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Charnes, Cooper, and Rhodes define the ratio of the virtual output to the virtual input as a measure of the 

technical efficiency of a multiple output multiple input firm. The aggregation weights used in 

constructing the virtual output and the virtual input may be arbitrarily chosen so long as the weights are 

non-negative and using these weights no firm’s input-output bundle shows efficiency exceeding 100%. In 

production economics, the ratio of aggregate output to aggregate input is a measure of total factor 

productivity and a direct link of the CCR ratio to technical efficiency is not obvious. Usually the CCR 

ratio is rationalized as efficiency by showing its equivalence to the Farrell efficiency measure. This paper 

offers a direct derivation of the CCR ratio measure of efficiency from a Transformation Function. We 

also show how the Banker, Charnes, Cooper (BCC) measure under variable returns to scale can be 

derived from the Transformation Function. 
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THE TRANSFORMATION FUNCTION, TECHNICAL EFFICIENCY, AND THE CCR RATIO 

In production economics the technical efficiency of a decision making unit (generally described as a firm) 

producing a single output is measured by the ratio of the quantities of the actual output produced and the 

maximum producible output from the quantity of input it has used. In the multiple output case, it is the 

inverse of the maximum scalar by which its actual output bundle could be expanded without requiring any 

more input. Farrell’s (1957) measure of technical efficiency (in the single output case) and Shephard’s 

(1953) Distance Function (in the multiple output case) are examples of how technical efficiency is 

measured in economics. Charnes, Cooper, and Rhodes (CCR) (1978) introduced the maximum value of 

the ratio of a weighted sum of the observed output quantities to a weighted sum of input quantities used 

by a firm as a measure of its technical efficiency. Apart from non-negativity, the weights are constrained 

to be such that evaluated at these weights the ratio of the weighted output to the weighted input for any 

observed input-output bundle cannot exceed unity. In empirical applications, economists typically prefer 

the Shephard-Farrell approach mainly because they clearly link with the concept of a production 

possibility set. Analysts from OR and Management Science, on the other hand, usually work with the 

weights (also known as multipliers) and are not particularly concerned about their relation to underlying 

production technology. The link between the CCR ratio and the Shephard-Farrell efficiency measures is 

not obvious. In fact, as noted by Førsund (2013), as a ratio of aggregated output and aggregated input, the 

CCR ratio is more akin to total factor productivity. Of course, through an appropriate normalization, one 

can transform the CCR linear fractional functional programming problem into the radial Farrell technical 

efficiency measurement problem. However, such algebraic equivalence does not establish a conceptual 

equivalence between the two. It is true that CCR did include a single-output single-input example trying 

to show how their ratio measure reduces to what they call an ‘engineering measure’ of efficiency. 

Unfortunately, as discussed below, their example creates more confusion instead of providing a 

clarification. 

The twofold objectives of this note are to show that (a) in the single output-single input case, the CCR 

ratio is a productivity index with the unit with the highest productivity treated as the base and (b)in the 

multiple-output multiple-input case, one can directly derive the CCR ratio as a measure of efficiency from 

a transformation function that is homogenous of degree 0 in outputs and inputs. This provides an 

interpretation of the vector of weights as the gradient of a tangent hyperplane to the production possibility 

set. We also show how the ratio form of the BCC measure under variable returns to scale can be derived 

from the transformation function. 
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The CCR Ratio and the 1-input 1-output Case 

Consider a sample of N firms from some industry producing m outputs from n inputs. Suppose that 

1 2( , ,... ,... )j

j j ij njx x x x x  is the input vector and 1 2( , ,..., ,... )j

j j rj mjy y y y y output vector of firm j 

(j=1, 2,…, N). The data set available to the analyst is the set of observed input-output bundles 

                    1 1 2 2( , ), ( , ),..., ( , ) .N ND x y x y x y   (1) 

Now consider a firm with the input-output bundle 
0 0( , )x y  that is an element of D. CCR define the 

efficiency of this firm as 
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Two things may be noted. First, as noted by Førsund (2013, 2017), 0h  is essentially a measure of total 

factor productivity. The weights 1 2( , ,..., )mu u u u  and 1 2( , ,..., )nv v v v are used to construct the 

aggregate output 
0

0Y u y  and aggregate input 
0

0X v x for the firm under evaluation. Similarly, 

j

jY u y  and 
j

jX v x  are the aggregate output and input for firm j. Thus, 0
0

0

Y
h

X
  is a measure of 

total factor productivity. It is well known that productivity and efficiency are closely related but different 

concepts. As noted by Ray (2004), efficiency is a normative measure while productivity is a descriptive 



4 
 

measure of performance. Secondly, CCR provide little justification1 for the inequalities 1
j

j

Y

X
  in their 

construction of 0.h   

Obviously, CCR recognized that 0h  in (2) did not look like a ratio of actual and maximum producible 

outputs from a given quantity of input. That is why, in order to rationalize 0h  as a technical efficiency 

measure they gave the example of heat discharged from a given quantity of fuel and invoked what they 

called an engineering definition of efficiency. The actual heat discharged ry  from a given quantity of fuel 

is compared with the maximum possible heat Ry  from the same quantity of fuel to obtain the efficiency 

measure 

(0,1).r
r

R

y
E

y
    (3) 

CCR try to relate this to their ratio measure in (2). On page 431, they refer to three output quantities, yr, 

yR, and y0. Here y0 is the output of the unit under evaluation, yr is the output of any individual unit in the 

data set (could be the unit evaluated also) and yR is the maximum quantity of the output producible from 

the given input x which is being used by all units. This is made explicit by their statement xR = xr = x. 

Next, they appeal to their constraints in (1) to conclude 0R Ruy vx vx  , and, therefore, 

                                      0 0 0

00 0.R R

uy uy y

vx uy y
h E       (4) 

However, even for this simple 1-input 1-output case, there are several interrelated questions. First, it is not 

clear from their writing whether Ry is one of the observed output quantities. If not, in what sense is 0h  a 

measure of technical efficiency of the relevant unit? Second, why should the ratios in the constraints be 

bounded above at 1? Finally, in any realistic situation, the input quantities will differ across units. How 

does the maximum output producible depend on the quantity of input used? 

                                                           
1 Of course if the vectors and u v  were market prices, these constraints would mean that at these prices no unit 

could earn a positive profit. See in this context the discussion of ‘shadow profit maximization’ in Ray (2007) and 

Lelue (2013). 
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Although CCR do not directly address these questions, it is possible to answer all of them by using a 

production function defining the maximum quantity of output producible from a specific quantity of 

input.  

In the 1-output 1-input case, the problem in (2) becomes 

0
0

0

max

. .

1;( 1,2,..., )

, 0 .

j

j

uy
h

vx

s t

uy
j N

vx

u v



 



                     (5) 

Now define v
u

k  . Then (5) reduces to 

                    

0
0

0

max

. .

1;( 1,2,..., )

0 .

j

j

y
h

kx

s t

y
j N

kx

k



 



              (6) 

Because 0x  and 0y  are given parameters, the problem in (6) is equivalent to the minimization problem 

0 min

. .

;( 1,2,..., )

0 .

j

j

h k

s t

y
k j N

x

k



 



                                  (7) 

Clearly, the optimal value of k in both (6) and (7) is 

                          
*

* max j

j

y y

j x x
k                                 (8) and 

                                

 

0

0

0 .
max j

j

y

x

y

j x

h                               (9) 
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As described in Cooper, Dharmapala, and Thrall (1996), the CCR ratio is in essence a ‘ratio of ratios’. 

Note, further, that this ratio of average productivities is really a productivity index. 

At this point, define the production function 

                                    ( )f x kx                                 (10) 

 Then the objective function in (2) becomes 0

00 ( )

y

f x
h  which is clearly a measure of efficiency. Further, 

the constraints are now ( ), ( 1,2,..., )j jy f x j N   which follow from the definition of a production 

function. It is important to note that the production function defined in (10) exhibits constant returns to 

scale (CRS).  

In most applications, it is quite unlikely that there will be a readily available scientific formula defining 

the maximum output Ry  producible from a specific input quantity x and the analyst must rely on 

observed input-output data to estimate it as 

                      *ˆ max .j

j

y

R j x
y k x x          (11) 

Of course, when all firms use the same unit quantity, ( 1,2,..., )jx x j N   and in that special case, 

           ˆ max .R j jy y                   (12)  

But even when different units use different quantities of the input, the maximum producible output will be 

proportional to the quantity of input used and 

                  
* ( )j j jy f x kx                         (13)  

and the technical efficiency of the unit producing output 0y from input 0x  is 

           

 

0

00

00 0 0 ( )
( , ) .

max j

j

y

xy

y f x y

j x

x y h               (14) 

This simple explanation of the CCR ratio as a measure of output oriented technical efficiency breaks 

down in the multiple output multiple input case. As Førsund (2013) has pointed out there is hardly any 

scientific formula that spells out maximal combinations of multiple outputs that can be produced from 

bundles of multiple inputs. In addition, with multiple outputs, one cannot define a production function. 
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However, one can still show that the CCR measure is a multiple output generalization of the Farrell 

measure of technical efficiency. 

From CCR back to Farrell: multiple outputs and multiple inputs 

As an alternative but equivalent formulation, of the problem in (2) consider the problem 

                       
0

0

1

0
min

h

v x

u y



 


  

s.t.  1,( 1,2,..., ); , 0.
j

j

v x
j N u v

u y


  


 (15) 

In light of the fact that both the objective function and the constraints are homogeneous of degree zero in 

u and v, one can use the normalization  

                                                        

0 1.u y 

                                              (16)  

The optimization problem in (15) would then become 

                  

0

1

1 1

0

1

min

. . 0, ( 1,2,..., );

1; , 0; ( 1,2,..., ; 1,2,..., ).

n

i i

i

n m

i ij r rj

i r

m

r r r i

r

v x

s t v x u y j N

u y u v r m i n




 





  

   



 



                                    (17) 

An intuitive interpretation of problem (17) is helpful. At the chosen vector of output prices, the observed 

output bundle of the unit under evaluation constitutes one unit of the composite output  

                                                        
0

0 1.Y u y                 (18)

 

As defined earlier, X0 is a measure of the aggregate input of the firm under evaluation while 
0 0( , )j jX Y is 

the aggregated input-output bundle of firm j evaluated at the prices u for the outputs and v for the inputs. 

Because, Y0 equals unity (by normalization) the objective function is the measured input-output ratio or 

the inverse of the average productivity of the firm under investigation. An implication of the constraints is 

that no firm can have an input-output ratio less than (equivalently productivity greater than) unity.  
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It needs to be emphasized that both the output price vector 
1 2( , ,..., )mu u u u and the input price vector 

1 2( , ,..., )nv v v v have been selected specifically for the firm under evaluation. When some other firm 

(say firm q instead of firm k) is being evaluated, a different set of input and output prices will be selected. 

The fact the optimal weights given to inputs or outputs while measuring efficiency vary across firms is 

one reason why they are (mistakenly) considered to be arbitrary. We will return to this issue presently. 

The maximization problem dual to the minimization problem in (17) is 

                        

0

1

0

1

max

. . , ( 1,2,..., );

, ( 1,2,..., );

0, ( 1,2,..., ); unrestricted.

N

j ij i

j

N

j rj r

j

j

s t x x i n

y y r m

j N





 

 





 

 

 




      (19) 

The optimal solution of (19), φ*, defines the benchmark output bundle 
* * 0y y against which the actual 

output, y0,  should be compared. By standard duality results, 
* *  and *

1
0 .h


 This shows the 

equivalence between the CCR ratio measure and the Farrell measure of technical efficiency. 

From Production Economics to the CCR Ratio 

The algebraic equivalence between the CCR and the Farrell measures by itself does not provide any 

economic content to the CCR ratio. We now show how one can derive the CCR measure from the concept 

of efficiency in neoclassical production economics. 

The foundation of neoclassical theory of production is the production possibility set: 

                        T = {(x, y): y can be produced from x}.                   (20)  

An input-output bundle (x, y) constitutes a feasible production plan when y can be produced from x. Thus, 

every feasible production plan is an element of the production possibility set, T. Stated differently, an 

input-output bundle that does not lie in T is not feasible. We make the following assumptions about T: 

A1. Inputs are freely disposable. Thus, if 
0 0( , )x y T and 

1 0 ,x x then 
1 0( , ) .x y T   

A2. Outputs are freely disposable. Thus, if 
0 0( , )x y T and 

1 0 ,y y then 
0 1( , ) .x y T   

A3. The production possibility set is convex. 
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Often the production possibility set is defined as  

 ( , ) : ( , ) 0 .T x y F x y    (21) 

The function ( , ) 0F x y   is the implicit production function in the single output case and the 

transformation function in the multiple output case. Assuming that the function is differentiable, free 

disposability of inputs and outputs imply 0
i

F
ix

F

  for every input i and 0

r

F
ry

F

   for every output 

r. It can be seen that if 
0 0 0 0( , ) 0,( , )F x y x y is infeasible. The set 

   ( , ) : ( , ) 0G x y F x y                        (22) 

 is known as the graph of the technology. Every (x, y)  G is technically efficient.  If one assumes that the 

technology exhibits constant returns to scale globally, ( , ) ( , )x y T kx ky T   for all k ≥ 0. In that case  

                ( , ) ( , ).F x y F kx ky                  (23) 

That is, the transformation function is homogeneous of degree 0 in x and y.     

We may now define efficiency relative to the graph of the technology. Consider some feasible input-

output bundle (x0, y0). Assume that
0 0( , ) 0F x y  so that 

0 0( , )x y is an inefficient bundle. Next consider 

the Shephard Distance Function 

    0 0 0 0 0 01 1( , ) min : , , 0.D x y x y T F x y
 

                                          (24) 

It is the inverse of the largest scalar  such that 
0 0( , ) 0F x y  and is the same as the output oriented 

Farrell efficiency. Clearly, for 
0 0( , ),x y 1  and 1.   

Focus now on the efficient input-output bundle 
0 * 0 0

0( , ) ( , )x y x y lying on the graph of the technology. 

Thus 0 *

0( , ) 0.F x y  Now, due to homogeneity of degree 0, 

                             0 * 0 *
0 0

0 * *

0 0 0, ,
( , ) ( ) ( ) 0.

i r

F F
i rx yx y x y

i r

F x y x y 
 

      (25) 

Define                  0 *
0

0

,
( ) ( 1,2,..., )

i

F
i x x y

F i n


                                                          (26)                           

and                             0 *
0

0

,
( ) ( 1,2,..., ).

r

F
r y x y

F r m


                          (27) 

Then (25) becomes 
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                                   0 0 *

0 0 0.i i r r

i r

F x F y                                 (28) 

Because 
*

0 0 ,r ry y (28) leads to 

                                     0 0

0 0.r r i i

r i

F y F x                                (29) 

Thus, 

                                                

0

0

1

0

0

.
r r

r

i i

i

F y

F x


  





                       (30) 

Finally, define 
0 0andr r i iu F v F   to derive 

                      
0

1

0

.
r r

r

i i

i

u y

v x


  



                                              (31) 

This shows that the CCR ratio in (2) is the same as the Shephard Distance Function or the Farrell measure 

of technical efficiency. 

One still needs a rationale for the inequality constraints in the CCR optimization problem. For this, we 

may appeal to a well-known theorem from linear algebra about a supporting hyperplane to a convex set.  

Theorem: If  : ( )A w f w k  is a closed and convex set, the partial derivatives 
i

f

w




 are continuous,  

0w A is a boundary point satisfying 0( ) ,f w k and not all of the partial derviatives evaluated at 
0w  

are zero, then the tangent hyperplane through 0

0 0 0

( )
, ( ) ( ) ( ),

w
w p w f w f w w   is a supporting 

hyperplane to 0 0such that ( ) ( ) and ( ) .A p w f w p w k w A     

Proof: See Nikaido (1970) pp 199-200.2 

In the present context,  ( , ) : ( , ) 0T x y F x y  is closed and convex by assumption. Also, at the input-

output bundle 
0 * 0 *

0 0( , ), ( , ) 0.x y F x y  Thus, the supporting hyperplane at this point is 

                                                           
2 In this paper, as in Nikaido (1970), we assume that the Production Correspondence is differentiable. Nikaido also 

outlines a proof for the more general case. 
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0 * 0 * 0 * 0 *
0 0 0 0

0 * 0 *
0 0

0 0 *

* 0 0, , , ,

, ,

( , ) ( , ) ( ) ( ) ( ) ( )

( ) ( ) .

i r i r

i r

F F F F
i r i rx y x yx y x y x y x y

i r i r

F F
i rx yx y x y

i r

p x y F x y x y x y

x y

   
   

 
 

 
     
 

 

   

 
    (32) 

Note that the expression inside the square brackets equals 0 due to homogeneity of degree 0 (as shown in 

(25) above). 

Moreover, 0 * 0 *

0 0( , ) ( , ) 0p x y F x y   Hence, using the earlier definitions 
0 0and ,r r i iu F v F   the 

supporting (or tangent) hyperplane is 

                     ( , ) 0r r i i

r i

p x y u y v x                             (33) 

Finally, for every ( , ) , ( , ) 0.j j j jx y D F x y   Hence, by virtue of the theorem above, 

                   0r rj i ij

r r

u y v x                            (34) 

This leads to the constraints 

                   1; ( 1,2,..., ).
r rj

r

i ij

r

u y

j N
v x

 



                  (35) 

Variable Returns to Scale and the Ratio form of the BCC Measure 

Banker, Charnes, and Cooper (BCC) (1984) relaxed the constant returns to scale assumption to allow 

locally increasing, constant, and diminishing returns to scale at different points on different segments of 

the production frontier. For this, they appended the constraint that the non-negative λ-weights should add 

up to unity in the optimization problem in (20) above. The output-oriented BCC problem is 

  

0

1

0

1

1

max

. . , ( 1,2,..., );

, ( 1, 2,..., );

1;

0, ( 1,2,..., ); unrestricted.

N

j ij i

j

N

j rj r

j

N

j

j

j

s t x x i n

y y r m

j N





 



 







 

 



 







                             (36) 
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The dual of this maximization problem is 

           

0 0

1

0

1 1

0 0

1

min

. . 0, ( 1,2,..., );

1; , 0; ( 1,2,..., ; 1,2,..., ); unrestricted.

n

i i

i

n m

i ij r rj

i r

m

r r r i

r

v v x

s t v v x u y j N

u y u v r m i n v



 





   

   



 



                       (37) 

This is equivalent to maximizing  

                                               
0 0

1

1
n

i i

i

v v x










                                                            (38) 

Further, using (38) and the constraint 
0

1

1
m

r r

r

u y


 , the problem in (37) can be equivalently formulated as  

    

0

1

0 0

1

1

0

1

0

max

. . 1, ( 1,2,..., );

, 0; ( 1,2,..., ; 1, 2,..., ); unrestricted.

m

r r

r

n

i i

i

m

r rj

r

n

i ij

i

r i

u y

v v x

u y

s t j N

v v x

u v r m i n v

 











 



  








                         (39) 

This is the ratio form of the output-oriented BCC model. 

We now show how this model can be derived directly from the Transformation function allowing variable 

returns to scale. As before, we start from the inefficient bundle 
0 0( , )x y  which is radially projected to the 

efficient bundle 
0 *

0( , )x y  where 
* 0

0 .y ty  This time, however, the tangent hyperplane through
0 *

0( , )x y is 

0 * 0 * 0 * 0 *
0 0 0 0

0 * 0 * 0 * 0 *
0 0 0 0

0 *
0

0 0 *

* 0 0, , , ,

*

0 0, , , ,

0 ,

( , ) ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

i r i r

i r i r

i

F F F F
i r i rx y x yx y x y x y x y

i r i r

F F F F
i r i rx y x yx y x y x y x y

i r i r

F
ix x y

i

p x y F x y x y x y

x y x y

x

   
   

   
   




 
     
 

 
     
 

 

   

   

 0 *
0,

( )
r

F
ry x y

r

y




    (40) 
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Note that 
0 * 0 *

0 0( , ) ( , ) 0.p x y F x y   That is, 

                              

0 * 0 *
0 0

0 * 0 *
0 0

*

0 0 0, ,

0 0 0, ,

( ) ( )

( ) ( )

0

i r

i r

F F
i rx yx y x y

i r

F F
i rx yx y x y

i r

x y

x t y





 
 

 
 

 

  



 

                                         (41) 

Hence, 

  

0 *
0

0 *
0

0,
1

0 0,

( )

( )

r

i

F
ry x y

r

t F
ix x y

i

y

x








 




                                                                 (42) 

Define 0 0.v    Then, using the old definitions of ru  and iv   

                                

0

1

0 0

r r

r
t

i i

i

u y

v v x







                                                                        (43) 

 The tangent hyperplane is 

        
0 0 0( , ) 0i i r r

i r

p x y v x u y                                                       (44) 

and by convexity of the production possibility set, 

                       

0

0 0

0

0

1; ( 1,2,..., ).

i ij r rj

i r

r rj i ij i ij

r i i

r rj

r

i ij

i

v x u y

u y v x v v x

u y

j N
v v x





  

     

  


 

  





                                     (45)   

To relate the sign of the intercept 0  (and, hence, of 0 0v   ) to (local) returns to scale properties of the 

technology, we refer to the concept of the degree of increasing returns defined by Starrett (1977). For an 

infinitesimally small movement along the frontier ( , ) 0F x y   from the initial point 
0 *

0( , ),x y  
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0 * 0 *
0 0

0 * 0 * *
0 0 0

, ,

*

0 0, ,

( ) ( ) 0

( ) ( ) 0

i r

i r

i io r r

F F
i rx yx y x y

i r

dx dyF F
i rx x yx y x y y

i r

dF dx dy

x y

 
 

 
 

  

  

 

 
                                        (46) 

Now suppose, 
0 1
i

i

dx

x
q  for every input i and  *

0
2

r

r

dy

y
q for each output r. Then (46) implies 

                 0 * 0 *
0 0

*

1 0 2 0, ,
( ) ( ) 0.

i r

F F
i rx yx y x y

i r

q x q y 
 

                                            (47) 

That is                   

                                   

0 *
0

2

1

0 *
0

0,

*

0,

( )

.
( )

i

r

F
ix x y

q i

q F
ry x y

r

x

y













                                                    (48) 

If 2

1
1

q

q
  , a given proportionate change in all inputs results in the same proportionate change in all 

outputs. This corresponds to locally constant returns to scale. Locally increasing returns holds if  2

1
1.

q

q


Similarly, 2

1
1

q

q
 implies locally diminishing returns to scale.  

Starrett (1977) defined the degree of increasing returns as 

                                 2

1
1.

q

q
DIR                                                      (49) 

In the present context, the DIR at 
0 *

0( , )x y  is  

                             

0 * 0 *
0 0

2

1

0 *
0

0 *
0

*

0 0, ,

*

0,

0

*

0,

( ) ( )

1
( )

.
( )

i r

r

r

F F
i rx yx y x y

q i r

q F
ry x y

r

F
ry x y

r

x y

DIR
y

y



 
 







 

  



 





              (50) 

Note that the denominator in (50) is strictly positive. Hence, the sign of DIR is the same as the sign of the 

numerator3.  

                                                           
3 Banker and Thrall (1992) show that the intercept is negative, positive, or zero when the input-output bundle (if 

technically efficient) or its efficient projection (if inefficient) is, respectively, smaller than, larger than, or equal to its 
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We now have three possible cases: 

(a) Locally increasing returns to scale. 2

1 0 00 1 0 0.
q

q
DIR v        

(b) Locally constant returns to scale. 2

1 0 00 1 0 0.
q

q
DIR v        

(c) Locally diminishing returns to scale. 2

1 0 00 1 0 0.
q

q
DIR v        

About Weight Restrictions 

The paper ends with a note of caution about imposition of weight restrictions in the multiplier for of the 

DEA problem. As we have seen above, the multipliers (or the aggregation weights) correspond to the 

gradient of the supporting hyperplane to the graph at the efficient projection of an inefficient input-output 

bundle. Imposition of weight restrictions amounts to arbitrarily constraining the marginal rates of 

substitution between pairs of inputs or marginal rates of transformation between pairs of outputs. 

Practitioners often complain that these ‘implicit’ price ratios are arbitrary because they can diverge 

significantly from actual ratios of market prices. Indeed, these relative weights are measures of 

opportunity costs determined by the estimated technology and can differ significantly from market prices 

which are determined by the interaction between demand and supply. It is only in the long run 

equilibrium of a competitive production-and-exchange economy that the consumer’s marginal rates of 

substitution between two goods and the producer’s marginal rate of transformation between the same pair 

of goods will both be equal to the ratio of market prices. 

Summary 

This paper shows how the CCR ratio measure of efficiency along with the associated inequality 

constraints can be derived from a conventional Production Correspondence defining the multiple output 

multiple input technology under globally constant returns to scale. We also provide a similar derivation of 

that the BCC measure of output-oriented efficiency under variable returns to scale. In particular, we show 

how the sign of the constant intercept is determined by the nature of local returns to scale. 
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