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1. Introduction 

Data Envelopment Analysis (DEA) is a nonparametric method of evaluating efficiency in 

resource utilization. In this approach the efficiency of a decision making unit (DMU) is 

evaluated by comparing the outcome of the actual decision with what is deemed to be best 

achievable outcome. It is obvious that what constitutes the ‘best’ outcome depends on the 

objective of the decision maker on one hand, and on the set of alternatives from which a 

particular decision is selected, on the other. The nature of decision making determines what are 

the choice variables and what are the parameters in a given context. For example, the manager of 

a primary healthcare center in a rural area might be assigned a given amount of resources (in the 

form of physicians and supplies) and the objective would be to immunize as many infants as 

possible. In this case, efficiency would be measured by the ratio of the actual number of infants 

immunized and the maximum number possible given the resources. This is output-oriented 

technical efficiency. A different example would be one where a landscaper has to irrigate a lawn 

of a given size and efficiency lies in getting the task completed using the minimum necessary 

amount of water. This relates to input-oriented technical efficiency. In the output-oriented case, 

realizing the full output potential is of primary importance. In the input-oriented case, conserving 

inputs has priority over expanding the output. In many other cases, there are market prices of 

inputs reflecting the relative worth of individual inputs. In such cases, the objective may be to 

produce the target output at the minimum cost. This may actually involve increasing the quantity 

used of some input so long as the resulting increase in cost is more than offset by the saving 

resulting from economizing on the use of a more valuable input. It may be noted that cost 

minimization is a valid objective even for public sector and other non-profit agencies (like 
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schools and hospitals) because any cost saving ultimately releases valuable resources for the 

production of other outputs. Finally, from the perspective of a business enterprise engaged in 

producing outputs for profit, the bottom line is the amount of profit earned. In this case, all 

outputs and all inputs are choice variables and the only constraint on the producer’s behavior is 

that the input-output bundle selected must be such that it must be technologically possible to 

produce the planned output from the input bundle selected. There are economic theories of 

producer’s behavior corresponding to the alternative objectives. Correspondingly, there are 

appropriate DEA optimization problems that yield the relevant benchmarks for comparison with 

the actual outcome for evaluating efficiency. 

The paper is organized as follows. Section 2 introduces the concept of the production technology 

and defines measures of output and input oriented technical efficiency. The corresponding DEA 

LP models are also formulated. Section 3 considers in details returns to scale properties of the 

technology and how to measure scale efficiency. The most productive scale size (MPSS) for a 

given input-output bundle is define and alternative ways to identify the nature of returns to scale 

at a particular point on the efficient frontier of the technology set are described. Section 4 covers 

non-radial measures of technical efficiency. Section 5 explains the concepts of the Distance 

Function, the Directional Distance Function, and the Geometric Distance Function. Section 6 

deals with the question of invariance of different efficiency measures in light of data 

transformation. Section 7 provides measures of technical efficiency in the presence of bad or 

undesirable outputs. Section 8 deals with measurement of cost and profit efficiency. Section 9 is 

the conclusion.  

 

2. The Production Technology 

At the core of productivity and efficiency analysis is the concept of the production technology 

described by the production possibility set. Production is the process of converting inputs into 

outputs. A bundle of inputs ( )nx R   is acquired by the producer from outside. It then goes 

through various parallel or sequential processes of transformation and ultimately exits the 

jurisdiction of the firm as a finished product in the form of an output bundle ( ).my R A pair of 

input-output bundles (x, y) is a feasible production plan if the output bundle y can be produced 

from the input bundle x. The production possible set (T) includes all feasible production plans. 

Thus, 
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 T = {(x, y) : x can produce y}.   (1) 

 

Often the production possibility set is defined by means of a production correspondence or a 

transformation function 

  ( , )F x y                                        (2) 

mapping from m nR

 to the (0,1) interval on the real line. The production possibility set then can 

be expressed as: 

            T = {(x, y): F(x, y) ≤ 1}                              (3) 

It is assumed that the production correspondence is non-increasing in inputs and non-decreasing 

in outputs. Thus, 0
i

F
i x

F 


   for each input i and 0
j

F
j y

F 


  for each output j. These are also 

known as free disposability assumptions. They imply that if any input-output bundle is feasible, 

increase in any input not accompanied by a decrease in another input or increase in any output 

will not render the new input-output bundle infeasible. This rules out negative marginal 

productivity. Similarly, a decrease in any output quantity will not affect feasibility. Moreover if

0 0( , ) 1F x y  , 0 0( , )x y is a technically efficient input-output bundle  

In the single output case, one uses the production function  

                                               * ( )y f x   (4) 

where y* is the maximum quantity of the scalar output that can be produced from the input 

bundle, x. In this case, 

                T = {(x, y) : y ≤ f (x) }.  (5) 

 

In parametric analysis, one specifies an explicit form of the production function and uses 

statistical estimation techniques like the maximum likelihood procedure to calibrate the 

parameters of the specified function using sample data of inputs and outputs1. In Data 

Envelopment Analysis one avoids any kind of functional specification and instead makes a 

number of quite general assumptions about the nature of the underlying production technology to 

construct the production possibility set from sample data. 

                                                 
1 The stochastic production function was introduced by Aigner, Lovell, and Schmidt (1977) and Meeusen, W. and J. 

van den Broeck (1977). For an excellent and comprehensive exposition of Stochastic Frontier Analysis (SFA) see 

Kumbhakar and Lovell (2000) 
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Let the data set  ( , ); 1,2,...,j jD x y j N  be the set of observed input-output bundles of N firms 

from a particular industry. The following assumptions are made about the production technology. 

(a) Each observed input-output bundle is feasible. 

(b) The production possibility set is convex. 

(c) Inputs are freely disposable. That is if 0 0( , )x y T and 
1 0x x , then 1 0( , ) .x y T  

(d) Outputs are freely disposable. That is if 0 0( , )x y T and 1 0y y , then 0 1( , ) .x y T  

There would, of course, be infinitely many sets satisfying these assumptions. In DEA T is 

estimated by the set 

1 1 1

( , ) : ; ; 1; 0;( 1,2,..., ) .
N N N

j j

j j j j

j j j

S x y x x y y j N   
  

 
      
 

             (6)    

It is the smallest convex set containing the observed data points and satisfying the free 

disposability assumption. It is also known as the free disposal convex hull of the set D. 

 

Technical Efficiency 

The output-oriented technical efficiency2 of a firm producing the output bundle y0 from the input 

bundle x0 is measured as 

0 0

*

1
( , )y x y


                 (7) 

where 

 

*

0

1

0

1

1

max

. . ;

;

1;

0;( 1, 2,..., ); .

N
j

j

j

N
j

j

j

N

j

j

j

s t y y

x x

j N unrestricted

 

 





 















 







(8) 

                                                 
2 This is also known as Farrell efficiency named after Farrell (1957) who extended the earlier work by Debreu 

(1951) and Shephard (1953). However, the multiple output linear programming formulation is due to Charnes, 

Cooper, and Rhodes (CCR) (1978). The model in (8) is a generalization of the original CCR model by Banker, 

Charnes, and Cooper (BCC) (1984) that allows variable returns to scale. 
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Note by convexity 
1

1
N

j

j




  and 0j   ensures that the input-output bundle 
1 1

,
N N

j j

j j

j j

x x 
 

 
 
 
   

is feasible. Due to free disposability of inputs 0 0

1 1

,
N N

j j

j j

j j

x x x y 
 

 
   

 
   is also feasible. 

Finally, due to free disposability of outputs  0 0 0

1

, y
N

j

j

j

y x x  


  is feasible. The optimal 

value of the objective function in (8) shows the maximum rate by which all outputs of the firm 

can be expanded without any increase in any individual input.  When different outputs can be 

expanded at different rates, * is the lowest of these expansion factors. For example, in a 2-

output case, if one output can be expanded by a factor of 1.5 and the other by a factor of 1.25, * 

equals the lower of the two values. In this case, it is possible to expand the output bundle itself 

by at least 25% across the board one output can be expanded even beyond that. The output-

oriented technical efficiency is 0.80 implying that it is realizing only 80% of the potential output 

producible from its current input bundle. 

An alternative measure of technical efficiency of the firm is its input-oriented technical 

efficiency 

0 0

0

1

0

1

1

( , ) min

. . ;

;

1;

0;( 1,2,..., ); .

x

N
j

j

j

N
j

j

j

N

j

j

j

x y

s t y y

x x

j N unrestricted

 



 



 















 







 (9) 

 

 

The input-oriented technical efficiency of the firm shows the factor by which the entire input 

bundle can be scaled down without reducing any output.  In the multiple input case it may be 

possible to reduce individual inputs even further. In general, the input- and output-oriented 

technical efficiency measures of a firm will be different. 
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When the production possibility set is defined by a transformation function or production 

correspondence as in (3), the graph of the technology is 

G = {(x, y): F(x, y) = 1}                              (10) 

The nonparametric version of the graph would be 

  ( , ) : ( , ) ; 1 ( , ) ; 1 ( , ) .G x y x y T x y T x y T                 (11) 

It is apparent that every ( , )x y G is technically efficient in both the input and the output 

orientation. The graph of the technology constitutes the frontier of the production possibility set. 

 

Constant Returns to Scale  

 

The technology exhibits constant returns to scale (CRS) globally if 

               (x, y)  T  (kx, ky)  T  k  0. 

An implication of CRS is that any non-negative radial expansion or contraction of a feasible 

input-output bundle is also a feasible input-output bundle. Under the CRS assumption, an 

empirical estimate of the production possibility set is 

1 1

( , ) : ; ; 0;( 1,2,..., ) .
N N

C j j

j j j

j j

S x y x x y y j N  
 

 
     
 

   (12) 

Note the absence of the restriction that the s add up to unity. When only convexity is assumed 

all weighted averages of observed input output bundles are also feasible. It was necessary that 

the weights add up to 1. Thus so long as 
1

1
N

j

j




 and each j  is non-negative, 

1 1

( , )
N N

j j

j j

j j

x y 
 

  is feasible.  But with the added assumption of CRS, 
1 1

( , )
N N

j j

j j

j j

k x k y 
 

  is 

also feasible for any k   0. Now consider the weights , 0.j jk k    CRS implies that 

1 1

( , )
N N

j j

j j

j j

x y 
 

  is feasible. But 
1

N

j

j

k


 which can be any non-negative number. This 

explains why the weights need not add up to 1 in (12). 

The set SC is sometimes described as the free disposal conical hull of D. 
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The output-oriented CRS technical efficiency3 is 

 

0 0

*

1
( , )C

y

C

x y


                 (13) 

where 

 

*

0

1

0

1

max

. . ;

;

0;( 1,2,..., ); .

C

N
j

j

j

N
j

j

j

j

s t y y

x x

j N unrestricted

 

 



 











 




 (14) 

Similarly, the input-oriented CRS technical efficiency is 

 

 

0 0

0

1

0

1

( , ) min

. . ;

;

0;( 1,2,..., ); .

C

x

N
j

j

j

N
j

j

j

j

x y

s t y y

x x

j N unrestricted

 



 

 











 




 (15) 

 

It is easy to verify that under the CRS assumption input- and output-oriented measures of 

technical efficiency are identical. 

Figures 1(a-b) explain graphically the concepts of output and input-oriented technical efficiency 

for variable and constant returns to scale in the 1-input 1-output case. In Figure 1a the curve y*= 

f(x) represents the production function. Point A represents in the input-output combination (xA, 

yA). The maximum output producible from input xA is * ( ).A Ay f x The efficient input-output 

bundle *( , )A Ax y is shown by the point A* on the frontier. The output-oriented technical efficiency 

of the firm A is measured as * * .A A

A A

y AxA

y y A x
   Similarly, for firm B, the actual output produced from 

input xB is yB and the maximum producible is * .By  The output-oriented technical efficiency of 

                                                 
3 This is the CCR model. 
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firm B is * * .B B

B B

y BxB

y y B x
   Further, the minimum quantity of the input needed for producing output 

yA is * 1( ).A Ax f y Hence, the input-oriented technical efficiency of A is 
*

.A A

A A

x CyA

x x Ay    The 

corresponding input-oriented technical efficiency of B is 
*

.B B

B B

x DyB

x x By
   It is clear that, in general, 

the input- and output-oriented technical efficiencies of the same firm will differ. 

Figure 1b illustrates the case of CRS. Here the production function is f(x)= kx. It is clear from the 

properties of similar triangles that 
*

0
* *

0 0

.
AxOx OC

Ox OA A x
  Hence, x y  for every firm. 

 

 

The dual of the maximization problem in (14) is4 

0 0

0 0

0 0

0 0

min '

. . ' ' 0;( 1,2,..., );

' 1;

, 0.

j j

u x

s t u x v y j N

v y

u v

  





   (16) 

Several points need special attention in this problem. First, xj is the observed input vector and yj 

the corresponding output vector of firm j. These are all parameters. Also, (x0, y0) is one of the (xj, 

yj) bundles. The vectors u0 and v0 are the choice variables in this problem. These can be 

interpreted as the shadow prices of the inputs and outputs. Second, the optimal values of these 

dual variables depend upon the values of (x0, y0). That is the reason why they are superscripted. 

In (16) these shadow prices of inputs and outputs  are chosen in such a way that evaluated at 

these prices 

(a) the shadow value of the output bundle y0 equals unity and 

(b) the shadow value of any observed output bundle cannot exceed the shadow cost of the 

corresponding input bundle. This is true for the (x0, y0) bundle as well. 

The problem in (16) can easily be recast as the original linear fractional functional programming 

problem: 

 

                                                 
4 This is the multiplier form of the model. 
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0 0

0 0

0

0

'

'

'

'

0 0

min

. . 1;( 1,2,..., );

, 0.

j

j

u x

v y

u x

v y
s t j N

u v

 



                     (17) 

 

This can also be expressed as 

 

0 0

0 0

0

0

'

'

'

'

0 0

max

. . 1;( 1,2,..., );

, 0.

j

j

v y

u x

v y

u x
s t j N

u v

 



                     (18) 

 

 

This is the so called ratio form of the DEA problem introduced by Charnes, Cooper, and Rhodes 

(CCR) in their pioneering 1978 paper5. The LP problems in (14) and (15) above are generally 

called the CCR output- and input-oriented- DEA models. By contract the previous models in (8) 

or (9) are corresponding BCC models named after Banker, Charnes, and Cooper (1984). The 

CCR models are known as the CRS problems. Because no specific assumption is made about 

returns to scale in the BCC models, they are described as variable returns to scale (or VRS) 

problems. 

 

The Multipliers as Shadow Prices  

It may be noted that the inverse of the output-oriented proportional expansion factor in (14) is 

clearly a technical efficiency measure. By contrast, the ratio measure in (18) is a total 

productivity measure. It is true that by standard duality results they can be shown to be 

mathematically equivalent. But as noted by Førsund (2013) they are conceptually quite different. 

The Farrell efficiency measure relates directly to the frontier of the production possibility set. 

But there is no such obvious link in the case of the ratio measure. This is one reason why there is 

so much confusion about the interpretation of the aggregation weights in the CCR model in its 

multiplier form in the OR literature and people have tried to impose arbitrary weight restrictions 

to avoid zero weights. However, as shown below that the weights come from the gradient of a 

                                                 
5 They use a normalization that was fist considered in Charnes and Cooper (1968). 
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supporting hyperplane at the efficient projection of an observed input-output bundle and, 

contrary to the popular belief, are far from arbitrary. As shown by Førsund (2013), the ratios of 

the multipliers associated with two inputs show the marginal rate of substitution between those 

inputs. Similarly, for a pair of outputs the ratio of the multipliers show the marginal rate of 

transformation between them.  

Slacks 

An inherent problem with inequality-constrained optimization is that more often than some of 

the constraints prove to be non-binding at the optimal solution. This results in the presence of 

slacks in the input and/or the output constraints. As such, presence of positive slacks at the 

optimal solution of an LP problem poses no particular problem. After all, when constraints are in 

the form of weak inequalities, it is only common to end up with slacks. In DEA, however, 

presence of slacks in the output or input constraints has been a matter of concern right from the 

start. This is because of what they imply about of the measured technical efficiency of the firm. 

Consider, for example, the following 2-input 1-output BCC input-oriented problem: 

 

1 10

1

2 20

1

2 0

1

1

min

. . ;

;

;

1; 0;( 1,2,..., ).

N

j j

j

N

j j

j

N

j j

j

N

j j

j

s t x x

x x

y y

j N



 

 



 















  









 (19) 

 

 

Now suppose that at the optimal solution, 
*

1 10

1

N

j j

j

x x


 but 
*

2 20

1

0.5 .
N

j j

j

x x


 Obviously, in this 

case θ* equals unity and the firm under evaluation is considered to be operating at 100% 

efficiency. This, of course, is quite difficult to accept given the fact that it can cut down its use of 

input 2 by half without reducing output or increasing input 1. In order to correct this anomaly 

CCR (1979) modified their original formulation of the problem so that a firm could be 



12 

 

considered efficient only when θ* (or φ*, when it is an output-oriented model) was 1 as well as 

all input and output slacks were 0. In order to enforce this added requirement, the included a 

very small penalty (ε) for the presence of any output or input slack in the objective function. A 

revised version of (19) incorporating the slacks explicitly would be: 

1 2 1

1 1 10

1

2 2 20

1

2 1 0

1

1

1 2 1

min [ ]

. . ;

;

;

1;

, , 0;

0;( 1,2,..., ).

N

j j

j

N

j j

j

N

j j

j

N

j

j

j

s s s

s t x s x

x s x

y s y

s s s

j N

 

 

 







  















  

  

 

 

 





 









  (20) 

Here 1 2( , )s s  are the input slacks and 1s
 is the output slack. CCR stipulated that ε should be a 

non-Archemdian (or infinitesimal) positive number in order to ensure that decreasing θ gets a 

preemptive priority over increasing input or output slacks in the solution algorithm of the 

problem. But a practical question is: what numerical value should one use to actually solve the 

problem in (20)? No matter how small a value one can choose, it is always possible to pick one 

that is smaller. Thus, the minimization problem in (20) cannot be actually solved. It can be seen, 

however, that irrespective of any numerical value of ε, the objective first is to minimize θ and 

then to maximize the sum of the slacks. In practice the problem is solved in two steps. In step 1, 

one solves the problem in (19) without any concern about slacks. If there are multiple optimal 

solutions, there will be different vectors λ* going with the same minimum value θ*. The objective 

in the second stage is to select the optimal solution that maximizes the sum of the slacks through 

the following model: 
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1

1 2 1

*

1 1 10

1

*

2 2 20

1

2 1 0

1

1

1 2 1

max

. . ;

;

;

1;

, , 0;

0;( 1,2,..., ).

N

j j

j

N

j j

j

N

j j

j

N

j

j

j

s s s

s t x s x

x s x

y s y

s s s

j N

 

 







  















  

 

 

 

 





 









   (21) 

It is important to note that in this second step problem θ* is a parameter rather than a choice 

variable. The optimal value of θ obtained from (19) along with those of the slacks obtained from 

s(21) constitute the optimal solution for (20) irrespective of an actual numerical value of ε.  

The practical usefulness of this 2-step procedure is not very clear. It certainly flags the presence 

of slacks at an optimal solution of (19) even when the optimal value of θ is 1. But it does not 

provide a more comprehensive measure of efficiency that incorporates penalties for the presence 

of slacks. The optimal values of the λs in (19) define the technically efficient projection 

* * * *

0 0

1 1

( , )
N N

j j

j j

j j

x x y y 
 

   of the input-output bundle (x0, y0). When multiple optimal solutions 

exist for (19), there are many such projections. The problem in step 2 helps to select among 

them. The CCR method provides no justification for the criterion of choice behind the problem 

in (21). 

 

An alternative to (20) would be the so called additive model that simply maximizes the sum of 

the input and output slacks and is formulated as follows: 

 



14 

 

 

1 1

0

1

0

1

1

max

. . ;( 1,2,..., );

;( 1,2,..., );

1;

0,( 1,2,..., );

0,( 1,2,..., );

0;( 1,2,..., ).

m n

r i

r i

N

j rj r r

j

N

j ij i i

j

N

j

j

i

r

j

s s

s t y s y r m

x s x i n

s i n

s r m

j N









 

 

















  

  



 

 

 

 





   (22) 

Although sometimes used in the literature, this additive model is useless as a measure of 

efficiency. The objective function is the sum of input and output slacks that are measured in 

heterogeneous units and has no meaning. Its only usefulness lies in the fact that this will be 0 

only when the θ* in (20) (or φ* in an output-oriented model) equals unity while all input and 

output slacks are 0. 

3. Scale Efficiency 

While full technical efficiency requires a firm to produce the maximum output(s) from its 

observed input bundle, in order to be considered scale efficient the firm needs to operate at the 

scale where average productivity reaches a maximum. Because average productivity is a 

meaningful concept only when a single output is produced from a single input, the concept of 

scale efficiency is best described in the context of a 1-input 1-output technology. Consider a firm 

with input-output (x0, y0). Its average productivity is 0

0
.

y

x
 Clearly, if it is not technically efficient, 

it is possibly to increase the output without changing the input or to lower the input without 

reducing the output. In either case, its productivity would increase. Now suppose that the 

production function is * ( )y f x and the corresponding graph of the technology is 

 ( , ) : ( ); 0; 0 .G x y y f x x y      (23) 

For any 
( )

( , ) , ( ) .
y f x

x x
x y G AP x   Thus, if 0

0

( )

0 0 0( , ) , ( ) .
f x

x
x y G AP x   Because y0 is the 

maximum output producible from input x0 an increase in average productivity is not possible so 

long as the input level does not change. There may exist other input levels, however, where the 

average productivity is higher. Let x*be the input level where average productivity attains a 



15 

 

maximum. In that case, 2

( ) ( ) ( )
0

dAP x xf x f x

dx x

 
  at the input level x*. Frisch (1965) described the 

input level where average productivity is maximum as the technical optimal production scale 

(TOPS).  

Several points are to be noted: 

 

(a) At the technically optimal input level (x*) locally constant returns to scale holds (because 

*

( )
| 0.

dAP x

dx x x
   

(b) 
*

*

( ) ( )*( ) ( )
f x f x

x x
AP x AP x   for all input levels (x). 

(c) At the input level (x*) marginal productivity and average productivity are equal. Thus, 

*

*

( )*( ) .
f x

x
f x   This implies that * * *( ) ( ). .f x f x x  

The scale efficiency of the firm operating at the input level x0 is 

  0

*

( )

0 ( )
( ) 1.

AP x

AP x
SE x     (24) 

More specifically,  

  
0

0 0

**
0

*

( )

( )

0 ( )( )
( ) .

f x

x f x

x f xf x

x

SE x


   (25) 

Now define *( )f x  and consider a pseudo production function 

  ** ( ) .y r x x              (26) 

Then, the denominator in (25) becomes 0 0( ).x r x   Therefore, an alternative measure of scale 

efficiency is 

  0

0

( )

0 ( )
( ) .

f x

r x
SE x    (27)  

Note that (b)and (c) above together imply 

             *( ) ( ) ( )f x f x x x r x    and 

             * * * * *( ) ( ) ( )f x f x x x r x   . 

In other words, ( ) ( )f x r x for all x and ( ) ( )f x r x at x = x*. In particular, 0 0( ) ( )f x r x . This 

ensures that 0( ) 1.SE x   

The pseudo production function is a tangent to the graph of the technology and would have been 

the production frontier if the technology did exhibit globally constant returns to scale. Note that 
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under variable returns to scale, * ( )y f x is the true production function and the right measure of 

technical efficiency is 0 0

*
00

( )
.

y y

y f xy
   The other measure 0 0

**
00

( )

y yC

y r xy
   is not the correct measure 

unless the technology exhibits CRS at all input levels.  But this CRS efficiency measure, false as 

it is, does serve a useful purpose because the ratio of the CRS and VRS measures of technical 

efficiency is a valid measure of scale efficiency. This can be shown as follows: 

   

 

  0

0

0

0 00

0 00

0

( )

0 ( )

( , )( )

( , )

( )

.
C
y

y

f x

r x

y

x yr x

x yy

f x

SE x







 
  (28) 

It should be noted that the expression in (28) measures the output-oriented scale efficiency of the 

input level x0. In a perfectly analogous manner, one can take the output level y0 as given and 

measure the input-oriented scale efficiency 

  0 0

0 0

( , )

0 ( , )
( ) .

C
x

x

x y

x y
SE y




   (29) 

 

In Figure 2 the curve * ( )y f x  is the true VRS production function. At the input level x0 the 

firm produces output y0 < f(x0). This input-output combination is shown by the point A. If 

technical inefficiency is eliminated, it could move to the point B on the production function. 

Here its average productivity would be 0

0

*

0( ) .
Bx

Ox
AP x  But the maximum average productivity is 

along the production function is attained at the point C where the input level is x* and this 

maximum average productivity is 
*

*

* *( ) .Cx

Ox
AP x   Scale efficiency at input level x0  is 

*
0

* *

( )

0 ( ).
( )

AP x

AP x
SE x   Now consider the tangent line ** ( )y r x . The point D  shows the maximum 

output, **

0y that would have been producible  from input x0 if CRS held. Now average 

productivity remains constant along the tangent line. Thus, comparing the average productivities 

at points B and C is equivalent to comparing productivities at points B and D. But average 

productivity at D would be 0

0

( )r x

x
whereas at B it is 0

0

( )
.

f x

x
Thus, scale efficiency at input level x0 is 

0 0

0

( )

( )
.

o

f x Bx

r x Dx
  

Ray Average Productivity and Returns to Scale 
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The single input single output case was useful for illustrative purposes but is of little relevance in 

real life because seldom if ever any output is produced from one input alone. We now consider a 

multiple input single output technology. The production function now shows the maximum 

scalar output producible from a vector of inputs. Consider an input-output combination (x0, y0) 

that lies in the graph, G. That is,     

                                  
0 0

0 10 20, 0( ); ( , ..., ).ny f x x x x x     

Now consider another bundle (x1, y1) also in the graph such that x1= βx0.The two input bundles 

differ only in scale but not in input proportions. The vectors x0 and x1 lie on the same ray through 

the origin in the input space.  If the bundle x0 is considered to be 1 unit of a composite input then 

x1 represents β units of the same input. If β>1,the bundle x1 is a radial expansion of the x0  

bundle. Now suppose that y1 = αy0. The ray average productivity measured by output per unit of 

the composite input at (x0, y0) is y0  and at (x1, y1) is 0 .
y


If α > β > 1, then ray average 

productivity is increasing ar (x0, y0) and we conclude that locally increasing returns to scale (IRS) 

holds at this point on the graph. On the other hand, 1 < α < β signifies locally diminishing returns 

to scale (DRS). Finally, α = β implies constant returns to scale (CRS). Note that these are all 

local characteristics of the technology and are evaluated as 1  from above. The technology 

may exhibit increasing, constant, or diminishing returns to scale at different points on the graph. 

This is why it is described as variable returns to scale (VRS). 

 Most Productive Scale Size  

Banker (1984) generalized Frisch’s concept of the technically optimal production scale to the 

multiple output multiple input case. A feasible input-output bundle (x0, y0) is a most productive 

scale size (MPSS) if for all nonnegative scalars (α,  β) for which (βx0, αy0) is a feasible input-

output combination, 1.

  In other words, (x0, y0) is an MPSS only if there is no other feasible 

input-output bundle with the same mix of inputs and outputs but a higher ray average 

productivity. It is obvious that no feasible input-output bundle can be an MPSS unless it is in the 

graph. Recall that if 0 0( , )x y T but ,G then there will exist either some β < 1 such that 

0 0( , )x y T  or some α > 1 such that   0 0( , ) .x y T  In the former case, one gets 1

 for 1. 

In the latter case, 1

 for 1.   
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The following lemma due to Ray (2009) shows that when the production possibility set is convex, 

IRS holds at all scales smaller than the smallest MPSS. Similarly, DRS holds at all scales larger than 

the largest MPSS.  

Lemma: For any convex productivity possibility set T, if there exist non-negative scalars α and β 

such that α >β >1, and both ),( yx and ,),( Gyx   then    for every γ and δ such that 

1<δ<β and .),( Gyx   

Proof: Because ),( yx and ),( yx  are both feasible, by convexity of T, for every 

)))1((,))1(((),1,0( yx   is also feasible. Now select  such that 

.)1(    Further, define .)1(    Using these notations, .),( Tyx  But, because 

,),( Gyx  .   However, because .,    Hence, .   

An implication of this lemma is that, when the production possibility set is convex, if the 

technology exhibits locally diminishing returns to scale at smaller input scale, it cannot exhibit 

increasing returns at a bigger input scale. This is easily understood in the single-input single-

output case. When both x and y are scalars, average productivity at ),( yx is x

y and at ),( yx  it is 

.x

y


  Thus, when ,  average productivity has increased. The above lemma implies that for 

every input level x in between x and x , average productivity is greater than x

y . Thus, average 

productivity could not first decline and then increase as the input level increased from x to x . 

Two results follow immediately. First, locally increasing returns to scale holds at every input-

output bundle (x, y) G  that is smaller than the smallest MPSS. Second, locally diminishing 

returns to scale holds at every input-output bundle (x, y) G  that is greater than the largest 

MPSS. To see this, let x =bx* and y = ay*, where (x*, y*) is the smallest MPSS for the given input 

and output mix. Because (x, y) is not an MPSS, .1b
a Further, assume that b < 1. Define 

)1(1  b and .1
a Then (x*, y*) = (βx, αy) and  .1

  Because ray average productivity is 

higher at a larger input scale, by virtue of the lemma, locally increasing returns to scale holds at 

(x, y). Next assume that b > 1. Again, because (x, y) is not an MPSS, b
a <1. That is ray average 

productivity has fallen as the input scale is increased from x* to x = bx*. Then, by virtue of the 

lemma, ray average product could not be any higher than b
a at a slightly greater input scale, x  
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(1+ε)x. But, because (x, y) is not an MPSS, ray average product cannot remain constant as the 

input scale is slightly increased. Hence, ray average product must fall as the input scale is slight 

increased from x. Thus, locally diminishing returns to scale holds at every (x, y) ,G when x is 

larger than the largest MPSS. 

 

Identifying the Nature of Local Returns to Scale 

Banker’s Primal Approach 

Banker (1984) developed the following important theorem that serves as a basis for identifying 

the nature of local returns to scale at the input-output bundle (x0, y0) if it is on the VRS frontier 

and at its efficient projection if it is an interior point6. 

 

Theorem 1: An input-output bundle 
0 0( , )x y is an MPSS if and only if the optimal value of the objective 

function of a CCR-DEA model equals unity for this input-output combination. 

Proof: Consider the input-oriented CCR DEA problem: 

 

0

1

0

1

min

. . ;

;

0, ( 1,2,..., ); .

N
j

j

j

N
j

j

j

j

s t x x

y y

j N unrestricted



 



 









 




(30) 

A complete proof of this theorem requires us to show that (a) the optimal value θ* must be unity 

if 0 0( , )x y is an MPSS and (b) θ* cannot be unity if 0 0( , )x y is not an MPSS. 

First, assume that 0 0( , )x y is an MPSS but θ*<1 in (30), where the optimal solution is 

* *( , ; 1,2,..., ).j j N    Then feasibility of the solution implies that 

                                                 
6 See also Banker and Thrall (1992) and Banker et al (2004) 
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* * 0

1

* 0

1

*

;

;

0, ( 1,2,..., ).

N
j

j

j

N
j

j

j

j

x x

y y

j N

 













 



  (31) 

Now define 
** 1

1

, , ,
N

j k k

j

k   


   and 
*

.j

j k


  Clearly,

1

1
N

j

j




  and 0,( 1,2,..., ).j j N  

Thus, 

0

1

0

1

1

;

;

1;

, 0; 0, ( 1,2,..., ).

N
j

j

j

N
j

j

j

N

j

j

j

x x

y y

j N

 

 



  













  







 (32) 

Therefore, 0 0( , )x y  is a feasible input-output bundle under the VRS assumption. Further, 

*

1 1
 
  because 

* has been assumed to be less than 1. This contradicts the assumption that 

0 0( , )x y is an MPSS. Hence, part (a) is proven by contradiction. 

 

Next suppose that 0 0( , )x y is not an MPSS but * is equal to 1. Because 0 0( , )x y is not an MPSS 

there exist , ,   and ( 1,2,..., )j j N  such that 

0

1

0

1

1

;

;

1; 1;

, 0; 0, ( 1,2,..., ).

N
j

j

j

N
j

j

j

N

j

j

j

x x

y y

j N




 

 



  











 

  







(33) 

Define ( 1,2,..., ).j

j j N



   Then 
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0

1

0

1

;

;

0, ( 1,2,..., ).

N
j

j

j

N
j

j

j

j

x x

y y

j N


















 



  (34) 

This shows that 



  is a feasible value of the objective function in the minimization problem in 

(30). But 1 1.


 
    This proves that the optimal value in (30) cannot be * 1  unless 

0 0( , )x y is an MPSS. This completes the proof of the theorem. 

This theorem only determines whether 0 0( , )x y is an MPSS or not. It does not say anything 

directly about the nature of local returns to scale when it is not an MPSS. However, three 

important corollaries follow from the theorem: 

1. If 
*

1

1,
N

j

j

k 


  0 0( , )x y is an MPSS and CRS holds  locally. 

2. If 
*

1

1,
N

j

j

k 


   IRS holds locally at 0 0( , )x y or at its input-oriented efficient projection 

on to the VRS frontier if it is technically inefficient. 

3. If 
*

1

1,
N

j

j

k 


   DRS holds locally at 0 0( , )x y or at its input-oriented efficient projection 

on to the VRS frontier if it is technically inefficient. 

The intuition behind these corollaries is quite simple. When k = 1, the optimal solution from the 

CRS problem in (30) is an optimal solution for the corresponding VRS problem. Because the 

CRS and VRS technical efficiency measures are identical, scale efficiency equals unity and 

0 0( , )x y is an MPSS. Moreover, by virtue of part (a) of the theorem, θ* equals unity and 0 0( , )x y

is on the frontier. If 1,k  the CRS input-oriented projection * 0 0( , )x y is not a feasible solution 

for the corresponding VRS problem. But  0 01 ( , )
k

x y is both on the CRS and the VRS frontier. If 

k < 1, the input-oriented projection is to be scaled up to attain an MPSS and it lies in the IRS 

region. On the other hand,  

if k > 1, it is scaled down to the MPSS and the input-oriented projection falls in the DRS region 

on the VRS frontier. 
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A potential problem with this method of returns to scale characterization is that there may be 

multiple optimal solutions to the DEA problem in (30) with the sum of s greater than 1 in some 

and less than 1 in others. In that situation conflicting conclusions would be drawn depending on 

which optimal solution was obtained. This requires a modification of corollaries (2) and (3) as 

follows: 

(2a) Locally increasing returns to scale holds if *

1

1
N

j

j

k 


   at all optimal   

solutions of  the CRS DEA problem in (30). 

(3a) Locally diminishing returns holds if *

1

1
N

j

j

k 


  at all optimal solutions of the CRS DEA 

problem in (30). 

This can be implemented in two steps. In step 1, the DEA problem in (30) is solved and the 

optimal value θ* is determined. For (2a) above, in step 2 the following problem is solved: 

 

1

* 0

1

0

1

max

. . ;

;

0, ( 1,2,..., ).

N

j

j

N
j

j

j

N
j

j

j

j

s t x x

x y

j N



 















 







(35) 

If the maximum value of the objective function is less than 1, it can be concluded that 

*

1

1
N

j

j

k 


  at all optimal solutions of (30) . Similarly, in order to check for (3a) one minimizes 

the sum of s in (31) and if the minimum is greater than 1, one can conclude that DRS holds 

locally. 

A Dual Approach 



23 

 

Banker, Charnes, and Cooper (BCC) (1984) offer an alternative method of identifying local returns 

to scale from the following dual of the input-oriented VRS DEA problem:          

0 0

0

0 0

0

0 0

0 0

0

max

. . , ( 1,2,..., );

1;

, 0; .

j j

v y

s t v y u x j N

u x

u v unrestricted







 

   

 



                (36) 

BCC have shown that  

(i) CRS holds at (x0, y0) if at the optimal solution of (32) 0 is zero; 

(ii) IRS holds at (x0, y0) if at the optimal solution of (32) 0 is < 0; 

(iii)  DRS holds at (x0, y0) if at the optimal solution of (32) 0 is >  0. 

As in the case of Banker’s approach, multiple optimal solutions pose a problem and the conditions 

(ii) and (iii) have to be appropriately modified. 

A Nesting Approach 

Fӓre, Grosskopf, and Lovell (FGL) (1985) consider a technology that lies in between CRS and the 

VRS technologies. They call it a non-increasing returns to scale (NIRS) technology. Under the 

assumption of NIRS  

                              0 0 0 0( , ) ( , )x y T kx ky T    for any k   (0, 1).   

The DEA estimate of an NIRS production possibility set is 

                 1 1 1

( , ) : ; ; 1; 0; 1,2,..., .
N N N

NIRS j j

j j j jS x y x x y y j N   
 

      
 

  
  (37) 

It may be noted that the frontiers of the CRS and NIRS production possibility sets coincide in the 

region of IRS. Similarly, the VRS and NIRS frontiers are identical in the DRS region. Therefore, 
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when IRS holds at (x0,y0), in an input-oriented model * * *

C NIRS V    where the superscripts C, N, 

and V refer to CRS, NIRS, and VRS. Similarly, * * *

C NIRS V    implies DRS. Of course, in the case 

of CRS, all three estimates of technical efficiency equal unity. 

Identifying Returns to Scale for inefficient unit 

The concept of returns to scale is meaningful only when the relevant input-output bundle lies on 

the frontier of the production possibility set. For an inefficient bundle, one must consider its 

efficient projection – either input- or output-oriented. Unless similar returns to scale are found at 

both projections, one cannot conclusively determine the returns to scale at the observed input-

output bundle. 

The following  DEA problem considered by Cooper, Thompson, and Thrall (1996) can be used 

not only to determine whether an input-output bundle (x0, y0) is an MPSS but also to identify the 

bundle (x*, y*) which is an MPSS for (x0, y0)  : 

                 Maximize 
   

Subject to 

                  
j

j

j xx ;0  

                  
j

j

j yy ;0        (38) 

                 
j

j ;1  

            .0),...,2,1(,,  Njj  

Because (x0, y0) is assumed to be a feasible input-output bundle, )1(   is a feasible 

solution for this problem. Hence, the optimal value *  is always greater than or equal to 1.When 

*

**



  exceeds unity, we know that (x0, y0) is not an MPSS. But we can also conclude that 

),( 0*0* yx  is an MPSS 

As such, the objective function is nonlinear. However, it can be easily transformed into a linear 

programming problem. Define 
1t and μj = tλj (j = 1, 2,…,N). Note that non-negativity of β and 

λjs ensures that t and μjs are also non-negative. Problem (5) can, therefore, be reformulated as the 

following linear programming problem: 
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                          Maximize   

subject to   
j

j

j xx ;0  

                  
j

j

j yy ;0        (39) 

                 
j

j t;  

            .0),...,2,1(,  Njt j  

From the optimal solution of this problem we can derive *

1*

t
 and .*

**

t

  One can then infer 

the nature of returns to scale from these values of α* and  β*. It may be pointed out here that 

because the only restriction on t is non-negativity, (27) is simply the output-oriented CCR DEA 

problem and  *

1


is the same as the output-oriented CRS technical efficiency 

0 0( , )C

y x y . 

When the bundle (x0, y0) is not itself an MPSS, 1*  so that .**    If the MPSS is unique, 

there are five different possibilities:  (i) **1   ; (ii) 1**  ; (iii) * *1   ; (iv) 

* *1    , and (v) **1    . When the MPSS is unique, both input- and output-oriented 

projections of the bundle (x0, y0) fall in the region of IRS. In this case, the unit is conclusively too 

small relative to its MPSS. Similarly, if 1**  , both input- and output-oriented projections 

fall in the region of DRS. The implication is that the unit is too large. When * *1   , the 

input scale corresponds to the MPSS but the output scale is too small. The opposite is true when  

* *1    . Finally, in the intermediate case, where ** 1   , the input scale is bigger than 

the MPSS and the output-oriented projection falls in the region of DRS. At the same time, the 

input-scale is smaller than the MPSS and the input-oriented projection falls in the region of IRS. 

 Zhu (2001) uses a single-input single-output example to partition the interior of the production 

possibility set into six different regions for returns to scale classification of inefficient production 

units7. In three out of these six regions both input- and output-oriented efficient projections 

exhibit the same returns to scale: increasing, constant, or diminishing. In the remaining three, 

increasing returns at the input-oriented projection combines with constant or diminishing returns 

at the output-oriented projection, or constant returns at the input-oriented projection is associated 

                                                 
7 See also the earlier paper by Seiford and Zhu (1999). 
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with diminishing returns at the output-oriented. In order to correctly locate an inefficient unit in 

the appropriate region, one has to ascertain returns to scale at both projections.  

The Case of Multiple MPSS 

Next we consider the possibility of multiple MPSS. This is depicted graphically in Figure 3. 

Here both C1 and C2 are MPSS and so are their convex combinations lying on the line segment 

connecting them. At C1, ),( *

1

*

1  is the smallest MPSS. Similarly, ),( *

2

*

2  at C2 is the largest 

MPSS. It is obvious that when (39) has a unique optimal solution (in particular, t* is unique), 

there cannot be multiple MPSS. For multiple optimal solutions, the largest 
j

jt **  across all 

optimal solutions of (39) corresponds to the smallest MPSS, *

1 . Similarly, *

2 corresponds to 

the smallest 
j

jt **  at an optimal solution.  

Note that across all optimal solutions the value of the objective function is the same (*). Hence, 

*
1

1*

1 t
 , where 

                  
j

jt max*

1  

s.t. 

             
j

j

j xx ;0  

                  
j

j

j yy ;0*      (40) 

            .0),...,2,1(  Njj
 

                   

Similarly, *
2

1*

2 t
 , where 

                  
j

jt min*

2  

s.t. 

             
j

j

j xx ;0  

                  
j

j

j yy ;0*      (41) 

            .0),...,2,1(  Njj
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Once *

1 and *

2 have been determined from (8) and (9), the corresponding values of  are 

readily obtained as *

1

**

1   and .*

2

**

2    

                     As shown in Figure 3, the set of output-input scales (α, β) for which the input-

output bundles (βx0,αy0) are feasible can be partitioned into six different regions defined below: 

(i) In region (1) towards the southwest of the smallest MPSS (C1), ).;( *

1

*

1    

When (x0, y0) falls in this region, *

1

*

11   . Hence, increasing returns to scale holds 

unambiguously. 

(ii) In region (2) to the northeast of the largest MPSS (C2), ).;( *

2

*

2    If (x0, y0) 

falls in this region, 1*

1

*

1  . Diminishing returns to scale holds unambiguously in 

this region. 

(iii) In region (3), *

2

*

1    while *

2

*

1   . Points in this region lie between the 

smallest and the largest MPSS. It is interesting to note, that even if the point (α= 1, 

β= 1) is not technically efficient and lies below the C1C2 line, both the input- and the 

output-oriented projection of the inefficient bundle will fall in the region of constant 

returns to scale. Thus, there is no scale inefficiency in this region even though there 

may be technical inefficiency,. 

(iv) In region (4), *

1

*

2 ;   . When the actual input-output bundle lies here, 

*

1

*

2 1   . The input bundle x0 is larger than the largest MPSS hence the output 

oriented projection falls in the area of diminishing returns. At the same time, the 

actual output bundle is smaller than the smallest MPSS. Hence, increasing returns to 

scale holds at the input oriented projection. Thus, returns to scale cannot be 

unambiguously defined at the actual input-output bundle. 

(v) In region (5a), *

2

*

1    but .*

1  When the actual input-output bundle lies 

here, y 0 is smaller than the smallest MPSS and the input oriented projection falls in 

the area of increasing returns. At the same time, the actual input bundle lies between 

the smallest and the largest  MPSS. Hence, constant returns to scale holds at the 

output oriented projection. Here also the returns to scale characterization depends on 

the orientation. 
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(vi) In region (5b),  *

2  while .*

2

*

1   When the actual input-output bundle lies 

here, x0 is larger than the largest MPSS. Hence the output oriented projection falls in 

the area of diminishing returns. At the same time, the actual output bundle lies 

between the smallest and the largest  MPSS. Hence, constant returns to scale holds at 

the input oriented projection. Here the input bundle is too large. But the actual output 

bundle, if produced from the technically efficient input bundle would correspond to 

an MPSS.. 

 

Output- or Input-oriented? 

Except in the case of globally constant returns to scale, output- and input-oriented technical 

efficiency measures would differ for the same firm. An important question is how to decide 

which measure is preferable. As a general rule,  the answer depends on whether output 

augmentation is more important that input conservation in a specific context. In many situations, 

however, there is no clear cut prority. A rule of thumb would then be to select the orientation that 

yields a lower measure of efficiency under the VRS assumption. The logic behind this criterion is 

the fact the corresponding efficient projection would have a higher level of scale efficiency. This 

can be explained by a simple 1-input 1-output example. Consider a technically inefficient input-

output combination (x0, y0). Now suppose that the output-oriented efficient projection is 

*

0( , )ox y while in input-oriented projection is *

0( , )ox y . Thus the corresponding technical 

efficiency measures are *

1
y 

  and *.x  Assume arbitrarily that .y x  This implies *

*1




or *

*1 .


  Therefore, 
*

0 0

*
00

.
y y

xx




 This shows that average productivity is higher at the output-

oriented efficient projection than at the input-oriented projection of (x0, y0). 

4. Non-Radial Measures of Technical Efficiency 

In an output-oriented analysis of technical efficiency the objective is to produce the maximum 

output from a given quantity of inputs. For this we first define the (producible) output set of any 

given input bundle. For the input bundle x0 the output set  

  P(x0) = { y: (x0, y)  T}    (42) 

consists of all output bundles that can be produced from x0.  

Because there are different output sets for different input bundles, the production possibility set 

is equivalently characterized by a family of output sets. Each output set is a subset of the m-
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dimensional output space. The following properties of output sets follow from the relevant 

assumptions made about the production possibility set. 

 

(P1) If (xj, yj) is an actually observed input-output combination, then yjP( xj). 

(P2) If y0P(x0) and if x1 x0, then  y0P(x1). 

(P3) If y0P(x0) and if y1 y0, then  y1P(x0). 

 (P4) Each output set P(x) is convex. 

The output isoquant of any input bundle x0 can be defined as 

 )(:{)( 00 xPyyxP  and )( 0xPy if }.1   (43) 

Thus, if y0  P (x0), then the output-oriented radial technical efficiency of the pair (x0, y0) equals 

unity because it is not possible to increase all outputs holding the input bundle unchanged. This 

does not, of course, rule out the possibility that some individual components of the y0 output 

bundle can be increased. 

 The efficient subset of the output isoquant of x0, on the other hand, is 

)(:{)( 00* xPyyxP  and )(' 0xPy if }.' 0yy    (44) 

Thus, an output-oriented radial technically efficient projection of y0 produced from x0 onto P(x0) 

may include slacks in individual outputs. But no such slacks may exist if the projection is onto 

P*(x0).The radial measure of output-oriented technical efficiency does not reflect any unutilized 

potential for increasing individual outputs. Again, as is shown below a non-radial output-oriented 

measure does take account of all potential increase in any component of the output bundle. 

The problem of slacks in any optimal solution of a radial DEA model arises because we seek to 

expand all outputs or contract all inputs by the same proportion. In non-radial models, one allows 

the individual outputs to increase or the inputs to decrease at different rates. Färe and Lovell (1978) 

introduced the following input-oriented, non-radial measure of technical efficiency called the 

Russell measure:      

   


i

inx yx  100 min),(  

s.t.    
j

rrjj yy ;0  (r = 1,2,…,m);  (45) 
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         
j

iiijj xx ;0   (i= 1, 2,…, n);    

        
j

j ;1  ;0j  (j =1, 2,…, N). 

When input slacks do exist at the optimal solution of a radial DEA model, the non-radial Russell 

measure in (39) falls below the conventional measure obtained from an input-oriented BCC 

model (6). Because the radial projection is always a feasible solution for (8), .xx    That is, 

the non-radial Russell measure of technical efficiency never exceeds the corresponding radial 

measure. 

The analogous output-oriented non-radial VRS measure of technical efficiency is: 

 
y

y yxRM


1
),( 00  ,        

where  
r

rmy  1max  

s.t.    
j

rrrjj yy ;0  (r = 1,2,…,m); 

         
j

iijj xx ;0   (I = 1, 2,…, n);  (46)    

      
j

j ;1   ;0j  (j =1, 2,…, N). 

While no input slacks can exist at the optimal solution of (39), presence of any output slack is 

not ruled out. Similarly, input slacks may remain at the optimal solution of (40).  

 

Graph Efficiency Measures 

 

All of the technical efficiency measures considered above are either output- or input-oriented. 

Instead of focusing exclusively on increasing outputs or reducing inputs, one may wish to 

achieve both objectives simultaneously. A problem with a graph efficiency measure is that the 

benchmark input-output bundle selected on the frontier depends on the relative importance 

attached to input reduction vis-à-vis output expansion. In the extreme case of input-orientation, 

output expansion is given zero weight. Conversely, 100% weight assigned to output expansion 

leads to the output-oriented projection. As discussed before, the relative importance of outputs 
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and inputs is usually a matter of judgment by the analyst. Fӓre, Grosskopf, and Lovell (1985, 

1994) introduced the so called 

Graph Hyperbolic measure of efficiency by selecting a benchmark on the frontier where is actual 

output bundle (y0) is scaled up as y0 while the observed input bundle (x0) is scaled down as 

01( ).x


 It is easy to see that in a single output single input case bothe the actual input-output 

bundle 0 0( , )x y and its efficient projection 0 01( , )x y


 will lie on a rectangular hyperbola. This 

explains the name Graph Hyperbolic efficiency. 

The VRS DEA LP problem for measuring the graph efficiency is 

                               

0

1

01

1

1

max

. . ;

;

1;

0, ( 1, 2,..., );

.

N
j

j

j

N
j

j

j

N

j

j

j

s t y y

x x

j N

unrestricted





 





















 





    (47) 

A problem with the DEA problem (47) is that it is a non-linear programming problem. It is 

possible, however, to use a linear approximation for 1


in the input constraint. Note that a first 

order Taylor’s series approximation to 1( )f


  at the point of approximation 0 is 

 2
0 0

1 1
0 0 0 0( ) ( ) ( ) ( ) ( ).f f f

 
            

Using 0 1   as the point of approximation, 1 2


  and the problem in (41) can be linearized 

as  
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0

1

0 0

1

1

max

. . ;

2 ;

1;

0, ( 1, 2,..., );

.

N
j

j

j

N
j

j

j

N

j

j

j

s t y y

x x x

j N

unrestricted



 

 















 



 





    (48) 

It should be noted that if 0 0( , )x y is quite far from the frontier, 0 1  may lead to a very poor 

approximation. This is likely to true if either the input- or the output-oriented efficiency is low. 

In that case, the linear approximation may need to be applied iteratively with the optimal value 

of  providing the point of approximation for each successive iteration. 

In the case of CRS, the optimization problem in (47) can be handled quite easily.  Without the 

restriction 
1

1,
N

j

j




  (47) can be written as  

 

2

2 0

1

0

1

max

. . ;

;

0, ( 1, 2,..., );

.

N
j

j

j

N
j

j

j

j

s t y y

x x

j N

unrestricted



 















 





  (49) 

Defining 2  and ,j j   the DEA problem in (43) becomes the standard CCR output 

oriented problem 
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0

1

0

1

max

. . ;

;

0, ( 1, 2,..., );

.

N
j

j

j

N
j

j

j

j

s t y y

x x

j N

unrestricted



 















 



    (50) 

Note that   should be constrained to be strictly positive. But given that 1  is always a feasible 

solution, it would be a non-binding constraint. The optimal value of  can be computed as .  

Pareto-Koopmans Efficiency 

An input-output combination (x0, y0) is not Pareto-Koopmans efficient if it violates either of the 

following efficiency postulates: 

(i) It is not possible to increase any output in the bundle y0 without reducing any other output 

and/or without increasing any input in the bundle x0; or  

(ii) It is not possible to reduce at least any input in the bundle x0 without increasing any other 

input and/or without reducing any output in the bundle y0. 

Clearly, unless RMx(x
0, y0) = RMy(x

0, y0) = 1, at least one of the two efficiency postulates is 

violated and (x0, y0) is not Pareto-Koopmans efficient. Input-output bundle (x0, y0) is Pareto-

Koopmans efficient, when both of the following conditions hold:   

(i) )( 0*0 yVx   and  (ii) ).( 0*0 xPy   

Thus, non-radial technical efficiency (whether input-oriented or output-oriented) by itself does 

not ensure overall Pareto efficiency. 

A non-radial Pareto-Koopmans measure of technical efficiency of the input-output pair (x0, 

y0) can be computed as: 

 





r

rm

i

in

yx





1

1

00 min),(  

s.t. 



N

j

rrrjj yy
1

0 ;  );,...,2,1( mr   
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 



N

j

iiijj xx
1

0 ;  );,...,2,1( ni    (51)  

 



N

j

jj

1

;0;1    ).,...,2,1( Nj   

Note that the efficient input-output projection (x*, y*) satisfies 

 



N

j

j

j xxx
1

0**   and 



N

j

j

j yyy
1

0**  . 

Thus, (x0, y0) is Pareto-Koopmans efficient, if and only if 1
*
r  for each output r and 1

*
i  

for each input i, implying .1),( 00 yx We can visualize the Pareto-Koopmans global 

efficiency measure as the product of two factors. The first is the input-oriented component  

                      
i

inx  1                                                                 (52) 

and the second is an output-oriented component 

                     




r

rm

y



1

1
.                                                                           (53) 

Thus,           

                   ..),( 00

yxyx                                                                           (54) 

 

A Slack Based Measure of Efficiency 

Tone (1997) introduced essentially the same measure of overall efficiency and called it a slack 

based measure (SBM)8. Tone’s SBM is 

                                                 
8 This is the same as the extended Russell Measure of Pastor, Ruiz, and Sirvent (1999). 
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






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









 







  

  


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









(55) 

In this formulation, is is the total slack (rather than the radial slack) in input i. Similarly, rs is 

the total slack in output r. Now consider the benchmark bundle * *( , )x y where 

* 0

0i i i i ix x x s     for input i and * 0

0r r r r ry y y s     for output r. It is obvious that  

0
1 i

i

s

i x


   and 
0

1 r

r

s

r y


  . That is, the objective function in (51) is the same as that in (55). 

Similarly, the constraints are the same in both problems except that non-negativity of the 

slacks implies that in the SBM, the θs cannot exceed unity and the φs cannot be lower than 1. 

No such constraints are implicit in (51).  

 

Linearization of the Pareto-Koopmans DEA Problem 

The objective function in (51) is non-linear. Tone transformed this linear fractional functional 

programming problem into an LP problem by normalizing the denominator to unity. 

Alternatively, as shown in Ray (2004), one may replace the objective function by a linear 

approximation. 

   Define 

                        ),(),(  fyx oo                            (56) 

 

 Using 10 i for all i and 10 r for all r as the point of approximation, 

 

 
i r

rmin
f .1),( 11                     (57)  
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We may, therefore, replace the objective function in (51) by (57) and solve (51) iteratively using 

the optimal solution from each iteration as the point of approximation for the next iteration until 

convergence. Once we obtain the optimal ),( **  from this problem, we evaluate 

 





r
rm

i

in

yx
*1

*1

00 ),(




    (58)  

as a measure of  the Pareto-Koopmans efficiency9 of (x0, y0).  

Apart from an overall measure, (51) also provides information about the potential for reducing 

individual inputs )( *

i and increasing individual outputs ).( *

r  Also a decomposition of (51) into 

the input- and output-oriented components can be obtained from (1210). 

5. Distance Functions 

Shephard (1953) defined the Distance Function evaluated at any non-negative input-output 

bundle (x, y) as 

        1( , ) min : ( , ) .D x y x y T    (59) 

It may be noted that the bundle (x, y) itself may not feasible and may lie outside the production 

possibility set. Shephard assumed only that every input-output bundle can be projected on to the 

frontier of the production possibility set by appropriately scaling (up or down) the input or the 

output bundle. This was described as the attainability postulate. 

If an output bundle y cannot be produced from the input bundle x, then the attainability 

assumption ensures that any appropriate scaling down (without altering the mix of outputs) 

would result in a feasible bundle. That would imply a value of β greater than 1. On the other 

hand, if (x, y) is in the interior of the production possibility set, the output bundle can be scaled 

up and still be producible from the input bundle x. In that case, β would be less than 1.  

Two things emerge out of the above. First, an alternative characterization of the production 

possibility set is 

                   ( , ) : ( , ) 1 .T x y D x y    (60) 

Second, β in (59) is simply the inverse of φ in (8). Thus, the Shephard Distance Function is the 

same as the Farrell output-oriented technical efficiency, .y  

                                                 
9 For empirical applications of this Pareto Koopmans measure see Ray and Jeon (2009) and Ray and Ghosh (2014). 
10 See Ray (2004) appendix to Chapter 2 for a proof of these properties. 
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The Distance Function defined in (59) is more accurately described as the output Distance 

Function 

1( , ) min : ( , ) .OD x y x y T    (61) 

The input Distance Function can, analogously, be defined as 

  1( , ) max : ( , ) .ID x y x y T                         (62) 

It is clear that DI (x, y) is the inverse of the input oriented Farrell efficiency, τx. Moreover, under 

constant returns to scale, the output and input Distance Functions are inverses of each other. The 

following properties of the Distance Functions should be noted. 

The output Distance Function, ( , )OD x y is 

(a) homogeneous of degree 1 in y; 

(b) increasing (non-decreasing) in y; 

(c) decreasing (non-increasing) in x; 

(d) convex in y. 

Similarly, the input Distance Function, ( , )ID x y , is 

(a) homogeneous of degree 1 in x; 

(b) increasing (non-decreasing) in x; 

(c) increasing (non-decreasing) in y; 

(d) convex in x. 

Directional Distance Function 

Chambers, Chung, and Färe (CCF) (1996) introduced the Nerlove-Luenberger Directional 

Distance Function: 

                   ( , ; , ) max :( , ) .x y x yD x y g g x g y g T                            (63) 

Here, ( , )x yg g is an arbitrary point that serves to define the direction along which the input-

output bundle (x, y) is projected on to the frontier11. It is important to recognize that ( , )x yg g

need not be a feasible input-output bundle (or for that matter, even non-negative!). Its only role is 

to define the direction along which the (x, y) bundle is to be projected on to the frontier. Of 

course, if (x, y) is already on the frontier, β will be equal to 0. If one selects ( , ),x yg x g y    

the Directional Distance Function becomes 

                                                 
11 See also Färe, R. and  S. Grosskopf (2000) 
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 ( , ; , ) max : (1 ) ,(1 ) .D x y x y x y T          (64) 

In this case, β is the maximum proportionate reduction in all inputs simultaneously feasible with 

the same proportionate increase in all outputs. For this reason, it is sometimes described as the 

proportional Distance Function.  Further, if one selects, ( 0, )ygx g y  , the Directional 

Distance Function coincides with the (inverse of) the output-oriented Shephard Distance 

Function. On the other hand, ( , 0)x yg x g   leads to the input-oriented Shephard Distance 

Function. 

 The DEA LP problem for measuring the Directional Distance Function shown in (61) 

above is 

  

0 0 0 0

0 0
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0 0
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1

( , ; , ) max

. . ;
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1;

0, ( 1,2,..., ); .

N
j

j

j
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j

j

j
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j

j

j

D x y x y

s t x x x

y y y

j N unrestricted
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 



 
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



 

 

 



 







 (65) 

As elsewhere, the restriction 
1

1
N

j

j




 is removed when CRS is assumed. It may be noted that 

even though β is unrestricted in principle, in practice it can never exceed 1 because the target 

input bundle (1-β)x0 would otherwise become negative. Under the CRS assumption, the 

Directional Distance Function, β, can be easily derived from the output expansion factor, , in 

the CCR DEA problem. More specifically,
1

1
.




 


  Alternatively, 

1

1
.




 


  It should be noted 

that β is a measure of technical inefficiency. Also, like the CCR/BCC DEA measures, the CCF 

Directional Distance Function is also a radial measure because all inputs are scaled down by the 

factor (1-β) while all outputs are scaled up by the factor (1+β). Individual output- and/or input 

slacks may exist at the optimal solution of the DEA LP problem in (65). Hence, a value of β 

equal to 0 does not guarantee Pareto-Koopmans efficiency. 

Geometric Distance Function 

Portela and Thanassoulis (2004) introduced the Geometric Distance Function that provides a 

non-radial Pareto-Koopmans measure of technical efficiency. Consider the input bundle 



39 

 

0 0 0 0

1 2( , ,..., )nx x x x and the output bundle 0 0 0 0

1 2( , ,..., ).my y y y The Geometric Distance Function 

can be evaluated as 
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





 

 
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






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

  (66)  

The exponents αi and βr are, respectively, the predetermined weights assigned to the individual 

inputs and outputs. The weights are non-negative and satisfy 1.i r

i r

    Thanassoulis and 

Portela set each αi  equal to 1
n

and each βr equal to 1 .
m

 

The only difference between the Geometric Distance Function in (63) above and the Pareto-

Koopmans efficiency measure in (51) is that one is a ratio of the arithmetic means of the θs and 

the s while the other is a ratio of their respective geometric means. Also, Portela and 

Thanassoulis (2004) restrict the θs to be no greater than and the s to be no less than unity. 

Removing these restrictions would allow greater flexibility by allowing inputs to increase if that 

would permit and even greater increase in outputs or the outputs to decline if inputs decline even 

more. 

As in the case of (51), the objective function in (63) also is nonlinear. However, taking its natural 

log one gets 1 1

1 1

ln ln ln
n m

i rn m

i r

  
 

   which can be linearized at 

( 1; 1,2,..., ; 1; 1,2,..., )i ri n r m     as 1 1

1 1

ln .
n m

i rn m

i r

  
 

   One can set this up as a 

(approximate) linear objective function to iteratively solve the DEA optimization problem in 

(63). 
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6. Data Transformation 

In practical applications, the same input or output quantities can, often, be measured in 

alternative units. The cultivated area may be measured in acres or in hectares. Oil may be 

measured in gallons or in liters. Output may be measured in lbs or kilograms. A change in the 

unit of measurement is essentially a change in scale. An efficiency measure is scale invariant if a 

change in scale does not alter the measured efficiency of the same input-output bundle12. 

The CCR and BCC technical efficiency measures (both input and output-oriented) are scale 

invariant. Consider the CCR output-oriented model first. Suppose that the scale of measurement 

of all (or some) of the individual inputs and outputs are changed. Specifically, the new measure 

of input i is i i ix a x . Similarly, output r is measured as .r r ry b y For the transformed data, the 

CCR output oriented DEA problem will be 

  

0

1

0

1

max

. . ( 1,2,..., );

, ( 1, 2,..., );

0, ( 1,2,..., ) .

N
j

j i i

j

N
j

j r r

j

j

s t x x i n

y y r m

j N unrestricted





 

 





 

 

 




  (67) 

But the input and output constraints actually are 

0

1

0

1

( ) ( 1,2,..., );

( ) , ( 1,2,..., ).

N
j

j i i i i

j

N
j

j r r r r

j

a x a x i n

b y b y r m



 





 

 




 

Hence, cancellation of common factors on both sides of the inequalities reduces the transformed 

DEA problem (64) to the original CCR output oriented problem (14). For the BCC output 

oriented problem there is the additional restriction that the s add up to unity. But data 

transformation does not affect that constraint in any way. Hence the BCC output oriented 

technical efficiency measure is also scale invariant. Proof of scale invariance of the input 

oriented measures (both CCR and BCC) will be analogous. 

                                                 
12 See Ali and Seiford (1990) and Lovell and Pastor (1995). 
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A different kind of transformation known as translation of the origin is one where some constant 

is added to (or subtracted from) any input or output quantity of all firms in the sample. Data 

translation is common in applications where some input or output values are found to be negative 

in the data set. A constant is added to all observations of that input or output to ensure non-

negativity of the data. 

We now show that the CCR DEA efficiency measures (whether input or output oriented) are not 

translation invariant. For this, suppose that the transformed input-output data are 

( 1,2,..., )j j

i i ix x c i n   and ( 1,2,..., ).j j

r r ry y d r m    The CCR DEA problem with the 

transformed data actually is 

 

0

1

0

1

max

. . ( ) ( 1,2,..., );

( ) ( ), ( 1,2,..., );

0, ( 1,2,..., ) .

N
j

j i i i i

j

N
j

j r r r r

j

j

s t x c x c i n

y d y d r m

j N unrestricted





 

 





   

   

 




   (68) 

It is obvious that the additional term 
1

N

j i

j

c


 on the left hand side of the input constraint does not 

cancel with ci on the right hand side. Nor does 
1

N

j r

j

d


 cancel rd in the output constraints. 

Hence, the problem in (68) will not have the same optimal solution as the original CCR problem 

in (14). In a similar manner, it can be shown that the CCR input oriented problem is also non 

translation invariant. 

Next consider the BCC problems where VRS is captured by the additional constraint that the s 

add up to unit. Given, 
1 1

1, .
N N

j j i i

j j

c c 
 

   Thus, the input constraints in the output-oriented 

BCC problem with transformed data are the same as the input constraints in the corresponding 

problem before data translation. However, output constraints will differ unless each dr equals 0. 

That is, there is no output translation. We conclude, therefore, the BCC output oriented DEA 

model is invariant to input translation. Similarly, the BCC input-oriented DEA problem is 

invariant to output translation.  
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7. Weak Disposability and Bad Output 

In many cases production results in some bad or undesirables output side by side with the good 

or desirable output. In manufacturing, production of the desired output (like industrial machinery 

or steel) leaves the firm with some industrial waste potentially damaging to the environment. 

Generation of power at an electrical utility plant also results in emission of smoke and polluting 

particulates in the atmosphere. Traditionally, productivity and efficiency analysts have focused 

solely on the quantity of the good output produced ignoring the bad output. Greater awareness of 

environmental quality has prompted researchers in recent times to rethink their criterion of 

efficiency measurement. It is now recognized that one must include some penalty for the bad 

output produced in order to get a measure of the net output produced. 

An important consideration in this context is: if some outputs are undesirable, why would not the 

firm produce the desirable or good output alone without producing the bad output at the same 

time? This relates to the concept of weak disposability. 

One of the critical assumptions about the technology made at the outset was that outputs were 

freely disposable. Specifically in a 2-output case, it would imply that if the output bundle 

0 0 0

1 2( , )y y y can be produced from some input bundle x0 then any non-negative output bundle   

1 1 1 0

1 2( , )y y y y  can also be produced from x0 so long as 1 0

1 1y y and 1 0

2 2 .y y This would, of 

course, permit producing the bad output at zero level without reducing the good output! This, 

however, is not possible because bad outputs are weakly disposable. 

As defined by Färe, et al. (2001), the bad output (b) and the good (g) are weakly disposable if  

                     0 0 0 0( , ) ( , ) | 0 1.g b T kg kb T k      (69) 

That is, the bad output can be reduced only if the good output is reduced proportionately. It is 

clear that some bad output will necessarily be produced if any amount of the good output is 

produced. Thus, 0g  if and only if  0b  also. Shephard and Färe (1974) characterized this as 

null jointness. Note that in this interpretation of the relationship between the good and the bad 

output, the two are produced as joint products. Färe, et al. (2001) assume that while the bad 

output is weakly disposable (with the good output), the good output, however, is strongly 

disposable. With weak disposability of the bad output, an empirical estimate of the relevant 

technology set would be 



43 

 

                              

( , ; ) : ;

; ;

1; , 0,( 1,2,..., )

j

j

j

j j

j j

j j

j j

j

g b x g k g

T b k b x x

k j N



 

 

 
 

 
 

   
 
   
 
 



 



 (70) 

Of course, under the CRS assumption, the restriction on the sum of the λs does not apply. It can 

be seen that some of the restrictions in (66) are nonlinear. However, Färe, et al. bypass this 

nonlinearity problem by setting k to unity. Assuming that the criterion of efficiency is 

simultaneous increase in the good output and decrease in the bad output, relevant graph 

hyperbolic output oriented DEA problem is13                                              
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  (71) 

On the other hand, an output-oriented Directional Distance Function would be 

                                                 
13 See Färe, Grosskopf, Lovell, and C. Pasurka (1989). 



44 

 

10 20 0 0

0

1

0

1

0

1

1

( , ; , ) max

. . (1 ) ;

(1 ) ;

,( 1,2,..., );

1;

0, 1,2,..., ); .

N

j j

j

N

j j

j

N

j ij i

j

N

j

j

j

D x x g b

s t g g

b b

x x i n

j N unrestricted



 

 





 











 

 

 



 









 (72) 

A problem with the specification like (71) or (72) is that the technological interdependence 

between the good and the bad output is not explicitly stated. For example, if the two outputs are 

joint in the sense that they must always increase or decrease together, how can the good output 

be treated as strongly disposable while the bad output is only weakly disposable? If a lower 

amount of power is being generated, where is the smoke coming from? One could argue that 

lower power generation is the result of inefficient use of resources and the same amount of fossil 

fuel is being burnt so that the level of pollution is not reduced. In that case, the jointness is 

directly between fossil fuel and pollution and only indirectly between the good and the bad 

output. This raises a question of materials balance. 

Following Førsund (2009) and Murty and Russell (2010), an alternative interpretation of the bad 

output would be that it is an unwanted bye product of some input or inputs used for the 

production of the good output. In agricultural production, for example, fertilizers and chemical 

pesticides are used along with land, labor, and capital for crop production. But an unwanted 

consequence of using chemicals is ground water contamination. Thus, the bad output can be 

reduced only if the polluting inputs are reduced as well. However, to the extent that there is room 

for input substitution, it may be possible to maintain the crop output level. In this case, weak 

disposability applies to the bad output and the polluting inputs rather than between the good and 

the bad output. The underlying production technology involves two separate sub-technologies. 

Suppose that there are two outputs g (good output) and b (bad output) produced from two inputs: 

x1 and x2. Both inputs are used for the production of g but b is produced from x2 only. We can 

think of two production possibility sets: 1 1 2{( , ; ) :T x x g g can be produced from 1 2( , )}x x and  

2 2{( , ) :T x b b can be produced from 2}.x  
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The usual disposability assumptions are made about the good output and the both inputs in T1.  

However, the bad output and the offending input (x2) are assumed to be weakly disposable in T2. 

A an output-oriented Directional Distance Function would be 
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(73) 

Similarly, a graph hyperbolic (output-oriented) measure of technical efficiency would be *

1
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(74) 

8. DEA with market Prices 

There is a widely held belief that DEA should be used only for public sector and non-profit 

organizations like schools or municipal governments where market prices for outputs are not 

always available. But for commercial firms which buy and sell their inputs and outputs at 
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observable market prices, one should use parametrically specified econometric models rather than 

DEA. It should be noted, however, that the cost function relating expenditure to input prices and 

output quantities, the revenue function relating receipts to output prices and input quantities, or the 

profit function relating net revenues to prices of inputs and outputs are all derived from the 

assumptions about the technology and the objectives of the firm. Econometrics and DEA are two 

alternative methods of calibrating the relationship between the prices, quantities, expenses, and 

revenues as relevant in a particular problem. Choice between the two alternative techniques should 

not depend on the availability or lack of information about market prices of inputs and outputs. 

DEA for Cost Minimization  

 

Consider a producer using the input bundle 0x  to produce the output bundle 0.y  Further assume 

that the market price vector of the inputs is 0w  and the firm is a price taker in the input market. 

Then its actual cost is 0 0

0 .C w x Clearly, because 0y  is being produced from 0 0 0, ( , )x x y  is a 

feasible input-output combination. That is 0 0( , ) T.x y  the question is whether 0 0

0C w x  is the 

minimum cost of producing the output bundle 0.y  The cost minimization problem of the firm is to 

                                0 0min ' :( , ) .w x x y T              (75) 

Suppose 
*x  is the cost minimizing input bundle and * 0 *C w x  is the minimum cost. Given a 

reference technology, this minimum cost will depend on both the input price vector 0w  and the 

target output bundle 0y  and can be expressed as 

 0 0 0 0( , ) min :( , ) .C w y w x x y T                (76) 

In production economics, the minimum cost function * ( , )C C w y is known as the dual cost 

function. 

Using the free disposal convex hull, S (from (6) above) as an estimate of the production possibility 

set, the DEA problem for cost minimization can be set up as   
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  (77) 

If CRS is assumed, the constrained 
1

1
N

j

j




  is excluded. Like the λjs the optimal input vector x 

also is a (vector of) choice variable(s) in this LP problem. Note that at the optimal solution there 

cannot be any slacks in any of the input constraints. To see that, define  

                     1 1

; .

.

N N
j j

j j

j j

x x y y 
 

  
 

By convexity, ( , ) .x y T  Further, by free disposability of outputs, 0 0( , ) .y y x y T    Hence, 

the minimum cost cannot be any higher than 0 .w x  But if there is any input slack at the optimal 

solution ( *x  ), 0 0 0 .w x w x   In that case, 0 *w x cannot be the optimal solution of the cost 

minimization problem in (73). 

The (overall) cost efficiency of the firm can be measured as 

  
0 0 0 *

0 0
0

( , )
.

C w y w x

C w x



 


  (78) 

Farrell (1957) provides an interesting decomposition of the overall efficiency into two distinct 

components denoting technical and allocative efficiency. 

Consider the observed input-output bundle of the firm, 0 0( , )x y  and its input-oriented technical 

efficiency: 0 0 0 0( , ) min :( , ) .x x y x y T       Because 0 0( , ) T, 1.x y    Now define 

0 0.tx x  It is the technically efficient projection of the observed input bundle 
0.x The cost of this 

technically efficient input bundle is  

                                0 0 0 0

0.t tC w x w x C       
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Obviously,
0

tC

C
  is the technical efficiency of the firm. Next compare 0 0

t tC w x with the 

minimum cost * 0 *.C w x It follows from the definition of a minimum, that * 0C w x  over all 

input bundles x  so long as 0( , ) .x y T  Because the bundle 0

tx  is one such bundle, 

* 0 * 0 0 .t tC w x w x C    Farrell defined the ratio 

 
0 *

0 0

t

w x

w x






 as allocative efficiency. 

Hence we have the decomposition 

                            
* *

0 0

.t

t

CC C

C C C

   
    
   

   (79) 

Or, 

                                ( ).( ).      (80) 

As explained above, each of the three ratios, α, β, and γ lies between 0 and 1. The measure of 

technical efficiency (β) shows the potential reduction in cost by proportional reduction in all inputs 

without changing the output. By contrast, allocative efficiency (α) measures the reduction in cost 

by changing the input mix and substituting a relatively less expensive input for another which is 

(relatively) more expensive. The overall cost efficiency (γ) reflects the potential for cost reduction 

by scaling down the input bundle to the extent possible and then selecting a different input mix

0

tC

C

 
 
 

 to take advantage of input substitution. 

 

Profit Maximization 

 

Finally one can consider the problem of a profit-maximizing firm in a competitive market 

producing m outputs. The output price vector 0p   is determined by market demand and supply 

and is not within the control of the firm. The firm merely selects the optimal input-output bundle 

that is feasible and maximizes the difference between revenue and cost at the applicable market 

prices of outputs and inputs. Thus, conceptually, the maximum profit is  

                    * max :( , ) .p y w x x y T         (81) 

With reference to the empirically constructed set S, the relevant DEA problem becomes 
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j
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





 







  





  







                    (82) 

Note that in this problem, the right hand sides of both the input and output constraints are 

themselves choice variables. Another important point is that for the profit maximization problem 

(without any other constraint), one must allow variable returns to scale. If CRS is assumed, for 

every feasible 0 0( , )x y  that yields the profit 0 0 0p y w x    , 0 0(t , t )x y is also feasible. Hence, the 

profit will either unbounded or 0. In fact, locally diminishing returns must hold at the optimal point 

* *( , )x y  on the frontier. Otherwise, if * *( , )kx ky  is feasible for some k >1, it is possible to increase 

the profit to  

                     * * * *( ) ( ) ( )p ky w kx k p y w x         

and * *( , )x y cannot be the profit-maximizing bundle. 

A common measure of profit efficiency is 

                                
0

*





              (83) 

where 0 0( , )x y is the actual input-output of the firm under evaluation and  0 0 0p y w x      is its 

actual profit. It should be remembered, however, that if actual profit is negative, the efficiency 

falls below zero. Additionally, if the maximum profit is also negative, the ratio exceeds unity. This 

may appear strange. 

However, from the stand point of pure economic theory, because all inputs and outputs are being 

freely chosen, we are considering what is known as the long run profit maximization problem. If 

no input-output bundle yields a positive profit, the firm should have the option to shut down and 

earn zero profit. In the LP problem a zero input-output bundle can be selected only if all λs are set 

to 0. But that would violate the summation constraint on the λs. So, if a firm is earning negative 

profit but is still in business, that is not a long run solution in the strict sense and there must be 

some constraints that keep it from closing down. 
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9. Summing up 

Although it was introduced as an optimization problem in the OR/MS literature, DEA has grown 

into a nonparametric alternative to stochastic frontier analysis (SFA) for measurement of 

production efficiency. This paper provides the neoclassical production economics behind the 

different formulations of DEA for measurement of technical an, scale, cost, and profit efficiency. 

Given the limited scope of the overview many important issues could not be addressed. Most 

important among them are (i) measurement and decomposition of total factor productivity 

growth over time, (ii) the role of exogenous (or contextual) factors in efficiency measurement, 

and (iii) bootstrapping for generating confidence intervals of DEA efficiency measures. The 

more ambitious reader should refer to Ray (2004) and Cooper, Seiford, and Tone (2000). 
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Figure 1a Output oriented Technical Efficiency 
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Figure 1b Input oriented Technical Efficiency 
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Figure 1c Technical Efficiency under Constant Returns to Scale 
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Figure 3: Multiple MPSS & Regions of Increasing, Constant, Decreasing, and Ambiguous Returns to Scale
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