
Information Concentration in Common Value Environments 

 
Vlad Mares 
Northwestern University 
 
Mikhael Shor 
University of Connecticut 
 
 
Working Paper 2012-23 

November 2008 

365 Fairfield Way, Unit 1063 

Storrs, CT 06269-1063 

Phone: (860) 486-3022 

Fax: (860) 486-4463 

http://www.econ.uconn.edu/ 

 

This working paper is indexed on RePEc, http://repec.org 



Information Concentration in Common Value Environments ∗

Vlad Mares Mikhael Shor
Kellogg School of Management Owen Graduate School of Management

Northwestern University Vanderbilt University
v-mares@kellogg.northwestern.edu mike.shor@owen.vanderbilt.edu

This version: November 2008

Abstract

We consider how information concentration affects a seller’s revenue in common value auctions. The
common value is a function of n random variables partitioned among m ≤ n bidders. For each partition,
the seller devises an optimal mechanism. We show that, whenever the value function allows scalar
sufficient statistics for each player’s signals, the mechanism design problem is well-defined. Additionally,
whenever a common regularity condition is satisfied, a coarser partition always reduces revenues. In
particular, any merger or collusion among bidders reduces revenue.
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1 Introduction

Consider a seller of an indivisible item facing several potential buyers, each with some information about
the object’s common value. How would a decision by a group of buyers to centralize their information
and decision-making authority impact the seller’s revenue? While the question is of obvious interest to
auctioneers considering allowing bidding syndicates and to policy governing mergers and collusion, these
environments remain largely unmodeled. Providing a general result on the revenue impact of information
concentration is the purpose of this manuscript.

A growing literature is devoted to determining how access to more informative signals changes behavior
in allocation problems (Matthews 1984, Persico 2000, Athey and Levin 2001, Bergemann and Valimaki 2002,
Mares and Harstad 2003). Since these approaches generally define “more informative” in terms of some
order over scalar random variables, they permit two buyers working together to possess anything from only
a slightly more informative signal than each of them had individually to nearly perfect information about the
object’s value. Another strand of literature finds that a more concentrated industry, obtained by removing
a bidder and his information, is less profitable even when the auctioneer reacts with an optimal mechanism
(Bulow and Klemperer 1996). However, this approach conflates the role of industry concentration with
information concentration.

In contrast, our approach keeps the total amount of information constant while concentrating its allocation
among fewer bidders. The centralization of two buyers’ signals would simply have the joint entity with two
signals. Since the new entity possesses a multi-dimensional signal, this calls into question the existence
of equilibria in auctions (Jackson 2005) and of incentive-compatible mechanisms in general (Armstrong and
Rochet 1999). Several authors have adopted models of bidding with multidimensional signals while imposing
symmetry (Goeree and Offerman 2002, DeBrock and Smith 1983, Mares and Shor 2008). Yet, symmetric
models are particularly ill-suited to modeling mergers or collusion as even an a priori symmetric industry
will not be so following a merger.1 Without symmetry, simple auction mechanisms need not be optimal. In
this paper, we provide the auctioneer full strategic latitude in the choice of mechanisms

In our model, the object’s value is a function of n independent (but not necessarily identically distributed)
signals, which are allocated among m ≤ n bidders. We adopt a mechanism design approach, allowing the
seller to select an optimal mechanism for each allocation of signals among bidders. We require that each
bidder’s vector of signals allows a scalar sufficient statistic, a condition satisfied by commonly-analyzed
models, including additively separable and maximum or minimum value auctions (Mares and Shor 2008,
Bikhchandani and Riley 1991, Bulow and Klemperer 2002, Krishna and Morgan 1997). Our central result is
that a coarser partition of information among bidders always results in reduced revenue for the seller. This
implies that all mergers reduce the auctioneer’s revenue, even those that make an industry more symmetric
by aggregating smaller bidders.

To approach the mechanism design problem in asymmetric, multidimensional-signals contexts, we provide
a result that significantly simplifies the problem. Whenever a scalar sufficient summary statistic exists for
each player’s signals, every incentive-compatible mechanism has a revenue-equivalent incentive-compatible
scalar mechanism that requires only scalar reports. We offer a constructive proof of this result in a general
environment. This allows a broad class of problems to be analyzed in the Myerson (1981) framework, and
provides sufficient conditions for the existence of incentive-compatible mechanisms.

1Common value auctions appear especially sensitive to asymmetries. Bikhchandani (2006) notes that even vanishing asym-
metries can lead an advantaged bidder to win the auction with probability 1. Klemperer (1998) provides discussion of this
result in relation to the FCC Spectrum auctions.
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In what follows, we describe a model of common-value environments that allows for arbitrary partitions
of signals among bidders. We first present our result on the existence of optimal scalar mechanisms, which
extends the definition of virtual valuations to these contexts. Then, we present our main result, that coarser
partitions of information in regular allocation problems decreases revenue. We demonstrate these results for
a class of value functions and conclude with policy implications and suggestions for future research.

2 Model

A seller has one indivisible object and faces m risk-neutral buyers. Consider a collection of n independent
random variables, (X1, . . . , Xn), where Xi has density fi, distribution Fi, and typical element xi ∈ [zi, zi] ⊂
<.2 An information profile A = (A1, .., Am) is a partition of the index set {1, . . . , n}, with the interpretation
that Si ≡ {Xk}k∈Ai

describes bidder i’s private information with typical element si ∈ ∆i ≡
∏
k∈Ai

[zk, zk] ⊂

<|Ai|. A vector of realizations of private information is denoted s = (si, s−i) = (s1, . . . , sm).
Bidder i’s valuation for the object is given by Vi(s) which is increasing in si and nondecreasing in s−i.

This model generalizes the standard symmetric auction model. The special case of each bidder possessing
one identically distributed signal is obtained when m = n, Ai = {i}, and Fi ≡ F .

The seller constructs a mechanism, η = (pi(s), ξi(s)), which determines allocation probabilities and
payments based on buyers’ reports, s. Define information profile A′ as coarser than information profile A,
if, for each a ∈ A there exists an a′ ∈ A′ such that a ⊆ a′. In particular, consider a simple merger between
bidders 1 and 2, so that the single entity shares all information and places a single bid. By redistributing
all of bidder 2’s information towards 1, the post-merger information profile, A′ = {A1 ∪ A2, A3, . . . , An} is
coarser than the pre-merger profile A = {A1, A2, A3, . . . , An}.

3 Scalar Mechanisms

We will show when each player’s type is multidimensional but admits a sufficient statistic, the search for
optimal mechanisms is simplified. Scalar mechanisms, which require only the report of the sufficient statistic,
instead of the full vector describing the private information, are natural candidates in such settings. Their
reliance on scalar private reports for the allocation and payment problem reduces the dimensionality of the
message space under consideration. We will show that they can replicate the revenue properties of their
more complex counterparts.

Assume that, for player 1, the value functions admit sufficient statistic representations. Formally, there
exists a function φ1 : ∆1 → < which satisfies, for all j and any s−1,

Vj(s1, s−1) ≥ Vj(s′1, s−1)⇔ φ1(s1) ≥ φ1(s′1)

We define two types s1 and s′1 as equivalent if φ1(s1) = φ1(s′1).
For every mechanism η = (pi(si, s−i), ξi(si, s−i)) we can construct a scalar mechanism

2These random variables need not be identically distributed, but we do require independence. Otherwise, the results of
Crémer and McLean (1988) and McAfee and Reny (1992) would imply full revenue extraction, trivially eliminating any impacts
information concentration may have on revenue as long as two buyers remain.
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η′ = (p′i(si, s−i), ξ
′
i(si, s−i)) where

p′j(φ1(s1), s−1) =
∫
pj(t1, s−1)f1 (t1|φ1(t1) = φ1(s1)) dt1, and (1)

ξ′j(φ1(s1), s−1) =
∫
ξj(t1, s−1)f1(t1|φ1(t1) = φ1(s1))dt1. (2)

for every j and s1. The scalar mechanism, η′, averages the allocation probabilities and payment functions
over the set of equivalent types. Two equivalent types s1 and s′1 will receive the asset with the same proba-
bility p′1(φ1(s1), s−1) and face the same payment ξ′1(φ1(s1), s−1). Furthermore, from player j’s perspective,
the allocation probability and payment are invariant across equivalent types of player 1. In essence, the
mechanism η′ requires only a report of the sufficient statistic of player 1’s private information.

We show that mechanisms η and η′ are revenue equivalent. Additionally, if η is incentive compatible,
then so is η′, so any mechanism has an associated revenue-equivalent scalar mechanism.

Theorem 1. For any set of value functions which admit sufficient statistics for player i, and any incentive-
compatible mechanism η, we can construct an incentive-compatible scalar mechanism η′ which has the same
revenue as η but has probability and payment functions which depend only on the sufficient statistic φi of the
private information of player i.

The theorem addresses a single bidder whose information can be summarized via a sufficient statistic.
Its extension to instances where multiple or even all player’s private information can be captured by scalars
is straightforward, requiring repeated application of the theorem. The theorem allows the search for optimal
mechanisms to consider only optimal scalar mechanisms.

The result guarantees that a scalar mechanism exists in the set of all optimal mechanisms for this problem.
Scalar mechanisms are appealing as they are simpler and easier to implement than mechanisms requiring
multiple reports from each bidder, especially when different bidders are asked for different quantities of
reports. If we wish to identify the maximum revenue obtainable by the seller, we need only identify an
optimal scalar mechanism. The next section exploits this property by establishing, for a certain class of
value functions, a strong order among revenues generated by different information partitions.

4 Information Concentration

We now investigate the impact of information concentration on the seller’s revenues. We will treat information
concentration as a redistribution of the available information among bidders. Intuitively, one can think
of a process of coalition formation whereby bidders “buy out” their competitors, gaining access to their
private information. Each such merger among bidders transforms the information profile, A, into a coarser
information profile, A′.

For the remainder of the manuscript, we concentrate on pure common value auctions, Vi(·) ≡ V (·), where
the value of the object is the same for each bidder under every information profile.3 We place the following
assumptions on V :

Assumption 1. V is increasing and weakly supermodular: ∂iV > 0 and ∂ijV ≥ 0 for all i, j.

Assumption 2. V admits sufficient statistic representations for all players and information profiles.
3To focus on the role of information concentration, the pure common value auction implies that mergers do not have

value-improving synergies.
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Consider the case where two bidders, each with one signal, combine their information. As a first step,
we derive characteristics of the distribution of this summary statistic. Let Xi be two independent random
variables with distribution and density functions Fi and fi and typical element xi ∈ [zi, zi]. Denote the
survival function by F i = 1 − Fi. Let their summary statistic, φ(·, ·) : [z1, z1] × [z2, z2] → <, be strictly
increasing in both arguments, and admit continuous partial derivatives. Denote by Fφ, fφ, and Fφ the
distribution, density, and survival function of the random variable φ(X1, X2).

Since sufficient statistics are uniquely defined only up to a monotone transformation, we arbitrarily select
one set of representations. For any Ai ⊂ {1, . . . , n} pick a φAi : <|Ai| → < such that

V (si, s−i) ≥ V (s′i, s−i)⇔ φAi(si) ≥ φAi(s′i)

for all si = {xk}k∈Ai
and s′i. The set of sufficient statistics will be denoted

Φ =
{
φAi |Ai ∈ 2A

}
.

It will be convenient to refer to value functions defined over the space of sufficient statistics, rather than the
elementary signals. Define V φ

Ai : <
∑

j 6=i |Aj |+1 → <

V φ
Ai (ti, s−i) = V (si, s−i)

whenever there exists an si such that φAi(si) = ti. This is the value function when bidder i’s (possibly
multidimensional) information is replaced with its scalar sufficient statistic. Iterating this procedure, we
define for every information profile A = {A1, .., Am}, the function V A : <|A| → <

V A(t1, .., tm) = V (s1, .., sm)

if, for all i ∈ {1, . . . ,m}, φAi(si) = ti. We denote by t−i the vector of sufficient statistics excluding bidder i.
It is straightforward to show that the functions V A inherit several properties of the function V . In particular,
V A is increasing and weakly supermodular, ∂iV A > 0 and ∂ijV

A ≥ 0.
An allocation problem in this context is a collection (n, V, {Xi}ni=1 , {Fi}

n
i=1 ,Φ). We require the following

regularity condition for our main result.

Definition. An allocation problem is regular if for any information profile A = {A1, .., Am} the function

gAi (ti, t−i) =
FφAi (ti)
fφAi (ti)

∂iV
A(ti, t−i), (3)

is nonincreasing in ti.

By Assumption 1, gAi (·) is nondecreasing in tj , j 6= i. Define

HA
i (ti, t−i) = V A(ti, t−i)− gAi (ti, t−i) (4)

as the virtual valuations under a scalar mechanism. Our regularity condition implies that these virtual
valuations are increasing, analogous to the condition in Myerson (1981). We now state our main result.

Theorem 2. For all regular allocation problems, coarser profiles will lead to lower revenues.
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For a sketch of the proof, consider a simple merger where bidder 1 and 2’s information is centralized
under the control of a new bidder c. Let

A = {A1, A2, . . . , An}

be the pre-merger information profile and

A′ = {Ac, A3, . . . , An}

represent post-merger, where Ac = A1 ∪A2.
We show that an incentive-compatible mechanism exists in the pre-merger case that is revenue equivalent

to the optimal mechanism post-merger. Effectively, it treats bidders 1 and 2 as if they had merged, even
though they do not share information. In the optimal scalar mechanism under A′, each bidder i ≥ 3 submits a
scalar report, ti, and bidder c submits a scalar report tc. The proof follows three steps. First, we characterize
the optimal post-merger mechanism µA

′
. Second, we construct a mechanism ω for the information profile A,

which treats bidders 3 through n identically as µA
′

but allocates to bidder 2 whenever bidder c would have
won under µA

′
. Finally, we show that ω is incentive compatible and revenue-equivalent to µA

′
. Since ω is

revenue-dominated by µA, the optimal mechanism for information profile A, we establish the desired result.
While we define a regular allocation problem as requiring the monotonicity of gAi (·) for every information

profile, it is possible that monotonicity is satisfied only for some information profile A. In this case, we still
conclude that the coarsening of A leads to lower revenues. Additionally, if the optimal mechanism under
every information profile requires each buyer to have a strictly positive allocation probability, then a coarser
profile leads to strictly lower profits. This assures that ω and µA are not equivalent, as no buyer is irrelevant.

The central argument behind our revenue comparisons in Theorem 2 is quite general. Starting from
an optimal mechanism under a concentrated profile, we construct an allocation-equivalent mechanism for a
profile where one of the bidding rings is dissolved into its component members. The new mechanism allocates
to one representative member whenever the old mechanism allocated towards the ring, and does not otherwise
modify allocations. This generates the same surplus as the old mechanism, but is not necessarily optimal in
the new environment. Our argument relies crucially on the independence assumption since this guarantees
that the new mechanism satisfies the IR and IC constraints for the representative of the ring.

The requirement that a scalar sufficient statistic exists is also a critical assumption. Our argument
assumes the existence of an optimal mechanism under the concentrated profile. While there is no guarantee
that such an optimal mechanism exists generically, the scalarization assumption and regularity condition are
sufficient for a constructive proof, using the approach of Myerson (1981).4

5 Discussion

Information concentration decreases revenue, even when the auctioneer can respond optimally to the new
industry structure. This is similar in spirit to the result of Waehrer and Perry (2003) who find, in symmetric
private value environments, revenues are decreasing even if the auctioneer adjusts his mechanism optimally

4Note also that we represent the transition from concentrated to non-concentrated environments at a very abstract level.
Any bidding ring can be dissolved into its component members. This has the flavor of ex-post implementation in its incentive
compatibility requirement for the representative of the ring. A recent paper by Bikhchandani (2006) shows that in multi-
dimensional problems a single-crossing condition akin to scalarization is required for the existence ex-post implementation.
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to account for less competitive profiles. In common value environments, our result complements that of
Bulow and Klemperer (1996), though with one important distinction. Bulow and Klemperer compare an
optimal mechanism under a less competitive scenario to a standard auction with more bidders. A no-reserve
English auction with N + 1 bidders revenue-dominates any mechanism with N bidders, when signals are
independent. This result has been commonly interpreted as stating that the competition effect outweighs
any mechanism design variable the auctioneer could introduce. However, N bidders are also collectively less
informed than N + 1 bidders, diluting the argument of the strength of the competitive effect. Our results
show that, keeping the informational content constant, we can isolate a competitive effect which reduces the
seller’s revenues even if we allow the seller full latitude in the choice of mechanisms.

Recently, Mares and Shor (2008) have identified a revenue effect of concentration in wallet games, where
the value is equal to the sum of the signals and signals have log-concave density. They consider only
symmetric industry profiles and first and second price auctions. For example, six firms each with one signal
yields higher revenue for the auctioneer than three firms each with two signals. With symmetry, revenue
equivalence allows the mechanism design issue to be sidestepped. We can apply our theorem to generalize
their result to all concentrated profiles. Consider the following value function:

V (X1, . . . , Xn, ) =
∑

Xk

where each Xi has log-concave density fi and distribution Fi. Clearly, the function is increasing in all of
its arguments and is (weakly) supermodular. Further, φAi(si) =

∑
k∈Ai

(Xk) is a sufficient statistic for si.
Thus, we can write the value function over summary statistics,

V A (ti, t−i, α) = ti +
∑
j 6=i

tj

To check our regularity condition, we must establish the monotonicity in ti of

gAi (ti, t−i) =
FφAi (ti)
fφAi (ti)

∂iV
A (ti, t−i) (5)

Consider X and Y independent variables with log-concave densities fX and fY , which is satisfied by most
common distributions (Bagnoli and Bergstrom 2005). This implies that X and Y have log-concave survival
functions FXand FY (Prékopa 1971, 1973). Therefore, Z = X + Y has a log-concave distribution and
survival function. In particular, FZ(ti)

fZ(ti)
is non-increasing. Since ∂iV A (ti, t−i) = 1, our regularity condition

is satisfied.

Corollary 2.1. In the wallet game, coarser information profiles lead to lower revenues when signals have
log-concave distributions.

In order to resolve the potential lack of equilibria arising from multi-dimensional signals (Jackson 2005),
researchers have focused on a few specific models for which equilibria have been analytically identified (e.g.,
Goeree and Offerman 2002, DeBrock and Smith 1983, Mares and Shor 2008). Our results suggest that
researchers need not be restricted to these specialized models. Any model that allows for scalar sufficient
statistics of each bidder’s information can be analyzed in the familiar framework of mechanism design with
a scalar message space. The scalarization result allows us to consider the general question of the impact of
information concentration.
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Our results have significant applications for antitrust. In traditional price-setting markets, mergers
among smaller, higher-priced firms can reduce average prices by shifting quantity to lower-priced firms
post-merger (Werden and Froeb 1994). Similarly, in private value auctions, the auctioneer prefers to face
symmetric bidders, holding the average value distribution constant (Cantillon 2008). Even profitable mergers
of relatively weak competitors can lead to higher revenues for the auctioneer.5 This benefit of concentration
among smaller market players has been suggested as an efficiency defense in mergers (Dagen and Richards
2006), and several regulators have appeared sensitive to these claims.6 Klemperer (2005) argues that a
positive view of joint bidding is largely rooted in a misinterpretation of past research, and suggests, in line
with our results, that it is likely to be harmful for the seller. Yet, largely due to conjectures that mergers in
common-value auctions can increase revenue (e.g., Krishna and Morgan 1997) and lack of suitable theoretical
evidence to the contrary, some have called for regulatory restraint, advising regulators to err on the side of
less oversight when considering common-value environments (Froeb and Shor 2005).

Should an auctioneer facing several bidders ever allow a consortium to form or bidders to merge? Perhaps
synergies not considered here can have a significant enough positive impact, but the concentration of infor-
mation, alone, cannot be of benefit to the auctioneer. Our results indicate an unambiguous revenue-reducing
impact of information concentration.

5Thomas (2004) demonstrates how “a profitable efficiency increasing merger of two relatively small firms creates a stronger
competitor that can cause the expected price to fall [in procurement settings], despite the resulting increase in market concen-
tration.” (p. 688).

6For example, see the comments of Andrew R. Dick, former Acting Chief of the policy section at the DOJ Antitrust Division,
J. Mark Gidley, Assistant Attorney General for Antitrust, and David T. Scheffman, former Director of the FTC’s Bureau of
Competition, who all suggest that asymmetry-reducing mergers can provide market efficiencies (FTC/DOJ 2004).
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Appendix

Proof of Theorem 1

The proof requires three lemmas. Fix the player for whom the value functions admit sufficient statistics to
be player 1.

Lemma 1. Under any incentive compatible mechanism η, the expected payoff for equivalent types is equal.

Proof. For every mechanism η = (pi(·), ξi(·)) define

Ṽj(sj ; tj) =
∫
Vj(sj , s−j)pj(tj , s−j)f−j(s−j)ds−j

and
ξ̃j(tj) =

∫
ξj(tj , s−j)f−j(s−j)ds−j

Under mechanism η, the expected payoff for player j who has information sj and reports tj is

Ṽj(sj ; tj)− ξ̃j(tj).

The interim incentive compatibility constraint for player 1 is

Ṽ1(s1; s1)− ξ̃1(s1) ≥ Ṽ1(s1; t1)− ξ̃1(t1)

for all s1 and t1. For two equivalent types s1 and s′1 and any t1, we have by definition

Ṽ1(s1; t1) = Ṽ1(s′1; t1)

and in particular

Ṽ1(s1; s1) = Ṽ1(s′1; s1),

Ṽ1(s′1; s′1) = Ṽ1(s1; s′1).

Substituting back into the incentive compatibility constraints we have

Ṽ1(s1; s1)− Ṽ1(s′1; s′1) = Ṽ1(s1; s1)− Ṽ1(s1; s′1) ≥ ξ̃1(s1)− ξ̃1(s′1)

and
ξ̃1(s1)− ξ̃1(s′1) ≥ Ṽ1(s′1; s1)− Ṽ1(s′1; s′1) = Ṽ1(s1; s1)− Ṽ1(s′1; s′1)

which yields
Ṽ1(s1; s1)− ξ̃1(s1) = Ṽ1(s′1; s′1)− ξ̃1(s′1) = Ṽ1(s1; s′1)− ξ̃1(s′1).

Consider the mechanism η′ as defined by equations (1) and (2).

Lemma 2. If mechanism η is incentive compatible, then η′ is an incentive compatible mechanism.

Proof. Define fφ1 as the density of φ1(s1). Also, for every s1, such that φ1(s1) = α, define by

V φ1
i (α; s−1) = Vi(s1, s−1)
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the parametrization of i’s value function based on the sufficient statistic’s value. Since η is a mechanism, we
have pi(s1, s−1) ≥ 0 and

∑
pi(s1, s−1) ≤ 1 for every i and every (s1, s−1). This implies by integration over

the set of equivalent types that for i and s1,∫
pi(t1, s−1)f1(t1|φ1(t1) = φ1(s1))dt1 ≥ 0⇔ p′i(φ1(s1), s−1) ≥ 0

and similarly ∑
p′i(φ1(s1), s−1) ≤ 1.

The interim incentive compatibility condition for player j under mechanism η is

Ṽj(sj ; sj)− ξ̃j(sj) ≥ Ṽj(sj ; tj)− ξ̃j(tj)

for all sj and tj . For bidder j 6= 1,

ξ̃j(tj) =
∫
ξj(tj , s1, s−1j)f1(s1)f−1j(s−1j)ds−j

=
∫
f−1j(s−1j)

∫
fφ1(α)

∫
ξj(tj , s1, s−1j)f1(s1|φ1(s1) = α)ds1dαds−1j

=
∫ ∫

ξ′j(α, tj , s−1j)f−1j(s−1j)fφ1(α)ds−1jdα

= ξ̃′j(tj).

Similarly, for all sj and tj ,

Ṽj(sj ; tj) =
∫
Vj(sj , s1, s−1j)pj(tj , s1, s−1j)f1(s1)f−1j(s−1j)ds−j =

=
∫ ∫

V φ1
j (α; sj , s−1j)p′j(α, tj , s−1j)f−1j(s−1j)fφ1(α)ds−1jdα

= Ṽ ′j (sj ; tj).

Substituting the identical terms into the incentive compatibility constraint we get

Ṽ ′j (sj ; sj)− ξ̃′j(sj) ≥ Ṽ ′j (sj ; tj)− ξ̃′j(tj)

for all sj and tj which indicates that mechanism η′ is incentive compatible for player j.
Finally, we need to show that player 1’s incentive compatibility constraint is satisfied under mechanism

η′. Define

Ṽ ′1(φ1(s1);φ1(t1)) =
∫
Ṽ1(s1; y1)f1(y1|φ1(y1) = φ1(t1))dy1.

and
ξ̃′1(φ1(t1)) =

∫
ξ̃1(y1)f1(y1|φ1(y1) = φ1(t1))dy1

which are player 1’s expected asset value and expected payment when his type is equivalent to s1 and he
reports a type equivalent to t1.

The previous lemma establishes that for equivalent types s1 and s′1 the incentive compatibility constraints
yield

Ṽ1(s1; s1)− ξ̃1(s1) = Ṽ1(s1; s′1)− ξ̃1(s′1).
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Integrating these relationships along the set of equivalent types with respect to f1(s′1|φ1(s′1) = φ1(s1)) results
in

Ṽ1(s1; s1)− ξ̃1(s1) = Ṽ ′1(φ1(s1);φ1(s1))− ξ̃′1(φ1(s1)). (6)

Player 1’s incentive compatibility constraint under η for non-equivalent types s1 and t1 is

Ṽ1(s1; s1)− ξ̃1(s1) ≥ Ṽ1(s1; t1)− ξ̃1(t1).

Integrating these relationships along the set of equivalent types to t1 yields

Ṽ1(s1; s1)− ξ̃1(s1) ≥ Ṽ ′1(φ1(s1);φ1(t1))− ξ̃′1(φ1(t1)). (7)

Combining (6) and (7) yields

Ṽ ′1(φ1(s1);φ1(s1))− ξ̃′1(φ1(s1)) ≥ Ṽ ′1(φ1(s1);φ1(t1))− ξ̃′1(φ1(t1)).

which is the incentive compatibility constraint for player 1 under mechanism η′.

Lemma 3. The mechanisms η and η′ are revenue equivalent.

Proof. The expected revenue for the seller under mechanism η is

ER(η) =
∫ ∑

k

ξk(s)f(s)ds

=
∑
k

∫
ξk(s)

∏
fi(si)dsi

=
∑
k

∫
f−1(s−1)

∫
fφ1(α)

∫
ξk(s1, s−1)f1(s1|φ(s1) = α)ds1dαds−1.

=
∑
k

∫ ∫
ξ′k(α, s−i)f−1(s−1)fφ1(α)dαds−1

= ER(η′)

Proof of Theorem 1. Follows from the above three lemmas.

Proof of Theorem 2

Notation

For every t in the support of φ(X1, X2) define:

x1(t) = inf {x1| ∃x2 ∈ [z2, z2], φ(x1, x2) = t} (8)

and
x1(t) = sup {x1| ∃x2 ∈ [z2, z2], φ(x1, x2) = t} , (9)

analogously define x2(t) and x2(t). Note that these objects are well-defined and increasing when φ(·, ·) is
increasing.

Define implicitly for every t, ψ2(·, t) : [x1(t), x1(t)]→ [x2(t), x2(t)]

φ(x1, ψ2(x1, t)) = t
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and ψ1(·, t) : [x2(t), x2(t)]→ [x1(t), x1(t)]

φ(ψ1(x2, t), x2) = t.

Note that ψ1(·, t) and ψ2(·, t) are well-defined decreasing functions and ψ−1
1 (·, t) = ψ2(·, t).

d

dx1
φ(x1, ψ2(x1, t)) = 0⇔ ∂1φ(x1, ψ2(x1, t)) = −∂2φ(x1, ψ2(x1, t))∂x1ψ2(x1, t)

or

∂x1ψ2(x1, t) = −∂1φ(x1, ψ2(x1, t))
∂2φ(x1, ψ2(x1, t))

and analogously

∂x2ψ1(x2, t) = −∂2φ(ψ1(x2, t), x2)
∂1φ(ψ1(x2, t), x2)

.

For every function V which admits φ as a sufficient statistic for its first two arguments, define for all t
and t−12,

V φ(t, t−12) = V (x1, x2, t−12)

if there exist x1 and x2 such that φ(x1, x2) = t. Note that,

V φ(t, t−12) = V (x1, ψ2(x1, t), t−12)

and therefore

∂tV
φ(t, t−12) = ∂2V (x1, ψ2(x1, t), t−12)∂tψ2(x1, t)

=
∂2V (x1, ψ2(x1, t), t−12)
∂2φ (x1, ψ2(x1, t))

.

By a similar argument one can show that

∂tV
φ(t, t−12) =

∂1V (ψ1(x2, t), x2, t−12)
∂1φ (ψ1(x2, t), x2)

.

These relationships show that ∂tV φ is increasing if V is increasing. Furthermore, for all j ≥ 3

∂tjV
φ(t, t−1) =

∂1jV (ψ1(x2, t), x2, t−1)
∂1φ (ψ1(x2, t), x2)

,

which means that ∂tjV φ and ∂1jV will have the same sign.

Lemma 4. The survival function and density function of φ(X1, X2) are given by

Fφ(t) =
∫ ∞
−∞

f1(x)F 2(ψ2(x, t))dx =
∫ ∞
−∞

f2(x)F 1(ψ1(x, t))dx, and (10)

fφ(t) =
∫ ∞
−∞

f1(x)f2(ψ2(x, t))
∂2φ(x, ψ2(x, t))

dx =
∫ ∞
−∞

f2(x)f1(ψ1(x, t))
∂1φ(ψ1(x, t), x)

dx. (11)

Proof. Note that

Pr [φ(X1, X2) ≥ t] = Fφ(t) =
∫

Pr [φ(X1, X2) ≥ t|X1 = x] f1(x)dx.
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Since X1 and X2 are independent, we have

Pr [φ(X1, X2) ≥ t|X1 = x] = Pr [X2 ≥ ψ2(x, t)|X1 = x] = F 2(ψ2(x, t)).

Substituting back into the integral yields the first expression. Note that

d

dt
φ(x, ψ2(x, t)) = 1⇔ ∂2φ(x, ψ2(x, t))∂tψ2(x, t) = 1

or
∂tψ2(x, t) =

1
∂2φ(x, ψ2(x, t))

. (12)

Then,

fφ(t) = −∂tFφ(t)

=
∫ ∞
−∞

f1(x)f2(ψ2(x, t))∂tψ2(x, t)dx

Substituting Equation (12) yields:

=
∫ ∞
−∞

f1(x)f2(ψ2(x, t))
∂2φ(x, ψ2(x, t))

dx

Proof of Theorem 2. For notational convenience, we consider the case where buyer 1 and 2’s information is
centralized under the control of a new buyer c. Let

A = {A1, A2, .., An}

and
A′ = {Ac, A′3, .., A′n}

where Ac = A1 ∪ A2 and Ai = A′i for all i ≥ 3. Under our assumptions every buyer’s information can be
summarized by Ti = φAi (Si) and in the optimal scalar mechanism µA for information profile A only reports
ti are required from buyers. In the concentrated environment A′ a scalar mechanism will require reports
ti = Ti from buyers 3 through n, while it will ask buyer c to submit a report tc = φ(T1, T2). Denote by
fi(ti), Fi(ti) and [ai, ai] the density, distribution function and respectively support of the random variables
Ti. Further, denote by fφ(t) and Fφ(t) the density and distribution function of the random variable φ(T1, T2).
Denote by ti and t−ij the vector of reports excluding buyer i or buyers i and j.

Define for all tc,
V A

′
(tc, t−12) = V A(t1, t2, t−12)

if there exist t1 and t2 such that φ(t1, t2) = t. From the definition of ψ2(·), we also have

V A
′
(tc, t−12) = V A(t1, ψ2(t1, tc), t−12) (13)

and therefore

∂tcV
A′(tc, t−12) = ∂2V

A(t1, ψ2(t1, tc), t−12)∂tcψ2(t1, tc)

=
∂2V

A(t1, ψ2(t1, tc), t−12)
∂2φ (t1, ψ2(t1, tc))

. (14)
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Where the last equality follows from Equation (12). By a similar argument, one can show that

∂tcV
A′(tc, t−12) =

∂1V
A(ψ1(t2, tc), t2, t−12)
∂1φ (ψ1(t2, tc), t2)

.

Consider the virtual valuation of player c,

HA′

c (tc, t−12) = V A
′
(tc, t−12)− Fφ(tc)

fφ(t)
∂tcV

A′(tc, t−12).

Under the regularity assumption HA′

c (t, t−12) is increasing in t.
For any mechanism η = (p′i, ξ

′
i)i∈{c,3,..,n} in environment A′, the seller’s revenue is

RA
′
(η) =

∫ ∑
i≥3

p′i(ti, t−i)H
A′

i (ti, t−i) + p′c(tc, t−12)HA′

c (tc, t−12) + p′0v0

 fφ(tc)f(t−12)dtcdt−12.

Point-by-point maximization of the integrand yields the optimal solution µA
′

where

p′i(ti, t−i) = 1⇔ HA′

i (ti, t−i) ≥ max
j 6=i

(v0, HA′

c (tc, t−12), HA′

j (tj , t−j))

and zero otherwise. Since the functions HA′

i are monotonic, HA′

i (ti, t−i) ≥ v0 implies HA′

i (t′i, t−i) ≥ v0 for
all t′i ≥ ti. Furthermore, for all j, we have

HA′

i (ti, t−i) ≥ HA′

j (ti, t−i)⇔ gA
′

i (ti, t−i) ≤ gA
′

j (ti, t−i)

and for all t′i ≥ ti
gA
′

i (t′i, t−i) ≤ gA
′

i (ti, t−i) ≤ gA
′

j (ti, t−i) ≤ gA
′

j (t′i, t−i)

which means
HA′

i (t′i, t−i) ≥ HA′

j (t′i, t−i).

In particular, the allocation probabilities p′i(ti, t−i) are monotone in ti, which, in turn, is a sufficient condition
for implementation (Myerson 1981).

For bidder c we have

p′c(tc, t−12) = 1⇔ HA′

c (tc, t−12) ≥ max
i

(v0, HA′

i (ti, t−i))

and zero otherwise. An argument similar to the above suggests that for any t−12 and v0, the set of types for
which bidder c gets the object is given by

Mc = {(t1, t2)|φ(t1, t2) = tc ≥ τ(t−12, v0)} .

for some function, τ . The expected payment received by the auctioneer from bidder c is therefore,

ξA
′

c =
∫ (∫

tc>τ(t−12,v0)

HA′

c (tc, t−12)fφ(tc)dtc

)
f(t−12)dt−12.

Define
Q′(t) =

∫
tc>t

HA′

c (tc, t−12)fφ(tc)dtc,
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then
ξA
′

c =
∫
Q′(τ(t−12, v0))f(t−12)dt−12.

Consider a mechanism ω = (pi, ξi)i∈{1,..,n} for the environment A, with the following properties p1(t1, t−1) ≡
0, p2(t1, t2, t−12) ≡ p′c(φ (t1, t2) , t−12) and pi(ti, t−i) ≡ p′i(ti, t−i) for all i ≥ 3. The mechanism ω is incentive
compatible since all the functions are monotone in own type.7 Furthermore, the expected payment received
from bidders 3 through n is the same under ω and µA

′
.

The expected payment from bidder 2 in this case is therefore

ξA2 =
∫ (∫ ∫

Mc

HA
2 (t1, t2, t−12)f1(t1)f2(t2)dt1dt2

)
f(t−12)dt−12.

Define
Q(t) =

∫ ∫
φ(t1,t2)≥t

HA
2 (t1, t2, t−12)f1(t1)f2(t2)dt1dt2,

then
ξA2 =

∫
(Q(τ(t−12, v0))) f(t−12)dt−12.

In particular, if for all t
Q′(t) = Q(t)

the expected payments of bidder c under µA
′

and those of bidder 2 under ω coincide, which makes the two
mechanisms revenue equivalent. In equations (8) and (9), we defined x1(t) and x1(t) for the elementary
random variables, Xi. We define an identical notion for the random variables of the sufficient statistics, Ti:

t1(t) = inf { t1| ∃t2, φ(t1, t2) = t} (15)

and
t1(t) = sup { t1| ∃t2, φ(t1, t2) = t} , (16)

Note that Q(t) may be expressed as

Q(t) =
∫ ∫

φ(t1,t2)≥t

(
V A(t1, t2, t−12)− F 2(t2)

f2(t2)
∂2V

A(t1, t2, t−12)
)
f1(t1)f2(t2)dt1dt2 (17)

We consider each component separately. First,∫ ∫
φ(t1,t2)≥t

V A(t1, t2, t−12)f1(t1)f2(t2)dt1dt2 =
∫ t1(t)

t1(t)

∫
t2≥ψ2(t1,t)

V A(t1, t2, t−12)f1(t1)f2(t2)dt2dt1

Fix t1 and introduce the change in variable

t2 = ψ2(t1, tc)

Note that
dt2 = ∂tcψ2(t1, tc)dtc.

7Bidder 1’s payment will be zero.
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The integral becomes∫ t1(t)

t1(t)

∫
tc≥t

V A(t1, ψ2(t1, tc), t−12)f1(t1)f2(ψ2(t1, tc))∂tcψ2(t1, tc)dtcdt1

=
∫ t1(t)

t1(t)

∫
tc≥t

V A(t1, ψ2(t1, tc), t−12)f1(t1)f2(ψ2(t1, tc))
∂2φ(t1, ψ2(t1, tc))

dtcdt1

=
∫
tc≥t

∫ t1(t)

t1(t)

V A
′
(tc, t−12)f1(t1)f2(ψ2(t1, tc))

∂2φ(t1, ψ2(t1, tc))
dt1dtc

=
∫
tc≥t

V A
′
(tc, t−12)

∫ t1(t)

t1(t)

f1(t1)f2(ψ2(t1, tc))
∂2φ(t1, ψ2(t1, tc))

dt1dtc

=
∫
tc≥t

V A
′
(tc, t−12)fφ(t)dtc.

Where the first equality follows from Equation (12), the second from (13) and Fubini’s theorem, and the last
by Lemma 4.

The second part of the integral in (17) is

−
∫ ∫

φ(t1,t2)≥t

(
F 2(t2)
f2(t2)

∂2V
A(t1, t2, t−12)

)
f1(t1)f2(t2)dt1dt2

= −
∫ ∫

φ(t1,t2)≥t

f1(t1)∂2V
A(t1, t2, t−12)F 2(t2)dt1dt2

= −
∫ t1(t)

t1(t)

∫
t2≥ψ2(t1,t)

f1(t1)∂2V
A(t1, t2, t−12)F 2(t2)dt1dt2

By a change of variables according to t2 = ψ2(t1, tc), the integral becomes

= −
∫ t1(t)

t1(t)

∫
tc≥t

f1(t1)∂2V
A(t1, ψ2(t1, tc), t−12)F 2(ψ2(t1, tc))∂tcψ2(t1, tc)dtcdt1

= −
∫ t1(t)

t1(t)

∫
tc≥t

∂2V
A(t1, ψ2(t1, tc), t−12)
∂2φ(t1, ψ2(t1, tc))

f1(t1)F 2(ψ2(t1, tc))dtcdt1

Reversing the order of integration and substituting Equation (14) yields

= −
∫
tc≥t

∫ t1(t)

t1(t)

∂tcV
A′(tc, t−12)f1(t1)F 2(ψ2(t1, tc))dt1dtc

= −
∫
tc≥t

∂tcV
A′(tc, t−12)

∫ t1(t)

t1(t)

f1(t1)F 2(ψ2(t1, tc))dt1dtc

= −
∫
tc≥t

∂tcV
A′(tc, t−12)Fφ(tc)dtc
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Combining the two results we have

Q(t) =
∫
tc≥t

(
V A

′
(tc, t−12)fφ(t)− ∂tcV A

′
(tc, t−12)Fφ(tc)

)
dtc

=
∫
tc≥t

(
V A

′
(tc, t−12)− Fφ(tc)

fφ(t)
∂tcV

A′(tc, t−12)
)
fφ(tc)dtc

=
∫
tc>t

HA′

c (tc, t−12)fφ(tc)dtc

= Q′(t)

which means that ω and µA
′

generate the same revenue. However, under ω, buyer 1 receives the good with
probability zero. If the optimal mechanism in environment A allocates to buyer 1 with positive probability,
then it is, by definition, revenue superior to ω and hence to µA

′
.

18


	2012-23.pdf
	Introduction
	Model
	Scalar Mechanisms
	Information Concentration
	Discussion




