, on average. Model 10 considers potential non-linear effects (e.g., 

diminishing returns over time) through the interaction of the ESCO dummy variable and the 

squared value of the number of years since adoption. Now, the initial effect is 2.70 percent. Each 

additional year reduces CO2 emissions by 0.4 percent, but at a decreasing rate of 0.01 percent. 

After 15 years, the total reduction effect is 6.45 percent. This finding comes close to the effect 

identified above of a 6-percent reduction in CO2 emissions when we use only the ESCO dummy 

variable in Model 2. 

The Kyoto Protocol receives criticism because the target reductions are too small to prevent 

global warming. In addition, the US has not ratified the Protocol. Recently, Grunewald and 

Martinez-Zarzoso (2009) and Iwata and Okada (2010) find a significantly negative effect of the 

commitments to the Kyoto Protocol on CO2 emissions. Almer and Winkler (2011) investigate 

whether committing to a specific GHG emissions target can affect the actual CO2 emissions of 

Australia, Canada, France, Germany, Great Britain, Italy, and Japan. They find no effect on actual 

emissions for the seven developed countries, except for Great Britain. We find negative coefficient 
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estimate on the KYOTO dummy variable. The coefficient, however, proves sensitive to model 

settings with varying significance levels from insignificant to the 10-, 5-, to 1-percent levels. 

Model 8 suggests a reduction in CO2 emissions of around 1.4 percent. When we add the Kyoto 

Protocol dummy variable (KYOTO) as another predictor, no substantial change occurs in the ESCO 

estimates across the models. And the ESCO dummy variable always exhibits a much bigger effect 

than the KYOTO dummy variable on CO2 emissions.  

In sum, the significant negative ESCO effect on CO2 emissions is robust to the inclusion of 

a set of control variables, the different dates of the first ESCO, and the commitments to the Kyoto 

Protocol. Moreover, the ESCO effect improves over time. 

4. Conclusion 

This paper empirically investigates the effect of energy service companies (ESCOs) on CO2 

emissions, using theoretically derived and modified dynamic IPAT model with a panel dataset of 

129 countries over 1980 to 2007. The results indicate that ESCOs significantly reduce CO2 

emissions. The magnitude of those decreases proves important, although not large relative to the 

effects of population, economic development, and energy use per unit of GDP. This finding 

supports the development of the ESCO industry worldwide as an instrument to reduce carbon 

dioxide emissions of energy use, particularly with regard to global warming. 

We also find that ESCOs contribute more to the reduction in CO2 emissions than the Kyoto 

Protocol. Moreover, the effect of the ESCO on reducing CO2 emissions proves more stable and 

consistently significant than the Kyoto Protocol. Therefore, investment in the emerging 

energy-efficiency industry such as ESCOs proves more effective than the international agreement 

such as the Kyoto Protocol in reducing CO2 emissions. 

The findings of this study not only contribute to the existing literature, but also deserve 
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special attention from policy makers from both developed and developing countries. The 

international environmental policy developed in the Kyoto Protocol allows developed countries to 

bear most of the burden of cutting emissions, while developing countries remain relatively free to 

pollute. Global warming effects emerge irrespective of the country where emissions occur: one 

unit of pollutant equally contributes to the greenhouse effect wherever it is emitted. The issue of 

the earth’s sustainability needs attention at all levels of development to achieve an effective 

solution to global environmental problems. All countries must formulate appropriate energy 

policies to promote energy efficiency and accelerate the switch to low carbon energy, decoupling 

environmental effects from economic growth. The newly emerging ESCO industry studied in this 

paper provides a good example. 

The paper provides only preliminary results derived from two different surveys. ESCO 

development still remains in its early stages and must receive significant government support to 

succeed, as argued by Sarkar and Singh (2010). They list a series of barriers to energy-efficiency 

investments and state “To help remove implementation barriers to meet concrete energy-efficiency 

improvement targets on a global scale…, collective efforts of various institutions have to be 

mobilized and their convening force amongst the member countries needs to be utilized effectively 

to push the energy-efficiency acceleration agenda further.” (p.5569) 
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Table 1:  ESCO and the Kyoto Protocol countries and starting years 
 
Country Vine’sa Kiss’sb the Kyoto Protocold 

Argentina 1995   
Australia 1990  2007 
Austria 1995 1998 2002 
Belarus   2005 
Belgium 1990 1990 2002 
Brazil 1992   
Bulgaria 1995 1995 2002 
Canada 1982  2002 
Chile 1996   
China 1995   
Columbia 1997   
Côte d’Ivoire 2000   
Croatia  2003 2007 
Czech Republic 1993 1993 2001 
Denmark   2002 
Egypt 1996   
Estonia 1986 1986 2002 
Finland 2000 2000 2002 
France  1993 2002 
Germany 1993 1993 2002 
Greece   2002 
Ghana 1996   
Hungary 1990 1991 2002 
Iceland   2002 
India 1994   
Ireland  2006 2002 
Italy 1983 1983 2002 
Japan 1997  2002 
Jordan 1994   
Kenya 1997   
Korea 1992   
Latvia  2001 2002 
Liechtenstein   2004 
Lithuania 1998 1998 2003 
Luxembourg   2002 
Mexico 1998   
Monaco   2006 
Morocco 1990   
Nepal 2002   
Netherlands  2000 2002 
New Zealand   2002 
Norway   2002 
Philippines 1995   
Poland 1995 1995 2002 
Portugal   2002 
Romania   2001 
Russian Federation   2004 
Slovak Republic 1995 1994 2002 
Slovenia  2001 2002 
South Africa 1998   
Spain  1987 2002 
Sweden 1978 1978 2002 
Switzerland 1995  2003 
Thailand 2000   
Tunisia 2000   
Turkey   2009 
Ukraine 1996  2004 
United Kingdom 1980 1984 2002 
United Statesc 1975 1975  
aVine (2005) gives some entries as ranges. We use the mid-point of the given range as the year of the first ESCO. 
bKiss et al. (2007) also give some entries as ranges. We ,thus, use the mid-point of the given range as the year of the first ESCO. 
cUS ESCOs started in the 1970s in Urge-Vorsatz et al., (2007), we then use 1975 as the year of the first ESCO. 
dStarting years of the Kyoto Protocol are the years the 39 Annex B parties ratified the Protocol, European Union is excluded, 
however.(visited online at http://unfccc.int). 
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Table 2:  Description of the Variables  
 

Variable Definition 

Total carbon dioxide CO2 (I) CO2 emissions stem from fuel combustion and the manufacture 
of cement in kiloton. 

Population (P) Mid year population. 
per capita GDP (A) Gross domestic product divided by midyear population in PPP 

(constant 2005 international dollars). 
Energy Intensity (T) Total energy use (kg of oil equivalent) per $1000 PPP GDP 

(constant 2005 international dollar). 
Urbanization (UB) The percentage of the urban population in the total population. 
Industry Share (IN) The percentage of industrial sector value added in GDP. 
Service Share (SV) The percentage of service sector value added in GDP. 
Energy Service Company (ESCO) The year of the first ESCO started in the country. 
The Kyoto Protocol (KYOTO) The year of the Annex B country ratified the Kyoto Protocol. 
Descriptive statistics 
 Mean Median Std. Deviation Maximum Minimum 

I 170353.8 27549.62 589368.5 6533019 7.33 
P 40.8446 9.55 133.4319 1317.89 0.19 
A 11688.84 6897.669 12323 95434.18 241.8058 
T 253.5537 187.9 199.6211 1725.39 51.24 
UB 57.07929 57.95 22.08313 6.1 100 
IN 33.30464 31.2 11.71397 6.47 84.82 
SV 52.33365 52.86 13.17385 10.26 92.26 
ESCO 0.1536545 0 0.3606672 1 0 
KYOTO 0.0550941 0 0.2281955 1 0 
Correlation coefficients 
 I It-1 P A T UB IN SV ESCO 

It-1 0.9989 
[0.0000]         

P 0.6036 
[0.0000] 

0.5932 
[0.0000]        

A 0.1634 
[0.0000] 

0.1694 
[0.0000] 

-0.1047 
[0.0000]       

T 0.0366 
[0.0389] 

0.0328 
[0.0000] 

0.1159 
[0.0000] 

-0.2873 
[0.0000]      

UB 0.0761 
[0.0000] 

0.0781 
[0.0000] 

-0.1630 
[0.0000] 

0.6344 
[0.0000] 

-0.3412 
[0.0000]     

IN 0.0270 
[0.1407] 

0.0243 
[0.1930] 

0.0248 
[0.1695] 

0.2033 
[0.0000] 

-0.0530 
[0.0000] 

0.2454 
[0.0000]    

SV 0.1124 
[0.0000] 

0.1177 
[0.0000] 

-0.1094 
[0.0000] 

0.4443 
[0.0000] 

-0.4272 
[0.0000] 

0.4805 
[0.0000] 

-0.4878 
[0.0000]   

ESCO 0.1328 
[0.0000] 

0.1325 
[0.0000] 

0.1602 
[0.0000] 

0.1332 
[0.0000] 

-0.0816 
[0.0000] 

0.2043 
[0.0000] 

-0.0754 
[0.0000] 

0.2770 
[0.0000]  

KYOTO 0.0210 
[0.2262] 

0.0226 
[0.2029] 

-0.0301 
[0.0707] 

0.3028 
[0.0000] 

-0.0961 
[0.0000] 

0.1616 
[0.0000] 

-0.0889 
[0.0000] 

0.2922 
[0.0000] 

0.2538 
[0.0000] 

Note:  Numbers in brackets are p-values. 



 29 

Table 3: Estimation results, 1980-2007 
 
Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
lnIt-1 0.7193*** 

(0.0044) 
0.7110*** 
(0.0066) 

0.7136*** 
(0.0080) 

0.6779*** 
(0.0072) 

0.7124*** 
(0.0053) 

0.7125*** 
(0.0055) 

0.6881*** 
(0.0070) 

lnP 0.3389*** 
(0.0320) 

0.3084*** 
(0.0433) 

0.2971*** 
(0.0544) 

0.2668** 
(0.1065) 

0.3049*** 
(0.0489) 

0.2531*** 
(0.0461) 

0.1059 
(0.1321) 

lnA 0.6165*** 
(0.0156) 

0.6136*** 
(0.0180) 

0.6138*** 
(0.0216) 

1.4182*** 
(0.3021) 

0.6048*** 
(0.0145) 

0.6156*** 
(0.0179) 

0.8016*** 
(0.2080) 

lnT 0.5060*** 
(0.0132) 

0.5223*** 
(0.0172) 

0.5173*** 
(0.0188) 

0.5291*** 
(0.0210) 

0.5029*** 
(0.0123) 

0.5086*** 
(0.0131) 

0.5191*** 
(0.0205) 

lnA2    -0.0488*** 
(0.0175) 

  -0.0125 
(0.0121) 

lnUB    0.0396 
(0.1167) 

  0.2482 
(0.1682) 

lnIN    0.0393*** 
(0.0123) 

  0.0448*** 
(0.0122) 

lnSV    0.0213* 
(0.0111) 

  0.0221** 
(0.0103) 

ESCO  -0.0615*** 
(0.0090) 

-0.0678*** 
(0.0079) 

-0.0565*** 
(0.0105) 

-0.0573*** 
(0.0061) 

-0.0580*** 
(0.0051) 

-0.0414*** 
(0.0069) 

KYOTO   -0.0123** 
(0.0051) 

-0.0057 
(0.0049) 

 -0.0153*** 
(0.0050) 

-0.0083* 
(0.0044) 

No. of observations 2936 2936 2936 2725 2936 2936 2725 
No. of countries 129 129 129 126 129 129 126 
Sargan test 
(p-value) 

105.5465 
[1.0000] 

108.1156 
[1.0000] 

112.5979 
[1.0000] 

99.2111 
[1.0000] 

110.2041 
[1.0000] 

109.0372 
[1.0000] 

97.8071 
[1.0000] 

AR(1) 
(p-value) 

-3.9155 
[0.0001] 

-3.8580 
[0.0001] 

-3.9067 
[0.0001] 

-3.4149 
[0.0006] 

-3.8919 
[0.0001] 

-3.8895 
[0.0001] 

-3.5168 
[0.0004] 

AR(2) 
(p-value) 

-0.8428 
[0.3993] 

-0.8659 
[0.3865] 

-0.8635 
[0.3878] 

-1.4172 
[0.1564] 

-0.8560 
[0.3920] 

-0.8599 
[0.3898] 

-1.3942 
[0.1632] 

Note:  ln denotes natural logarithms, P denotes total population, A denotes per capita GDP, T denotes energy intensity, UB denotes 
urbanization, IN and SV denote percent GDP from industry and services, respectively, ESCO is the dummy variable for ESCOs, 
and KYOTO is the dummy variable for the Kyoto Protocol. The Sargan tests for over-identification. AR(1) and AR(2) test for the 
first- and second-order autocorrelation respectively. Numbers in parentheses are standard errors and in brackets are p-values. 

* denotes 10-percent level. 
** denotes 5-percent level. 
*** denotes 1-percent level. 
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Table 4: Final Models, 1980-2007 
 
Variables Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 
lnIt-1 0.6676*** 

(0.0083) 
0.6647*** 
(0.0083) 

0.6711*** 
(0.0074) 

0.6808*** 
(0.0105) 

0.6795*** 
(0.0145) 

0.6884*** 
(0.0092) 

lnP 0.4333*** 
(0.0592) 

0.2853*** 
(0.0599) 

0.3755*** 
(0.0653) 

0.3895*** 
(0.0546) 

0.3103*** 
(0.0609) 

0.2485*** 
(0.0655) 

lnA 0.6240*** 
(0.0231) 

0.6273*** 
(0.0190) 

0.6148*** 
(0.0184) 

0.6374*** 
(0.0225) 

0.6055*** 
(0.0203) 

0.6068*** 
(0.0380) 

lnT 0.4974*** 
(0.0250) 

0.5367*** 
(0.0222) 

0.5025*** 
(0.0225) 

0.5127*** 
(0.0229) 

0.5019*** 
(0.0220) 

0.5113*** 
(0.0265) 

lnIN 0.0692*** 
(0.0135) 

0.0694*** 
(0.0142) 

0.0684*** 
(0.0106) 

0.0550*** 
(0.0126) 

0.0713*** 
(0.0108) 

0.0677*** 
(0.0131) 

lnSV 0.0579*** 
(0.0101) 

0.0524*** 
(0.0105) 

0.0485*** 
(0.0102) 

0.0397*** 
(0.0103) 

0.0488*** 
(0.0104) 

0.0469*** 
(0.0109) 

ESCO -0.0517*** 
(0.0095) 

-0.0223** 
(0.0092) 

-0.0274*** 
(0.0093) 

-0.0386*** 
(0.0056) 

-0.0180*** 
(0.0050) 

-0.0111** 
(0.0048) 

ESCO*year  -0.0031*** 
(0.0008) 

-0.0041*** 
(0.0014) 

 -0.0032*** 
(0.0007) 

-0.0053*** 
(0.0011) 

ESCO*year2   0.0001 
(0.0001) 

  0.0001* 
(0.0000) 

KYOTO -0.0144*** 
(0.0051) 

-0.0112** 
(0.0051) 

-0.0099* 
(0.0053) 

-0.0183*** 
(0.0050) 

-0.0092** 
(0.0037) 

-0.0113*** 
(0.0038) 

χ2-statistic  27.25 
[0.0000] 

30.42 
[0.0000] 

 28.75 
[0.0000] 

33.81 
[0.0000] 

No. of observations 2725 2725 2725 2725 2725 2725 
No. of countries 126 126 126 126 126 126 
Sargan test 
(p-value) 

98.1205 
[1.0000] 

92.255 
[1.0000] 

98.5787 
[1.0000] 

99.2918 
[1.0000] 

102.5421 
[1.0000] 

98.7149 
[1.0000] 

AR(1) 
(p-value) 

-3.3846 
[0.0007] 

-3.3340 
[0.0009] 

-3.3630 
[0.0008] 

-3.4344 
[0.0006] 

-3.4329 
[0.0006] 

-3.4605 
[0.0005] 

AR(2) 
(p-value) 

-1.3983 
[0.1620] 

-1.3934 
[0.1635] 

-1.3903 
[0.1644] 

-1.3795 
[0.1677] 

-1.3857 
[0.1658] 

-1.3796 
[0.1677] 

Note:  See Table 3. year and year2 denotes the number of years since the ESCO adoption and is squared term, respectively. χ2–statistic 
tests if the estimates of ESCO and ESCO*year (ESCO, ESCO*year and ESCO*year2 ) equal zero jointly in Models 9 or 12 (10 
or 13). Numbers in parentheses are standard errors and in brackets are p-values. 

* denotes 10-percent level. 
** denotes 5-percent level. 
*** denotes 1-percent level. 
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