Was the Recent Downturn in US GDP Predictable?

Mehmet Balcilar
Eastern Mediterranean University

Rangan Gupta
University of Pretoria

Anandamayee Majumdar
University of North Texas Health Science Center

Stephen M. Miller
University of Nevada-Las Vegas
University of Connecticut

Working Paper 2012-38R
November 2012, Revised December 2013
Was the Recent Downturn in US GDP Predictable?*

Mehmet Balcilar
Department of Economics
Eastern Mediterranean University
Famagusta, NORTHERN CYPRUS, via Mersin 10, TURKEY

Rangan Gupta
Department of Economics
University of Pretoria
Pretoria, 0002, SOUTH AFRICA

Anandamayee Majumdar
Department of Biostatistics
University of North Texas Health Science Center
School of Public Health
Fort Worth, Texas, 76107, USA

Stephen M. Miller**
Department of Economics,
University of Nevada, Las Vegas
Las Vegas, Nevada, 89154-6005 USA

Abstract:

This paper uses small set of variables-- real GDP, the inflation rate, and the short-term interest rate -- and a rich set of models -- atheoretical (time-series) and theoretical (structural), linear and nonlinear, as well as classical and Bayesian models -- to consider whether we could have predicted the recent downturn of the US real GDP. Comparing the performance by root mean squared errors of the models to the benchmark random-walk model, the two structural (theoretical) models, especially the nonlinear model, perform well on the average across all forecast horizons in our ex-post out-of-sample forecasts, although at specific forecast horizons certain nonlinear atheoretical models perform the best. The nonlinear theoretical model also dominates in our ex-ante out-of-sample forecast of the Great Recession, suggesting that developing forward-looking, microfounded, nonlinear, dynamic-stochastic-general-equilibrium models of the economy, may prove crucial in forecasting turning points.

Keywords: Forecasting, Linear and non-linear models, Great Recession

JEL classification: C32, E37

* We thank two anonymous referees for many helpful comments. Any remaining errors are, however, solely ours.

** Corresponding author
1. Introduction

Predicting turning points in the business cycle proves a most difficult task. Policy makers would value methods that can provide an early warning of impending turns in the business cycle (e.g., the end of expansions or beginning of recessions) with a reasonable prediction of the timing of the turning point. The most recent financial crisis and Great Recession provides a case study with which to examine this issue. Moreover, it proved atypical of post-WWII recessions. That is, financial-crisis-induced recessions exhibit more depth and length than typical recessions (Reinhart and Rogoff, 2009).

This paper analyzes whether researchers could have predicted the recent downturn of the US real Gross Domestic Product (GDP), using a small set of variables and a rich set of models. We estimate a wide range of econometric models that include atheoretical linear models (classical and Bayesian vector autoregressive models), atheoretical nonlinear models (time-varying parameter, Markov-switching, smooth transition vector autoregressive, and artificial neural network models), nonparametric and semi-parametric atheoretical models, and linear and nonlinear micro-founded theoretical models [Dynamic Stochastic General Equilibrium (DSGE) models based on Kalman and particle filters]. Our restricted data set includes real GDP, the rate of inflation of the GDP implicit deflator, and the three-month Treasury-bill rate.

Although researchers widely use these alternative models to predict key macroeconomic variables, this paper brings these models together to compare their forecasting ability

1 The decrease in real GDP covered 2007:Q4 through 2009:Q2. A number of analysts warned about the excesses in the financial markets (e.g., Shiller 2005), but the timing of the turning point eluded most.

simultaneously and, hence, covers the entire spectrum of currently popular forecasting methods ranging from linear and nonlinear (with known and unknown functional forms) theoretical and atheoretical models. In addition, the studies cited in footnote 2 and others, except for the analyses that focus on time-varying vector autoregressive models and Camacho’s (2004) paper, who considers the role of leading indicators in forecasting US GDP growth using multivariate parametric nonlinear models, use univariate versions of the nonlinear parametric, nonparametric, and semi-parametric models. More importantly, few studies (e.g., Edge and Gürkeynak 2010, and Del Negro and Schorfheide 2012) focus on predicting downturn(s) in the economy with real-time data *ex ante* for the recent financial crisis and Great Recession.

Traditional forecasting models bifurcated into two different classes – dynamic simultaneous equations structural models and multivariate “atheoretical” time-series models. The Cowles Commission for Research in Economics pioneered the methods for constructing structural

3 This paper ignores one line of forecasting and excludes models involving large data sets and estimated using factors or Bayesian shrinkage with either constant or time-varying parameters. We omit such models because we want to ensure that all our models use the same information set on the three variables. For a detailed discussion of such models, see Barnett, *et al.* (2012). Another related area of research involves incorporating information from large data sets into Dynamic Stochastic General Equilibrium (DSGE) by adding dynamic factors in DSGE-Dynamic Factor Models (DSGE-DFM). See, for example, Consolo, *et al.* (2009); Paccagnini (2011), and the references cited therein for further details. We also ignore these models to do our analysis over a common three-variable data set.

4 Another notable exception is Balçilar *et al.*, (forthcoming), where the authors use both multivariate parametric nonlinear and multivariate nonparametric models to forecast out of sample as well as to predict *ex ante* the gross gaming revenue and taxable sales for the state of Nevada.

5 Edge and Gürkenak (2010) compare the forecasting performance of the Smets and Wouters (2007) DSGE model with a Bayesian VAR model, the Fed’s Green Book forecasts, and the Blue Chip consensus forecasts. During the Great Moderation and before the financial crisis and Great Recession, they do not find much to choose between the first three models, arguing that the Great Moderation provides a poor stage on which to run forecasting horseraces. Once they consider the financial crisis and Great Recession, where they substitute the Blue Chip forecasts for the Green Book forecasts, now the Blue Chip forecasts do a better job, which they argue reflects the absence of a financial sector and a zero-bound on interest rates. Del Negro and Schorfheide (2012) perform a post-mortem of DSGE model forecasts of the Great Recession, showing that forecasts from a version of the Smets and Wouters (2003) model augmented by financial frictions and with interest rate spreads as an observable compare favorably to the Blue Chip forecasts in predicting the GDP growth rate.
models (see Christ 1994). These structural models suffered from the Lucas critic and were poorly suited for forecasting, since the forecast process requires projected future values of exogenous variables. Time-series (e.g., vector autoregressive -- VAR) models offered an alternative approach that proved particularly useful for forecasting purposes. Although time-series models are “atheoretical” in design, the structural models still experienced difficulty in outperforming the time-series models in forecasting horseraces. Zellner (1979) and Zellner and Palm (1974) argued that this difficulty arose because VAR models can approximate the reduced form outcomes of a dynamic structural system of simultaneous equations.

More recent micro-founded structural models such as dynamic stochastic general equilibrium (DSGE) models avoid the Lucas critique. Although originally formulated to address policy questions, forecasting horseraces of macroeconomic variables now more likely include DSGE alternatives. Smets and Wouters (2003, 2007) provided initial work that opened the door for analyzing the forecasting performance of DSGE models against various types of time-series forecasting models. According to Edge and Gürkeynak (2010), the Smets-Wouters analysis caused central banks to take more seriously the forecasting ability of DSGE models.6

Our analysis unfolds through the following steps. First, we estimate the wide range of econometric models noted previously over the 1979:Q3 to 1999:Q2 period, using data on the detrended logged real GDP, quarter-on-quarter inflation based on the GDP deflator, and the three-month Treasury-bill rate. Second, we forecast one- to eight quarters-ahead of detrended logged real GDP over an out-of-sample forecast horizon from 1999:Q3 to 2006:Q4, estimating each of these models recursively over this horizon. Third, we choose the model within each

6 Papers that consider the DSGE models of central banks include, for example, Lee, et al. (2007) for Reserve Bank of New Zealand’s model and Adolfson et al. (2007) for the Swedish Riksbank’s model.
category (linear and nonlinear versions of atheoretical, semi-parametric or nonparametric versions of atheoretical, and theoretical models) that produces the minimum average root mean square errors (RMSEs) relative to the benchmark random walk model as the “best” model for a specific category. Fourth, we use the best model within each category to forecast the level of logged real GDP *ex ante* (without updating the parameter estimates of the optimal models) over 2007:Q1 to 2012:Q2, adding the estimate of the trend for the logged real GDP at 2006:Q4 to the forecasts of the detrended GDP in logs over this period.

To make our analysis realistic, we carry out the out-of-sample forecasting exercise based on the vintage of these variables available on October 27, 2006, which corresponds to the first release of GDP estimates for 2006:Q3. The trend estimate of logged real GDP that we use to detrend the data over the in-sample comes from the vintage of January 31, 2007. Once we forecast the detrended logged real GDP from the different “best” models, we add back this estimate of the trend for the period of 1979:Q3 to 2006:Q4 to obtain a forecast for the logged real GDP in log-levels, and compare this with the actual values of the logged real GDP available on July 27, 2012, which corresponds to the first release of GDP estimates for 2012:Q2. Since the data for the GDP implicit deflator depends on nominal and real GDP estimates, we follow a similar approach with the nominal GDP data over the period of 1979:Q3 to 2006:Q4. Since the three-month Treasury bill rate is available at a weekly frequency, we take the averages of the weekly values over each quarter to generate our quarterly series. Also, the estimate for the quarterly Treasury bill rates for 2006:Q3 and 2006:Q4 use the vintages for October 2, 2006 and January 3, 2007, respectively. Finally, we compute the RMSEs, using the vintage dates mentioned above that corresponds to the first release of the three variables for 2006:Q4.

The rest of the paper is organized as follows: Section 2 outlines the basics of the different
models used for the forecasting exercise. Section 3 discusses the data and presents the forecasting results and the *ex-ante* out-of-sample prediction of the real US GDP. Finally, Section 4 concludes.

2. **Model Descriptions:**

This section describes the atheoretical linear models, atheoretical nonlinear models, nonparametric and semi-parametric atheoretical models, and linear and nonlinear micro-founded theoretical models.

Atheoretical Linear Models:

The Vector Autoregressive (VAR) model, though ‘atheoretical,’ is particularly useful for forecasting purposes.\(^7\) VAR models suffer from an important drawback, since they require the estimation of many potentially insignificant parameters. This problem of over-parameterization, resulting in multicollinearity and loss of degrees of freedom, leads to inefficient estimates and large out-of-sample forecasting errors.

An alternative approach to overcoming over-parameterization, as described in Litterman (1981), Doan *et al*. (1984), Todd (1984), Litterman (1986), and Spencer (1993), uses a Bayesian VAR (BVAR) model. Instead of eliminating longer lags, the Bayesian method imposes restrictions on the model’s coefficients by assuming that these coefficients more likely approach zero than the coefficients on shorter lags. This specification of the BVAR prior is popularly called the ‘Minnesota prior’ due to its development at the University of Minnesota and the Federal Reserve Bank at Minneapolis.

In addition to the shrinkage approach of the Minnesota-type BVAR models, numerous

\(^7\) Refer to Korobilis (2011) for further details.
other efficient methods exist to prevent the proliferation of parameters and eliminate parameter or model uncertainty [e.g., variable selection priors (George et al. 2008), steady state priors (Villani, 2009), Bayesian model averaging (Andersson and Karlsson, 2008), and factor models (Stock and Watson, 2005)]. Following Korobilis (2011), we compare the forecasting performances of the classical and the Minnesota-type BVAR models with those of linear (fixed-parameter) and nonlinear (time-varying parameter [TVP]) VARs involving a stochastic search algorithm for variable selection, estimated using Markov Chain Monte Carlo (MCMC) methods.

Atheoretical Nonlinear Models:

Macroeconomic time series contain structural breaks due to major political and economic changes. That is, changes in the economic policy, financial and economic crises, and business cycle shocks create breaks in the observed series. The structural breaks contribute significantly to the forecasting failures of macroeconomic time series. No consensus exists, however, among macroeconomists about the significance and relevance of structural breaks and whether forecasters need to go beyond traditional models and construct models that include structural breaks or regime switches. See, for example, Cogley and Sargent (2001) and Sims (2001).

Neftci (1984) notes that dynamic properties of major economic time series differ over time, particularly across the different phases of the business cycles. Neftci reports that recessions generate much sharper declines than increases during expansions, implying asymmetric adjustment. Hamilton (1989) also argues that the US gross national product (GNP) exhibits different dynamics during episodes of slower growth and faster growth. He emphasizes that the

8 Sichel (1989) reverses Neftci’s findings by correcting a probable error in Neftci’s program. Rothman (1991) substitutes a first-order Markov process for the second-order process used by Neftci and re-establishes Neftci’s asymmetry findings. More recently, Rothman (2008) revisits this issue with more recent data and concludes that the asymmetric findings now become mixed.
traditional linear models fail to capture such shifts in the dynamic behavior of the series and forecasters need nonlinear models to capture departures from linearity. Neftci (1984) and Hamilton (1989) argue that regime switches occur systematically enough to enter the probabilistic structure of a model. That is, Neftci (1984) states that the systematic switches occur frequently enough such that the data can endogenously capture the dynamic behavior across the regimes, which differ markedly in their responses.

Clements and Hendry (1999) develop a theory of forecasting in the presence of deterministic structural breaks. For recurrent, systematic breaks that affect not only the mean growth rate but also the dynamics of the underlying series, however, a model that incorporates such time-varying dynamics and models with endogenous switches may produce superior forecasts to linear models with a fixed dynamic process (i.e., regime-switching models). Regime-switching models that can generate sharp drops during recessions and slow gradual growth during expansions will naturally fit the data better around turning points (Neftci 1984). We consider four classes of nonlinear multivariate models that successfully model regime-switching time series -- Markov-switching (Neftci 1984; Hamilton, 1989; Krolzig, 1997), smooth-transition (Granger and Terasvirta 1993; Terasvirta 1998; Potter, 1999), artificial-neural-network (McCulloch and Pitts 1943; Minsky and Papert 1969; White 1988, 1989), and time-varying parameter vector autoregressive models (D’Agostino et al. 2011; Korobilis, 2011; Koop and Korobilis, 2012).

Lucas (1977) emphasizes the co-movement of macroeconomic variables such as the output, inflation, unemployment, interest rates, consumption, investment, and so on. Diebold and Rudebusch (1996) identify two important features of business cycle models: (1) co-movement of economic variables and (2) persistence of the states. In the following section, we consider only
dynamic nonlinear models that involve both features. A univariate model can possess persistence of states with or without dynamic structures, but not co-movement of economic variables. To permit further dynamic adjustment through autocorrelations, we consider dynamic multivariate nonlinear models for forecasting the US real GDP series. Empirically, one expects switches between a normal regime (expansion) and a recession regime will lead to different (asymmetric) dynamic links between the macroeconomic variables that co-move, which nonlinear models can capture more accurately.

Markov-Switching Vector Autoregressive Model. Markov-switching (MS) models prove a most popular nonlinear model for the analysis of regime-switching time series such as the business cycle. Structural change models admit only occasional, exogenous changes and, thus, structural breaks or regime shifts are deterministic. MS models, on the other hand, include an endogenous mechanism, where an unobservable state variable controls the switches through a first-order Markov chain. By allowing switches between the states with different parameter sets, which may involve parameters on variable lags, MS models can capture complex dynamic structures.

Recognizing how nonlinearity and asymmetry importantly affect the VAR forecasting model, we employ a Markov-switching vector autoregressive (MS-VAR) model to address the nonlinearity in an explicit and formal way. The MS-VAR models fit the data better than their linear counterpart VAR models. The superior in-sample fit does not usually generalize to superior forecasting performance, as noted by Clements and Krolzig (1998), Dacco and Satchell (1999), and Krolzig (2000). We examine whether the superior fit generalizes to superior forecasting performance and if it does not, then where does the MS-VAR model fail.

Computing multi-step forecasts from MS-VAR models as well as all nonlinear time series models prove complicated because no ordinary method of computing the future path of the process exists. Good forecasts require that we know the future path of the process, since the forecasts depends on the regime. Using Monte Carlo simulations, Clements and Smith (1999) and Pesaran and Potter (1997) show that the forecasting performance of the regime-switching models does depend on the regime at the time of the forecast. We cannot resolve the dependence of the forecasts on the future path of the process by simply substituting the expected values of the future shock into the conditional mean function of the model. The problem is usually solved by Monte Carlo or Bootstrap simulation techniques. Although MS-VAR models are nonlinear, a number of authors (Krolzig, 2000; Clements and Smith, 1999; Pesaran and Potter, 1997) note that analytical formula for forecasting from these models exists, at least in simple cases. In this paper, we use the method proposed in Krolzig (2000) to obtain the multi-step forecasts from the MS-VAR model.

Smooth Transition Autoregressive Model Identification. Recent empirical studies show that smooth–transition-autoregressive (STAR) models can successfully model economic time series that move smoothly between two or more regimes (e.g., recession to expansion). When
considering the joint dynamic properties of the real detrended logged GDP, the inflation rate, and the interest rate, it is natural to consider vector STAR (VSTAR) models. Van Dijk, et al. (2002), among many others, discuss VSTAR models. Montgomery, et al. (1998) and Marcellino (2002) report favorable forecasting performance for LSTAR forecasts, while Stock and Watson (1999) show that linear models generally dominate nonlinear models in terms of forecasting performance. Despite specification difficulties, such as the appropriate transition variable, the number of regimes, the type of transition function, and so on, STAR models prove useful for state dependent multivariate relationships. Recent applications (e.g., Rothman, et al. 2001; Psaradakis, et al. 2005; Tsay 1998; De Gooijer and Vidiella-i-Anguera 2004) find that VSTAR models successfully model nonlinear economic time-series data.

Artificial-Neural-Network Models. Artificial–neural-network (ANN) models (McCulloch and Pitts, 1943; Minsky and Papert, 1969) perform well in forecasting nonlinear and chaotic time series (Lachtermacher and Fuller 1995). As for the STAR models, we consider only multivariate autoregressive ANN (MAR-ANN) models. Lisi and Schiavo (1999) use ANN models for predicting European exchange rates, finding that they perform as well as the best model, a chaos model. Using statistical tests, Lisi and Schiavo (1999) discover no significant difference between the ANN and chaos models. Stern (1996) applies ANN models to several simulated data from autoregressive models of order 2, AR(2), with various signal-to-noise ratios. The results show that ANN models do not generate good predictions with a small signal-to-noise ratio. Thus, ANN models seem most suitable for forecasting time series with high signal-to-noise ratios, given sufficient data and appropriate data transformations. Success of ANN models in forecasting nonlinear time series reflects their universal function approximation capability (White 1988, 1989). This includes any linear or nonlinear function (Cybenko 1989; Funahashi 1989; Hornik,

Researchers use a variety of neural-network architectures for time-series prediction. The most widely used architecture is the multilayer perceptron (MLP) (also known as a feed-forward neural network) (Sarle 2002). The MLP can resolve a wide variety of problems (Bishop 1995; Kaastra and Boyd 1996). In this paper, we also prefer the MLP network for VAR-ANN based forecasting.

When using ANNs for forecasting time series, researchers usually subdivide the sample into three sets -- training, validation, and test sets (Bishop 1995; Ripley 1996). The training set constructs the network, the validation set obtains forecast performance measures, and the test set checks for generalization capacity of the network. We use sum-of-squared errors (SSE) as a criterion to determine the optimal weights based on the training set. Nevertheless, training the ANN model using the training set may lead to overfitting. To avoid overfitting, the validation set controls the learning process. We evaluate an ANN model’s performance by changing the number of hidden layers and type of activation function at hidden and output layers, using the mean squared error (MSE) obtained from the trained ANN forecasts in the validation set. Finally, the test set, which does not depend on the data set, provides an unbiased estimate of the generalization error or forecasting performance.

In this paper, we use data from 1979:Q3 to 1994:Q2 as the training set (60 observations, 55%), data from 1994:Q3 to 1999:Q2 as the validation set (20 observations, 18%), and data from 1999:Q3 to 2006:Q4 as the test set (30 observations, 37%). We evaluate a network’s performance based on the 1-to-8 step-ahead forecasts in the validation period and we select the
best performing network based on the minimum MSE. Then, we use the validation set to select
the network used to forecast the 1-to-8 step-ahead forecasts in the test period, which we compare
to the \textit{ex post} out-of-sample forecasts of the other models.\footnote{See Section 5 for further details.} The \textit{ex-ante} out-of-sample forecasts
over the 2007:Q1 to 2012:Q2 maintains the same ANN architecture, but extends the in-sample
period to 2006:Q4.

The MLP architecture uses three lags of each variable as inputs for the VAR-ANN
model. An MLP network’s capacity to learn depends on the number of hidden neurons. We
select the best ANN with Bayesian regularization, bearing in mind the overfitting issue, based on
its MSE in the validation set, using the least possible number of hidden neurons (Masters 1993;
Smith 1993; Rzempoluck 1998). We try ANN models with maximum q set to 9. We obtain the
best performing VAR-ANN model with $q = 2$.

The learning-rate parameter plays a crucial role in the training process of MLP networks.
We use a learning rate of 0.25, which provides good results in most practical cases (Rumelhart,
\textit{et al.} 1986). The momentum factor parameter controls the effect of past changes, which should
be a number close to 1. In this study, we use a momentum factor equal to 0.85.\footnote{We implement all computations of the VAR-ANN models with the Neural Network Toolbox (Version 6.0) in MATLAB.}

\textbf{Time-Varying Parameter, Vector Autoregressive Model}. Modern macroeconomic
applications increasingly involve the use of VARs with time-varying mean regression
coefficients and covariance matrices, which implies a nonlinear VAR model. The forecasts from
the TVP-VAR models with and without variable selection use a run of 30,000 draws from the
posterior, discarding the first 2,000 draws, with lags equal to 2.
Nonparametric and Semi-Parametric Atheoretical Models:

Nonparametric and Semi-Parametric Models. We now consider nonparametric and semi-parametric regression approaches for forecasting detrended logged real GDP. We consider two competing multivariate models, and examine their forecasting abilities. These specifications are as follows:

Model 1: Nonparametric regression model (NP model)

\[y_t = f(y_{t-1}, y_{t-2}, r_{t-1}, r_{t-2}, \pi_{t-1}, \pi_{t-2}) + \varepsilon_y; \]
\[r_t = f(y_{t-1}, y_{t-2}, r_{t-1}, r_{t-2}, \pi_{t-1}, \pi_{t-2}) + \varepsilon_r; \text{ and} \]
\[\pi_t = f(y_{t-1}, y_{t-2}, r_{t-1}, r_{t-2}, \pi_{t-1}, \pi_{t-2}) + \varepsilon_{\pi}; \]

(1) (2) (3)

Model 2: Semi-parametric regression model (SP model)

\[y_t = \alpha_{0y} + \alpha_{1y} y_{t-1} + \alpha_{2y} y_{t-2} + g(r_{t-1}, r_{t-2}, \pi_{t-1}, \pi_{t-2}) + \varepsilon_y; \]
\[r_t = \alpha_{0r} + \alpha_{1r} r_{t-1} + \alpha_{2r} r_{t-2} + g(y_{t-1}, y_{t-2}, \pi_{t-1}, \pi_{t-2}) + \varepsilon_r; \text{ and} \]
\[\pi_t = \alpha_{0\pi} + \alpha_{1\pi} \pi_{t-1} + \alpha_{2\pi} \pi_{t-2} + g(y_{t-1}, y_{t-2}, r_{t-1}, r_{t-2}) + \varepsilon_{\pi}; \]

(4) (5) (6)

Here, \(f(.) \) and \(g(.) \) denote unknown functions that the data estimate. The \(\varepsilon_{ik}, i=y, r, \pi, \) are mean-zero errors with unchanged variance over the entire data set. The parameters \(\alpha_{0i}, \alpha_{1i}, \) and \(\alpha_{2i}, i=y, r, \pi, \) are constants estimated from the data. Therefore, we can also describe the semi-parametric model as a partially linear nonparametric model.\(^{11}\)

In the time-series context, nonparametric regressions can lead to issues with correlated errors (e.g., Opsomer, et al. 2001). In our case, for Models 1 and 2, two lags guarantee the absence of autocorrelation. As a result, the responses in equations (1) to (3) and (4) to (6) exhibit

\(^{11}\) We use the \(np \) package in \(R \) to carry out the regressions outlined above.
uncorrelated errors. Also, stationarity checks ensure constant variances in each model. Finally, we compare such models based on their prediction errors or forecast performances.

We check the goodness of fit using Bootstrap testing and find p-values close to 1 for the models used. We use a local linear regression, using AIC_c bandwidth selection criterion. We also examine all options for the choice of kernels and find that the Gaussian kernel of order 2 works the best yielding highest R-squared values and smallest MSE. We use the optimum bandwidth chosen by the software. In case of the semi-parametric modeling, we first compute data-driven bandwidths of the kernels to use in the $f(\cdot)$ and $g(\cdot)$ parts of the model, since bandwidth selection for lower levels of tolerance takes an extremely long time. We use a local-linear, and not local-constant, regression type, as the local-linear type yields smaller R-squared values. Again, for the $f(\cdot)$ and $g(\cdot)$ parts of the model, we use Gaussian kernels of order 2, because they yield the highest R-squared values and the lowest MSE. We generate the forecasts from the NP and SP models using a recursive algorithm. That is, the forecast from origin n is generated for period $n+1$, and forecast values for period $n+1$ is inserted for unobserved values when forecasting for period $n+2$, and so forth.

Linear and Nonlinear Micro-Founded Theoretical Models:

Linear and Nonlinear Dynamic Stochastic General Equilibrium Models. Dynamic stochastic general equilibrium (DSGE) models not only carry out business cycle analysis, but also forecast macroeconomic variables. Since DSGE economies generally lack an analytical solution, economists work with numerical approximations to their theoretical models. Researchers

12 The decision to use the local linear regression method instead of the kernel-smoother methods adopted by Arora et al. (2011) in forecasting US real GDP based on nonparametric method, emanates from the fact that the former does not suffer from the problem of biased boundary points.
linearize most models around a non-stochastic steady state to compute such approximations. This approach is appealing from an econometric perspective, since it allows the use of Kalman filtering techniques to build the likelihood function implied by the approximate model, and construct out-of-sample forecasts. Linearization, however, may prove problematic, especially when nonlinearities are important or when significant shocks move the economy far from the steady state – as in during the recent downturn. Moreover, recent work by Fernandez-Villaverde and Rubio-Ramirez (2005) and Fernandez-Villaverde et al. (2006) points out that estimating DSGE models using linearized solutions will generally lead to biased parameter estimates. Hence, Fernandez-Villaverde et al. (2006) suggest moving to second-order approximations when taking DSGE models to the data. This approach, however, comes with computational costs, since it requires the use of Monte Carlo methods for constructing the likelihood function.

We use the framework developed by Pichler (2008), essentially a relatively small new-Keynesian monetary economy featuring monopolistic competition, capital accumulation, and price and capital adjustment costs characterizing the rigidities in the economy. As in Pichler (2008), we calibrate the measurement error variances to 10 percent of the variance of the respective data series. The DSGE model possesses a parameter space consisting of 19 parameters. Thus, using 2 lags, based on the BIC, in the different other competing models keeps the size of the parameter space amongst all the models comparable. Second, the likelihood function features many local maxima and minima. Finally, when we use the particle filter to construct the likelihood based on the nonlinear solution, the resulting likelihood function is not continuous with respect to a parameter vector. To address the latter two problems, we employ a simulated annealing approach instead of gradient-based methods for maximizing the likelihood function (Pichler, 2008).
Data and Results:

Our US data set includes quarterly time series on output, the inflation rate, and the nominal interest rate. The series come from the ALFRED (Archival Federal Reserve Economic Data) database maintained by the Federal Reserve Bank of St. Louis. Output corresponds to seasonally adjusted at an annual rate quarterly gross domestic product (GDP) in billions of chained 2005 dollars (specifically, the GDPC1 series at ALFRED), whereby we remove a linear trend from the (logged) GDP series. We calculate the inflation rate as the relative change in the GDP deflator (GDPDEF in ALFRED) with a base year of 2005 and the nominal interest rates as the averaged weekly 3-Month Treasury bill rates (WTB3MS in ALFRED). We select the time period 1979:Q3 through 2012:Q2. This gives a total sample of 132 observations on each series with the first 80 (1979:Q3 through 1999:Q2) used for in-sample analysis, the next 30 (1999:Q3 through 2006:Q4) used for the ex-post out-of-sample forecasting, and the remaining 22 (2007:Q1 through 2012:Q2) used for the ex-ante out-of-sample prediction of the real logged GDP.

The choice of the in-sample and out-of-sample periods emanate from the following considerations. First, the in-sample period includes the Great Moderation with its more stable monetary and financial structure and a lower volatility of the macroeconomic variables. Thus, we exclude the pre Volcker-Greenspan-Bernanke era from our in-sample period Bekiros and Paccagnini (2012) adopt a similar in-sample period for their forecasting exercise with DSGE and time-varying models. Second, the endpoint of the in-sample period gives us 80 observations, which An and Schorfheide (2007) regard as a realistic in-sample size. Third, since we adopt Pichler’s (2008) linear and nonlinear DSGE models, we also adopt his in-sample period and choices and transformations of the variables in the models. Fourth, the end point of the ex-post out-of-sample period occurs one year in advance of the starting date of the downturn. Thus, our
ex-ante out-of-sample forecasts begin one year before the beginning of the Great Recession and extend beyond the end of the recession through 2012:Q2, which was the last observation available when we constructed our data set. The decision to stop a year before the great recession was primarily to allow us a reasonable size (in this case 30 quarters) for the ex-post out-of-sample period. 13

To make our analysis realistic, we carry out the out-of-sample forecasting exercise based on the vintage of these variables available on October 27, 2006, which corresponds to the first release of GDP estimates for 2006:Q3. The trend estimate of logged real GDP that we use to detrend the data over the in-sample comes from the vintage of January 31, 2007. Once we forecast the detrended logged real GDP from the different “best” models, we add back this estimate of the trend for the period of 1979:Q3 to 2006:Q4 to obtain a forecast for the logged real GDP in log-levels, and compare this with the actual values of the logged real GDP available on July 27, 2012, which corresponds to the first release of GDP estimates for 2012:Q2. Since the data for the GDP implicit deflator depends on nominal and real GDP estimates, we follow a similar approach with the nominal GDP data over the period of 1979:Q3 to 2006:Q4. Since the three-month Treasury bill rate is available at a weekly frequency, we take the averages of the weekly values over each quarter to generate our quarterly series. Also, the estimate for the quarterly Treasury bill rates for 2006:Q3 and 2006:Q4 use the vintages for October 2, 2006 and January 3, 2007, respectively. Finally, we compute the RMSEs, using the vintage dates mentioned above that corresponds to the first release of the three variables for 2006:Q4.

Except for the DSGE models, we took first differences of the variables to ensure

13 Ex-post forecasts use actual values of the variables used in the forecasting equation to generate the forecasts whereas the ex-ante forecasts use forecasted values.
stationarity, since we could not reject the null hypothesis of a unit-root in all variables, using standard unit-root tests.14 After generating the forecasts of the first-differences, we recover the forecasts of the levels by using the actual data of the previous periods.15 Thus, we estimate the models in first-differences with one lag, since the BIC suggests 2 lags for a VAR estimated in levels.16

\textit{Ex-Post Out-of-Sample Forecasting: 1999:Q3-2006:Q4}

This subsection discusses the findings from the forecasting performance of the 12 best models in each category of specifications -- the VAR, BVAR1, BVAR2, ANN, VSTAR, MS-VAR, TVP-VAR1, TVP-VAR2, NP, SP, DSGE-Linear, and DSGE-Nonlinear models -- compared to the RW benchmark model. We first examine the raw root mean squared errors (RMSEs) of each specification (i.e., the RW model and the 12 best models in each category). Then we consider the RMSEs of the best 12 models to the RMSE of the RW model. Finally, we report whether the ratios of the 12 RMSEs to the RMSE of the RW model differ significantly from the ratios for the other specifications.

14 These results are available upon request from the authors.

15 Allowing one lag in the first-differenced atheoretical models implies that our in-sample estimation starts from 1980:Q1 – the same starting point recently used by Bekiros and Paccagnini (2012) when estimating DSGE and TVP-VAR models. Ireland (2004) indicates that significant changes occurred in US monetary and fiscal policy in 1980 and, thus, they constitute a major breakpoint. Further, 1980:Q1 roughly coincides with the end of the Volcker stabilization and disinflation era. Hence, the in-sample exhibits a more stable monetary and financial structure and a lower volatility of the macroeconomic variables. Also, Justiniano and Primiceri (2008) point out that researchers find structural breaks in mean and volatility by comparing the pre- and post-80 periods, while one cannot reject the null hypothesis of parameter stability in the post-80 period. Furthermore, Benati and Surico (2008) claim that if the US economy experienced an indeterminate equilibrium before 1980, then estimating models before and after the 1980s will mix two different regimes, thus obtaining biased estimates of the structural parameters. Finally, Herbst and Schorfheide (forthcoming) argue that as strong empirical evidence exists that monetary policy as well as the volatility of macroeconomic shocks changed in the early 1980s. Given that, the information set in estimating the models should provide relevant information to the exercise of contemporary policy making, thus a sample after the 1980s ensures better forecasting performance.

16 The Trace and Maximum-eigenvalue tests of cointegration, which are available upon request from the authors, do not detect any evidence of cointegration amongst the three key variables. Hence, no explicit need exists to model the error-correction term, and we simply use the VAR versions of the different linear and nonlinear models.
When forecasting into the future, we anticipate, other things constant, that the RMSE will increase with the number of periods into the future that the model forecasts. The RW model follows this expectation. Examining the raw RSMEs across the 12 other best models, we see that the specifications divide into three categories. First, seven specifications -- the best ANN, VSTAR, MS-VAR, NP, SP, DSGE-Linear, and DSGE-Nonlinear models -- all exhibit monotonically rising RMSEs with the forecast horizon. Second, three specifications -- the best BVAR2, TVP-VAR1, and TVP-VAR2 models -- exhibit a falling RMSE across the forecast horizon, except for the horizon at seven quarters where the RMSE rises. Finally, the best VAR and BVAR1 models exhibit rising RMSEs over the initial horizons and then falls for horizons 6 and 7, and 5 to 8, respectively.

Table 1 reports the relative RMSEs of the 12 best specifications to the RMSE of the RW model across the eight forecasting horizons. Once again, the models divide into three categories of outcomes. Five specifications -- the best BVAR2, TVP-VAR1, TVP-VAR2, DSGE-Linear, and DSGE-Nonlinear models -- each exhibit monotonically decreasing RMSEs across the forecast horizons. The latter two models experience declining relative RMSEs compared to the RMSE of the RW model, even though they experience rising RMSEs over the forecast horizons, because their rising RMSEs do so more slowly than that of the RW model. Four specifications -- the best ANN, MS-VAR, NP, and SP models -- experience rising relative RMSEs over the initial four forecast horizons, experiencing some decreases in the relative RMSEs over the last four forecast horizons. Finally, the remaining three specifications -- the best VAR, BVAR1, and VSTAR models -- generally experience a fall in their relative RMSEs, except for some increases at the second and third forecast horizons.

When we average the relative RMSEs across the eight forecast horizons, the DSGE-
Nonlinear model performs the best followed closely by the DSGE-Linear model.17 By the end of the forecast horizon, the best BVAR2, TVP-VAR1, and TVP-VAR2 models enjoy the lowest relative RMSEs. They do not outperform the DSGE models averaged over all forecasting horizons because of their poor forecasting performance at the initial horizons. In sum, the two DSGE models perform well on the average across all forecast horizons because they do a reasonably good job of forecasting relative to the RW model at every horizon. On the other hand, the BVAR2, TVP-VAR1, and TVP-VAR2 models perform the worst at horizon one and then improve their forecasting performance across all eight horizons.

Table 2 reports the significance of differences between the RMSEs of various specifications relative to the RW model using the McCraken (2007) $MSE-F$ statistic, which is a one-sided test designed for nested models, and tests whether the forecast errors from the alternative (unrestricted) models are significantly better than those from the RW (restricted) model. Table 2 also reports the McCraken (2007) test on the forecast errors of the DSGE-Nonlinear (unrestricted) model to those of the DSGE-Linear (restricted) model. We also test, whether the nonlinear DSGE model performs significantly better or worse relative to the alternative unrestricted models, using the test of equal forecast accuracy designed by Harvey et al., (1997).

Several observations emerge. First, all models outperform the RW model at longer forecast horizons (i.e., 6- to 8-quarter-ahead forecasts). The VAR and BVAR1 models significantly outperform the RW model from 5- to 8-quarter-ahead forecast horizons. The

17 For the individual horizons, the MS-VAR model performs the best at the 1st- and 2nd-quarter horizons, the DSGE-Nonlinear model, at the 3rd- and 4th-quarter horizons, and the BVAR2 model, at the 5th-, 6th-, 7th-, and 8th-quarter horizons.
BVAR2 and TVP-VAR 1 and 2 models, from 4- to 8-quarter-ahead forecast horizons. The DSGE-Linear model, from 3- to 8-quarter-ahead forecast horizons. And, the DSGE-Nonlinear, from 2- to 8-quarter-ahead forecast horizons. The MS-VAR model significantly outperforms the RW model at forecast horizons 1-, 2-, 6-, 7-, and 8-quarters ahead.

Second, the DSGE-Nonlinear model significantly outperforms the DSGE-Linear model at all horizons except 1-quarter ahead. The DSGE-Nonlinear model significantly outperforms the BVAR1 and 2 and the TVP-VAR1 and 2 models at shorter forecast horizons, but significantly underperforms these models at longer horizons. More specifically, for the BVAR2 and the TVP-VAR 1 and 2 models, the DSGE-Nonlinear model outperforms at forecast horizons 1-, 2-, and 3-quarter ahead, but underperforms at horizons 6-, 7-, and 8-quarter ahead. The DSGE-Nonlinear model significantly outperforms the VAR model at forecast horizons 3-, 4-, and 5-quarter ahead and significantly outperforms the MS-VAR model at forecast horizons 2- through 7-quarter ahead and only significantly underperforms the MS-VAR model at forecast horizon 1-quarter ahead.

In sum, across the 1- to 8-quarter-ahead forecast horizons, the DSGE models significantly outperform the RW model at all horizons except the first quarter. The DSGE-Nonlinear model also significantly outperforms the DSGE-Linear model at all seven horizons. At the same time, three models – the BVAR1 and TFP-VAR 1 and 2 – perform poorly at the shorter horizons, but dramatically improve their forecast performance over longer horizons and significantly outperform the DSGE-Nonlinear model at forecast horizons six, seven, and eight. Averaged over the eight forecast horizons, the DSGE-Nonlinear model still outperforms all other models under consideration.

Our final test examines the ability of the various models to predict the Great Recession, using *ex ante* out-of-sample forecasts. We compare the predictions of the best performing model within each of the four groups of models -- atheoretical linear, atheoretical nonlinear, nonparametric and semi-parametric, and the micro-founded theoretical models -- based on the average RMSEs reported in Table 1. Thus, we include, in addition to the actual observations, the *ex-ante* out-of-sample forecasts for the RW, VAR, MS-VAR, NP, and DSGE-Nonlinear models. Figure 1 plots the forecast and actual values for real GDP.\(^{18}\)

The actual series shows a peak in 2007Q4 followed by a trough in 2009:Q2, the time identified by the Business Cycle Dating Committee of the NBER. Only the DSGE-Nonlinear model captures the turning point into a recession. The DSGE-Nonlinear model forecasts a recession with a peak in 2009:Q1 and a trough in 2009:Q3. Each of the other non-DSGE models do not forecast a recession or steep drop, but rather continue to forecast rising real GDP. Moreover, all these other series follow a path not too different from the forecast of the RW model.\(^{19}\)

\(^{18}\) A referee asked about findings based on 1- to 8-step-ahead forecasts instead of the ex-ante out-of-sample forecasts. We conducted such forecasts for the optimal nonlinear DSGE model. By updating the data in the forecast exercise, the forecast and actual values mirror each other more closely, although the more steps into the future that the forecast goes, the increased delay in calling the turn in the real GDP series. Results are available from the authors on request.

\(^{19}\) A referee suggested that we detrend with the Hodrick–Prescott (HP) filter as an alternative to our exponential trend decomposition. A problem emerges in using a filter to detrend series. To wit, the filter approach actually must use the *ex ante* sample from 2007:Q1 to 2012:Q2 to detrend the data. As a result, we lose the *ex ante* nature of the forecast exercise. When we actually perform the analysis with HP filter detrended data, we find that now the DSGE nonlinear model no longer emerges as the best model based on average RMSEs, but follows the TVP-VAR2 model, the BVAR2, and the NP and SP models. The DSGE-nonlinear model still beats the linear DSGE model. In sum, when comparing the DSGE-Nonlinear with the other models, four cases occur for which the other models significantly outperform the DSGE-Nonlinear, while the DSGE-Linear never significantly outperforms the DSGE-Nonlinear. This outcome occurs, we believe, primarily because the filtered series becomes much smoother in the *ex ante* period than the linearly detrended case, since the HP filter actually uses data in the *ex ante* sample to detrend the actual series. Hence, to predict the cycles *ex ante* for the more volatile series is difficult for the pure time-series models. In this case, using fundamentals becomes more important to track the data when the series is more volatile.
In sum, the micro-founded nonlinear DSGE model proved the only model capable of picking up the turning point in the Great Recession, although the forecast downturn lagged the actual downturn by four quarters. The other models forecast continued upward movement in real GDP. This observation suggests that developing forward-looking, microfounded, nonlinear, dynamic-stochastic-general-equilibrium models of the economy, may prove crucial in forecasting turning points.

4. Conclusion

This paper uses small set of variables and a rich set of models to consider whether we could have predicted the recent downturn of the US real Gross Domestic Product (GDP). The rich set of models includes atheoretical and theoretical, linear and nonlinear, as well as classical and Bayesian models. Our restricted data set includes real GDP, the rate of inflation of the GDP implicit deflator, and the three-month Treasury-bill rate.

Our analysis considers the most recent financial crisis and Great Recession, as financial-crisis-induced recessions exhibit more depth and length than typical recessions (Reinhart and Rogoff, 2009). First, we estimate the wide range of econometric models noted previously over the in-sample period from 1979:Q3 to 1999:Q2. Second, we forecast one- to eight quarters-ahead of detrended logged real GDP over an *ex-post* out-of-sample forecast horizon from 1999:Q3 to 2006:Q4. Third, we choose the model within each category that produces the minimum average root mean square errors (RMSEs) relative to the benchmark random walk model as the “best” model for a specific category. Fourth, we use the best model within each category to generate *ex-ante* out-of-sample predictions of real GDP (without updating the parameter estimates of the optimal models) over 2007:Q1 to 2012:Q2.

Comparing the performance by RMSEs of the models to the benchmark RW model, the
two DSGE models perform well on the average across all forecast horizons because they do a reasonably good job of forecasting relative to the RW model at every horizon. More specifically, the two DSGE models significantly outperform the RW model in forecasting at every horizon except the first quarter. On the other hand, the BVAR2, TVP-VAR1, and TVP-VAR2 models perform the worst at horizons one, two and three and then improve their forecasting performance across future horizons and actually significantly outperform the DSGE-Nonlinear model at horizons six, seven, and eight.

The DSGE-Nonlinear model does by far the best job of forecasting the Great Recession in the *ex-ante* out-of-sample forecasts. It provides the only model that predicts a downturn in the real GDP path, albeit with a lag of four quarters after the actual downturn. In sum, some atheoretical and theoretical models perform the best in the *ex-post* out-of-sample forecast exercise at longer forecast horizons. The theoretical model, however, dominates in our *ex-ante* out-of-sample forecast comparison, when trying to forecast the Great Recession.

These findings support those in Gupta *et al.* (2011). They too find the superiority (relative to small and large-scale atheoretical linear models) of a DSGE model that explicitly incorporates the housing sector in predicting *ex ante* the downturn in real US house prices. They suggest, and we corroborate, that to forecast the downturn in a specific variable may require forward-looking, microfounded, DSGE models in the fundamental variables. Further, the fact that the DSGE-Nonlinear *ex-ante* out-of-sample forecasts prove closer to the actual observations also highlights the importance of second-order approximation of the model economy around the steady-state to account for nonlinearities when significant shocks move the economy far from the steady state, as occurred during the Great Recession.

In sum, the nonlinear DSGE model performs the best overall in the *ex-post* out-of-sample
RMSE averaged across all horizons as well as in tracking the turning point in the Great Recession, using *ex-ante* out-of-sample predictions. This occurs despite the limited economic structure considered in Pichler's (2008) model, essentially a relatively small new-Keynesian monetary economy featuring monopolistic competition, capital accumulation, and price and capital adjustment costs characterizing the rigidities in the economy. That is, the model includes a system of 13 non-linear equations that characterize the model’s symmetric equilibrium. A slightly more comprehensive model may provide even better out-of-sample forecast accuracy and more accurately track economic turning points.

References:

Banbura, M., Giannone, D., and Reichlin, L., 2010. Large Bayesian VARs. *Journal of Applied*
Econometrics 25, 71-92.

Davies, R. B., 1987. Hypothesis testing when a nuisance parameter is present only under the alternative. *Biometrika* 74, 33-43.

van Dijk, D., Terasvirta, T., and Franses, P. H., 2002. Smooth transition autoregressive models -

tests of equal forecast accuracy. *Oxford Bulletin of Economics and Statistics* 65,
supplement 724-744.

Econometrics* 24, 630-650.

Proceedings of the Second Annual IEEE Conference on Neural Networks, New York:

White, H., 1989. Some asymptotic results for learning in single hidden-layer feedforward

approach to macroeconomic modeling and policy analysis. *Journal of Economic
Behavior and Organization* 83, 523–541.
Table 1: Relative RMSEs: *Ex-Post* Out-of-Sample Forecasting Performance to Random Walk Model, 1999:Q3-2006:Q4

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>0.5314</td>
<td>0.7572</td>
<td>0.9804</td>
<td>1.1422</td>
<td>1.2725</td>
<td>1.4063</td>
<td>1.5474</td>
<td>1.692</td>
<td>1.1662</td>
</tr>
<tr>
<td>VAR</td>
<td>1.0412</td>
<td>0.9896</td>
<td>1.0165</td>
<td>0.9948</td>
<td>0.9225</td>
<td>0.8159</td>
<td>0.7187</td>
<td>0.6746</td>
<td>0.8967</td>
</tr>
<tr>
<td>BVAR1</td>
<td>1.1026</td>
<td>1.1325</td>
<td>1.0731</td>
<td>1.0311</td>
<td>0.9032</td>
<td>0.7684</td>
<td>0.6191</td>
<td>0.5508</td>
<td>0.8976</td>
</tr>
<tr>
<td>BVAR2</td>
<td>2.042</td>
<td>1.3828</td>
<td>1.0446</td>
<td>0.89</td>
<td>0.7316</td>
<td>0.647</td>
<td>0.6001</td>
<td>0.4924</td>
<td>0.9788</td>
</tr>
<tr>
<td>ANN</td>
<td>1.242</td>
<td>1.3998</td>
<td>1.4484</td>
<td>1.4971</td>
<td>1.556</td>
<td>1.5715</td>
<td>1.5639</td>
<td>1.5721</td>
<td>1.4814</td>
</tr>
<tr>
<td>VSTAR</td>
<td>1.2928</td>
<td>1.3166</td>
<td>1.3739</td>
<td>1.3614</td>
<td>1.299</td>
<td>1.2644</td>
<td>1.2065</td>
<td>1.1708</td>
<td>1.2857</td>
</tr>
<tr>
<td>MS-VAR</td>
<td>0.8237</td>
<td>0.9623</td>
<td>1.0057</td>
<td>1.0232</td>
<td>0.9893</td>
<td>0.9158</td>
<td>0.8384</td>
<td>0.7686</td>
<td>0.9159</td>
</tr>
<tr>
<td>TVP-VAR1</td>
<td>2.0445</td>
<td>1.3845</td>
<td>1.0479</td>
<td>0.8906</td>
<td>0.7341</td>
<td>0.649</td>
<td>0.6016</td>
<td>0.4947</td>
<td>0.9809</td>
</tr>
<tr>
<td>TVP-VAR2</td>
<td>2.0428</td>
<td>1.397</td>
<td>1.044</td>
<td>0.8933</td>
<td>0.7344</td>
<td>0.649</td>
<td>0.6011</td>
<td>0.4931</td>
<td>0.9818</td>
</tr>
<tr>
<td>NP</td>
<td>0.9248</td>
<td>1.1922</td>
<td>1.2297</td>
<td>1.3803</td>
<td>1.3304</td>
<td>1.2972</td>
<td>1.2319</td>
<td>1.2289</td>
<td>1.2269</td>
</tr>
<tr>
<td>SP</td>
<td>1.0424</td>
<td>1.4793</td>
<td>1.558</td>
<td>1.7361</td>
<td>1.8221</td>
<td>1.9035</td>
<td>1.8713</td>
<td>1.8542</td>
<td>1.6584</td>
</tr>
<tr>
<td>DSGE-Linear</td>
<td>1.0139</td>
<td>1.0071</td>
<td>0.926</td>
<td>0.8945</td>
<td>0.8439</td>
<td>0.8141</td>
<td>0.782</td>
<td>0.7672</td>
<td>0.8811</td>
</tr>
<tr>
<td>DSGE-Nonlinear</td>
<td>1.0197</td>
<td>0.9827</td>
<td>0.8763</td>
<td>0.8395</td>
<td>0.7738</td>
<td>0.7447</td>
<td>0.7084</td>
<td>0.6923</td>
<td>0.8297</td>
</tr>
</tbody>
</table>

Notes: RW: Random-Walk Model; VAR: Classical Vector Autoregressive Model; BVAR1 (BVAR2): Bayesian Vector Autoregressive Model based on the Minnesota-prior (Bayesian Vector Autoregressive Model based on Variable-Selection); ANN: Artificial Neural Network Model; VSTAR: Vector Smooth Transition Autoregressive Model; MS-VAR: Markov-Switching Vector Autoregressive Model; TVP-VAR1 (TVP-VAR2): Time-Varying Parameter Vector Autoregressive Model without Variable Selection (Time-Varying Parameter Vector Autoregressive Model with Variable Selection); NP: Nonparametric Regression; SP: Semi-Parametric Regression; DSGE-Linear (DSGE-Nonlinear): Dynamic Stochastic General Equilibrium Model Estimated with Kalman Filter (Dynamic Stochastic General Equilibrium Model Estimated with Particle Filter). The entries for the RW model correspond to the absolute RMSE from the model in percentages. The entries for the other models report the RMSE of the particular model relative to the RMSE of the RW model for a specific forecast horizon. The bolded entries identify the minimum relative RMSE for each horizon and the average across all horizons across the 12 models, excluding the RW model.
Table 2: Significance of Differences in *Ex-Post* Out-of-Sample Forecasting Performance, 1999:Q3-2006:Q4

<table>
<thead>
<tr>
<th>Models</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR versus RW</td>
<td>4.1225</td>
<td>-1.0376</td>
<td>1.6476</td>
<td>-0.5219</td>
<td>-7.7467**</td>
<td>-18.4079*</td>
<td>-28.1291*</td>
<td>-32.5378*</td>
</tr>
<tr>
<td>BVAR1 versus RW</td>
<td>10.2631</td>
<td>13.2470</td>
<td>7.3086</td>
<td>3.1135</td>
<td>-9.6806*</td>
<td>-23.1632*</td>
<td>-38.0883*</td>
<td>-44.9183*</td>
</tr>
<tr>
<td>MS-VAR versus RW</td>
<td>-17.6329*</td>
<td>-3.7704**</td>
<td>0.5725</td>
<td>2.3192</td>
<td>-1.0731</td>
<td>-8.4249**</td>
<td>-16.1570*</td>
<td>-23.1354*</td>
</tr>
<tr>
<td>TVP-VAR1 versus RW</td>
<td>104.4525</td>
<td>38.4482</td>
<td>4.7936</td>
<td>3.1135</td>
<td>-9.6806*</td>
<td>-23.1632*</td>
<td>-38.0883*</td>
<td>-44.9183*</td>
</tr>
<tr>
<td>DSGE-Linear versus RW</td>
<td>1.3924</td>
<td>0.7138</td>
<td>-7.4031**</td>
<td>-10.5477*</td>
<td>-18.5853*</td>
<td>-23.1354*</td>
<td>-30.5704*</td>
<td>-35.0988*</td>
</tr>
<tr>
<td>DSGE-Nonlinear versus RW</td>
<td>1.9674</td>
<td>-1.7296†</td>
<td>-12.3668*</td>
<td>-16.0474*</td>
<td>-25.5321*</td>
<td>-29.1604*</td>
<td>-30.7707*</td>
<td>-35.0988*</td>
</tr>
<tr>
<td>DSGE-Nonlinear versus VAR</td>
<td>-2.0698</td>
<td>-0.6992</td>
<td>-13.7873†</td>
<td>-15.6070†</td>
<td>-16.1246**</td>
<td>-8.7315</td>
<td>-1.4349</td>
<td>2.6193</td>
</tr>
<tr>
<td>DSGE-Nonlinear versus BVAR2</td>
<td>-50.0645*</td>
<td>-28.9363**</td>
<td>-16.1053**</td>
<td>-5.6691</td>
<td>5.7612</td>
<td>15.1061†</td>
<td>18.0543**</td>
<td>40.5815*</td>
</tr>
<tr>
<td>DSGE-Nonlinear versus TVP-VAR1</td>
<td>-50.1266</td>
<td>-29.0201**</td>
<td>-16.3754**</td>
<td>-5.7392</td>
<td>5.4026</td>
<td>14.7368†</td>
<td>17.7470**</td>
<td>39.9428*</td>
</tr>
<tr>
<td>DSGE-Nonlinear versus TVP-VAR2</td>
<td>-50.0838*</td>
<td>-29.6565**</td>
<td>-16.0641**</td>
<td>-6.0242</td>
<td>5.3681</td>
<td>14.7405†</td>
<td>17.8504**</td>
<td>40.3903*</td>
</tr>
</tbody>
</table>

Note: See notes to Table 1. Negative (positive) entries indicate the gain (loss) in RMSEs from using the best model of a specific category relative to the RW model or the gain or loss from using the DSGE-Nonlinear model relative to the VAR, BVARs 1 and 2, MS-VAR, TVP-VARs 1 and 2, and DSGE-Linear models.

†, **, * indicate that the forecast error of the best model within a specific category is significantly better than the RW as well as the DSGE-Nonlinear is significantly better than the DSGE-Linear model at 10%, 5% and 1% levels of significance respectively, based on the one-sided MSE-F statistics proposed by McCracken (2007). Also, †, **, * in the comparison between the DSGE-Nonlinear with the VAR, BVARs 1 and 2, MS-VAR, and TVP-VARs 1 and 2 models indicate significance at 10%, 5% and 1% levels respectively, based on the Harvey et al. (1997) statistic of equal forecast accuracy.
Figure 1: *Ex-ante* Out-of-Sample Forecasts: 2007:Q1-2012:Q2