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Abstract 

We propose a new long-memory model with a time-varying fractional integration 
parameter, evolving non-linearly according to a Logistic Smooth Transition 
Autoregressive (LSTAR) specification. To estimate the time-varying fractional integration 
parameter, we implement a method based on the wavelet approach, using the 
instantaneous least squares estimator (ILSE). The empirical results show the relevance 
of the modeling approach and provide evidence of regime change in inflation 
persistence that contributes to a better understanding of the inflationary process in the 
US. Most importantly, these empirical findings remind us that a "one-size-fits-all" 
monetary policy is unlikely to work in all circumstances. 
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1  Introduction 

The dynamics of inflation, as defined by its moments, volatility, and persistence affect the 

ability of central banks to control it. This paper focuses on inflation persistence in the US 

using monthly data from 1871:02 to 2016:01. The data span the modern history of the 

international monetary systems, including the classical gold standard era (1870-1914), 

the interwar period (1915-1944), the Bretton Woods system (1945-1971), and the post 

Bretton Woods system (1971-present), and thus provide a unique opportunity to 

appraise how inflation persistence may vary across different monetary regimes and 

institutions. 

As frequently noted in the literature, inflation persistence plays an important role 

in the conduct of monetary policy and in the development of macroeconomic theories. 

At the monetary policy level, inflation persistence determines how the monetary 

authorities respond to shocks over time (e.g., Gerlach and Tillmann, 2012; van der 

Cruijsen, et al., 2010). Inflation persistence measures the speed at which the inflation 

rate returns to its equilibrium level after an inflationary shock. If inflation returns to its 

equilibrium level more quickly (i.e., inflation exhibits less persistence) after a shock, 

then the more effectively the monetary authorities can reduce inflation fluctuations, all 

else equal (Fuhrer, 1995).1 High inflation persistence causes shocks to exert long-lasting 

effects and may require a strong policy response to bring inflation under control. In the 

worst case, inflation may follow a random walk (i.e., an I(1) process) making it 

impossible for central banks to bring it under control. In the best case, inflation may 

                                                           
1
 Recent contributions on inflation persistence in the US include Kumar and Okimoto (2007), Pivetta and 

Reis (2007) and Mehra and Reilly (2009). Beechey and Osterholm (2009), Batini (2006) and Meller and 
Nautz (2012) consider inflation persistence in the Euro area, while Gadea and Mayoral (2006) examine 
inflation persistence in 21 OECD countries. 



 

follow an I(0) process, implying that it reverts to its equilibrium level rapidly after a 

shock occurs. In this case, the response to the inflationary shock may not require an 

active monetary policy.2 As a consequence, the optimal timing and size of monetary 

policy crucially depend on the knowledge of how shocks affect the dynamics of inflation. 

Importantly, inflation persistence plays an important role in the current debate on 

inflation targeting (IT). Under inflation targeting, when a central bank successfully 

anchors inflationary expectations, it reduces or eliminates inflation persistence, since 

well-anchored inflationary expectations depend less on past inflation.3 At the theoretical 

level, inflation persistence plays an important role, mainly because it associates with the 

theory of inflationary expectations and nominal anchors. New-Keynesian dynamic 

stochastic general equilibrium (DSGE) macroeconomic models that incorporate lags of 

inflation in the new Keynesian Phillips curve (NKPC)4 identify inflationary expectations 

as the main determinant of inflation persistence, suggesting that inflation persistence 

may decline through enhanced anchoring of inflation expectations (Mishkin, 2007; Nautz 

and Strohsal, 2015). 

A large number of studies model inflation as an autoregressive process and 
                                                           
2
 Whether inflation follows a stationary or nonstationary process possesses theoretical implications, since a 

number of macroeconomic models (Dornbusch, 1976; Taylor, 1979, 1980; Calvo, 1983; and Ball, 1993) 
assume stationary inflation. Additionally, models such as Fuhrer and Moore (1995) and Blanchard and Gali 
(2007) suggest that inflation persistence captures structural characteristics of the economy that do not 
likely respond to policy actions. Thus, a policy of IT should exert no effect on inflation persistence. Others 
such as Batini (2006), Beechey and Osterholm (2007), Benati (2008), and Mehra and Reilly (2009) 
present evidence that inflation persistence varies across monetary regimes. 

 
3
 Significant evidence documents the fall of inflation persistence in the last twenty years in developed IT 

countries (Walsh, 2008; Kuttner and Posen, 2001; Benati, 2008). Benati (2008) estimates the parameters 
of a sticky-price DSGE model for the U.K. and Canada before and after the introduction of IT and finds that 
inflation persistence falls significantly during inflation targeting periods. In other words, implementation 
of an IT policy lowers persistence. Evidence from Canada, Sweden, and the U.K. also supports the view that 
an IT policy anchors expectations (Gurkaynak, et al., 2006, 2007). In developing countries, scant 
evidence exists that inflation persistence declines after the adoption of IT (Kuttner and Posen, 2001; 
Gurkaynak, et al., 2006, 2007). 

4
 Fuhrer and Moore (1995), Gali and Gertler (1999) and Christiano, et al. (2005) develop theoretical 

models that justify the inclusion of lags of inflation in the new Keynesian Phillips curves. 



 

measure persistence using different metrics, such as the integer order of integration, the 

half-life of responses to shocks, the largest autoregressive root, and the sum of the 

autoregressive coefficients.5 One portion of the inflation persistence literature considers 

whether shocks to the inflation process decay rapidly, as with non-integrated processes, or 

whether they decay much more slowly, as with fractionally integrated processes.6 In the 

latter case, inflation rates display evidence of long-range dependence, or long-memory 

(i.e., follow a fractional integration process, denoted by I(d)).7 

Most previous studies of inflation persistence assume that the fractional 

integration parameter d does not change over time, which implies that the long-range 

dependence structure of the underlying phenomenon persists over time. This assumption 

seems too restrictive due, for example, to the potential presence of structural breaks in 

the fractional integration parameter (Granger and Hyung, 2004; Morana and Beltratti, 

2008; and Baillie and Morana, 2009). In the same context, some authors find that the 

                                                           
5
 Examples include Nelson and Plosser (1982), Fuhrer and Moore (1995), Cogley and Sargent (2001), Stock 

(2001), Cecchetti and Debelle (2006), Pivetta and Reis (2007), and Zhang et al. (2008) for the U.S.; 
O’Reilly and Whelan (2005) and Beechey and Osterholm (2009) for Europe and Levin and Piger (2004) 
and Levin et al. (2004) for a group of OECD countries. Barsky (1987), Ball and Cecchetti (1990), and 
Brunner and Hess (1993) suggest that the U.S. inflation contains a unit root. The unit-root property 
appears to occur in a wide array of countries examined in O’Reilly and Whelan (2005) and Cecchetti et al. 
(2007). 

6
 Baillie (1996) provides an extensive review of the concepts of fractional integration in economic time 

series. Long-memory processes are defined in both time and frequency domains. In the time domain, a 
process Yt exhibits long-memory, if its autocorrelation function ρ (k), k = 1, 2, . . . , decreases at a 
hyperbolic rate rather than the exponential decay in a covariance-stationary ARMA process. In the 
frequency domain, the spectrum for a long-memory process diverges to infinity at the zero frequency. In 
practical applications, long-memory emerges when the series possesses a pole on a part of the spectrum 
close to the zero frequency (Granger and Joyeux, 1980). 

7 The empirical literature employs both autoregressive and fractionally integrated measures of inflation 
persistence. Examples of the autoregressive approach to estimate inflation persistence include Pivetta and 
Reis (2007), Gamber, Liebner, and Smith (2012), Stock (2001), O’Reilly and Whelan (2005), Levin and 
Piger (2004), and Gerlach and Tillman (2012). Examples of fractional integration analysis include Hassler 
and Wolters (1995), Siklos (1999), Barkoulas, et al., (1999), Bos, et al., (1999, 2002), Kuttner and Posen 
(2001), Baillie, et al., (2002), Arize et al., (2005), Levin, et al., (2004), Petursson (2005), Gadea and 
Mayoral (2005), Kumar and Okimoto (2007), Beechey and Osterholm (2009), Meller and Nautz (2012), 
Caporin and Gupta (forthcoming), Canarella and Miller (2015), and Plakandaras et al. (2015). 



 

fractional integration parameter varies over time d(t) and that persistence to shocks also 

varies over time (Jensen, 1999a,b; Whitcher and Jensen, 2000; Beran, 2009; and Roueff 

and von Sachs, 2011) and across expansions and recessions (Caporin and Gupta, 

forthcoming). Thus, the degree of persistence to shocks varies over time, implying that 

inflation may change from a stationary process to a non stationary process, or vice 

versa, within the same sample period.  

These findings relate to transitional and stochastic events such as financial crises, 

market collapses, important news announcements, and speculative bubbles that 

produce different responses to positive and negative shocks. To accommodate such 

behavior, several authors (Chandler and Polonik, 2006; Beran, 2009; Palma and Olea, 

2010; and Roueff and von Sachs, 2011) find that the stochastic process exhibits non-

stationarity. Assuming, however, that the time variability of the model exhibits enough 

smoothness, we can approximate it locally by stationary processes (i.e., locally-

stationary models). Nevertheless, these studies do not specify the evolutionary process 

of d(t). The existence of time-varying behavior in d(t) could reflect a variety of issues, 

including the heterogeneity of agents in time horizons and strategies (Lux and Marchesi, 

2000; Kirman and Tyssiere, 2002; Iori, 2002; and Alfarano and Lux, 2002) the 

presence of multiple attractors or “intermittent” volatility clustering (Gaunersdorfer, 

2001), and changes in financial market structure such as the creation of new financial 

products.  

A few recent studies develop models where the time-varying fractional 

integration parameter d(t) follows several regime switching models. Among these 

models, Beine and Laurent (2001) find that a Markov-switching process drives d(t). 

Dufrénot et al. (2005 a, b; 2008) discover that d(t) follows a Self-Exciting Threshold 



 

Autoregressive (SETAR) process. Recently, Boutahar et al. (2008) and Aloy et al. (2013) 

determine that d(t) evolves according to a Smooth Transition Regression (STR) process 

(Teräsvirta 1994, 1998).  

In this paper, we propose a long-memory model of inflation persistence where 

the fractional integration parameter varies over time. This approach has, among other 

things, the additional benefit of bypassing the rather complex problem of structural 

breaks. In particular, we assume, following Boutahar et al. (2008) and Aloy et al. 

(2013), that the fractional integration parameter varies according to two regimes with 

smooth transition from one regime to the other. Thus, the model interestingly allows for 

the presence of both long-range dependence (long-memory) in inflation and asymmetry 

in the degree of inflation persistence. To estimate the time-varying fractional integration 

parameter, Boutahar et al. (2008) consider the arranged regression, which orders the 

observations of endogenous and exogenous variables in ascending order of magnitude of 

the observations of another variable.  

We adopt an alternative method, based on a two-step approach. The first step 

estimates a time-varying fractional integration parameter, using the wavelet method. 

Wavelet analysis decomposes a time series into several scales and, thus, preserves the 

informational content present in the series. This is known in the technical literature as 

multiresolution analysis (Mallat, 1989). Compared to standard Fourier analysis, 

wavelets provide a localized analysis in the time domain as well as in the frequency 

domain. Most interestingly, wavelets represent functions that exhibit discontinuities 

and sharp peaks and decompose and reconstruct finite nonstationary signals (Boubaker 



 

and Boutahar, 2011).8 The advantage of estimating the fractional integration parameter 

in a time-varying framework (i.e., d = d(t)) is that it allows the implementation of tests 

to check for the presence of nonlinearity and the determination of the appropriate 

transition function and transition variable.  

The second step reproduces the dynamics of d(t) using an LSTAR model 

(Teräsvirta and Anderson, 1992; Granger and Teräsvirta, 1993; Teräsvirta, 1994; 

Teräsvirta, 1998). When considering aggregate economic series such as the rate of 

inflation, we more likely capture the time path of any structural change by a model 

whose dynamics undergoes a gradual rather than an instantaneous adjustment between 

regimes. The strength of the wavelet approach lies in its capacity to localize 

simultaneously a process in time and scale. At high scales, the wavelet exhibits a small 

centralized time support, enabling it to focus on short-lived time phenomena. By 

moving from low to high scales, the wavelet zooms in on a process’s behavior, 

identifying singularities, jumps, and cups. In this paper, we consider the Maximum 

Overlap Discrete Wavelet Transform (MODWT) advanced by Percival and Walden 

(2000) that provides an approximate log-linear relationship between the time-varying 

variance of the MODWT coefficients and the time-varying parameters d(t). Then, we 

apply the instantaneous least squares estimator (ILSE) to obtain local estimates for 

time-varying fractional integration parameters.  

We find evidence of two distinct regimes in the persistence of inflation depending 

on the values of the transition variable (i.e., the lagged fractional integration parameter 

d(t-1)). In the lower regime, inflation is anti-persistent, while in the higher regime, 

                                                           
8
 Percival and Walden (2000) provide an exhaustive overview of the wavelet methodology in time series 

analysis. 
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inflation is persistent. These empirical findings provide important implications for the 

conduct of monetary policy. Knowledge that inflation persistence changes over time 

implies that the response to inflationary shock also changes over time. This may provide 

the monetary authorities with alternative instruments to intervene in the economy. 

Most importantly, these empirical findings remind us that a "one-size-fits-all" monetary 

policy will probably not work in all circumstances.  

The rest of the paper is organized as follows. Section 2 presents the time-varying 

long-memory model. Section 3 proposes a wavelet-based estimator used to estimate the 

time-varying long-memory parameter. Section 4 gives an empirical application to the 

consumer price (CPI) inflation rate time series and section 5 concludes the paper. 

2 The time-varying long-memory model 

In this section, we first outline the classical constant-parameter ARFIMA model, 

ARFIMA(p, d, q) , and then describe the generalized time-varying ARFIMA model, 

denoted as TV-ARFIMA ))(),(),(( tqtdtp  

2.1 The constant-parameter ARFIMA model 

Let TtX t ,...,1,   denote a time series process. Following Granger and Joyeux (1980), the 

conventional ARFIMA(p, d, q) model is given by: 

tt
d BXBB )()1)((  ,      (1) 

where B is the back-shift operator such that itt
i XXB  , )(B  and ( )B  are 

polynomials in B involving autoregressive and moving average processes of orders p and 

q, respectively, with their roots strictly outside the unit circle and no common factors, d 

is the fractional integration parameter, and t  is a white-noise process with zero mean 



 ε 

and variance σ2. The fractional differencing lag operator dB)1(   is defined by the 

binomial expansion: 
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where Γ(.) denotes the gamma function. The parameters found in )(B  and ( )B  

constitute the short memory parameters and affect only the short-run dynamics of the 

process while the fractional integration parameter d detects the long-memory behavior of 

the process. Fractionally integrated processes possess different characteristics depending 

on the value of d. Various cases exist. If −0.5 < d < 0, the process is stationary, but anti-

persistent, indicating that the process reverses itself more frequently than a random 

process. If 0 < d < 0.5, the process is stationary and persistent, possesses long-memory, 

and causes shocks to the system to disappear hyperbolically. If 0.5 ≤ d < 1, the process is 

non-stationary, but mean reverting with finite impulse response weights. Finally, when 

d = 0, the process reduces to the standard ARMA process, while when d = 1, the process 

contains a unit root and reduces to the conventional ARIMA process, with infinite 

persistence to a shock. 

2.2 The time-varying ARFIMA model 

The time-varying ARFIMA model (TV-ARFIMA) assumes that the fractional integration 

parameter d varies over time (i.e., d(t)). Let 1,...,1,  TtX t  denote a stochastic process. 

The TV-ARFIMA ))(),(),(( tqtdtp is then defined by: 

t
td

ttt BBXB )()1)(()(  ,     (3) 

where d(t) < 0.5 is the time-varying fractional integration parameter, )(B  and ( )B  

are stable polynomials (i.e., their roots are strictly outside the unit circle), and t  is a 



 

white noise process with zero mean and variance 
2 .  

We can define the time-varying long-memory model in both the frequency 

and time domains. In the frequency domain tX  is a locally stationary long-memory 

process, if there exists a time-varying spectral density function ),( tSDF  such that 

(Boubaker, 2014) 

)(2~),( tdtSDF  as 
 0 .     (4) 

Thus, if d(t) > 0, ),( tSDF  is smooth for frequencies close to zero, but is unbounded 

when 0 . If d(t) < 0, then ),( tSDF =0 and tX  is a locally stationary series that is 

anti-persistent. tX  is smoother and exhibits less variability in its amplitude during time 

periods where d(t) > 0, while it experience large fluctuations when d(t) < 0. In the time 

domain, tX  is a locally-stationary long- memory process, if there exists a local 

autocovariance function ),(cov hgtX   such that (Boubaker, 2014) 

1)(2
-~),(cov




td

X hghgt as  hg .    (5) 

The slow hyperbolic decay of ),(cov hgtX   is the feature most often observed in the 

discussion of the dynamics of long-memory processes. In our empirical analysis, for 

simplicity, we assume that d(t) appears on a finer grid (i.e., we rescale d(t) on the closed 

interval [0, 1] so that we can denote it by d(t/T)). In equation (3), we also model the 

short-memory parameters as time-varying functions of t (i.e., )(B  and ( )B ). In this 

paper, however, to simplify the estimation process, we assume that the short-memory 

parameters are constant, and set )(Bt  = )(B  and )(Bt  = )(B  for all t, resulting in 

the following TV-ARFIMA model: 



 

tt
td BXBB )()1)(( )(  .      (6) 

The long-memory model in equation (6) is a locally-stationary process in the sense 

of Dahlhaus (1996) (see Dahlhaus, 1996 and Whitcher and Jensen, 2000 for further 

details). Although this model indicates that the fractional integration parameter varies over 

time, it does not provide information about the evolution of d(t). Following Boutahar et 

al. (2008) and Aloy et al. (2011), we assume that d(t) evolves according to the two-regime 

Smooth Transition Autoregressive (STAR) model proposed by Teräsvirta (1994, 1998): 

),);(()],);((1[)( 21 ctsFdctsFdtd   ,    (7) 

where 1d  and 2d  are the values of the fractional integration parameter in the first and 

second regimes, respectively. ),);(( ctsF   is the transition function that is continuous, 

bounded between 0 and 1, with )(ts  denoting the transition variable, )()( itdts  , it  , t 

= 1, ..., T. The slope parameter   measures the speed of the transition between the two 

regimes (associated with the extreme values 0 and 1 of the transition function), which 

can be either positive or negative depending upon whether the transition function is 

increasing or not. The parameter c represents the threshold for the transition variable, 

)(ts , which defines the two underlying regimes: the first (lower) regime cts )(  and the 

second (higher) regime cts )( .  

The existing empirical literature uses two types of transition functions – the 

logistics and exponential functions. The logistics function is given by: 

1)))((exp(1(),);((  ctsctsF   , 0 ,   (8) 

where combining equations (7) and (8) yields the logistic smooth transition 

autoregressive (LSTAR) model. The logistic function monotonically increases in )(ts  



 

with 0),);(( ctsF   as  ))(( cts  and 1),);(( ctsF   as  ))(( cts . When

 , ),);(( ctsF   becomes a step function and the transition between the regimes is 

abrupt. In that case, the model approaches a Self-Exciting Threshold autoregressive 

(SETAR) model (Tong, 1990). The exponential function is given by: 

)))((exp(1),);(( 2ctsctsF   , 0 ,    (9) 

where combining equations (7) and (9) produces the exponential STAR (ESTAR) model.  

In this paper, we adopt a two-step approach to estimating the dynamics of the US 

inflation persistence during the time period 1871:02-2016:01. The approach merges two 

strands of the empirical literature. First, we estimate the TV-ARFIMA model of inflation 

persistence using the wavelet approach: 

tt
td BXBB )()1)(( )(        (10) 

Second, we estimate the dynamics of the time-varying inflation persistence using an 

LSTAR model:  

),);(()],);((1[ 21 ctsFdctsFddt       (11) 

where  

1)))((exp(1(),);((  ctsctsF  , 0     (12) 

First, we estimate the entire fractional integration parameter sequence d(t) using a 

wavelet approach (equation 9). Then, second, we estimate the LSTAR model applied to the 

derived series d(t) (equations 10 and 11), using a nonlinear approach. 

3  Wavelet-based estimation of the time-varying fractional 
integration parameter 

 
The existing literature develops numerous estimation methods for the fractional 

integration parameter d in fractionally integrated process I(d) for stationary series. 



 

Among these methods, we find the parametric methods, which use (approximate or 

exact) likelihood methods in the time or frequency domains, the semi-parametric 

estimators, which rely on spectral density, and the nonparametric methods. In this 

paper, we adopt an alternative estimation method based on the wavelet approach. First, we 

review some basics of wavelets. Then, second, we present the instantaneous least squares 

estimator that we use to estimate the fractional integration parameter d(t) . 

3.1  Wavelet methodology 

Wavelets are mathematical tools that are widely applied for analyzing time series.9 The 

starting point in such analysis decomposes a time series on a scale-by-scale basis. 

Wavelets are orthonormal bases (Daubechies, 1992) obtained from a dyadic grid by 

dilating and translating a pair of specially constructed functions   and  , which are 

called the father and mother wavelets, respectively, such that 

( )d 1t t



         (13) 

and  

( )d 0t t



         (14) 

Thus, the father wavelet (the scaling function) integrates to 1 and reconstructs the 

smooth and the low-frequency parts of the series, while the mother wavelet (the wavelet 

function) integrates to 0 and describes the details and high-frequency components of 

the series. The father and mother wavelets are more formally the functions 

/ 2

, ( ) 2 (2 )j j

j k t t k   , and      (15) 

/ 2

, ( ) 2 (2 )j j

j k t t k   ,      (15) 

                                                           

9 For a review on wavelet analysis from a time-series perspective, see Ramsey (1999), Schleicher (2002), 
Crowley (2007), Percival and Walden (2000), Gençay, Selçuk, and Whitcher (2002) among others.  



 

0 

where Jj ,...,1  indexes the scale (or multiresolution levels) and jk 2,...1 indexes the 

translation (i.e., ranges from 1 to the number of coefficients in the specified level). The 

parameter j  dilates the wavelet function and adjusts the support of )(, tkj  to capture 

locally the characteristics of high or low frequencies, while parameter k relocates the 

wavelets in the temporal scale (Boubaker, 2014). Thus, applying a J-level 

multiresolution decomposition, wavelet analysis provides a complete reconstruction of 

the series partitioned into a set of J-frequency components with each component 

corresponding to a particular range of frequencies.  

One special property of the wavelet expansion is the localization property that the 

coefficient of )(, tkj  reveals the information content of the function at the approximate 

location 
jk 2  and frequency j2 .Thus, using wavelets, we can uniquely expand any 

function in 2 ( )L  over the wavelet basis, as a linear combination at arbitrary level 

NJ 0  across different scales (Boubaber, 2014). The wavelet representation of a discrete 

time series )(tx  in 2 ( )L  is then given by 

  



k Jj k

kjkjkJkJ tdtctx

0

.,,0,0
)()()(  ,    (17) 

where the coefficients kJc ,0
, known as the smooth coefficients, are coarse scale 

coefficients and represent the underlying smooth behavior of the time series at the 

coarse scale 2J, while the coefficients kjd , , known as detailed coefficients, are the fine 

scale coefficients. They represent the wavelet transform coefficients, which measure the 

contribution of the corresponding wavelet to the function )(tx . We approximate these 

coefficients by the following relations: 



 

0 

tttxc JkJ 



 d)()(

0,0
       (18) 

tttxd kjkJ 



 d)()( ,,0

       (19) 

The expression in equation (17) represents the decomposition of )(tx  into orthogonal 

components at different resolutions and constitutes the so-called wavelet 

multiresolution analysis (MRA) (Mallat, 1989; Boubaker and Boutahar, 2011).  

In practice, we invariably deal with sequences of values indexed by integers 

rather than functions defined over the entire real axis. In this case, we use short 

sequences of values rather than actual wavelets, referred to as wavelet filters. The 

number of values in the sequence is called the width of the wavelet filter. Thus, the 

wavelet analysis, viewed from a filtering perspective, is well adapted for time-series 

applications. For the discrete wavelet transform, we use the MRA scheme to calculate 

the wavelet coefficients. The recursive MRA scheme, which is implemented by a two-

channel filter (low-pass and high-pass filters) representation of the wavelet transform, is 

divided into decomposition and reconstruction schemes, according to the forward and 

inverse wavelet transform.  

Daubechies (1992) constructs a class of wavelet functions, where the smallest 

support for a given number of vanishing moments distinguishes between two choices: 

the extremal phase filters D(L) and the least asymmetric filters LA(L). Two main wavelet 

algorithms are discussed in the literature: the Discrete Wavelet Transform (DWT) and 

the Maximal Overlap Discrete Wavelet Transform (MODWT) (Percival and Walden, 

2000). The MODWT algorithm modifies the DWT method. The MODWT algorithm 

carries out the same filtering steps as the standard DWT; however, in the MODWT the 

time series )(tx  is not subsampled (not decimated). The MODWT is generally preferred 



 

to the DWT, since the MODWT can handle any sample of size T, while the DWT restricts 

the sample size to a multiple of 02
J  for a partial DWT or to be exactly a power of 2 for 

the full transform. Consequently, with the MODWT, the number of scaling and wavelet 

coefficients at each level of the transform is the same as the number of sample 

observations. See Percival and Walden (2000) for a complete analytical scrutiny of the 

two transforms and a list of properties that distinguish the MODWT from the DWT. 

Mathematically, decomposing a time series )(tx , using the MODWT, to J-levels involves 

the application of J pairs of filters. The filtering operation at the jth level consists of 

applying a rescaled father wavelet to yield a set of detailed coefficients and a rescaled 

mother wavelet to yield a set of scaling coefficients.  

3.2 Instantaneous least squares estimator 

The basic idea behind estimating the fractional integration parameter d via a wavelet 

transform of the time series involves the wavelet variance. Wavelet variance analysis 

consists in partitioning the variance of a time series into pieces that associate with 

different time scales. This approach substitutes the notion of variability over certain scales 

for the global measure of variability estimated by the sample variance, which tells us 

what scales importantly contribute to the overall variability of a series.  

In particular, consider the time series, TXX ,...,1 , which is a realization of a 

stationary process with variance 2
X . If the scaling coefficients for level j  associate with 

averages of length j2 , then the level j  wavelet coefficients, which are differences of 

averages half this length, associate with changes at scale tj
j  12 , where t  is the 

sampling interval of tX . Thus, the wavelet variance )(2
jXV   for scale 12  j

j  is defined 



 

as follows: 





J

j

jXX V
1

22 )( .       (20) 

Note that in the present analysis, we consider 1t . For estimating the fractional 

integration parameter via the wavelet approach, many methods exist in the literature. 

We can, in general, classify them into three computationally efficient schemes. First, we 

can use a wavelet-based approximation to the maximum likelihood estimator (MLE) of 

d under the assumption of multivariate Gaussianity (McCoy and Walden, 1996; Jensen, 

1999a, 2000). Second, we can use the fact that the relationship between the variance of 

the wavelet coefficients across scales is dictated by d. In this framework, we construct a 

least squares estimator (LSE) of d (Abry and Veitch, 1998; Jensen, 1999b). Third, we 

can use only certain coefficients that are co-located in time, which we call the 

instantaneous least squares estimator (ILSE) (Percival and Walden, 2000; Boubaker, 

2014).  

This third estimator, however, depends on the entire time series. The 

instantaneous least squares estimator uses a single wavelet coefficient from each scale of 

resolution. That is, we only use 
jtjd ,

~
 to estimate )(2

jXV  , where jt  is a time index of the 

jth level MODWT coefficient associated with time t in tX (t=1,...,T). We can only 

meaningfully determine the time index, jt , if we use a linear phase wavelet filter. 

Formally, let the vector of dimension containing the wavelet coefficients obtained by the 

MODWT transform. The instantaneous least squares estimator (ILSE) is given by: 
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where 10  JJJ . In equation (11), all the sums run over JJj ,...,0 , and 

  )2ln()2/1(ln)( 2
,  

jtjjt dY , where   is the digamma function (i.e., the logarithmic 

derivative of the gamma function). See also the MODWT-based weighted least squares 

estimator developed by Percival and Walden (2000). 

4 Empirical results 

This section contains an empirical application of the wavelet methodology (MODWT), 

the instantaneous least squares estimator (ILSE), and the smooth transition 

autoregressive (LSTAR) model to modeling the dynamics of the US rate of inflation. Our 

data consists of monthly observations on the seasonally adjusted Consumer Price Index 

(CPI) and are obtained from the data segment on the R. J. Shiller website10 and cover 

the period of 1871:01 until 2016:01, corresponding to T = 1741 observations. We 

compute the rate of inflation as the monthly logarithmic difference of the CPI, expressed 

as a percentage. Figure 1 shows the inflation rate series.  

Over the entire sample, inflation averages approximately 2 percent. But, 

computed over the different monetary regimes, average inflation shows some 

interesting characteristics. For example, during the period of the classical gold standard, 

the average inflation is -0.47 percent, although the period was characterized by two 

decades of secular deflation, followed by two decades of secular inflation (Bordo and 

Redish, 2001), with a maximum of 81 percent, and a minimum of -81 percent. This is, 

however, the only period when inflation, on average, is negative. In the interwar period, 

inflation averages 1.88 percent, while during the Bretton Wood era inflation averages 

about 3 percent. The post-Bretton Woods period, on the other hand, witnesses an 
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 http://www.econ.yale.edu/˜shiller/data.htm. 

http://www.econ.yale.edu/


 

average inflation of approximately 4 percent, with a maximum and minimum of 21  sand 

-23 percent, respectively. Both the skewness (-0.1381) and kurtosis (9.5216) statistics 

indicate that the inflation series exhibit a fatter-tail distribution than a normal 

distribution. The Jarque-Bera teat statistic (3089.1) provides further evidence of the 

departure from normality, which indicates that we can reject the null hypothesis of 

normality at any conventional significance level. This result is not surprising and it is 

frequently found in the empirical literature on inflation persistence. It implies several 

extreme values relative to the standard normal distribution.  

As shown in Figure 1, the inflation rate appears to exhibit stationary behavior, in 

the sense of converging towards a long-run equilibrium. To formally assess the 

stationarity of the inflation rate, we apply three types of unit root tests: the Augmented 

Dickey-Fuller (ADF) test (Dickey and Fuller, 1981), the Phillips-Perron (PP) test 

(Phillips and Perron, 1988) and the KPSS test (Kwiatkowski et al., 1992). The ADF and 

PP test statistics (with and without a constant) overwhelmingly reject the null 

hypothesis of unit root at the 1 percent level. The KPSS test (with and without a 

constant) confirms these results by failing to reject the null hypothesis of stationarity at 

the-1 percent level. Detailed results are available on request. One should exercise some 

caution in accepting these findings at face value, since it is well known that these tests 

possess low power against a fractionally integrated I(d) process with d < 1.  

4.1  Constant-parameter estimates of inflation persistence 

We next consider, as a benchmark, the estimation of the fractional integration 

parameter over the entire sample using constant-parameter conventional estimators. 

This allows us to verify the presence of long-range dependence and persistence in the 

inflation data. To this end, we apply several estimators in both the frequency and wavelet 



 

domains. In the frequency domain, we apply the Geweke and Porter-Hudak (GPH)  

estimator, introduced by Geweke and Porter-Hudak (1983), and the Exact Local Whittle 

estimator (Shimotsu and Phillips, 2005). Geweke and Porter-Hudak (1983) prove 

consistency and asymptotic normality of the log-periodogram estimator for the range -

0.5 < d < 0, while Robinson (1995) extends consistency and asymptotic normality for -

0.5 < d < 0.5. Velasco (1999) and Kim and Phillips (1999) recently extend the properties 

of the log-periodogram. The Exact Local Whittle estimator is an exact form of the local 

Whittle estimator that does not rely on tapering or differencing prefilters. The estimator 

is consistent (Shimotsu and Phillips, 2004) and to possess the same )4/1,0(N  limit 

distribution for all values of d, if the optimization covers an interval of width less than 

9/2 and the initial value of the process is known.  

In the wavelet domain, we consider three estimators. First, the AVLSEd _  estimate 

is a semi-parametric wavelet-based estimator for the Hurst parameter as proposed by 

Abry and Veitch (1998). Under the general conditions and Gaussianity assumptions, this 

estimator is unbiased and efficient. Second, the JLSEd _  estimate is developed by Jensen 

(1999b) based on the fact that a log-linear relationship exists between the variance of 

the wavelet coefficients from the long-memory process and its scale equal to the long-

memory parameter. This log-linear relationship yields a consistent ordinary least 

squares estimator. Finally, the ILSEd  estimate formulates the instantaneous least squares 

estimator that does not depend on the size of the sample, and checks for departures 

from statistical consistency within a proposed block size. Indeed, we use only a single 

wavelet coefficient from each scale. Table 1 reports the estimation results of fractional 

integration parameter under the assumption of temporal constancy.  



 

The estimates of inflation persistence in Table 1 are robust to different estimation 

methods and overwhelming support the long-memory, d̂  > 0, mean-reversion, d̂  < 1, 

and stationarity, d̂  < 0.5, properties of US inflation. In turn, these results imply that 

inflationary shocks dissipate at a hyperbolic, not geometric, rate. 

4.2 Time-varying parameter estimates of inflation  persistence 

One obvious limitation of the findings reported in Table 1 is that they come from 

estimators that assume constancy of the fractional integration parameter. If inflation 

persistence varies over time, then the estimates assuming a constant parameter are 

subject to misspecification error. It is hard to argue that the fractional integration 

parameter does not vary over time, especially when the data span more than a century. 

In what follows, as previously noted, we estimate the fractional integration parameter in 

a time-varying framework, using the instantaneous least squares estimator (ILSE).  

We must address two preliminary issues, however. The first issue concerns the 

constancy of the fractional integration parameter (i.e., the test of dtd )( ). For that, we 

apply a Lagrange Multiplier (LM) test. Teräsvirta (1994, 1998) previously developed this 

test to consider the linearity of the autoregressive model. Aloy et al. (2011) extended this 

test to consider the constancy of the fractional integration parameter.  

We can express the null hypothesis of the test as 0:0 H  or, equivalently, as 

0 1 2H' : d d , the equality of the parameters in the two regimes, against 0:1 H . Under 

the null hypothesis, however, the nuisance parameters   and c prevent identification. 

Consequently, we cannot implement the standard LM test. As suggested by Luukkonen 

et al. (1988) and implemented by Aloy et al. (2011) to solve this problem, we replace the 

transition function ),);(( ctsF   by its third-order Taylor approximation around 0 . In 



 

the reparameterized model, the identification problem no longer exists and we can test 

the constancy of the fractional integration parameter using the LM-type test.  

More precisely, the test refers to the following auxiliary regression:  

2

0 2 3
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4

ˆ( t ) d( t ) d( t )s( t ) d( t )s( t )

               d( t )s( t ) ( t ).
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where )(ˆ t  are the residuals obtained from the first-order linear autoregressive model 

estimated by OLS for )(td  as follows: 

0 1 1d( t ) d( t ) ( t )      .      (23) 

The null hypothesis of constancy of the fractional integration parameter ( dtd )( ) then 

becomes 
0 2 3 4 0H'' :      . As in standard cases, the LM statistic is asymptotically 

distributed under the null hypothesis 
0H ''  as 2 with one degree of freedom. We 

implement the test using the Fisher version.  

Terasvirta (1994, 1998) suggests testing the null hypothesis for several candidate 

transition variables. If we reject the null hypothesis for more than one transition 

variable, Terasvirta (1994, 1998) suggests choosing the variable with the strongest 

rejection of linearity, the smallest p-value. Nevertheless, we stress that the statistical 

inference based on the asymptotic approximation under the null hypothesis depends on 

the residuals of  the auxiliary regression (23). Consequently, to accommodate this issue, 

we rely on an alternative method based on bootstrapping to correct the distortions of the 

significance level of the test. (For more details regarding the econometric problems 

posed by the use of constructed variables in a regression, see Pagan, 1984). Table 2 

reports the test results.  

We strongly reject the null hypothesis of constancy of )(td  at any conventional 



 

significance level with )1( td  (i.e., )1( td  exhibits the smallest p-value against the 

STAR specification). In actuality, we conducted the test with )( itd  , 8,...,1i . We 

obtained the lowest p-value with )1( td . Table 2 does not report the results for the 

other lags, which are available on request.  

The second issue concerns the selection of the appropriate form of the transition 

function. To discriminate the LSTAR model from the ESTAR model, we use a sequence 

of nested hypotheses that test for the order of the polynomial in the auxiliary regression 

as follows: 

0: 44 H ,        (24) 

3 3 40 0H :    , and      (25) 

2 2 3 40 0H :      .      (26) 

The rejection of 4H  implies that the LSTAR model is the appropriate model. Conversely, 

if 3H  exhibits the smallest p-value, then the ESTAR model is the appropriate model. If 

we cannot reject both 4H  and 3H , but reject 2H , then the LSTAR model is the 

appropriate model. Table 3 displays the results of the tests, where the 2F , 3F , and 4F  

statistics are the Fisher tests for the null hypotheses 2H , 3H , and 4H , respectively. We 

reject 4H  while we do not reject 3H  and 2H . We, therefore, conclude that )(td  varies 

according to the LSTAR model. 

We conclude that the dynamics of the fractional integration parameter is a long 

memory LSTAR process. We apply the LSTAR model to model the dynamics of the 

fractional integration parameter, using the nonlinear least squares (NLS) method. We 

apply the instantaneous least squares estimator to estimate the fractional integration 



 

parameter d(t) at each point in time. Figure 2 plots the sequence of estimates of the 

fractional integration parameter. We clearly see that )(ˆ td  changes substantially over 

time, alternating between phases of anti-persistence, with negative values of d, and 

persistence, with positive values of d.11 In particular, this parameter decreases in value, 

where intervals of increased variability at a variety of large scales. Moreover, the large 

values of )(ˆ td  correspond to scheduled economic information announcements. We see 

negative values of )(ˆ td  corresponding to new announcements and unexpected market 

crashes or political upheavals (Whitcher and Jensen, 2000). The existence of anti-

persistence signals that the economy remains far-from equilibrium and may experience 

significant macroeconomic turbulence. According to Figure 2, one period of anti-

persistence and four periods of persistence exist. The period of anti-persistence takes 

place mainly during the classical gold standard.12 This is followed by four waves of 

persistence. The first wave comprises the interwar period, ending approximately with 

the Bretton Woods Agreement in 1944 and the Treasury Accord of 1951.13 The Treasury 

Accord appears to define an unexpected event, which most likely explains why inflation 

temporarily turns anti-persistent. The second wave covers the next three decades, 

including the Bretton Woods era and ending approximately with the start of the Great 

                                                           

11 We do not report the confidence intervals of d(t) in Figure 2. Suffice to say, however, that the standard 
errors indicate that we reject the null hypothesis of d(t) = 0 for 1,663 significant d’s out of 1740 estimates. 
A conspicuous detail of the estimation of d(t), on the other hand, is the extremely small standard errors of 
the parameter estimates (yielding enormous t-ratios) for negative fractional integration estimates. 

12 During the period of the classical gold standard (1871-1914), the mean of the estimates of inflation 
persistence is -0.1272, with a maximum of 0.5017 and a minimum of -0.5268. Thus, during the classical 
gold standard era inflation is fundamentally an anti-persistent process.  

13 In the interwar period (1915-1944) the mean of the estimates of inflation persistence is 0.0623, with a 
maximum of 0.7421 and a minimum of -0.5236. The interwar period is the first time when inflation 
exhibits a few episodes of non-stationarity. 



 

Moderation.14 The third wave takes place during the Great Moderation, ending 

approximated in 2006.15 Finally, the fourth wave still remains in progress and broadly 

includes the recent financial crisis, the Great Recession, and its aftermath. 16 We observe 

that in general anti-persistence correlates with high variability of inflation, while 

persistence correlates with low variability. Next, we model the time-varying fractional 

integration parameter by an LSTAR model. Table 4 reports the results. 

The empirical results show significant evidence of two regimes for the fractional 

integration parameter, depending on the size of long-range dependence. The threshold 

value defines two regimes and divides inflation between persistence and anti-

persistence. The estimated threshold parameter ĉ  is significantly different from zero, 

implying that increases (decreases) in the fractional integration parameter above 

(below) 0.2735 produces asymmetric effects on inflation persistence. In the first, lower 

regime, which occurs when ctd ˆ)1(ˆ  , the estimated fractional integration parameter 

1d̂  is significantly negative (i.e., inflation in the lower regime is anti-persistent). 

Conversely, in the second, higher regime, which occurs when ctd ˆ)1(ˆ  , the estimated 

fractional integration parameter 2d̂  is significantly positive (i.e., inflation in the higher 

regime is persistent). We observe that in the second, higher regime, the significant 

positive fractional integration parameter indicates a stationary, long-memory process 

and implying that the effects of long-range dependence tend to persist, while in the first 

                                                           
14

 During this period (1972-1983) the mean of the estimates of inflation persistence is 0.2467, with a 
maximum of 0.8195 and a minimum of -0.2462. The period is the only time when inflation exhibits a 
unit-root episode.  

15
 During this period (1984-2006) the mean of the estimates of inflation persistence is 0.1185, with a 

maximum of 0.7975 and a minimum of -0.3865.  

16 The mean of the estimates of inflation persistence in this period (2007-2016) is 0.2518, with a 
maximum of 0.5882 and a minimum of -0.0454.  



 

regime 0ˆ5.0 1  d  , indicating a stationary but not long-memory process and implies 

that the effects of long-range dependence tend to anti-persist. The slope parameter 

estimate, ̂ , indicates a smooth transition from one regime to the other. This contrasts 

to the simple threshold models, which assume a sharp switch or jump.  

5.  Conclusion 

This paper contributes to the debate on the persistence of inflation in the US. We 

propose a new framework of analysis, which applies the wavelet methodology 

(MODWT), executed via the instantaneous least squares estimator (ILSE), in 

conjunction with the smooth transition autoregressive (LSTAR) model to modeling the 

time-varying long-memory dynamics of the US rate of inflation.  

The empirical results show significant evidence of long-range dependence of the 

US inflationary process and time-variability of inflation persistence. Inflation alternates 

between phases of persistence and phases of anti-persistence, switching from periods 

where positive (negative) changes follow other positive (negative) changes, implying 

persistence, to periods where positive (negative) changes follow negative (positive) 

changes, implying anti-persistence). We identify one broad period of inflation anti-

persistence, which coincides with the classical gold standard era, and four broad periods 

of inflation persistence, which coincide with the more recent economic history of the US. 

Intertwined with the period of anti-persistence, however, are episodes of persistence; 

similarly, intertwined with the four periods of persistence are a few episodes of anti-

persistence. This alternations reveal an important point: the inadequacy of the constant-

parameter approach to characterize the local dynamics of inflation. The empirical 

application of the LSTAR model to the series of fractional integration estimates reveals 



 

significant evidence of two regimes of inflation persistence. Interestingly, the threshold 

value of the LSTAR model helps to explain the switching mechanism between 

persistence and anti-persistence. The first, lower regime defines inflation as an anti-

persistence process. Conversely, the second, higher regime defines inflation as a 

persistence process.  

These empirical findings lead to important implications for the conduct of 

monetary policy. Knowledge that inflation persistence changes over time implies that 

the response to inflationary shock also changes over time. This may provide the 

monetary authorities with alternative instruments to control the economy. Most 

importantly, these empirical findings remind us that a "one-size-fits-all" monetary 

policy does not likely work in all circumstances. 
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Table 1:  Constant-parameter estimates of inflation 
persistence 

GPHd̂  GPHd̂  AVLSEd _
ˆ  JLSEd _

ˆ  
ILSEd̂  

0.2589*** 0.2589*** 0.1978*** 0.2324*** 0.2486*** 

Note:  *** indicate 1 percent significance level. GPHd̂  is the GPH estimator of the 

Geweke and Porter-Hudak (1983), ELWd̂  is the Exact Local Whittle estimator 

of Shimotsu and Phillips (2005), AVLSEd _
ˆ  is the estimator of Abry and Veitch 

(1998), JLSEd _
ˆ is the estimator of Jensen (1999b), ILSEd̂  is the mean of the 

instantaneous least squares estimator with boundary correction, 






T

t

ISLEILSE td
T

d

1

)(ˆ1ˆ , and T is the number of observations. 

 
Table 2: Test of constancy of the fractional 

integration parameter 

1F  p-value 

31.73e+3 8.35e-76*** 

Note:  1F  is the statistic of the Fisher test where the null hypothesis is 

given by 
0H '' . *** indicates rejection of the null hypothesis at 

the 1 percent level. 

 
Table 3: Test of the nested hypothesis  

2F  3F  4F  

3.29e-5 1.1e-25 11.74e+31 
(10.71e+3) (11.73e+3) (1.065e-50)*** 

Note:  *** indicates rejection of the null hypothesis at the 1 percent level. p-
values appear in parentheses. 

 

Table 4: Estimates of the LSTAR model of inflation 
persistence 

1d̂  2d̂  ̂  ĉ  

-0.0479*** 0.3726*** 5.6438*** 0.2735*** 

Note:  ∗∗∗indicate significances at the 1-percent significance. The standard 
deviations used to calculate the t-statistics are based on bootstrapping to 
correct the distortions of the significance levels. 

 



 

Figure 1: Monthly Inflation Rate 
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Figure 2: Time-Varying Fractional Integration Parameter 
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