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Abstract

This paper studies the effects of health shocks on the demand for health insurance and
annuities, along with precautionary saving in a dynamic life-cycle model. I argue that when
the health shock can simultaneously increase health expenses and reduce longevity, rational
agents would neither fully insure their uncertain health expenses nor fully annuitize their
wealth because the correlation between health expenses and longevity provides a self insur-
ance channel for both uncertainties. That is, when the agent is hit by a health shock (which
simultaneously increases health expenses and reduces longevity), she can use the resources
originally saved for consumption in the reduced period of life to pay for the increased health
expenses. Since the two uncertainties partially offset each other, the precautionary saving
generated in the model should be smaller than in a standard model without the correlation
between health expenses and longevity. In a quantitative life-cycle model calibrated using
the Medical Expenditure Panel Survey dataset, I find that the health expenses are highly
correlated with the survival probabilities, and this correlation significantly reduces the de-
mand for actuarially-fair health insurance, while its impact on the demand for annuities and
precautionary saving is relatively small.
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1 Introduction

It is well known that health expenses in developed countries have risen dramatically over the

last several decades and are projected to continue rising in the near future. For instance, the

US aggregate health expenses rose from 5.2% of GDP in 1960 to 16% of GDP in 2007, and are

projected to be 25% in 2025 and 37 % in 2050.1 Importantly, health expenses are extremely

volatile and a significant portion of these expenses are not insured (out-of-pocket expenses).

Meanwhile, a large cohort of baby boomers will be retiring in the next decade. Hence, it is

important to understand how health shocks affect retirees’ lifetime financial planning.

In this paper, I develop a dynamic life-cycle model with health shocks and use it to study the

effects of health shocks on the demand for health insurance and annuities, and precautionary

saving. In particular, I focus on health shocks that simultaneously increase health expenses and

reduce longevity, and how they affect retirees’ lifetime financial planning decisions.

Many types of health shocks have simultaneous effects on health expenses and longevity.

For instance, entering into long term care not only significantly increases health expenses, but

also reduces survival probabilities to the future (Sinclair and Smetters, 2004, Kopecky and

Koreshkova, 2009, etc.) Hurd, McFadden, and Merrill (2001) found that a variety of health

conditions (e.g., cancer, heart disease) can reduce survival probabilities. Similar results are

found for the general concept of a health shock, a health status change. De Nardi, French, and

Jones (2010) documented in the AHEAD data that conditional on permanent income, gender,

and age, people in good health status spend around 50% less on health care annually than those

in bad health status, but they expect to live about 3 years longer than those in bad health.

I argue that when health shocks can simultaneously increase health expenses and reduce

longevity, several interesting results can be obtained. First, utility-maximizing agents would

neither fully insure their uncertain health expenses nor fully annuitize their wealth, even when

these insurance policies are actuarially-fair and there is no bequest motive. Second, when the

insurance markets for uncertain health expenses and uncertain longevity are missing, the pre-

cautionary saving generated by these uncertainties may be smaller than in a model without the

correlation between health expenses and longevity.

The intuition behind these results is simple. The simultaneous effect of health shocks on

health expenses and longevity provides agents with a self insurance channel for both uncertain

health expenses and uncertain longevity. When the agent is hit by a health shock (which simul-

taneously increases health expenses and reduces longevity), she can use the resources originally

saved for consumption in the reduced period of life to pay for the increased health expenses. As

1The 1960 and 2007 numbers are from OECD Health Data 2009. The projected numbers are from the Con-
gressional Budget Office.
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a result, agents would neither fully insure their health expenses nor fully annuitize their wealth.

Similarly, when the insurance markets for uncertain health expenses and uncertain longevity are

missing, since the two uncertainties partially offset each other through the correlation between

them, the precautionary saving generated in the model would be smaller than in a model without

the correlation between health expenses and longevity.

To assess the quantitative importance of the above described results, I develop a quanti-

tative dynamic life cycle model with uncertain health expenses and uncertain longevity, and

calibrate the correlation between the two uncertainties using the Medical Expenditure Panel

Survey (MEPS) dataset. I find that current health expenses are highly correlated with the con-

ditional survival probabilities to the next period. Then, I run computational experiments in the

calibrated model to quantify the impact of the correlation between health expenses and survival

probabilities. I find that its impact on the demand for health insurance is quantitatively large,

while its impact on the demand for annuities and precautionary saving is relatively small.

Some existing studies have also implicitly captured the correlation between health expenses

and longevity. For instance, De Nardi, French, and Jones (2010) captured the correlation be-

tween health expenses and survival probabilities via including health status as a state variable

in their model. Kopecky and Koreshkova (2009) partially captured the correlation via modelling

a nursing home shock. However, these studies usually do not model the decisions to buy health

insurance and annuities, and thus have not explored the implications of this correlation for the

demand for health insurance and annuities, which is the main goal of this paper. In addition, I

assume that the survival probability is directly conditioned on the current health expense, and

measure the magnitude of the correlation between health expenses and survival probabilities

from the MEPS dataset.

This paper also contributes to the literature that aims to understand why households do

not buy more private health insurance and annuitize their wealth.2 I find that the correlation

between health expenses and survival probabilities is an important reason why many individuals

do not buy more private health insurance, but it cannot explain the non-annuitization puzzle.

This paper is related to Sinclair and Smetters (2004) who have also studied the implications

from the simultaneous effect of health shocks on health expenses and longevity. In a quantitative

OLG model, they show that the simultaneous effect of health shocks on health expenses and

longevity reduces the demand for annuities via numerical simulations. In this paper, I show that

the correlation between health expenses and survival probabilities also reduces the demand for

2For the literature on health insurance, see Pauly (1990), Cutler and Gruber (1996a, 1996b), Brown and
Finkelstein (2007, 2008), Gruber (2008), Lockwood (2013), Zhao (2014), etc. For the literature on annuitizatoin,
please see Yaari (1965), Kotlikoff and Spivak (1981), Sinclair and Smetters (2004), Yogo (2009), Lockwood (2011),
Pashchenko (2013), etc.
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health insurance, and this effect is quantitatively more important than the effect on the demand

for annuities. In addition, I provide new implications for precautionary saving, and show that

the impact from the correlation between health expenses and longevity may be different across

the income distribution.

This paper is also related to a recent growing literature that uses quantitative dynamic

models to study the impact of uncertain health expenses on precautionary saving.3 In this

paper, I argue that the correlation between health expenses and survival probabilities provides

agents a self insurance channel, and thus may be important for understanding the impact of

uncertain health expenses on precautionary saving.

The rest of the paper is organized as follows. In section 2, I present a simple example to

illustrate the intuition. In section 3, I study an analytical model and derive some theoretical

results. I develop the full quantitative dynamic life cycle model in section 4 and present the

main quantitative results in section 5. I conclude in section 6.

2 A Simple Model

In this section, I present a simple model to illustrate the intuition behind the main findings

of this paper. Here I only look at the problem after retirement. Assume that an agent with

endowment W faces the following two-period expected utility maximization problem,

max
C1(h),C2(h)

E[U(C1(h)) + S(h)U(C2(h))] (1)

subject to

W −M(h)− C1(h) = C2(h),∀h, (2)

C1(h) ≥ 0 and C2(h) ≥ 0, ∀h

Here U(C) represents the utility flow derived from consumption C, M is the health expense,

and S is the survival probability to period 2. The agent receives a health shock, h, at the

beginning of period 1. When it is a bad shock, i.e., h = hb, the agent needs to pay health

expenses M(hb) = W
2 , and she will not survive to period 2 for sure, i.e., S(hb) = 0. When it is

a good shock, the agent needs to pay no health expense, i.e., M(hg) = 0, and she will survive

to the second period for sure, i.e., S(hg) = 1. For simplicity, the discount factor and the gross

interest rate are both equal to one.

Assuming that there are neither health insurance nor annuities available, the agent’s optimal

decision can be easily derived: C1(hg) = C1(hb) = W
2 , C2(hg) = W

2 . Note that the agent faces

3Hubbard, Skinner, and Zeldes (1995), De Nardi, French, and Jones (2010), Kopecky and Koreshkova (2009),
etc.
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both uncertain health expenses and uncertain longevity in this environment, but she is able to

achieve perfect consumption smoothing over different states and time periods, even without any

health insurance or annuities. The intuition behind this result is clear; the simultaneous effect

of the health shock on longevity and health expenses provides the agent with a self insurance

channel for both uncertain longevity and uncertain health expenses. When the agent is hit by

a bad shock, she uses the resources originally saved for consumption in period 2 to pay the

increased health expenses.

3 The Analytical Model

There exist ex ante homogeneous agents of measure one. Again, here I only look at the problem

after retirement. Each agent is initially endowed with asset W . At the beginning of time, she is

hit by a health shock, h, which will determine her lifetime health expenses, M(h), and longevity,

T (h). For simplicity, it is assumed that both the discount factor and the gross interest rate are

equal to one. To have a meaningful problem, I also assume that the expected health expenses

are less than the initial endowment, i.e., E[M(h)] < W . Agents face the following expected

utility maximizing problem.

max
{C(t,h)}T (h)

0

E[

∫ T (h)

0
U(C(t, h))dt], (3)

subject to

W −M(h) =

∫ T (h)

0
C(t, h),∀h. (4)

C(t, h) ≥ 0, ∀h, t,

Here U(.) satisfies the following conditions: U ′ > 0, U ′′ < 0, U ′′′ > 0, and the Inada

conditions. C(t, h) represents the consumption at time t, conditional on the health shock, h,

which has the following properties: h = hg (good shock) with a probability of 1 − P , and

h = hb (bad shock) with a probability of P . The lifetime health expenses and the longevity are

determined by the health shock in the following way, M(hg) = 0, M(hb) = M , and T (hg) = T ,

T (hb) = δT , where 0 < δ < 1.

Since both the discount factor and the gross interest rate are equal to one, it is obvious that

rational agents will choose a flat consumption path after the health shock. That is, C(t, h) =

C(t′, h), for any t, t′ ∈ [0, T (h)]. Using C(h) to represent the constant consumption per period,

the above utility maximizing problem is simplified to the following problem,

max
C(h)

E[T (h)U(C(h))] (5)

5



subject to

W −M(h) = T (h)C(h),∀h (6)

C(h) ≥ 0, ∀h.

Assuming that neither annuities nor health insurance are available, the optimal solution for

the above problem can be easily obtained. That is, C∗(hg) = W
T and C∗(hb) = W−M

δT . As can be

seen, health insurance or annuities before the health shock is revealed can be welfare-improving

as long as the following condition holds,

C∗(hg) =
W

T
6= W −M

δT
= C∗(hb) (7)

thus,

M 6= W (1− δ) (8)

3.1 Health Insurance

Now I consider agents’ demand for health insurance in this model. Assume that the annuity

market is closed, but agents have access to actuarially-fair health insurance. That is, the price

of health insurance with a coinsurance rate of I is qI = PIM . Agents maximize their expected

lifetime utility by choosing the optimal coinsurance rate, I∗. That is, they face the following

expected utility-maximizing problem,

max
C(h),I

E[T (h)U(C(h))] (9)

subject to

W −M(h)− PIM +M(h)I = T (h)C(h),∀h, (10)

C(h) ≥ 0, ∀h, and I ≥ 0.

Let us study this problem in two different scenarios.

(1)M ≤ W (1 − δ). As shown in equations (7) and (8), even without any health insurance,

agents already have a higher consumption per period after a bad health shock than after a good

shock. Therefore, in this scenario, agents do not need any health insurance, i.e., I∗ = 0 (corner

solution). The intuition behind this result is simple. If the health expenses (i.e., M) are not

larger than the resources freed up from a reduction in longevity (i.e., W (1−δ)), health insurance

is not needed, as the self insurance channel itself is enough to insure against the risk.

(2)M > W (1− δ). In this scenario, there exists an interior solution for I. After substituting

the budget constraint into the objective function, the following First Order Condition (FOC)
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can be obtained,

−(1− P )TU ′(
W − PIM

T
)
PM

T
− PδTU ′(W −M − PIM + IM

δT
)(M − PM)

1

δT
= 0 (11)

Rearranging the above equation and solving for I,

I∗ =
1− W

M (1− δ)
1− P (1− δ)

(12)

The above equation describes the optimal solution for I∗. From this equation, the following

propositions can be obtained,

Proposition 1: (1) The optimal health coinsurance rate, I∗, is less than 1. In other words,

agents do not choose to fully insure their health expense risk. (2) The optimal health coinsurance

rate, I∗, decreases as the reduction in life expectancy increases, i.e., ∂I
∗

∂δ < 0, I∗ increases as the

probability of getting a bad shock increases, i.e., ∂I∗

∂P > 0, and I∗ decreases as the endowment

increases, ∂I∗

∂W < 0.

Proof: As for statement (1), since the expected health expense is less than the initial

endowment, the following inequation holds, E[M(h)] = PM < W . Rearranging and multiplying

both sides of this inequation by (1−δ), I obtain P (1−δ) < W
M (1−δ). As a result, 1−W

M (1−δ) <
1−P (1− δ), and thus I∗ =

1−W
M

(1−δ)
1−P (1−δ) < 1. Statement (2) can be simply obtained by taking the

first order derivative of equation (12) with respect to δ, P , and W , respectively.

3.2 Annuities

Now I consider agents’ demand for annuities in this model. Assume that the health insurance

market is closed, but agents have access to actuarially-fair annuities. That is, the price of

an annuity policy that pays A per period while alive is, qA = PδTA + (1 − P )TA. Note

that rational agents never spend more than W −M on annuities, otherwise they will not have

resources for consumption after a bad health shock. That is, they never choose an annuity level

A > W−M
PδT+(1−P )T . Therefore, the optimal annuity level, A∗, solves the following problem,

max
A

E[T (h)U(C(h))], (13)

subject to

W −M(h)− (PδTA+ (1− P )TA) + T (h)A = T (h)C(h), ∀h (14)

C(h) ≥ 0, ∀h, and A ≥ 0.

Again, I analyze the problem in two cases.
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(1)M ≥ W (1 − δ). In this case, even without purchasing any annuity, the agent would

already have a higher consumption per period when she happens to live longer than expected.

Therefore, agents do not need any annuity, i.e., A∗ = 0. The intuition behind this result is

simple. If the health expense saved is larger than the resources needed for the extra years of

life, no annuity is needed.

(2)M < W (1− δ). In this case, agents need annuities to insure against the risk of outliving

their resources (interior solution). After substituting the budget constraints into the objective

function, the following FOC can be obtained,

(1− P )TU ′(
W

T
− (PδA+ (1− P )A) +A)[1− (Pδ + (1− P ))] +

PδTU ′(
W −M
δT

− (PA+
(1− P )A

δ
) +A)[1− (P +

(1− P )

δ
)] = 0

Rearranging the above equation and solving for A,

A∗ =
W − M

1−δ
PδT + (1− P )T

(15)

The above equation describes the optimal annuity level, and the price of this annuity policy is,

q∗A = (PδT + (1− P )T )A∗ = W − M

(1− δ)
(16)

As can be seen, the annuitized wealth (measured by q∗A) is less than the total wealth available

after the health shock (W orW−M). In other words, agents do not fully annuitize their wealth. I

summarize the main properties of the optimal annuitization decision in the following proposition.

Proposition 2: (1) Agents do not fully annuitize their wealth, i.e., q∗A < W −M or W . (2)

The annuitized wealth (measured by q∗A) increases as the initial wealth increases, i.e.,
∂q∗A
∂W > 0.

(3) The annuitized wealth decreases as the health expenses increase, i.e.,
∂q∗A
∂M < 0. (4) The

annuitized wealth increases as the reduction in life expectancy increases, i.e.,
∂q∗A

∂(1−δ) > 0.

Proof: Statement (1) is from the assumption 0 < δ < 1. Statements (2)-(4) can be easily

obtained by taking the first order derivative of equation (16) with respect to W , M , and 1− δ,
respectively.

It may be also interesting to look at another measure of annuitization, the fraction of wealth

that is annuitized, which can be measured by
q∗A
W = 1 − M

(1−δ)W . By taking the first order

derivative of
q∗A
W with respect to W , M , and 1− δ, respectively, it is easy to see that statements

(2)-(4) in proposition 2 would still hold if
q∗A
W is used as the measure of annuitization instead of

q∗A.4

4Note that the same result is obtained if
q∗A

W−M is used instead of
q∗A
W

.
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Based on the analysis in the previous sections, it is easy to see the results when both health

insurance and annuities are available in the model.5 That is, agents with endowment W > M
1−δ ,

only need annuities (A∗ =
W− M

1−δ
PδT+(1−P )T ), while agents with endowment W ≤ M

1−δ , only need

health insurance (I∗ =
1−W

M
(1−δ)

1−P (1−δ) ).6

The intuition behind the results in the model with both health insurance and annuities

markets is simple. Since the relatively rich (agents with W > M
1−δ ) tend to consume more per

period than the relatively poor (agents with W ≤ M
1−δ ), for the same reduction in longevity, the

resources freed up for the relatively rich are usually more than those for the relatively poor, and

thus they are more likely to be enough to compensate for the simultaneous increase in health

expenses. In other words, the correlation between health expenses and longevity has differential

effects across the income distribution, i.e., it provides more insurance against uncertain health

expenses for the relatively rich, and more insurance against uncertain longevity for the relatively

poor.

4 The Full Quantitative Model

The analytical model allows us to derive closed-form solutions and see the intuition behind the

mechanisms. However, to understand the quantitative importance of these mechanisms, a full-

blown model is needed. In the rest of the paper, I develop a 65-period overlapping-generations

model with health shocks and use it to assess the quantitative importance of the mechanisms

described previously.

Consider a model economy inhabited by overlapping generations of agents who can live up

to 65 periods. Agents are born at age 26 (j = 1), retire at age 65 (j = R = 40) and can live up

to age 90 (j = T = 65). At the beginning of life, agents are hit by a permanent productivity

shock ε which determines their lifetime earnings. Agents receive earnings in each period before

retirement, which is denoted by wγjεi. Here w is wage, γj is the age-specific productivity,

and εi is the individual-specific permanent productivity. After retirement, they live on their

savings a and Social Security payments SS(εi). Agents face two types of uncertainty over the

life cycle, uncertain health expenses m and uncertain longevity (modeled via conditional survival

probabilities S at each age). To capture the correlation between the two uncertainties, I assume

5I do not present the derivation here as it is trivial.
6It is worth noting that annuities and health insurance are in fact insuring against the same risk in the

model, but in the opposite direction. Therefore, the optimum can also be achieved by holding both. That is,
agents can always increase their holdings of both annuities and health insurance simultaneously and still achieve
perfect consumption smoothing because the extra annuities and health insurance offset each other. I rule out this
possibility here. In reality, this result is very unlikely to occur because there are entry costs and administrative
costs in both markets.
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that the conditional survival probability from age j to j + 1 is a function of the health expense

in age j, i.e., Sj(mj). Ideally, both survival probability and health expense should be modeled

as functions of the health condition/status. However, as the information on the dynamics of

health conditions is limited in the data, I do not specifically model health conditions here.

Assume that there exists neither health insurance nor annuity in the benchmark model. The

utility-maximization problem facing an agent at age j with a permanent shock εi, health expense

mj , and savings aj can be simply described by the following Bellman Equation.

V (j, aj ,mj , εi) = max
cj ,aj+1

c1−σ
j

1− σ
+ βSj(mj)E[V (j + 1, aj+1,mj+1, εi)]

subject to{
aj+1 + cj +mj = wγjεi(1− τs − τm − τw) + aj(1 + r) + b+ tr if j ≤ R
aj+1 + cj + (1− κm)mj = aj(1 + r) + SS(εi) + tr, if j > R

a ≥ 0 and c ≥ 0

Here V is the value function, r is the interest rate, and b is the transfer from accidental bequests,

which are assumed to be equally redistributed to the working agents.

There are three government programs: Social Security, Medicare, and the welfare program.

Social Security imposes a payroll tax τs on workers and provides annuity payments SS(εi) to

retirees. The Medicare program covers a κm fraction of health expenses for retirees and imposes

a payroll tax τm on workers. The welfare program guarantees a minimum consumption floor c

by providing transfer payments tr, which is defined as,{
tr = max{c+mj − wγjεi(1− τs − τm − τw)− aj(1 + r)− b, 0} if j ≤ R
tr = max{c+ (1− κm)mj − aj(1 + r)− SS(εi), 0} if j > R

For simplicity, I assume that the prices {w, r} are fixed; therefore, a stationary equilibrium

can be simply sketched as follows. A stationary equilibrium for a given set of government

parameters and prices, is a collection of value functions, individual decision rules, a distribution

function, and transfer from accidental bequests, such that,

1. The value functions and individual decision rules solve the agent’s utility maximization

problem.

2. Social Security, Medicare, and the welfare program are self-financing.

3. The amount of transfers from bequests in each period is equal to the amount of accidental

bequests in that period.
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4. The population distribution is constant over time.

Table 1: Labor Productivity Grids

ε1 ε2 ε3 ε4 ε5
Permanent productivity 0.23 0.48 1.00 2.07 4.27
Corresponding popu. measure 0.09 0.24 0.35 0.24 0.09

Table 2: Age-specific Productivity

Age Age-specific productivity γ

26-30 1
31-35 1.22
36-40 1.40
41-45 1.50
46-50 1.59
51-55 1.62
56-60 1.48
61-65 1.24

Note: age 26-30 is normalized to 1.

Table 3: Health Expenditure Grids (in 2006 $)

Health expense ($) m1 m2 m3 m4 Average

Age 66-70 1298 7293 21271 51451 7202
Age 71-80 1762 9120 26590 58131 8765
Age 81-90 2045 10782 27763 60123 9730

4.1 Calibration

I calibrate the benchmark model to the current US economy. The labor productivity parameters

are determined as follows. The logarithm of the individual-specific permanent productivity

shock, ln ε, is assumed to follow the normal distribution: N ∼ (0, σ2
ε ). I discretize the distribution

into five states using the method introduced in Tauchen (1986). Transforming the values back

from the logarithms, I get a finite set {ε1, ε2, ε3, ε4, ε5}, with the corresponding probabilities.

The variance of the log of the permanent productivity shock, σ2
ε , is set to 0.65 such that it

is consistent with the empirical estimates of the variance of log annual earnings of men in

11



Table 4: Conditional Survival Probabilities (S)

Survival Prob. (%) S(m1) S(m2) S(m3) S(m4)

Age 66-70 99.1 98.0 94.4 88.7
Age 71-80 97.6 96.4 92.6 82.6
Age 81-90 94.3 89.7 83.4 71.5

Heathcote, Perri and Violante (2010). The age-specific productivities, {γj}Rj=1, are calculated

from the earnings data in the Current Population Surveys. The calibrated results on labor

productivity are reported in Tables 1 and 2.

For simplicity, I assume that there is no mortality risk and health expenses before retirement

since this paper is mainly concerned about old-age issues. That is, Sj = 1 and mj = 0 for all j ≤
R. After retirement, the health expense m is assumed to be governed by a 4-state Markov chain

with m = {m1,m2,m3,m4} and the transition matrix Trans(x, y) = Prob(mj+1 = my|mj =

mx).

I use the MEPS dataset to calibrate the health expense shock m and the corresponding

survival probability S(m).7 Specifically, I calibrate the four states for m by breaking down the

health expenditure distribution into four bins of sizes (0− 50%, 50%− 90%, 90%− 95%, 95%−
100%). I do so for each five- or ten-year group. Then, I calculate the transition matrices for m

for each age group directly from the panel data. The calibrated health expenditure levels are

reported in Table 3, and the calibrated transition matrices are reported in the appendix. The

corresponding survival probabilities Sj(mj) can also be calculated from the MEPS dataset, and

they are reported in Table 4.8 As can be seen, the conditional survival probabilities are highly

correlated with the current health expenses. For instance, the conditional survival probability

to the next year for an agent within the 66-70 age group is 99.1% if her current health expense

is below the 50th percentile of the distribution, but her survival probability would decrease to

88.7% if her current health expense is above the 95th percentile of the distribution. Similar

results can also be found for other age groups. Note that the main purpose of this paper is

to show that this correlation between survival probability and health expenses is important for

understanding the agent’s behaviors, i.e., the demand for health insurance and annuities, and

precautionary saving.

On the government side, I set the Social Security tax rate τs to 12.4% according to the

7Specifically, I use all the waves of the panel data after 2000, i.e., 2001-2002, 2002-2003, 2003-2004, 2004-2005,
2005-2006, 2006-2007, 2007-2008, 2008-2009, 2009-2010.

8The implied unconditional average survival probabilities at each age are slightly different from those in the
US life table from National Vital Statistics Reports. To adjust for this difference, I scale all survival probabilities
at each age proportionally.
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SSA data. The benefit formulae SS(εi) are assumed to have the same structure as in Fuster,

Imrohoroglu, and Imrohoroglu (2007) so that the program captures the progressivity of the

US Social Security program. I rescale every beneficiary’s benefits so that the Social Security

program is self-financing. According to the CMS data, approximately 50% of the elderly’s health

expenditures are paid by Medicare, thus I set the Medicare coinsurance rate κm to 0.5.9 The

Medicare payroll tax rate τm is endogenously determined by Medicare’s self-financing budget

constraint. I set the value of the consumption floor c to $2663 based on the estimation in De

Nardi, French, and Jones (2010), and then endogenously determine the value of τw.

As for the prices, the interest rate is set to 4%, and the wage rate w is chosen so that the

output per capita in the model is consistent with the US GDP per capita. The value of the

discount factor β is chosen to match the capital-output ratio in the US, i.e., 3.0. The rest of

the parameter values are directly determined based on the estimates in the standard dynamic

macroeconomics literature. That is, the elasticity parameter in the CRRA utility function, σ,

is set to 2. Table 5 summarizes the calibrated parameter values.

Since the model is complicated and cannot be solved analytically, I solve it using numerical

techniques. Specifically, I solve the decision rules for agents backward from the last period. Some

key statistics of the calibrated economy are reported in Table 6. As can be seen, the calibrated

model is consistent with the data along most dimensions. For instance, both the output per

capita and the capital-output ratio closely match the data. Health expenses per elderly person

and the Medicare tax rate are on the slightly higher side, which is partly due to that the popula-

tion structure at steady state does not exactly match the current U.S. population distribution.10

One exception is the fraction of elderly people on welfare, which is somehow significantly lower

than in the data. This is probably due to the simplifying assumptions made in the analysis such

as no idiosyncratic earnings shock and exogenous labor supply, which understate the risk facing

agents in the model. The life cycle profiles of saving and consumption for an average agent in

the model are plotted in Figure 1.

5 Main Quantitative Results

5.1 Health Insurance

To understand the impact of the correlation between health expenses and survival probabili-

ties on the demand for health insurance, I now introduce a health insurance market into the

benchmark economy. I assume that the health insurance market offers a menu of actuarially-fair

9See Attanasio, Kitao, and Violante (2008) for a detailed description of Medicare.
10Note that another reason why the Medicare tax rate in the model is higher is because I do not model the

Medicare premiums and therefore a slightly higher tax rate is needed for the Medicare program to be self-financing.
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Table 5: Benchmark Calibration

Parameter Description Value Target/Source

σ CRRA utility parameter 2 Macro literature
r interest rate 4% Macro literature
β subjective discount factor 0.96 Capital-output ratio: 3.0
w wage $25,000 GDP per capita in 2006: $46444
τs Social Security tax 12.4% SSA data
κm Medicare Coin. rate 50% CMS data
c consumption floor $2663 De Nardi, French and Jones (2010)

Table 6: Some Key Statistics of the Calibrated Model

Statistic Value Data

Output per capita $46790 $46444
Capital-output ratio 3.0 3.0
Health Expenses per elderly person $9245 $8657
Medicare tax τm 4.3% 2.9%
Fraction of the elderly on welfare 1.3% 10.1%
Welfare tax τw 0.1% ..

policies with a coinsurance rate ranging from 0% to 100%. The policy with a coinsurance rate

I will cover I fraction of the health expenses uncovered by Medicare in each period over the

remainder of the holder’s life, and meanwhile the holders of the policy are required to pay a

premium in each period. For simplicity, I assume that agents have access to the health insurance

market only once in their lives, that is, at age j = R (right before retirement). In addition,

I assume that agents can only insure uncertain health expenses with those in their own age

cohort.11 As a result, the premium at each age can be simply expressed as qjI = I(1−κm)E(mj)

for all j > 40. That is, the premium at each age is the I fraction of the expected average health

expense uncovered by Medicare at that age.

In the model with health insurance, agents at age j < 40 face the same problem as in the

benchmark model. At age j = 40, the utility-maximization problem facing agents is as follows.

V (j, aj ,mj , εi) = max
cj ,aj+1,I

c1−σ
j

1− σ
+ βE[Sj(mj)V (j + 1, aj+1,mj+1, εi, I)] (17)

subject to

aj+1 + cj +mj = wγjεi(1− τs − τm − τw) + aj(1 + r) + b+ tr (18)

11Note that all agents at age j = 40 have zero health expense (no pre-existing condition), thus there is no
adverse selection in the health insurance market.
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a ≥ 0 and c ≥ 0

Note that here agents after retirement would have one more state variable, I, which indicates

the type of health insurance policy purchased at age j = R. After retirement (j > 40), the

agent’s problem is,

V (j, aj ,mj , εi, I) = max
cj ,aj+1

c1−σ
j

1− σ
+ βE[Sj(mj)V (j + 1, aj+1,mj+1, εi, I)] (19)

subject to

aj+1 + cj + (1− I)(1− κm)mj + qjI = SS(εi) + aj(1 + r) + tr (20)

a ≥ 0 and c ≥ 0

I compute the agent’s problem backward from the last period. The health insurance decisions

are reported in Table 7. As can be seen, agents do not choose to buy a health insurance

policy with a 100% coinsurance rate, though the health insurance market is frictionless. On

average, agents choose to insure 66.3% of their uncertain health expenses. To quantify the

impact of the correlation between health expense and survival probabilities on the demand for

health insurance, I run a counterfactual computational experiment in which I assume away

the correlation between survival probability and health expense. That is, I reset the survival

probability for every agent at each age to be the same as the average survival probability at that

age, and then I recompute the agents’ health insurance decisions. As also shown in Table 7, now

agents on average choose to insure 91.1% of their uncertain health expenses. The comparison

between the counterfactual results and the benchmark results suggests that the correlation

between health expenses and survival probabilities has a large negative effect on the demand for

health insurance. This also suggests that the correlation between health expenses and survival

probabilities may be important for understanding the optimal insurance arrangements for health

expense shocks.

As argued before, the correlation between health expenses and survival probabilities should

have a larger impact on richer agents. Since richer agents tend to consume more per period,

for the same reduction in longevity, the resources freed up for them should also be higher,

and therefore are more likely to be enough to compensate for the simultaneous increase in

health expenses. Table 7 also demonstrates the health insurance decisions by income. As

can be seen, the relationship between the coinsurance rate and income in the model is non-

monotone. The agents at the two ends of the distribution purchase less health insurance than

those in the middle. Why doesn’t the coinsurance rate decrease monotonically with income?

To understand this non-monotone relationship, it is important to note that there is another

reason why agents do not fully insure against uncertain health expenses in the model, that is,
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the welfare program. The welfare program provides partial insurance against uncertain health

expenses by guaranteeing a minimum consumption floor, thus it also reduces the demand for

private health insurance. Since poorer agents are more likely to fall on the consumption floor, the

welfare program reduces their demand for health insurance proportionally more. To verify this

point, I consider a counterfactual model in which the welfare program is removed.12 The results

in this counterfactual model are also reported in Table 7. As can be seen, the coinsurance rate

decreases monotonically as the income rises now. While the agents with the lowest productivity

choose to insure 94.9% of their health expenses, the agents with the highest productivity choose

to only insure 30.8% of their uncertain health expenses. When the correlation between health

expenses and survival probabilities is also assumed away, everyone chooses to fully insure their

uncertain health expenses.

Figure 1 plots the life cycles of consumption and saving for an average agent in the models

with and without health insurance. As can be seen, the life cycle profiles look similar in both

models. Agents in the model with health insurance accumulate slightly less savings during

the working period and dissave faster after retirement because uncertain health expenses are

partially covered by health insurance in this model. For the same reason, the consumption near

the end of life is lower in this model because agents keep less precautionary savings untill the

maximum possible age.

Table 7: Health Coinsurance Rates: I

ε1 ε2 ε3 ε4 ε5 Average

Benchmark 0% 87.2% 79.5% 61.5% 30.8% 66.3%
No correlation 0% 100% 100% 100% 100% 91.1%

Benchmark with no welfare program 94.9% 87.2% 79.5% 61.5% 30.8% 74.8%
No correlation 100% 100% 100% 100% 100% 100%

5.2 Annuities

In this section, I introduce an annuity market into the benchmark model, and use the extended

model to study the impact of the correlation between health expenses and survival probabilities

on the demand for annuities.13 The structure of the annuity market is designed as follows. The

12Note that a complete removal of the welfare program would make the model not well-defined. That is, there
exists a tiny fraction of the population which is extremely unlucky (hit by a bad productivity shock and a series
of bad health expense shocks) and does not have enough resources to cover its health expenses. As a result, I set
the minimum consumption floor in the counterfactual model to $100. As a robustness check, I also explore other
values (i.e., $50, $10) and find that the main results do not significantly change.

13The health insurance market is closed in this section so that I can focus on the demand for annnuities.
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annuities are actuarially-fair and they are accessible to any agent after retirement. In addition,

I assume that agents can both buy and sell their annuities in the market. Note that with

this assumption, uncertain health expenses would not affect the demand for annuities due to

the liquidity constraint, therefore I can identify the impact of the correlation between health

expenses and longevity on the demand for annuities.14 Since the market is frictionless, the price

of an annuity policy should be conditioned on both age j and current health expense mj . That

is, the price of a policy paying one dollar annuity in each period over the rest of the life is

described as,

qA(j,mj) =
T∑

L=j+1

Ej [
∏L−1
i=j Si(mi)|mj ]

(1 + r)L−j

In this version of the model, agents face the same problem as in the benchmark model without

annuities before retirement (j ≤ R). After retirement, the utility-maximization problem facing

agents can be described as follows.

V (j, aj ,mj , εi, Aj) = max
cj ,aj+1,Aj+1

c1−σ
j

1− σ
+ βE[Sj(mj)V (j + 1, aj+1,mj+1, εi, Aj+1)] (21)

subject to

aj+1 + cj + (1− κm)mj + qA(j,mj)Aj+1 = SS(εi) + qA(j,mj)Aj + aj(1 + r) +Aj (22)

a ≥ 0 and c ≥ 0

Note that there is one more state variable, A, for the agent’s holding of annuities after retirement.

In addition, at age j = 41, the value of A is zero for everyone as the annuity market is not

accessible to agents at age j ≤ 40.

Again, I compute the agent’s problem backward from the last period. The results on an-

nuitization are reported in Table 8. Here the measure for annuitization I use is the annuitized

wealth as a share of total wealth, that is,
qA(j,mj)Aj+1

aj+1+qA(j,mj)Aj+1
. As can be seen, agents do not

fully annuitize their wealth, though the annuity policies are actuarially-fair. On average, agents

choose to annuitize 91.5% of their retirement wealth (wealth at age j = 41). However, when

the correlation between health expenses and survival probabilities is assumed away, everyone

chooses full annuitization. The intuition behind this result is similar to that for health insur-

ance decisions. That is, since the survival probability is negatively correlated with the health

expense, the agent hit by a lower health expense shock also experiences an increase in her ex-

14In reality, annuities may be not as liquid as in the model and individuals cannot freely sell back their annuities
in the market. Thus, the model here may have overstated the optimal demand for annuities. If agents are not
allowed to sell back annuities in the market, their demand for annuitization would be even lower than what has
been found in the model.
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pected longevity. Thus, she can simply use the reduced amount of health expense to cover the

consumption in the increased period of life.

The results on annuitization can also be explained by using the pricing function for annuities,

qA(j,mj). As shown at the beginning of Section 5.2, qA(j,mj) is decreasing in mj . That is,

the market value of annuity asset would decrease if its holder gets hit by a bad health shock

(i.e., a high value of mj).
15 This implies that holding annuities would amplify the health

expense risks facing agents. In other words, annnuities are implicitly negative health insurance.

Therefore, agents may not want to fully annuitize their wealth when they face significant health

expense risks. Their optimal demand for annuities depends on the tradeoff between the longevity

insurance benefit provided by annuities and the loss they generate by amplifying the health

expense risks. Note that health expense risks are usually less important for richer agents as

they have more savings. Thus, the mechanism emphasized here should have a smaller impact

on richer agents. This implication is confirmed by the quantitative results presented in Table

8. As can be seen, the least productive agents annuitize only 64.0% of their retirement wealth,

while the most productive agents choose full annuitization.

It is also worth noting that the impact on the demand for annuities is quantitatively small.

In the model, most agents still choose to annuitize a major portion of their wealth, which is not

the case in the data. For instance, Lockwood (2013) finds that the average annuity ownership

rate is only 6% in the Health and Retirement Study(HRS) dataset. This suggests that the

correlation between health expenses and survival probabilities may not be an important reason

why so many Americans do not buy annuities, and there must exist other explanations that are

more important for accounting for the non-annuitization in the data.16

Figure 2 plots the life cycles of consumption and savings for an average agent in the models

with and without annuities (note that here the savings include both assets). As can be seen,

agents in the model with annuities save slightly less than those in the model without annuities

before retirement, but after retirement they dissave more slowly and thus after age 75 they

hold more savings than in the model without annuities. The intuition behind this is simple.

In the model with annuities, as the decreasing survival probability after retirement is offset

by the increasing return on annuities, agents tend to dissave more slowly after retirement.

However, annuitization also reduces accidental bequests, therefore they receive less bequest

transfer during the working age. As a result, agents in the model with annuities save slightly

less before retirement. The consumption profiles are also different in the two models. In the

model with annuities, the consumption profile does not significantly decreases after retirement,

15For instance, in the calibrated model, the price of $1 annuity at age j = 41 is $11.4 for individuals with the
lowest health expense, while the price is 17% lower (i.e., $9.5) for agents with the highest health expense.

16See Pashchenko (2013) for a comprehensive review of the literature on the annuity puzzle.
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while it declines quickly after retirement in the model without annuities. The intuition for this

result is similar to that for the savings profiles. The return on annuities increases as age increases

and the survival probability declines. Therefore, simply according to the Euler equation, the

consumption path in the model with annuities should not decline as much as in the model

without annuities (see Davies, 1981).

Table 8: Annuitized Wealth As A Share of Total Wealth at Retirement

Perm. productivity ε1 ε2 ε3 ε4 ε5 Average

Benchmark 64.0% 74.0% 100% 100% 100% 91.5%
No correlation 100% 100% 100% 100% 100% 100%

5.3 Precautionary Saving

Economists have long argued that uncertain health expenses generate precautionary saving.

Recently, there has been a growing macro literature that uses quantitative dynamic models to

study the impact of uncertain health expenses on precautionary saving. Most studies in this

literature find that the impact of uncertain health expenses on precautionary saving is large

and quantitatively important for understanding the saving and wealth data in the US.17. In

this section, I ask whether the implication for precautionary saving is different when uncertain

health expenses are correlated with uncertain longevity.18

It is worth mentioning that some existing studies also implicitly captured the correlation

between health expenses and longevity. For instance, De Nardi, French, and Jones (2010)

captured the correlation between health expenses and survival probabilities via including health

status as a state variable in their model. Kopecky and Koreshkova (2009) partially captured

the correlation by modelling a nursing home shock. In this paper, I assume that the survival

probability is directly conditioned on current health expense, and measure the magnitude of the

correlation between the health expense and survival probability from the MEPS dataset.

To quantitatively assess the implication of the correlation between health expenses and

survival probabilities for precautionary saving, I conduct the following counterfactual experiment

in the benchmark model: I assume away the correlation between health expenses and survival

probabilities by resetting the survival probabilities for everyone at each age to be the average

survival probability at that age, and then recompute the decision rules. As shown in Table 9, the

17Hubbard, Skinner, and Zeldes (1995), De Nardi, French, and Jones (2010), Kopecky and Koreshkova (2009),
etc.

18Note that the findings here are also related to the papers that study the saving effects of uncertain life span,
such as Davies (1981) and Leung (1994).
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average amount of wealth accumulated at the beginning of retirement increases by 3.5% when

health expenses are assumed to be independent of survival probabilities. Across the income

distribution, the retirement wealth for agents with the highest productivity only increases by

1.9%, while the retirement wealth for agents with the least productivity increases by 11.5%.

The intuition for this result is simple: when the uncertain health expenses are correlated with

the survival probabilities, the two uncertainties partially offset each other, thus generating less

precautionary savings than in the model without the correlation.

Table 9: Wealth at the Beginning of Retirement (in $1000)

Perm. productivity ε1 ε2 ε3 ε4 ε5 Average

Benchmark 69 151 269 526 1137 365
No correlation 77 161 281 542 1158 378
Change in % 11.5% 6.2% 4.5% 3.0% 1.9% 3.5%

5.4 The Impact of Medicare

It is also interesting to consider the impact of Medicare in the model. To quantitatively assess

the effects of Medicare on the demand for health insurance and individual welfare, I conduct the

following counterfactual experiment: I remove the Medicare program in the benchmark model

with health insurance, and then recompute the individuals’ decision rules and the equilibrium.

As for the welfare analysis, I adopt the equivalent consumption variation (ECV) as the welfare

criteria, that is, the change in consumption each period required for a new born to achieve the

same expected lifetime utility. The results are reported in Table 10. As can be seen, Medicare

has a significant crowding out effect on the demand for private health insurance. When the

Medicare program is removed, the average private health coinsurance rate chosen increases

from 66.3% to 77.0%. Medicare also has a significant effect on individual welfare. In terms of

the equivalent consumption variation, individual welfare increases by 5.1% when the Medicare

program is removed. An important reason for this welfare result is that Medicare discourages

capital accumulation and thus reduces the aggregate output as it is a pay-as-you-go program.

That is, when Medicare is removed, the output per capita increases by 10.8% (i.e., from $46,743

to $50,476). In addition, as can be seen, the welfare gain is relatively larger for the least

productive agents. This is because the least productive agents are more likely to rely on the

welfare program when hit by bad health shocks, and thus Medicare is less useful for them. Note

that the welfare result obtained here should be treated with caution, because the model does not

include all the relevant elements for a complete welfare analysis of Medicare and thus may not
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capture all the potential welfare effects. For instance, the model does not capture the potential

frictions in the private health insurance market (such as adverse selection and administrative

costs), and thus may underestimate the benefits from the insurance provided by Medicare.

Table 10: The Impact of Medicare

Perm. productivity ε1 ε2 ε3 ε4 ε5 Average

The demand for health insurance

Benchmark 0% 87.2% 79.5% 61.5% 30.8% 66.3%
Medicare removed 0% 89.5% 89.5% 78.9% 57.9% 77.0%

Individual welfare (ECV)
Welfare gain (Medicare removed) 6.7% 4.6% 4.6% 4.6% 4.6% 5.1%

5.5 Further Discussion

The main finding of the paper is that the correlation between health expenses and survival

probabilities can explain why many agents (especially the rich) do not buy more health insurance.

However, it is worth mentioning that there also exist other explanations for the lack of health

insurance puzzle, such as the existence of the means-tested programs and the supply-side frictions

in the health insurance market.19 For instance, Brown and Finkelstein (2007, 2008) found that

the existence of Medicaid is an important reason why individuals in the bottom half of the

distribution do not buy extra health insurance, but the supply-side frictions (i.e., insurance

premium markups) are quantitatively not very important.

This paper is complementary to these existing studies. As is known from the data, many

rich people also do not buy extra private health insurance. As presented in Table 11, the

private insurance coverage rates for individuals aged 65+ are low among all education groups

in the MEPS dataset.20 Individuals with no high school diploma are least likely to buy private

health insurance, i.e., only 17.8% of them hold private health insurance. While the rest of the

individuals are more likely to buy private health insurance than those without a high school

diploma, the coverage rates for them are still relatively low, ranging from 32.5% to 44.7%. This

paper contributes to the literature providing a complementary explanation that can help explain

why many rich individuals also do not want to buy additional private health insurance.

It is important to note that the model studied here also has limitations as it has left out

some elements that are relevant and may be important for understanding the demand for health

19See Pauly (1990), Cutler and Gruber (1996a, 1996b), Brown and Finkelstein (2007, 2008), Lockwood (2013),
etc.

20Here the private insurance coverage rate is defined as the fraction of individuals with private insurance.
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insurance. For instance, De Nardi, French, and Jones (2010) documented in the data that

individuals with higher permanent income tend to have more health expenses and live longer.

These features are not incorporated in the model, which may have led the model to miss certain

dimensions of the data, i.e., the relationship between the health insurance coverage rate and the

permanent income. Another limitation is that I do not model the spousal effect in this paper.

If the extra private health insurance is the long term care insurance, then the informal care

potentially available from family members (e.g., the spouse) could also crowd out the demand

for private health insurance.21 In addition, the model does not include bequest motives. As

shown in Lockwood (2013), the presence of bequest motives would decrease the demand for

private insurance as bequest motives reduce the opportunity cost of precautionary saving. By

leaving these channels out, the model may overestimate the demand for private health insurance.

In this paper, I leave these elements out of the model because the focus of the paper is on the

new mechanism, i.e., the implication of the correlation between health expenses and survival

probabilities, but these channels are definitely important for a comprehensive understanding of

the demand for health insurance and need more study in the future.

Table 11: Private Health Insurance Coverage Rates By Education

no high school diploma high school graduate some college college graduate
Years of schooling < 12 12-13 14-15 16+

Coverage rate 17.8% 32.5% 39.2% 44.7%

(Data source: MEPS)

6 Conclusion

This paper studies a dynamic life cycle model with health shocks that can simultaneously increase

health expenses and reduce longevity. I show that rational agents would neither fully insure their

uncertain health expenses nor fully annuitize their wealth because the correlation between health

expenses and longevity provides a self insurance channel for both uncertainties. That is, when

the agent is hit by a health shock (which simultaneously increases health expenses and reduces

longevity), she can use the resources originally saved for consumption in the reduced period of

life to pay for the increased health expenses. Since the two uncertainties partially offset each

other, the precautionary saving generated in the model should be smaller than in a standard

21As shown in Kopecky and Koreshkova (2009) among others, an important type of health expenses facing the
elderly but not covered by Medicare is long term care expenses. Thus, long term care insurance is one of the most
important additional private health insurance types available to the elderly.
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model without the correlation between health expenses and longevity. I calibrate the model using

the MEPS dataset, and find that the health expenses are highly correlated with the survival

probabilities. The quantitative exercises suggest that the correlation between health expenses

and survival probabilities significantly reduces the demand for actuarially-fair health insurance,

while its impact on the demand for annuities and precautionary saving is relatively small.
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Figure 1: Life Cycle Profiles in the Models with and without Health Insurance
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(Note: the solid lines represent the profiles in the model with health insurance, while the dash lines are for the model
without health insurance.)

Figure 2: Life Cycle Profiles in the Models with and without Annuities
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(Note: the solid lines represent the profiles in the model with annuities, while the dash lines are for the model without
annuities.)

7 Appendix I: The Analytical Model with Precautionary Saving

In this appendix, I extend the analytical model in section 3 by introducing a working period

before retirement, and use it to derive some theoretical results for saving. The length of the

working period is normalized to one, so the length of retirement, T (h), measures the relative

length of retirement compared to work. In the working period, each agent receives income

Y , and after that she chooses consumption for that period, C1, and savings for retirement,
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W = Y − C1. In the retirement period, agents face the same problem as in the benchmark

model. It is assumed that private markets for annuities and health insurance are closed. Agents

face the following expected utility maximizing problem,

max
W,C1,C2(h)

U(C1) + E[T (h)U(C2(h))], (23)

subject to

Y −W = C1 (24)

W = M(h) + T (h)C2(h),∀h (25)

Substituting the budget constraints into the objective function, the first order condition w.r.t.

W can be derived,

U ′(Y −W ∗) = EU ′(
W ∗ −M(h)

T (h)
) (26)

The above equation describes the optimal saving decision, W ∗.

For the convenience of the analysis, I assume that health expenses and longevity have the

following properties: M(hg) = M − P
1−P ∆M , M(hb) = M + ∆M , and T (hg) = T + ∆T ,

T (hb) = T − 1−P
P ∆T . This assumption implies that the expected health expense (equal to M) is

independent of ∆M and the expected longevity (equal to T) is independent of ∆T . As a result,

the equation determining the optimal saving decision (equation (26)) becomes,

U ′(Y −W ∗) = (1− P )U ′(C∗2 (hg)) + PU ′(C∗2 (hb)), (27)

where C∗2 (hg) =
W ∗−M+ P

1−P ∆M

T+∆T
, and C∗2 (hb) = W ∗−M−∆M

T− 1−P
P

∆T
.

To understand how uncertain health expenses affect saving in the model, I simply look at

the effect of a marginal increase in ∆M on W ∗, i.e., ∂W ∗

∂∆M
. To derive ∂W ∗

∂∆M
, I use the implicit

function theorem. Setting F = −U ′(Y −W ∗) + (1− P )U ′(C∗2 (hg)) + PU ′(C∗2 (hb)),

∂W ∗

∂∆M
= −∂F/∂∆M

∂F/∂W
= −

(1− P )U ′′(C∗2 (hg))
P

(T+∆T )(1−P ) − PU
′′(C∗2 (hb))

1
T− 1−P

P
∆T

U ′′(Y −W ∗) +
(1−P )U ′′(C∗2 (hg))

T+∆T
+

PU ′′(C∗2 (hb))

T− 1−P
P

∆T

. (28)

Since U ′′ < 0, the denominator in the above equation is negative. Hence, the sign of ∂W ∗

∂∆M
is

equivalent to the sign of the numerator,

(1− P )U ′′(C∗2 (hg))
P

(T + ∆T )(1− P )
− PU ′′(C∗2 (hb))

1

T − 1−P
P ∆T

. (29)

After some simple algebraic manipulation, the following proposition can be obtained.
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Proposition 3: (1) Uncertain health expenses reduce precautionary saving, i.e., ∂W ∗

∂∆M
< 0,

if the following condition holds,

U ′′(C∗2 (hg))[
T − 1−P

P ∆T

(T + ∆T )
]− U ′′(C∗2 (hb)) < 0. (30)

Note that when the condition (30) does not hold, the effect of uncertain health expenses

on precautionary saving would be either positive or nil, which is the standard answer in the

literature.

To better understand the intuition behind the negative effect of uncertain health expenses

on precautionary saving (described in proposition 3), I consider the following two scenarios in

which condition (30) holds:

(1) U ′′(C∗2 (hg)) < U ′′(C∗2 (hb)). In this case, C∗2 (hg) < C∗2 (hb) as U ′′′() > 0. That is, the

second-period consumption after a bad health shock is even higher than that after a good health

shock. The reason for that is the resources originally saved for the long life are more than

enough to cover the extra health expenses after a bad health shock. As a result, an increase

in the uncertainty of health expenses even improves consumption smoothing across states, thus

reducing precautionary saving.

(2) U ′′(C∗2 (hg)) ≥ U ′′(C∗2 (hb)) but [
T− 1−P

P
∆T

(T+∆T ) ] <
U ′′(C∗2 (hb))
U ′′(C∗2 (hg)) . In this case, the intuition behind

the negative effect of uncertain health expenses on precautionary saving is less obvious. As can

be seen, C∗2 (hg) > C∗2 (hb) in this case as U ′′′() > 0. That is, the second-period consumption after

a bad health shock is lower than that after a good health shock, and thus an increase in the un-

certainty of health expenses should reduce consumption smoothing across states. However, why

does it not increase precautionary saving? The intuition for that is as follows. According to the

existing literature on precautionary saving (e.g., Leland (1968), Kimball (1990)), precautionary

saving increases (decreases) when the shock increases (decreases) the expected marginal utility

function in the second period (EU ′). In a standard framework (in which the health shock does

not also affect longevity), the first order derivative of the expected marginal utility function with

respect to the uncertainty of health expenses (measured by ∆M ) is P [U ′′(C∗2 (hg))−U ′′(C∗2 (hb))].

Thus, as long as C∗2 (hg) > C∗2 (hb), an increase in the uncertainty of health expenses in-

creases precautionary saving. However, in this model, the first order derivative of the expected

marginal utility function with respect to ∆M is P [U ′′(C∗2 (hg))
1

T+∆T
− U ′′(C∗2 (hb))

1
T− 1−P

P
∆T

].

As 1
T+∆T

< 1
T− 1−P

P
∆T

, even when C∗2 (hg) > C∗2 (hb), the first order derivative of the expected

marginal utility function may be negative. Specifically, when [
T− 1−P

P
∆T

(T+∆T ) ] <
U ′′(C∗2 (hb))
U ′′(C∗2 (hg)) , the health

shock decreases the expected marginal utility in the second period, although it improves con-

sumption smoothing across states. As a result, uncertain health expenses reduce precautionary
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saving.

It is worth noting that everything else being equal, condition (30) is more likely to hold

for richer households. In other words, the effect of uncertain health expenses on precautionary

saving is more likely to be negative for them. This result can be easily obtained by looking

at the marginal effect of W on the left-hand side of condition (30). Substituting C∗2 (hg) =
W ∗−M+ P

1−P ∆M

T+∆T
and C∗2 (hb) = W ∗−M−∆M

T− 1−P
P

∆T
into the left-hand side of condition (30) and taking

its first order derivative w.r.t. W , I find that the left-hand side of condition (30) decreases in

W . This implies that condition (30) is more likely to hold for agents with a higher value of

W . This implication is of particular interest because a major portion of aggregate saving is

from the rich. As a result, the negative savings effect of uncertain health expenses may be not

only a qualitative result, but also quantitatively relevant for understanding the effect of health

expenses on aggregate capital accumulation.

8 Appendix II

8.1 Data and Calibration Details

Here I provide additional information regarding the MEPS panel dataset used in the calibration.

I make use of nine waves of the panel data since 2000, that is, 2001-2002, 2002-2003, 2003-2004,

2004-2005, 2005-2006, 2006-2007, 2007-2008, 2008-2009, and 2009-2010. I stack observations in

all these waves of the data into a large dataset and convert all nominal values into 2006 dollars.

The MEPS dataset provides a good measure of the total health expenditure, i.e., “totexpy1”

and “totexpy2”. I calibrate the four states for m by breaking down the total health expenditure

distribution into four bins of sizes (0-50%; 50%-90%; 90%-95%; 95%-100%). I do so for each of

the following age groups, 66-70, 71-80, and 81-90. Then, I compute the corresponding transition

matrix for the health expense shock directly from the panel data. Table 12 presents the number

of observations in the dataset.

Table 12: MEPS Data Sample Size

No. of observations m1 m2 m3 m4 total
by health shock (0-50%) (50%-90%) (90%-95%) (95%-100%)

Age 66-70 2171 1738 217 217 4243
Age 71-80 3397 2718 340 340 6795
Age 81-90 1571 1256 156 158 3141

The calibrated results for the health expense grids are reported in Table 3 and the corre-

sponding transition matrices are reported in the following tables.
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Table 13: The Transition Matrix for m: Age 66-70

m′ = m1 m2 m3 m4

m1 0.703 0.251 0.025 0.022
m2 0.294 0.567 0.063 0.076
m3 0.129 0.512 0.115 0.244
m4 0.116 0.375 0.125 0.384

Table 14: The Transition Matrix for m: Age 71-80

m′ = m1 m2 m3 m4

m1 0.694 0.254 0.026 0.027
m2 0.327 0.547 0.067 0.059
m3 0.195 0.544 0.105 0.156
m4 0.170 0.458 0.127 0.245

Since the MEPS dataset also contains information on whether the individual survives to the

next year, I can simply compute the corresponding conditional survival probabilities for each

type of agent directly from the panel data. The computed conditional survival probabilities are

reported in Table 4.

8.2 Sensitivity Analysis

In the benchmark model, I set the risk aversion parameter σ to 2 following the tradition in the

macro literature. To understand whether the main finding of the paper is sensitive to the value

of the risk aversion parameter, now I explore several other values for σ ranging from 1.5 to 4

as robustness checks. For each value of σ, I redo the computational experiment to quantify the

impact of the correlation between health expenses and survival probabilities on the demand for

health insurance. The results are reported in Table 16. As can be seen, the main finding of

the paper remains true as the value of σ varies. The correlation between health expenses and

survival probabilities can still significantly reduce the demand for health insurance even when

the value of σ is set to as high as 4.
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Table 15: The Transition Matrix for m: Age 81-90

m′ = m1 m2 m3 m4

m1 0.667 0.273 0.036 0.024
m2 0.324 0.508 0.082 0.085
m3 0.187 0.527 0.173 0.113
m4 0.154 0.463 0.188 0.195

Table 16: Risk Aversion (σ) and the Health Coinsurance Rates (I)

ε1 ε2 ε3 ε4 ε5 Average

σ = 1.5

Benchmark 0% 66.7% 79.5% 61.5% 10.3% 59.5%
No correlation 0% 100% 100% 100% 100% 91.1%

σ = 2.0

Benchmark 0% 87.2% 79.5% 61.5% 30.8% 66.3%
No correlation 0% 100% 100% 100% 100% 91.1%

σ = 3.0

Benchmark 94.7% 89.5% 84.2% 68.4% 31.6% 78.7%
No correlation 100% 100% 100% 100% 100% 100%

σ = 4.0

Benchmark 100% 89.5% 84.2% 68.4% 47.4% 80.6%
No correlation 100% 100% 100% 100% 100% 100%
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