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Abstract 

Cost based measures of capacity utilization and capacity output are important metrics for evaluating firm 

performance. Understanding where firms are producing on their average cost curve provides information 

about whether capacity utilization is greater then, less than or equal to one. Most firms are multi-output, 

multi-input in nature which makes estimation of capacity utilization and capacity output challenging if a 

cost based measure is desired. For a multi-output firm, the relevant concept is ray average cost (RAC) 

which can be estimated through non-linear DEA models.  This paper offers a simple transformation that 

linearizes the non-linear DEA program to estimate average, or ray average cost, and to determine capacity 

utilization and optimal output. The methods are empirically tested on data from a number of U.S. 

electricity producers for the single output case, and a sample of dental practices for the multi-output case.   

Results show that for both industries, most firms were operating at less than full capacity, and needed to 

expand output to minimize their costs. For the dental practices, examination of results from six randomly 

chosen firms showed the importance of operatories in determining optimal levels of output. 
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ECONOMIC MEASURES OF CAPACITY UTILIZATION:  A NONPARAMETRIC COST 

FUNCTION ANALYSIS 

Introduction 

Capacity is an important economic metric because it yields information about the potential output 

a firm could produce. Capacity utilization (CU) is also an important measure of performance because it 

provides information about where a firm is producing relative to its potential (i.e. capacity) output.  A 

competitive firm in long run equilibrium would produce at an output level corresponding to the minimum 

point of its long run average cost (LRAC) which is tangent to the horizontal demand curve1 (W. J. 

Baumol, 1965). This is the only sustainable output level where the firm earns a normal profit (i.e., zero 

economic profit), unless there is a flat segment at the bottom of the U-shaped LRAC curve. In relation to 

the LRAC, CU informs whether the plant is producing the correct amount of output, or needs to increase 

(decrease) output in order to reach the minimum average cost point.  

A different (and more popular) definition of capacity output that is independent of any cost 

criteria is the maximum quantity that the firm can produce given the quantity of its fixed input(s) even 

with unrestricted availability of variable inputs (Johansen, 1968). A simple example of this measure is the 

number of passengers that an airline can carry given its fleet of aircrafts. Note that air transportation 

requires labor, fuel, materials, and planes. However, given a specific number of planes, the airline cannot 

carry more passengers than the total number of seats in its fleet of aircrafts even though there is no 

scarcity of labor, fuel, or materials. Capacity output is bounded from above by the physical ability of 

planes to carry a certain number of passengers, and the measure of CU can never exceed one using the 

physical definition of capacity. For a group of airlines, capacity and capacity utilization for each airline 

can be estimated through Data Envelopment Analysis (DEA) as shown by Fare, Grosskopf, and 

Kokkelenberg (1989). Alternatively, recent work by Cesaroni, Kerstens, and Van de Woestyne (2017) 

developed an input-oriented physical  measure of capacity utilization that can also be estimated with 

DEA.  

Three things should be noted about the output oriented definition of capacity. First, this is a 

physical upper limit imposed by the available quantity of its fixed input (planes). Second, it is a short run 

concept because all inputs are not variable. Finally, the capacity output depends on which input is fixed 

1 In a competitive market the demand curve faced by an individual firm is horizontal at the market price 

even though the market demand curve is downward sloping. 
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and at what level.2 We also recognize that the physical measure of capacity is implicitly based on past 

economic decisions which led to investment in fixed inputs. Note that the physical definition of capacity 

is widely used by Government statistical agencies. For example, the U.S. Federal Reserve defines 

capacity as “the greatest level of output a plant can maintain within the framework of a realistic work 

schedule, after factoring in normal downtime and assuming sufficient availability of inputs to operate the 

capital in place” (Terry, Walden, & Kirkley, 2008).  

Over the past decades, different definitions of a cost based measure of capacity have been 

proposed in the literature. An early example is one by Cassels (1937), who departed from the LRAC 

concept of capacity discussed in the first paragraph, and explicitly recognized the role fixed factors play 

in determining output. He argued that the level of capacity output should correspond to the point where 

short-run total average costs are minimized. Over two decades later, Klein (1960) questioned the 

assumption of the U-shaped LRAC  curve, but recognized that cost considerations needed to be included 

in capacity measurement. He also suggested the minimum point on the short-run average total cost curve 

as the determinant of capacity output, and noted that output prices could factor into the determination of 

capacity utilization. Ernst R Berndt and Morrison (1981) agreed with Cassels (1937) and Klein (1960) 

and defined capacity output as the minimum point on the short-run average total cost curve under 

constant returns to scale. Of course, when CRS holds, this would also be the point of tangency between 

the short run and the long run average cost curves. In the absence of CRS, they prefer the point of 

tangency between the short and long-run average total cost curves to define capacity output. However, in 

their empirical application estimating CU for U.S. manufacturing for the period 1958-1977, they assumed 

CRS reverting thereby to the minimum point of the short run average cost curve.  Segerson and Squires 

(1990) extended the cost based notion of capacity to multi-product industries and developed a CU 

measure based on ray average costs. Coelli, Grifell-Tatje, and Perelman (2002) proposed a profit based 

measure of CU for multi-input, multi-output firms where both costs and output prices determined the CU 

level, and then estimated CU for a group of international airlines using DEA. 

With a single output and a parametrically specified cost function, one can analytically derive the 

capacity output level from the first order condition for a minimum of the average cost. However, in many 

industries the technology is multi-output, multi-input, which requires a nonparametric approach to 

estimate capacity output. In the DEA literature, as shown in Fare, Grosskopf, and Lovell (1994) or 

Subhash C Ray (2004), one can find the value of the minimum average cost under variable returns to 

                                                           
2 There may be a different capacity output if there are a limited number of pilots. For example, if there are 

only 7 pilots for 20 planes. 
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scale from the solution of a cost minimization problem under the assumption of constant returns to scale. 

While this approach is useful for measuring economic scale efficiency, it does not help to identify the 

output level where the average cost attains a minimum. Of course, one can usually solve a nonlinear 

programming problem for minimizing the average cost within the nonparametric framework.  

In a recent article published in this journal, Subhash C. Ray (2015) proposed a method that 

determines long run  capacity output from the optimal solution of a simple linear programming problem. 

In another paper also appearing in this journal and in the same year as Ray (2015),  Cesaroni and 

Giovannola (2015) provided a new measure of scale efficiency which minimizes ray average cost and 

adjusts for allocative efficiency of the input mix. Their method used a benchmarking approach and 

presented results primarily for non-convex technologies using the approach of Free Disposal Hull (FDH) 

analysis.3  

In this paper we generalize Ray (2015) in several directions to arrive at a measure of short run CU 

based on short run average cost (SRAC) under alternative returns to scale assumptions and in the presence 

of multiple outputs and/or multiple fixed inputs. The main contributions of this paper can be summarized 

as follows:  

 First, it provides a linear programming solution of the short run average cost minimization 

problem, which is an inherently non-linear optimization problem, for a single output and single 

fixed input under alternative returns to scale assumptions.   

 Then the single output model is extended to allow multiple fixed inputs.  

 Finally, we consider the more realistic case of multiple outputs and multiple fixed inputs and 

identify the scale of a given output mix where the ray average cost reaches a minimum.  

Although the primary focus of our paper is methodological, for illustrative examples, we include two 

empirical applications of the proposed methodology. In one, we use the well-known Christiansen-Greene 

data from US electrical utilities to measure capacity utilization in a single output, two variable inputs, and 

one fixed input case. In the other application we use the data from a sample of dental care practices from 

Colorado (used earlier by Chen and Ray (2013)) with two outputs, two fixed inputs, and six variable 

inputs. 

The rest of the paper unfolds as follows. Section 2 offers a quick description of the nonparametric 

characterization of the production technology. Section 3 contains the main methodological contribution 

                                                           
3 Although they mention DEA for convex technologies (in section 4.2 page 126) they never explicitly 

spell out the underlying model for computation. Nor do they consider fixed inputs and short run analysis. 
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formulating the various DEA linear programming problem for solving the short run average cost 

minimization problem under alternative returns to scale assumptions for single and multiple fixed inputs 

an also for single and multiple outputs. Section 3.1 explains using a simple 1-output 2-input (1 variable 

and 1 fixed) example why the assumption about returns to scale is relevant even in the short run even 

when some input remains fixed and there is no scalar variation of the entire input bundle. Sections 3.2 and 

3.3 solve the short run average cost minimization problem for the 1-output 1-fixed input case under CRS 

and VRS, respectively. These are further extended to include multiple fixed inputs (but still considering 

the single output case) in sections 3.4 and 3.5. Finally, in sections 3.6 and 3.7, the most general case of 

multiple outputs and multiple fixed inputs under CRS and VRS assumptions are considered. For multiple 

outputs, of course, there is concept of the short run average cost is replaced by that of the ray average cost 

(for a given mix of outputs).   Section 4 includes two illustrative empirical applications of the proposed 

DEA models. In section 4.1 the Christensen-Greene data are used to measure short run capacity 

utilization at a sample of US electric utilities in a 1-output 1-fixed input case. In section 4.2 we analyze 

the data from a number of dental care practices from Colorado each with two outputs (dentist visits and 

hygienist visits) and two fixed inputs (number of operating rooms and square feet of office space).Section 

5 offers a brief summary. 

2. Nonparametric Characterization of the Technology 

Our starting point is an industry made up of firms producing a single output y using an input 

bundle nx   .  An input-output bundle (x, y) is considered feasible when y can be produced from x, and 

the set of all feasible input-output bundles constitutes the production possibility set:                   

   T={(x,y): y can be produced from x}                       (1) 

Since every observed input-output bundle is feasible, we begin with the observed input-output bundle4 (xj, 

yj) of firm j (j = 1, 2,..,, N).  Under the fairly non-restrictive assumptions that the production possibility 

set is convex and that both inputs and outputs are freely disposable, one can approximate the set T by the 

free disposal convex hull T̂  of the observed bundles 

   
1 1 1

ˆ ( , ) : ; ; 1; 0 1,2,..., ) . (2)
N N N

j

j j j j jT x y x x y y j N   
 

      
 

    

                                                           
4 In this paper vectors are identified by superscripts and scalars by subscripts. 
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If, additionally, one assumes CRS, for any (x, y)  T, for any k ≥ 0, (kx, ky)  T. Correspondingly the 

empirical construct of the CRS production possibility set would be: 

  
1 1

ˆ ( , ) : ; ; 0 1,2,..., ) . (3)
N N

C j

j j j jT x y x x y y j N  
 

     
 

   

Alternatively, the technology can also be characterized in terms of the input requirement sets. For any 

specific output level (𝑦0) the input requirement set consists of all input bundles that can produce 𝑦0. This 

can be expressed as: 

  
0 0( ) { :( , ) }. (4)V y x x y T   

Empirically, the input requirement sets under the assumption of variable returns to scale (VRS) will be: 

 0 0

1 1 1

ˆ( ) : ; ; 1; 0 1,2,...,
N N N

j

j j j j jV y x x x y y j N   
 

      
 

     (5) 

     and 

0 0

1 1

ˆ ( ) : ; ; 0( 1,2,..., )
N N

C j j

j j jV y x x x y y j N  
 

     
 

           (6)   

 

 if constant returns to scale (CRS) is assumed.  

 When VRS is assumed, the minimum cost of producing any output y at input price (vector) w0 is: 

0 0( , ) min : ( ).VRSC w y w x x V y    (7a) 

Similarly, under CRS, the minimum cost is: 

  0 0( , ) min : ( ).CRS CC w y w x x V y    (7b) 

Note that this is a long run model because there is no fixed input. In a standard textbook example 

(W. J. Baumol, 1965) the long run average cost (LRAC) curve of a firm assuming VRS is U-shaped because 

the average cost initially declines due to economies of scale, but subsequently rises as diseconomies of 

scale follow. However, if CRS holds globally, the long run average cost curve is a horizontal straight line 

(Subhash C. Ray, 2015), and capacity output is not defined. The LRAC assuming VRS (U-shaped curve) 

and the LRAC assuming CRS (horizontal line) are tangent to one another at the minimum point of the VRS 

LRAC. The minimum point on the VRS LRAC, which is tangent to the CRS LRAC, would be considered 

the point of capacity output.  



7 
 

 

3. Economic Capacity in the Short Run 

There is no consensus about what constitutes the economic capacity output of a firm in the short 

run using the cost based definition of capacity. Some argue that the point of tangency between the long 

run average cost curve and the short run average cost curve for a given bundle of fixed inputs should 

define the capacity output (Ernst R. Berndt & Fuss, 1986). Others argue that since we are talking about 

the short run and a given bundle of fixed inputs is already in place, the long run average cost curve is no 

longer relevant and capacity is fully utilized at the output level where the short run average cost curve 

reaches a minimum. That is the point where short run economies of scale have been fully exploited. 

While it is true that the long run average cost at that output level would be even lower, such lower cost 

would not be attainable without altering the quantity of fixed inputs. Therefore, it has no direct relevance 

for measuring capacity output in the short run. Of course, if constant returns to scale prevailed globally, 

the long run average cost curve (as has already been noted) would be a horizontal line and the tangency 

between any short run average cost curve and the long run average cost curve would take place at the 

minimum point of the relevant average cost curve (Subhash C. Ray, 2015). That is the only case when 

both definitions of the capacity output would lead to the same output level (Ernst R Berndt & Morrison, 

1981). Because when the long run average cost curve is horizontal the long run capacity output level is 

not defined, the minimum point of the short run average cost curve would define the capacity output in 

the short run. 

In order to proceed further, we adopt two lemmas found in Ray (2015), and then progress from 

the one output-one fixed input scenario to the multiple output, multiple fixed input scenario: 

 Lemma 1. Locally Constant Returns to Scale holds at the input-output bundle (x*, y*) where the average 

cost reaches a minimum. 

Lemma 2.  If the technology exhibits Constant Returns to Scale globally, average cost is a constant at all 

output levels. 

3.1 Does the Returns to Scale assumption matter in the short run analysis? 

The Returns to Scale (RTS) properties of the technology relate to how the output (bundle) 

changes in response to an equi-proportionate change in all inputs. Because all inputs change when the 

scale changes, RTS essentially is a long run concept. However, by definition, at least one input remains 

fixed in the short run. It might appear therefore, that for short run cost analysis, the RTS assumption is not 

relevant. We use a simple 1-output (y) and 2-input (K,L) example to show that the short run total cost 
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(SRTC) functions and the corresponding capacity output levels will be different under alternative RTS 

assumptions. 

We first consider a CRS production function: 

                                  y KL                                         (8) 

and assume that K  is fixed in the short run at 
0.K K  Then, the short run production function becomes 

                            0 .y K L                                      (9) 

Hence, the minimum quantity of L required to produce y in the short run is 

                      

2

0

.
y

L
K

                                                    (10) 

At input prices w for L and r for K, the short run total cost is 

           

2

0

0

CRS

y
SRTC w rK

K
                                              (11) 

The corresponding short run average cost is 

              
0

0

.CRS

Ky
SAC w r

K y
                                          (12) 

From the first order condition for a minimum for SAC, one gets 

            
*

0.CRS

r
y K

w
                                                   (13) 

Next we discard the CRS assumption and consider the production function 

                     
1 1
3 2 .y K L                                               (14) 

This time, with K fixed at 
0.K K  the minimum required quantity of L is 

              
2
3

2

0

y
L

K
                                                         (15) 

Now the short run total cost is 
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2
3

2

0

0

VRS

y
SRTC w rK

K
                                         (16) 

The corresponding average cost is 

             
2
3

0

0

.VRS

Ky
SAC w r

yK
                                       (17) 

The output level where the average cost reaches a minimum is 

                    
5
6*

0 .VRS

r
y K

w
                                        (18) 

 A comparison of (12) with (17) shows that the short run average cost under CRS is lower than the short 

run average cost under VRS at every level of the output y. Also, the short run capacity output (where the 

average cost reaches a minimum) is smaller under VRS than under CRS. 

For a numerical example, assume 
0( 36, 4; 64).r w K    Then, 

*

*

2304
; 192;

16

2304
; 96.

8

CRS CRS

VRS VRS

y
SAC y

y

y
SAC y

y

  

  

  

Thus one can see that RTS assumption does make a difference for capacity utilization.  Even though we 

are considering the short run and some input remains fixed, one needs to build appropriate DEA model 

under alternative RTS assumptions. 

3.2 One Output, One Fixed input, CRS 

First consider a single fixed input K along with a vector of variable inputs v used to produce a 

single output y, and a CRS technology. Suppose the price vector of the variable inputs is w, the quantity 

of the fixed input is K0 and its price is 𝑟𝐾 .  Then the short run total cost is
0KSRTC w v r K   and the 

minimum of the short run average cost (SAC) is attained at the value of y from the solution of the 

following minimization problem: 
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0
, ,

1

1

0

1

min

. . ;

;

;

0; 0; 0;( 1,2,... )

v k
y v

N

j j

j

N
j

j

j

N

j j

j

j

w v r K

y

s t y y

v v

K K

v y j N

















 







   







(19) 

In this problem, apart from the λs, the output level y and the vector of variable inputs v are decision 

variables. The objective function is clearly non-linear. But it can be converted into an LP problem through 

appropriate scaling of variables. Note that the problem in (19) can be written as:                    

                                        

   

 

   

   

0

0

, ,

1

1

1

min

. .

1;

;

;

0; 0; 0;( 1,2,..., )

j

j

j

Kv
y v v ky y

N

jy

j

N
j v

y y

j

N
K

jy y

j

j

w r

s t

y

v

K

v y j N

















 







   







 (20) 

Next, define 1 1 1
0, ,  and .j jy y y

q v z K      The problem in (19) or (20) then becomes 

                                            

q,z, ,

1

1

1

min

. . 1;

;

;

0; 0; 0;( 1,2,... )

v k

N

j j

j

N
j

j

j

N

j j

j

j

w q r z

s t y

v q

K z

q z j N

 















 







   







(21) 
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It may be emphasized that even though 
0K  is a parameter, because y is a choice variable, 0K

y
z  is also a 

choice variable. From the optimal solution of (10) we get 0

*

* .
K

y
z   Thus, the short run capacity output is 

                                               
* 0

*
.

K
y

z
                (22) 

One can compare the actual output of a firm 
0( )y  with the capacity output 

*y  to measure the rate of 

capacity utilization as 

                          0

*
.

y
CU

y
  (23) 

The intuition behind this model can be explained using a simple diagram. The short run cost 

(SAC) curves corresponding to different levels of the fixed input along with the long run average cost 

curve are shown in Figure 1. The tangency between any SAC curve and the LAC curve takes place at the 

minimum point of the relevant SAC curve. In Figure 2A we focus on the SAC curve for the fixed input 

level K0. Suppose that the actual output level of the firm is y0 and its actual bundle of variable inputs is
0v . 

At variable input prices 
vw and fixed input price 

kr , its short run total cost (SRTC) is 
0

0 0

v

kC w v r K 

and its actual average cost is shown by the point A0 . Minimization of the SRTC for the given fixed input 

K0, would yield the variable input bundle 
*

0v and its SAC would be 
*

0A on the SAC curve corresponding to 

0K . If, however, both K as well as the variable inputs v were optimally chosen, it would select bundle

** *

0 0( , )v K . Because all inputs are freely chosen it would imply long run cost minimization, and the 

average cost for the output y0 would correspond to the point B0 on the horizontal LAC curve. Now 

suppose that while the fixed input remained K0, the firm produced the output y1. Then its short run cost 

minimizing bundle would be 
*

1 0( , )v K and the corresponding point on the SAC curve would be
*

1A . If, 

however, the firm could select the level of K optimally for output y1, it would select the bundle 
** *

1 1( , )v K

and its LAC for output y1 would be shown by the point B1.  Similarly, for output y3, its short run input 

bundle would be 
*

3 0( , )v K while the long run bundle would be
** *

3 3( , )v K . The corresponding points would 

be 
*

3A on the SAC curve and B3 on the LAC curve. For the output level y2, the long run optimal level of K 

is also the short run level K0, Thus, at this output level the short run and long run bundles are identical and 

the SAC and LAC are both shown by the point 
*

2A . Hence, 
*

2y y is short run capacity output.  
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Figure 1. Short and Long-Run Average Cost 
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Figure 2A. Short-run average cost 

Figure 2B provides an alternative geometric illustration. The radial expansion path OR shows the 

cost minimizing combinations of ( , )v K  for the different output levels on the corresponding isoquants. 

The tangency points 
0 3through B B  are the long run cost minimizing bundles for the outputs 

0 3through y y under CRS. On the other hand, the points 
0 3through A A are the short run cost minimizing 

bundles. Here the fixed input K  is held constant at 
0K  and only the variable input v  changes from 

** *

0 3through v v as the output level changes. The point of intersection between the expansion path and 

horizontal line through 
0K determines the capacity output level 

2y  where the (total and average) short 

run and the long run costs coincide. 
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Figure 2B: Expansion Path under CRS. 

 

Compare the input-output bundles 
** *

0 0 0( , ; )v K y at B0   and   
** *

2 2 2( , ; )v K y at B2.       

Due to CRS: 

                                 

** *

0 0 0

** *

2 2 2

v K y

v K y
                           (24) 

Since 
*

2 0K K , 
*

2 0( )y y K is the capacity output for K0. 

Hence the capacity output is 

                          
* 0

0 2 0*

0

( ) .
K

y K y y
K

 
   

 
   (25) 

  The corresponding capacity utilization rate is 
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*

0 0
0 *

0 0

( )
( )

y K
CU K

y K K
                  (26) 

Thus, utilizing the two lemmas stated above, we have found both capacity output and CU for the short-

run problem assuming CRS with one output and a single fixed input. 

3.3 One Output, One Fixed input, VRS 

Now we drop the CRS assumption and assume a U-shaped (rather than a flat) long run average 

cost curve. This time tangency between the SAC and LAC for any given quantity of the fixed input does 

not occur at the minimum point of the relevant SAC curve. This is shown in Figure 3 where the curves 

labeled 
VRSLAC  is the long run average cost curve for a VRS technology and 

0( )VRSSAC K is a short run 

average cost for the fixed input level 
0.K  The minimum of

0( )VRSSAC K occurs at output level 
*

0( )Vy K , 

which is different from the output where these two curves are tangent to one another. By contrast, the 

horizontal 
CRSLAC is the long run average cost curve for a CRS technology and the corresponding short 

run average cost curve 
0( )CRSSAC K reaches a minimum at the output level 

*

0( )Cy K where it is also 

tangent to
CRSLAC . In the case of VRS, one needs to need to determine the short run capacity output

*

0( )Vy K without referring to the long run average cost curve. 
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Figure 3. Short-run Capacity Output under VRS and CRS 

 

In the case of VRS, due to inclusion of the constraint 
1

1
N

j

j




 the problem in (19) becomes: 
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As before, define 1 1 1
0, ,  and .j jy y y

q v z K     Further, define 1 .
y

   This implies the additional 

restriction 
0z K and 

1

.
N

j

j

 


   Hence, (16) can be written as 
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           (28) 

  

The optimal or capacity output is obtained as: 

                                           *

* 1
0 .

( )VRSy K


                                    (29) 

Note further that by definition 0

*

* K

y
z   and an alternative way to measure 

*y  is to consider 0

* .
K

z
 

However, the constraint 
0z K  ensures that the two measures are identical. 
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3.4 One Output, Multiple Fixed inputs, CRS 

We now consider a single output, and multiple fixed inputs. For simplicity assume that there are 2 

fixed inputs: 
0 0 0

1 2( , )K K K and the corresponding rental prices are
1 2( , )r r r . As before the vector of 

variable inputs is v with the input price vector wv. Define 
0
1

0
2

0 .
K

K
    

 The short run average cost with the given bundle of fixed inputs is  

                                             

0 0

1 1 2 2vw v r K r K
SAC

y

  
   

And the corresponding short run CRS cost minimization problem is: 

                     

0 0

1 1 2 2
, ,

0

1 1

0

2 2

min

. . ;

;

;

;

, 0; 0;( 1,2,..., ).

v
y v

j

j

j

j

j

j

j

j

j

j j

j

j

w v r K r K

y

s t v v

K K

K K

y y

y v j N













  









  









           (30) 

As before, define 1 1 and .j jy y
q v    Also 

0 01 1
1 1 2 2 and  .

y y
z K z K   Further define 

0
1

0
2

0 .
K

K
  Then, 

clearly. 
1 0 2.z z  The minimization problem in (30) would then become 
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             (31) 

 

From the optimal solution we can extract the capacity output level 

                                     
0 0
1 2

* *
1 2

* 0 0

1 2( , ) .
K K

CRS z z
y K K                 (32) 

3.5 One Output, Multiple Fixed inputs, VRS 

When the constraint for VRS is included in (19), 
1

1
N

j

j




  implies 1

1

N

j y

j




  and defining 1
y

  the 

optimization problem in (20) may be revised as: 
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(22) 

The capacity output can be obtained as 

                      
0 0
1 2

* * *
1 2

* 0 0 1
1 2( , ) .

K K

VRS z z
y K K


                              (34) 

 

3.6 Multiple Outputs, Multiple Fixed inputs, CRS 

One dilemma with defining the capacity output in terms of the minimum of the average cost 

curve (whether in the short run or in the long run) for a multiple output firm is that ‘a multiproduct cost 

function possesses no natural scalar quantity over which costs may be “averaged” (W. Baumol, Panzar, & 

Willig, 1982). One may, however, treat a specific output bundle 
0y  as one unit of a composite good so 

that a different output bundle with the same output mix 
1 0y ty  can be regarded as t  units of the 

composite good. One can, then, define the Ray average cost  

                        
0 0( , )0 0( ; , ) .

C ty w

t
RAC t y w               (35) 

as the average cost of that composite good (Coelli et al., 2002; Segerson & Squires, 1990). For example, 

if a basket of fruits contains 2 apples and 3 oranges, instead of adding apples and oranges, we simply 

count the number of baskets each of which has 2 apples and 3 oranges and divide the total cost by the 

number of baskets to get the cost per basket holding the mix of apples and oranges in each basket 
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constant. We may define the optimal or efficient scale of production as 
*t  which minimizes 

0 0( ; , ).RAC t y w If a firm is actually producing the output bundle 
0y its efficient output bundle would be 

* * 0y t y  and its capacity utilization rate would be *

1 .
t

  

Consider now the minimum point of the short run ray average cost curve for the output mix 

corresponding to the vector y0 when the firm produces multiple outputs and has a vector of fixed inputs K0 

in the short run. Assume the technology exhibits CRS, and for simplicity assume 2 outputs 
0 0 0

1 2( , )y y y  

and 2 fixed inputs 
0 0 0

1 2( , ).K K K  The short run ray average cost minimization problem is: 

                              

0 0

1 1 2 2
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
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 (36) 

As before, we seek to convert this nonlinear model to a linear programming problem. Define 

0
11

1( 1,2,..., ), , ,j K

j t t t
j N q v z


    

0
2

2

K

t
z  and 

0
1

0
2

0 .
K

K
    . Problem (36) can then be written as the 

following LP problem: 
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           (37) 

As in (20), the efficient production scale is 

                  
0 0
1 2

* *
1 2

* 0 0 0 0

1 2( ; , ; ) .
K K

CRS z z
t y K K w                          (38) 

The corresponding capacity utilization rate is  

* 0 0 0 0
1 2

0 0 0 0 1
1 2 ( ; , ; )

( ; , ; ) .
CRS

CRS t y K K w
CU y K K w                                          (39) 

3.7 Multiple Outputs, Multiple Fixed inputs, VRS 

Next we relax the CRS assumption and impose the constraint 1j

j

   in (36) above. 

Correspondingly the problem (37) is reformulated as:      
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            (40)        

The optimal production scale is 

                             
0 0
1 2

* * *
1 2

* 0 0 0 0 1
1 2( ; , ; )

K K

VRS z z
t y K K w


                          (41) 

and the capacity utilization rate 

                      * 0 0 0 0
1 2

0 0 0 0 *1
1 2 ( ; , ; )

( ; , ; ) .
VRS

VRS t y K K w
CU y K K w             (42) 

4. Empirical Applications 

In this paper we include two empirical applications of the proposed methodology for measuring 

capacity output and capacity utilization rate in the short run. For both examples, we assume the VRS 

technology. The first example utilizes data for a number of US electrical utilities used by Christensen and 

Greene (1976) in their translog cost function paper. Here, we measure short run capacity utilization for 

the 1-output 1-fixed input case considered in section 3b above. The other example uses a 117 observation 

data set for general practice dental care groups in the state of Colorado during 2005 constructed from 

responses to a survey conducted by the American Dental Association (Chen & Ray, 2013). This example 

considers two outputs and two fixed inputs and solves the DEA LP problem from section 3f. 

4.1 Example 1: Short Run Capacity Utilization in Electric Utilities  

 The Christensen and Greene (1976) data is from 99 utilities producing electricity in 1970. Each 

utility produces a single output, kilowatt hours of power generated (KWH), using three inputs – labor (L), 

fuel (F) and capital (K). We treat labor and fuel as variable inputs and capital as a fixed input in the short 
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run. Quantities of labor, fuel, and capital are indices in our data. Output is measured in 1000s of kilowatt 

hours and ranged between eight and 53,918, with a mean value of 9,000 (Table 1). Short-run average cost 

(srac0) across all utilities was between $23.88 and $1,340.42, with an average value of $94.46.  

Table 1. Summary Statistics of the Christensen-Greene Data  
 
Variable Obs. Mean Std. dev. Min Max 
      
Kwh 99 8999.73 10315.14 8 53918 
labor 99 69.91 86.68 1.02 440.53 
fuel 99 960.77 1087.21 2.97 5541.24 
capital 99 132.28 151.71 0.67 851.13 
SRAC Observed 99 94.46 160.07 23.88 1340.42 

 

Results from the model (3b) yielded a mean SRAC of $47.38, with output increasing from a mean 

of 8,999 kwh to 10,647 kwh (Table 2). This suggests that on the whole the utilities were producing below 

their short run capacity output levels. Increasing output would have lowered average cost from 47.38 to 

36.17. The mean capacity utilization rate was 71.34%. There was a wide variation in capacity utilization 

rates across utilities ranging from a low of 4% to a high of 176%. Removing two units with extremely 

small levels of output raised the minimum CU rate to 21.8%. Out of the 99 units in the sample, 84 were 

operating below their respective short run economic capacity levels and could lower their average costs 

by producing more (Table 3). In all, 36 utilities are producing within ± 25% of their respective levels of 

short run capacity output. Only three utilities are producing at their economic capacity level. An 

interesting point to note is that while units producing well above their capacity output levels are, in 

general, among the bigger ones measured by kilowatt hours of output produced, the one with the highest 

capacity utilization rate (178%) is one of the smallest units producing only 374 (compared to an overall 

mean of 9000) kilowatt hours for the entire sample. This apparent paradox arises because its capital input 

is also very small (3.01 against a sample average of 132.38). Similarly, among the 3 units with capacity 

utilization rate of 100% are the 3rd smallest and the 3rd largest in terms of output levels with the smallest 

producing 30 kilowatt hours and the largest 38,343 kilowatt hours. Their corresponding quantities of the 

capital input are 0.67 and 562.13 units.  
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Table 2. Results from model 3b using the Christensen-Greene Data 
 

Variable Obs. Mean Std. Dev. Min. Max. 

      

Actual Output 99 8999.73 10315.14 8 53918 

Capacity Output 99 10647.79 9508.52 50 38343 

Capacity Utilization 99 0.71 0.30 .05 1.77 
SRAC 99 47.38 104.11 23.85 894.09 
Minimum SRAC 99 36.18 36.72 22.24 373.66 

 

 

 

 

 

 

 

 

 

 

Most utilities in our sample were operating below 100% CU. For those utilities operating above 

100% CU, the short run economic capacity output level depended on the quantity of the fixed input 

(capital). We found that even a small level of output may be located in the region of short run 

diseconomies of scale (i.e., the upward rising segment of the short run average cost curve) if the quantity 

of the fixed input is very small.  Operating where there are short run diseconomies of scale means that the 

utilities should cut back output in order to lower average cost.   

4.2 Example 2: Short Run Capacity Utilization in Dental Care  

In this empirical application we use the Chen and Ray (2013) dental care provider data.  

Typically, patients are treated by dental hygienists for periodic cleaning and by dentists for palliative, 

restorative, prosthetic, or orthodontic care (like tooth extraction, fillings, root canals, implants, etc.). We 

Table 3. Frequency Distribution of 

Capacity Utilization 

  

Capacity Utilization 

Rate 

Frequency 

 Below 50% 20 

50% - 75% 41 

75% - 95% 18 

95% - 100% 5 

100% 3 

100% - 125% 7 

125% - 150% 3 

Greater than 150% 2 
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measure the two kinds of outputs of a practice by the numbers of dentist visits and hygienist visits. The 

inputs included are (i) dentist hours, (ii) hygienist hours, (iii) chairside assistant hours, (iv) other staff 

hours, (v) lab expenses, (vi) supply expenses, (vii) square feet of office space, and (viii) number of 

equipped examination and operating rooms (operatories). The last two inputs, office space and 

operatories, are treated as fixed in the short run. Table 4 reports the summary statistics of the output and 

input quantities and the input prices5. Out of the 117 practices covered in the study, 2 had no dental 

hygienists. The number of operatories varied from 1 to 20 with a mean of 4.65. Office floor space varied 

from 800 to 13,000 square feet, with an average floor space of 2,482 square feet. Apparently, large 

practices with 20 operatories or 13,000 square feet of office space were multi-location dental care groups. 

The output mix (measured by the ratio of dentist visits and hygienist visits) averaged 1.453 with a 

minimum of 0.395 and a maximum of 6.349. Similarly, the mix of the fixed inputs varied from a 

minimum of 225 square feet per operatory to a maximum of 1250 square feet. The average was 465.197. 

As will be shown below, in the multiple output, multiple fixed input case (3f), capacity utilization 

depends on both output mix and the ratio of fixed inputs. 

Results from model 3f showed a capacity utilization rate of 73.2%, with   a minimum of 25% and 

a maximum of 150%. Table 5 shows the frequency distribution of capacity utilization rates for the dental 

care practices. A majority of the observations (89 out of 117) showed capacity utilization below 100%. 

All of these practices were operating in the downward sloping segment of their ray average cost curves in 

regions of positive short run scale economies. Sixteen practices were producing at their short run optimal 

scale (i.e., at the minimum of the short run ray average cost curve). The remaining 12 (with capacity 

utilization rates in excess of 100%) were experiencing short run diseconomies of scale. 

  

                                                           
5 For details of how the input prices have been constructed, see Chen and Ray (2012). 
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Table 4. Summary Statistics of Dental Care Outputs and Inputs 

Variable Mean Std. Dev. Min Max 

Outputs         

Dentist visit 3216.752 2432.793 884 18356 

Hygienist visit 2504.581 1772.043 0 10400 

     

Inputs 

 
        

Dentist (hrs) 2120.436 1142.134 800 9214 

Hygienist (hrs) 2352.709 1472.062 400 8820 

Chairside assistant (hrs) 3085.137 1838.019 360 11210 

Other staff (hrs) 3187.085 2403.095 400 16400 

Lab expenses ($) 57389.85 36890.59 5278 200000 

Supply expenses ($) 49524.52 34613.57 3676 236816 

Square feet office space 2155.504 1534.343 800 13000 

Operatories (number) 4.650 2.482 1 20 

Sq ft per Operatory 465.197 154.887 225 1250 

     

Input Prices 

 
    

Dentist hourly wage 131.51 79.74 25.39 717.06 

Hygienist hourly wage 37.28 8.0 18.79 65.10 

Chair-side hourly wage 19.31 6.70 10.00 62.12 

Other staff hourly wage 17.01 1.31 13.50 19.50 

Per square footage price 24.37 15.57 5.16 116.67 

Operatory Price 10000 10000 10000 0 

Lab expense price 1 1 1 0 

Supply expense price 1 1 1 0 

     

Dentist Visit per Hygienist 

Visit 1.453 0.896 0.395833 6.349206 
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Table 6 illustrates how the capacity utilization rate and the capacity output bundle depend on the 

output mix and/or the capital mix of any unit. Begin by comparing units #487 and #431. Both are 

relatively small units and their fixed inputs are more or less comparable. Unit #431 has 1 more operatory 

and 76 square feet more of office space than unit #487. Their output mix is the same but unit #487 has 

512 square feet of office space per operatory compared to 367 square feet for unit #431. With 

substantially more of both dentist visits and office visits compared to #487, unit #431 naturally has a 

higher capacity utilization rate. However, when we look at the output bundles at the optimal scale, they 

are 3354 dentist visits and 2964 hygienist visits for unit #431 compared to 1768 dentist visits and 1560 

hygienist visits for unit #487.  A comparison of these two practices suggests that devoting more space to 

operatories leads to both higher outputs and capacity utilization.  

Table 6. Data and Results for Selected Dental Care Practices 

survey_id CU K1 K2 y1 y2 y1* y2* K-mix   y-mix 

487 0.50 1024 2 884 780 1768 1560 512 1.13 

431 0.67 1100 3 2236 1976 3354 2964 367 1.13 

290 0.60 2200 5 2652 2340 4420 3900 440 1.13 

295 0.66 4800 8 3796 3328 5788 5075 600 1.14 

247 1.30 6000 10 13520 6760 10428 5214 600 2.00 

229 1.25 8000 10 5990 9360 4792 7488 800 0.64 

Notes:  CU = Capacity Utilization Rate; K1 = square feet of office space; K2 = Number of operatories; y1 

= Dentist Visits; y2 = Hygienist Visits; K-mix = square feet per operatory; y-mix = Dentist visit per 

Hygienist visit 

 

We now shift focus to unit #290, which has twice as much office space and 67% more operatories 

than unit #431. It has the same output-mix as unit #431 and unit #487, and an intermediate level of office 

Table 5. Frequency Distribution of 

Capacity Utilization from Dental Care 

Practices 

  

Capacity Utilization Rate Frequency 

 Below 50% 20 

50% - 75% 56 

75% - 95% 11 

95% - 100% 2 

100% 16 

100% - 125% 5 

125% - 150% 7 
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space per operatory in relation to the other two (440 compared to 512 and 367). The CU for unit #290 is 

lower than that of unit #431, while the optimal level of hygienist and dentist visits are higher. Again, this 

suggests that configuring office space to have more operatories leads to higher optimal output levels and 

lower RAC.  

Next we compare #295 and #247 which have the same mix of the fixed inputs, although #247 is 

25% bigger in terms of both of the fixed inputs. However, their output mixes are quite different as can be 

seen in the y-mix ratio. Unit #247 has twice the number of dentist visits as hygienist visits compared to 

14% more for unit #295. The two units deviate from their respective optimal scale of output 

approximately by the same proportion - #295 is 34% smaller and #247 is 30% bigger than the optimal 

scale. Interestingly, when we compare their optimal output bundles, the number of hygienist visits does 

not differ much (5214 for #247 against 5075 for #295). However, the numbers of dentist visits differ 

widely (10428 for #247 against 5788 for #295).  Since dentist visits are more likely to be associated with 

using an operatory this again suggests that the number of operatories is the critical input determining 

optimal output levels.  

Lastly, compare unit #229 with #247, which have equal number of operatories. Unit #229 has 

both a higher square footage of office space, and a lower ratio of dentist visits to hygienist visits (y-mix). 

Compared to all other units, #229 is the only practice with more hygienist visits than dentist visits, as seen 

in a y-mix of 0.64. Both units are operating above their optimal scale, although the CU for unit #229 is 

slightly lower than unit #247 (1.25 vs. 1.30). Since the number of operatories were the same for both, this 

again suggests that operatories were more important than the total square feet of office space in 

determining optimal output levels.  

This example underscores the point that in the multiple output multiple fixed input case, the short 

run capacity output bundle depends crucially on both the output mix and the proportion of the fixed 

inputs. Another critical factor is the relative prices of inputs which we have not discussed. Unless the 

production technology is homothetic, the curvature (and the optimal scale) depends on the relative prices 

of inputs. In the present example, there was not enough variation of input prices across units to 

significantly alter the shape of the ray average cost.  

5 Summary  

 Firms producing either a single output from multiple inputs, or multiple outputs from multiple 

inputs are ubiquitous in a modern economy. Measuring capacity utilization and optimal output for these 

firms is important because it yields information about the firms’ ability to lower costs by expanding 

production, and whether capital is being fully utilized.  Many studies have estimated capacity and 
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capacity utilization based on maximal output levels without consideration of costs in a nonparametric 

DEA framework because the models are easy to construct and apply, particularly when data are limited. 

While this may provide useful information for managers and policy makers, a measure which ties output 

and cost together can provide richer insights. 

This research has focused on estimating capacity output and capacity utilization for single and 

multi-output technologies which use multiple inputs based on minimum average or ray average cost.  

These estimates are based on non-linear DEA models which were made linear through a simple 

transformation. Progressing from a single output, one fixed input, one variable input model to multiple 

output, multiple fixed input models we demonstrated how to transform the non-linear programming cost 

minimizing models to their linear programming counterparts. We then show how to obtain the optimal 

cost minimizing output levels, along with observed capacity utilization levels based on the model chosen. 

In order to demonstrate our approach, two different models were constructed and estimated (models 3b 

and 3f).  

 The first application was a single output, three input model (3b) used to estimate capacity 

utilization and optimal output levels based on data from the Christensen and Greene (1976) study of U.S. 

electric utilities. The single output was electricity produced and the three inputs were capital, labor and 

energy, where capital was considered a fixed input. Findings showed that most utilities needed to increase 

output in order to produce at minimum average cost. Interestingly, results also indicated that even small 

firms with low output and low levels of capital can be producing in areas where there are diseconomies of 

scale.  

The second application was a two output, eight input model of dental practices located in the U.S. 

state of Colorado. This application differed from the first in that there was more than one output (dentist 

hours and hygienist hours) and there were two fixed inputs (square feet of office space and number of 

operatories). Findings showed that the majority of practices were operating below capacity and could 

have lowered costs by expanding output. Examination of results from six of the practices showed that the 

number of operatories, a fixed factor, was the key input in determining where the practice was operating 

in terms of CU.  

Converting the non-linear RAC minimization problem to a linear programming problem to obtain 

optimal output levels and capacity utilization was a key contribution of this research. While a non-linear 

programming problem can be readily solved with good solvers available through commercial packages 

such as GAMS, and good starting points, converting the problem to a L.P. model means that there are 
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more software packages available to solve the problem. This can be particularly advantageous in less 

developed countries where budgets may limit the ability to purchase advanced software packages.  
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