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ABSTRACT 

This paper estimates the complete historical US price data by employing a relatively 

new statistical methodology based on long memory. We consider, in addition to the 

standard case, the possibility of nonlinearities in the form of nonlinear deterministic 

trends as well as the possibility that persistence exists at both the zero frequency and a 

frequencies away from zero. We model the fractional nonlinear case using Chebyshev 

polynomials and model the fractional cyclical structures as a Gegenbauer process. We 

find in the latter case that that secular (i.e., long-run) persistence and cyclical 

persistence matter in the behavior of prices, producing long-memory effects that imply 

mean reversion at both the long-run and cyclical frequencies. 
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1. Introduction 

Most of the empirical literature on long-memory models of prices and inflation has 

focused on the case where the singularity or pole in the spectrum occurs at the zero 

frequency. Different degrees of persistence, stationarity, and mean-reversion occur 

depending on the value of the fractional integration parameter (see, e.g., Kumar and 

Okimoto, 2007; Boubaker et al., 2016; Canarella and Miller, 2015, 2016a, b). In policy 

terms, the importance of persistence in prices and inflation stems from the economy's 

susceptibility to crisis and contagions as well as the possibility that exogenous shocks 

can produce permanent effects. Persistence of prices and inflation at frequency zero, 

although a dominant characteristics of these time series, however, is not the only feature 

of these time series.  

Many macroeconomic time series, such as prices, exhibit nonstationary 

movement. Cases may exist, however, where persistence at frequency zero is 

accompanied by persistence at cyclical frequencies. One stylized fact that characterizes 

the economy over the business cycle is the co-movement of prices and output. It is well-

known that if output movements result from demand shocks, prices are pro-cyclical; by 

contrast, if shocks originate from the supply side, prices are counter-cyclical. The new 

classical macroeconomics (Lucas, 1972, 1976) as well as Keynesian economics 

(Mankiw, 1989) provide evidence in support of a positive correlation between U.S. 

prices and output. The real business cycle theory, on the other hand, (Kydland and 

Prescott, 1982; Long and Plosser, 1983) support the presence of an inverse relationship 

between prices and output. Whether prices exhibit pro-cyclical or countercyclical 

movement, the need to model adequately the cyclical component of prices is well 

documented in the literature.  
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This paper focuses on persistence and cyclicality in the U.S. price level, using 

historical annual data that spans 1774 to 2015. The data cover the various components 

of the modern history of the international monetary systems, including the bimetallic 

standard era (1787-1873), the classical gold standard era (1873-1914), the interwar 

period (1915-1944), the Bretton Woods system (1945-1971), and the post-Bretton 

Woods system (1971-present) and, thus, provide a unique opportunity to consider how 

the time-series properties of U.S. prices vary across different monetary regimes and 

institutions. Clearly, over such a long time period, structural breaks probably have 

occurred between different regimes in price determination, and the empirical analysis 

should reflect that. Consequently, in addition to persistence and cyclicality, this paper 

considers the possibility that nonlinearities may characterize the behavior of US prices.  

We estimate the U.S. data using a fractional integration approach, but employ a 

generalized definition of long-memory, which allows the inclusion of one or more 

singularities or poles in the spectrum at various frequencies. Specifically, we estimate 

U.S. prices with three classes of fractional integration I(d) models using the Whittle 

parametric function in the frequency domain (Dalhaus, 1989) along with a Lagrange 

Multiplier (LM) testing procedure developed by Robinson (1994), which remains valid 

even in nonstationary contexts.- 

The first class of models considers the standard case of fractional integration at 

the long run or zero frequency, and captures the persistence of U.S. prices and inflation 

(i.e., the long-run movement at zero frequency). Recent contributions on inflation 

persistence in the United States that use alternative long-memory methodologies include 

Caporale and Gil-Alaña (2002, 2010, 2013), Gil-Alaña (2000), Kumar and Okimoto 
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(2007), Gadea and Mayoral (2006), Canarella and Miller (2015, 2016a, 2016b), 

Boubaker et al. (2016) among many others.
1
 

The second class adopts a fractional integration model that incorporates 

nonlinear deterministic terms in the form of Chebyshev polynomials, as nonlinearities 

may exist in the historical data series as a result of different monetary regimes (Caporale 

and Gil-Alaña, 2007). Finally, the third class of long-memory models considers the 

possibility that the data may display two poles or singularities in the spectrum, one at 

the zero frequency, corresponding to the long-run behavior of prices, and another at a 

frequency away from zero, affecting the cyclical structure of prices (Caporale and Gil-

Alaña, 2005; Gil-Alaña, 2005; Caporale and Gil-Alaña, 2014; Gil-Alaña and Gupta, 

2014). In this latter case, the data may still display the property of long-memory, but the 

autocorrelations exhibit a cyclical structure that decays slowly. The cyclical structure is 

modeled as a Gegenbauer process, which produces persistent stochastic cycles. 

We find that both the secular (long-run) and the cyclical components matter, and 

the two orders of integration differ statistically from zero and one, the long-run being 

more important (in terms of persistence). Shocks affecting the two components persist 

and revert to their means (i.e., they disappear in the long run).  Nevertheless, unlike the 

first two classes of long-term models, the analysis in the third class of models refers 

                                            
1
As the existing literature frequently notes, inflation persistence plays an important role in the conduct of 

monetary policy as well as the development of the underlying macroeconomic theories. Inflation 

persistence measures the speed with which the inflation rate returns to its equilibrium level after an 

inflationary shock. If the inflation rate returns to its equilibrium level quickly (i.e., the inflation rate 

exhibits less persistence) after a shock, then the monetary authorities can more effectively reduce inflation 

fluctuations, all else equal (Fuhrer, 1995). High inflation persistence, on the other hand, causes shocks to 

exert long-lasting effects and may require a strong policy response to affect the dynamics of inflation and 

bring it under control. In the worst case, inflation may follow a random-walk (i.e., an I(1)) process, 

making it impossible for central banks to control inflation. In the best case, inflation may follow a 

stationary (i.e., I(0)) process, implying that it reverts to its equilibrium level rapidly after a random shock. 

In this latter case, the response to the inflationary shock may not require an active monetary policy. Thus, 

the optimal timing and size of monetary policy crucially depend on not only knowledge of how shocks 

affect the dynamics of inflation but also on the degree of persistence that identifies the inflation process. 

In this regard, we note that inflation persistence plays an important role in the current debate on inflation 

targeting (IT). When a central bank successfully anchors inflationary expectations by its inflation 

targeting policy, it reduces or eliminates inflation persistence, since well-anchored inflationary 

expectations depend less on past inflation. 
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only to prices, and not inflation, since in first differences, the interaction with the 

cyclical component is not meaningful.  

The paper’s outline includes the following sections. Section 2 briefly describes 

the various econometric methods. Section 3 reports the results of our econometric 

analysis. Section 4 briefly concludes. 

 

2. Methods 

All models examined rely on the concept of long-memory or long-range dependence as 

opposed to the concept of short memory (i.e., I(0)) behavior. We can define both 

concepts in the time and frequency domains. For short-memory processes, the infinite 

sum of its autocovariances is finite in the time domain. That is,  
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Short memory processes include the most common stationary process such as 

those based on (stationary) ARMA structures. In economics, however, it is common to 

find series that display a high degree of persistence which we cannot capture using 

ARMA models. Thus, many economic series display long-memory behavior. 

Hipel and McLeod (1978) define a long-memory process, xt, when 
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In the frequency domain, long memory implies that the spectral density function 

includes at least one pole or singularity at some frequency λ in the interval [0, π). That 

is, 

            ).,0[,,)( **   asf  

The empirical time-series literature usually focuses on the case where the 

singularity or spike in the spectrum takes place at the 0 frequency (i.e., λ
*
 = 0), which 

leads to the standard I(d) models of the form: 
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as previously defined.  

The most notorious case corresponds to d = 1, implying the existence of unit 

roots and nonstationarity. In this case, we need to transform by first differences to 

render the series I(0). This standard practice emerged after Nelson and Plosser (1982), 

who found evidence of unit roots in fourteen U.S. macro series.  

In general, however, the differencing of a series to achieve stationarity may, in 

fact, only require a fractional difference (Granger, 1980). As such, we identify the 

process as fractionally integrated. Then, we can expand the polynomial in the left-hand 

side of equation (1) in terms of its binomial expansion, such that, for all real d, 
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In this context, d plays an essential role, since it defines the degree of 

dependence of the time series. The higher the value of d is, the higher is the level of 

association between the observations. Granger and Joyeaux (1980), Granger (1980, 

1981), and Hosking (1981) introduced these models that Baillie (1996), Gil-Alaña and 

Robinson (1997), and others later generalized.  

In section 3, we estimate the differencing parameter d by different methods, 

including parametric and semiparametric ones. Moreover, we will employ a Lagrange 

Multiplier (LM) tests proposed by Robinson (1994) that allows tx  in equation (1) to 

equal the errors in a regression model of the form: 

1 2T

t t ty z x , t , , ...,       (2) 

where yt is the observed time series (e.g., log of US CPI), β is a (kx1) vector of unknown 

coefficients, and zt is a set of weakly exogenous variables or deterministic terms that can 

include an intercept (i.e., zt = 1), an intercept with a linear time trend (zt = (1, t)
T
), or 

any other type of deterministic processes. 

In addition, we employ an extension of this method to the nonlinear case, 

replacing the linear regression in equation (2) by a nonlinear model based on Chebyshev 

polynomials in time. Cuestas and Gil-Alaña (2016) suggested this approach, which 

basically consists in replacing equation (2) by 

     ,   (3) 

where m gives the order of the Chebyshev polynomial , defined as, 
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with . Bierens (1997) uses Chebyshev polynomials in the context of unit-root 
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Chebyshev polynomials can approximate highly nonlinear trends with rather low 

degree polynomials (Bierens, 1997; Tomasevic et al., 2009). From equation (3), if m = 

0, the model contains only an intercept; if m = 1, it contains an intercept and a linear 

trend; and if m > 1, it becomes nonlinear, where the higher the value of m is, the higher 

is the nonlinear structure. The parameters  are the nonlinear parameters 

where the significance of m > 1 parameters implies nonlinearity of the time series. An 

issue that immediately arises is the optimal value of m. Cuestas and Gil-Alaña (2016) 

argue that if one combines equations (1) and (3) in a single equation, standard t-tests 

will remain valid with an I(0) error term by definition. Then, the choice of m will 

depend on the significance of the Chebyshev coefficients.
2
 Note that the model obtained 

by combining equations (1) and (3) is linear, and we can estimate d parametrically and 

test as in Robinson (1994) and Demetrescu, Kuzin, and Hassler (2008), among others 

(see Cuestas and Gil-Alaña, 2016).
 

Many macroeconomic time series display cyclical patterns. The existence of 

cycles in macroeconomic time series is a well-documented stylized fact since Burns and 

Mitchell (1946) first examined the U.S. economy. The appropriate way to model their 

cyclical behavior, however, remains controversial. Deterministic structures based on 

sine and cosine functions do not perform well in the majority of the cases. We can 

capture cyclical patterns through a simple AR(2) process with complex roots. In the 

case of high levels of persistence or even nonstationarity, however, a cyclical long-

memory model can prove more appropriate. In such cases, we extend the model in 

equation (1) by incorporating another pole or singularity in the spectrum at a non-zero 

frequency.  

Thus, the third model represents tx  as follows: 

                                            
2
See Hamming (1973) and Smyth (1998) for a detailed description of these polynomials. 

 1,...,i i m 
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where d1 is the order of integration corresponding to the long-run or zero frequency, and 

d2 is the order of integration with respect to the non-zero (cyclical) frequency, and tu  is 

an I(0) process. The second polynomial in the left hand side in equation (4) uses 

Gegenbauer processes, where wr = 2πr/T and r = T/s. Thus, s indicates the number of 

time periods per cycle, while r refers to the frequency that has a pole or singularity in 

the spectrum of xt. Note that if r = 0 (or s = 1), the fractional cyclical polynomial in 

equation (4) becomes (1 – L)
2d

, which is the polynomial associated with the long-run or 

zero frequency. Andel (1986) introduced this process, which Gray, Zhang and 

Woodward (1989, 1994), Giraitis and Leipus (1995), Chung (1996a, 1996b), Gil-Alaña 

(2001) and Dalla and Hidalgo (2005) among others subsequently analyzed.  

We can show that by denoting μ = coswr, for all d2 ≠ 0, 
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Using, once again, Robinson’s (1994) LM tests, we can test the null hypothesis: 

0 1 2 10 20 0

Tr TrH : d ( d , d ) ( d , d ) d ,     (5) 

in equation (4) for real values do = (d10, d20)
T
, where T means transposition, and xt are 

the regression errors in equation (2). The specific form of the test statistic, denoted by R̂ , 
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is found in Gil-Alaña (2005). Under very general regularity conditions, Robinson 

(1994) and Gil-Alaña (2005) shows that for this particular version of his tests, 

     
,,ˆ 2

2  TasR d      (6) 

where T indicates now the sample size and “→d” stands for convergence in distribution. 

Thus, unlike other procedures, we now face a classical large-sample testing situation. 

We reject H0 against the alternative HA: d  d0, if R̂ > 2

,2  , where Prob (
2

2 >

2

,2  ) = . Several reasons exist for using this approach. First, this test is the most 

efficient in the Pitman sense against local departures from the null. That is, if we 

implement it against local departures of the form: HA: d = d0 + T
-1/2

, for    0, then 

the limit distribution is a 2

2 ( v )  with a non-centrality parameter v that is optimal under 

Gaussianity of ut. Moreover, we do not require Gaussianity for the implementation of 

this procedure, but only a moment condition of order 2. 

3. Empirical results 

We gather the U.S. consumer price index (CPI) data, covering the period 1774-2015, 

from the website of Professor Robert Sahr of Oregon State University,
3
and compute the 

inflation series as the first difference of the natural logarithm of the CPI, which implies 

that our effective sample starts from 1775.  

Figure 1 shows the time-series plots of the log of CPI and the rate of inflation, 

along with their corresponding correlograms and periodograms. We observe first that 

the prices were relatively stable with some cyclical pattern until the Great Depression. 

After that, prices rose continuously until the present. We clearly see the nonstationary 

nature of the log CPI data through the correlogram, whose values decay slowly, and 

through the periodogram, whose highest value occurs at the smallest frequency. On the 

                                            
3

The data can be downloaded from: http://liberalarts.oregonstate.edu/spp/polisci/research/inflation-

conversion-factors. 

http://liberalarts.oregonstate.edu/spp/polisci/research/inflation-conversion-factors
http://liberalarts.oregonstate.edu/spp/polisci/research/inflation-conversion-factors
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other hand, the correlogram of the inflation displays many significant values, while the 

periodogram also displays the highest frequency at the zero frequency. Nevertheless, 

this peak may hide others at a frequency away from zero. 

[Insert Figure 1 about here] 

The first model we examine is the standard I(d). We estimate the parameters in 

equations (1) and (2) with zt = (1, t)
T
, and test the null H0: d = d0, for any real value do 

such that the model tested becomes: 

     
01

0 1

d
y t x ; ( L ) x u t 1, 2, ...,
t t t t

       . (7)
 

Given the parametric nature of the test, we need to specify the functional form of the 

disturbance term tu . In particular, we consider four different specifications: white noise, 

AR(1), AR(2), and the exponential spectral model of Bloomfield (1973). The latter is a 

nonparametric method to approximate ARMA structures with a few number of 

parameters and accommodates extremely well in fractional integration contexts (see, 

e.g., Gil-Alaña, 2004).  

[Insert Table 1 about here] 

Table 1 displays the estimates of d along with the 95% confidence intervals of 

the non-rejection values of d0 in equation (7) for both the log CPI and the inflation rate, 

and for the three standard cases examined in the literature of no regressors (i.e., β0 = β1 

= 0a priori in equation (7)): an intercept (β0 unknown and β1 = 0a priori); and an 

intercept with a linear time trend (β0 and β1 unknown). The bolded entries in the table 

correspond to the most adequate specification for the deterministic terms, which 

according to the t-values of these coefficients (unreported), is the intercept-only case. If 

ut is white noise or follows the model of Bloomfield, then the estimated d exceeds 1 and 

the unit-root null hypothesis (d = 1) is, in fact, rejected in favor of the alternative of d > 

1. Using AR components, however, we cannot reject the unit-root hypothesis, even 
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though the estimated d still exceeds 1. Due to the disparity in these results, we also 

conducted a semi-parametric approach (Robinson, 1995), though we do not impose a 

functional form on the I(0) disturbances term. 

[Insert Figure 2 and Table 2 about here] 

Figure 2 displays the estimates of d taking into account all the bandwidth values 

from m = 2, …, T/2.  We observe that for small bandwidth values, the estimated values 

of d lie within the I(1) interval, however, for large bandwidths, the values of d are 

significantly above 1. Table 2 displays the specific values from m = 10 to 20 (m
0.5

 = 

15.55). We cannot reject the unit-root null hypothesis of d = 1in any single case. 

The second model considers the possibility of nonlinear deterministic terms. For 

this purpose, we use the Chebyshev polynomials in time as presented in the previous 

section. Thus, the estimated model is now: 

        

3
y ( ) ; (1 ) t 1, 2, ...,

t t
0

d
oP t x L x u

i iN t t
i

    


    (8) 

[Insert Table 3 about here] 

We examine the cases of uncorrelated (white noise) and autocorrelated 

(Bloomfield-type) errors. The results prove consistent in terms of the degree of 

integration. The estimated value of d equals 1.27 in case of the log CPI data, and 0.27 

for the inflation rate with white noise errors. These values are slightly smaller (1.12 and 

0.11) for the Bloomfield-type disturbances and we cannot reject the unit-root null in 

these two cases. More importantly, we find evidence of nonlinearity in only a single 

case, corresponding to the inflation rate with white-noise errors.
4
 

Finally, in the third model, we incorporate the possibility of cyclicality. Here, 

we consider a model of the following form: 

                                            
4
  Using other types of nonlinear deterministic terms such as Hermite polynomials, we do not observe any 

evidence of nonlinearities in the data. 
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10 22y ; (1 ) (1 2cos )
t 0 1 t

od d

rt x L w L L x u
t t

            (9)  

and examine once more the three cases of no regressors, an intercept, and an intercept 

with a linear time trend, for the four cases of white noise, AR(1), AR(2) and 

Bloomfield-type disturbances. Table 4 displays the results. 

[Insert Table 4 about here] 

We first observe that all the values of j (corresponding to the number of periods 

per cycle) fall between 5 and 13, which corresponds with the literature on business 

cycles. Moreover, except in the case of the AR(2) model, for the remaining models, the 

values of d1 significantly exceed 1 with d2 close to 0. Performing several tests based on 

the t-values of the deterministic terms and diagnostic tests carried out on the residuals, 

the most appropriate model uses AR(2) disturbances with a linear time trend.  

Thus, the estimated model is as follows: 

2 0 21

6

0 541 95497 0 01182 1 1 2

14 294 12 629

0 542 0 375
1 2

.

T /

.y . . t x ; ( L ) ( cos w L L ) x u
t t t t

( . ) ( . )

u . u . u ,
t t t t



      

  
 

 
 

with the t-values in parenthesis.  

These findings clearly indicate that both the secular (i.e., the long-run) and the 

cyclical components matter. The two orders of integration differ statistically from zero 

and one, and the long-run order of integration appears more important (in terms of 

persistence). Shocks affecting the two components persist and revert to their means (i.e., 

they disappear in the long run).  

We observe that in this case, the analysis can only refer to the log prices and not 

to inflation. That is, no direct way exists to derive the secular and cyclical persistence of 

inflation from the corresponding values of the persistence of prices. For inflation, we 

should conduct the analysis based on (1-L)logprices. But if we take the first differences, 
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the interaction with the cyclical component possesses no meaning, as the cyclical 

component disappears. Thus, the results imply that the two components matter only in 

the behavior of the (log) prices, and produce long-memory mean-reverting effects. 

4. Concluding remarks 

This paper analyzes the complete historical US price data (1774-2015) using a variety 

of model specifications that incorporate the concept of long memory, persistence, 

nonlinearity, and cyclicality. We estimate U.S. prices with three classes of fractional 

integration I(d) models using the Whittle parametric function in the frequency domain 

(Dahlhaus, 1989) along with the testing procedure developed by Robinson (1994). We 

consider, in addition to the well-known linear specifications at zero frequency, the 

possibility of nonlinearities in the form of nonlinear deterministic trends as well as the 

possibility that persistence exists at both the zero frequency and a frequencies away 

from zero. We model the fractional nonlinear case using Chebyshev polynomials and 

model the fractional cyclical structures as a Gegenbauer process. We find evidence of 

nonlinearity in only a single case, corresponding to the inflation rate with white-noise 

errors. 

The most important contribution of the paper, however, consists in the 

determination of persistence at frequencies away from zero. We find in this case that 

that the secular (i.e., long-run) persistence coexists with the cyclical persistence, and 

shocks have the long-memory effects that are mean-reverting at both the long-run and 

cyclical frequencies. We find the two orders of fractional integration differ statistically 

from zero and one, with the secular order of fractional integration being higher and, 

consequently more important in terms of persistence, than the cyclical order. 
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Figure 1: Time series plots 
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Table 1: Whittle estimates of d and Robinson’s (1994) test results 

i)    Log of CPI 

 No regressors An intercept A linear time trend 

White noise 1.06   (0.99,   1.15) 1.29   (1.20,   1.41) 1.29   (1.20,   1.41) 

AR (1) 1.41   (1.26,   1.59) 1.13   (0.92,   1.47) 1.15   (0.91,   1.48) 

AR (2) 1.92   (1.71,   2.14) 1.02   (0.85,   1.31) 1.02   (0.82,   1.32) 

Bloomfield type 1.13   (1.00,   1.33) 1.21   (1.08,   1.41) 1.22   (1.09,   1.42) 

ii)    Inflation 

 No regressors An intercept A linear time trend 

White noise 0.29   (0.20,   0.41) 0.29   (0.20,   0.41) 0.28   (0.18,   0.41) 

AR (1) 0.13   (-0.08,   0.49) 0.15   (-0.01,   0.48) 0.16   (-0.02,   0.48) 

AR (2) 0.01   (-0.14,   0.31) 0.01   (-0.15,   0.32) 0.01   (-0.14,   0.33) 

Bloomfield type 0.21   (0.08,   0.42) 0.21   (0.09,   0.41) 0.14   (-0.03,   0.40) 

Notes: In bold, the significant models according to the deterministic terms. In parenthesis the 95% 

confidence band of non-rejection values of d using Robinson’s (1994) parametric approach. 
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Figure 2: Estimates of d based on a semiparametric method (Robinson, 1995) 

 
Notes: In bold lines, the 95% confidence of the I(1) hypothesis (i.e., d = 1). 
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Table 3: Estimates of the nonlinear coefficients and d using Cuestas and Gil-Alaña 

(2016) 

i)    Log of CPI 

 d (95% 

interval) 

θ1 θ2 θ3 θ4 

Wh. Noise 1.27   

(1.17, 1.40) 

2.3655 

(1.42) 

-0.5335 

(-0.50) 

0.5413 

(1.37) 

-0.2069 

(-0.87) 

Bloomfield 1.12   

(0.95, 1.28) 

2.6075 

(3.11) 

-0.6920  

(-1.33) 

0.5557 

(2.46) 

-0.2423 

(-1.69) 

ii)    Inflation 

 d (95% 

interval) 

θ1 θ2 θ3 θ4 

Wh. Noise 0.27 

(0.15, 0.49) 

1.5102 

(1.01) 

-1.1386 

(-1.06) 

0.7216 

(0.75) 

0.4944 

(0.75) 

Bloomfield 0.11  

(-0.13, 0.37) 

1.4252 

(2.80) 

-1.2558  

(-2.22) 

0.6940 

(1.28) 

 0.4345 

(0.83) 
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Table 4: Estimates of the long-run and cyclical persistence parameters in the 

model given by equation (4) 

 Det. terms j d1 d2 

 

White noise 

No terms 5 1.34  (1.23,  1.46) -0.05   (-0.10,   0.09) 

An intercept 7 1.29  (1.21,  1.39) 0.00    (-0.07,  0.08) 

A linear trend 7 1.29  (1.21,  1.47) 0.01    (-0.07,  0.08) 

 

AR(1) 

No terms 8 1.33  (1.02,  1.60) 0.02   (-0.29,  0.26) 

An intercept 9 1.19  (1.12,  1.37) 0.07   (-0.04,  0.34) 

A linear trend 9 1.26  (1.14,  1.40) 0.21   (-0.01,  0.37) 

 

AR(2) 

No terms 6 0.78  (0.69,  0.93) -0.35   (-0.41,  -0.29)    

An intercept 6 0.92  (0.83,  1,05) -0.44   (-0.58,  -0.32) 

A linear trend 6 0.54  (0.27,  0.83) 0.21   (0.04,  0.41) 

 

Bloomfield 

No terms 13 1.48   (1.11,  1.54) -0.06   (-0.38,  0.14) 

An intercept 9 1.19   (1.03,  1.40) 0.07   (-0.32,  0.16) 

A linear trend 8 1.24   (1.10,  1.43) 0.09   (-0.08,  0.25) 

Notes: In bold, the selected model across the different specifications. 

 
 
 
 
 
 
 




