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Abstract 

In this paper, we investigate the causal relationship between output, proxied by personal 

income, and income inequality in a panel data of 48 states from 1929 to 2012. We employ the 

causality methodology proposed by Emirmahmutoglu and Kose (2011), as it incorporates 

possible slope heterogeneity and cross-sectional dependence in a multivariate panel. 

Evidence of bi-directional causal relationship exists for several inequality measures -- the 

Atkinson Index, Gini Coefficient, the Relative Mean Deviation, Theil’s entropy Index and 

Top 10% -- but no evidence of the causal relationship for the Top 1 % measure. Also, this 

paper finds state-specific causal relationships between personal income and inequality.  
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1. Introduction 

The issue of income inequality has drawn great interest from researchers, politicians, and 

policy makers, since the well-being of an individual often depends on the distribution of 

income. Many researchers show that the U.S. economy experienced increasing income 

inequality over the last 30 years. Consequently, the determinants of income inequality and 

political and/or economic solutions to reduce inequality have become important discussions.  

Researchers consider many possible explanations for this widening gap, yet no 

consensus exists on what can explain its emergence and on what can reduce differences 

among individuals. Most of the existing literature examines the effects of income inequality 

on economic growth in personal income, since personal income exerts a large effect on 

consumer consumption, and since consumer spending drives much of the economy. Studies 

provide evidence that more income inequality slows economic growth over the medium and 

long terms (Alesina and Perotti, 1996; Alesina and Rodrik, 1994; Person and Tabellini, 1992; 

Birdsall et al., 1995; Clarke, 1995; Deininger and Squire, 1996; Easterly, 2007; Wilkinson 

and Pickett, 2007; Berg et al., 2012). In contrast, some studies provide evidence that more 

income inequality promotes economic growth (Lazear and Rosen, 1981; Hassler and Mora, 

2000; Kaldor, 1955; Bourguignon 1981; Saint-Pal and Verdier, 1993; Barro, 2000). 

Depending on the specific research method and sample, this literature discovers a complex 

set of interactions between inequality and economic growth and highlights the difficulty of 

capturing a definitive causal relationship. Inequality either promotes, slows, or does not affect 

growth.  

Studies also exist that examines the causality between income growth and inequality 

using panel data. Using cross-country data, Dollar and Kraay (2002) document that the share 

of income going to the poorest fifth of the income distribution does not change when mean 

income fluctuates. Their finding implies that income of the poor grows at the same rate as the 
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growth rate of the economy. On the other hand, Parker and Vissing-Jorgensen (2009), using 

U.S. income tax returns, find that the top-end of the income distribution carries a high share 

of aggregate income fluctuations. Although inequality rose in almost all U.S. states and 

regions between 1980 and the present, some states and regions experienced substantially 

greater increases in inequality than did others (see, for example, Partridge et al., 1996; 

Partridge et al., 1998; Morrill, 2000). The decentralisation of the analysis to states and 

regions allows geographic policy differences to emerge. At the same time, a cross-state 

consistency also can exist in how those policies respond to the macroeconomic economic 

shocks such as the Great Recession. Although many researchers analyse state differences in 

poverty, health insurance, social mobility, and taxes, less study occurs on state differences in 

causality between personal income and inequality.  

Even though many researchers analyse causality relationships using cross-state data, a 

couple of issues are not addressed such as the possible existence of heterogeneity, cross-

sectional dependence, and interdependencies. We use a modified version of the panel 

causality developed by Emirmahmutoglu and Kose (2011), which was originally designed to 

analyse causality in a bivariate-setting, to control not only for heterogeneity and cross-

sectional dependence across state, but also to permit interactions between personal income 

and inequality.  

Since U.S. states experience significant spatial effects given their high level of 

integration, we need to address the concern expressed in Pesaran (2004), who notes that 

ignoring cross-sectional dependency may lead to substantial bias and size distortions. 

Furthermore, unlike traditional causality approaches that rely on cointegration techniques, the 

bootstrap methodology does not require testing for cointegration, hence obviating pre-test 

bias (Emirmahmutoglu and Kose, 2011). The bootstrap methodology also provides evidence 

for the entire panel as well as each of the cross-sectional units comprising the panel. Thus, we 
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can consider state-specific policies, since we possess causality test results for each of the 

series in the panel. A multivariate panel setup allows for greater inference due to the greater 

degrees of freedom, stemming from the larger data set that a panel provides. The panel also 

allows us to control for omitted variables.  

Our sample period covers a series of different events – the Great Depression (1929-

1944), the Great Compression (1945-1979), the Great Divergence (1980-present), the Great 

Moderation (1982-2007) and the Great Recession (2007-2009). Goldin and Margo (1991) 

categorized the Great Compression as the time after the Great Depression, when income 

inequality fell significantly compared to the Great Depression. Krugman (2007) identified the 

period after the Great Compression as the Great Divergence, when income inequality grew. 

Piketty and Saez (2003) argue that the Great Compression ended in the 1970s and then 

income inequality worsened in the United States. Many studies show high income inequality 

during the 1920s, strong growth and shared prosperity for the early post-war period, followed 

by slower growth and growing inequality since the 1970s
1
. 

This paper is structured as follows. Section 2 describes data. Section 3 discusses the 

methodology. Section 4 reports and analyses the empirical results. Concluding remarks 

appear in Section 5.   

2. Data 

Our analysis relies on the natural logarithm of U.S. per capita real personal income and the 

six income inequality measures
2
 - Atkinson Index, Gini Coefficient, the Relative Mean 

Deviation, Theil’s entropy Index, the Top 10% income share, and the Top 1% income share -

- as proxies for inequality across the income distribution (Leigh, 2007). The annual data 

cover 1929 – 2012. Income inequality measures and income share measures come from the 

                                                           
1 For example, see Dew-Becker and Gordon (2005), Gordon (2009) 
2 We take natural logarithms to correct for potential heteroskedasticity and dimensional differences between the series. Also, 

by taking natural logarithms, we can interpret the coefficients as elasticities. 
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online data segment of Professor Mark W. Frank’s website.
3
 U.S. per capita nominal personal 

income comes from the Bureau of Economic Analysis (BEA), which we deflate using the 

U.S. aggregate Consumer Price Index (Index 1982-84=100). By using cross-state panel data, 

we minimize the problems associated with data comparability often encountered in cross-

country studies related to income inequality.  

3. Methodology 

As we use cross-state panel dataset, cross-sectional dependency may create some bias in 

identifying causal linkages between personal income and inequality. The high degree of 

economic integration across U.S. states can cause spillover effects of shocks originating in 

one state to other states and these effects, if ignored, may produce misleading inferences 

due to misspecification. Also, the homogeneity restriction, which imposes constant 

parameters with cross-section-specific characteristics, can produce similar outcomes 

(Granger, 2003; Breitung, 2005). To determine the appropriate specification, we test for 

cross-sectional dependence and slope homogeneity. 

3.1 Testing for cross-sectional dependence 

To test for cross-sectional dependence, researchers typically use the Lagrange Multiplier 

(LM) test of Breusch and Pagan (1980). To compute the LM test, we implement the 

following panel-data estimation:  

𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖
′𝑥𝑖𝑡 + 𝑢𝑖𝑡  for 𝑖 = 1,2, … , 𝑁 ; 𝑡 = 1,2, … , 𝑇,   (1) 

where 𝑖  is the cross-section dimension, 𝑡  is the time dimension, 𝑥𝑖𝑡  is 𝑘 × 1  vector of 

expnatory variables, 𝛼𝑖  and 𝛽𝑖  are the individual intercepts and slope coefficients that we 

allow to vary across states, respectively. In the LM test, we test the null hypothesis of no-

cross-sectional dependence -- 𝐻0: 𝐶𝑜𝑣(𝑢𝑖𝑡 , 𝑢𝑗𝑡) = 0 for all 𝑡 and 𝑖 ≠ 𝑗 --- against the 

                                                           
3 http://www.shsu.edu/eco_mwf/inequality.html. Professor Frank constructed the dataset based on Internal Revenue Service 

(IRS) data, which omits some individuals earning less than a threshold level of gross income. For this reason, we focus more 

on the top income shares as primary indicators of inequality measures. We examine six inequality measures as each offers a 

different insight as to the inequality of income. 

http://www.shsu.edu/eco_mwf/inequality.html
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alternative hypothesis of cross-sectional dependence 𝐻1: 𝐶𝑜𝑣(𝑢𝑖𝑡 , 𝑢𝑗𝑡) ≠ 0, for at least one 

pair of 𝑖 ≠ 𝑗. To test the null hypothesis, Breusch and Pagan (1980) developed the LM test as 

follows: 

𝐿𝑀 = 𝑇 ∑ ∑ 𝜌̂𝑖𝑗
2𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1 ,        (2) 

where 𝜌̂𝑖𝑗 is the sample estimate of the pair-wise correlation of the residuals from Ordinary 

Least Squares (OLS) estimation of equation (1) for each 𝑖. Under the null hypothesis, the LM 

statistics possesses an asymptotic chi-squared distribution with (
𝑁(𝑁−1)

2
) degrees of freedom. 

Note that the LM test is valid for N relatively small and T sufficiently large. 

The Cross-sectional Dependence (CD) test may decrease in power under certain 

situations -- when the population average pair-wise correlations are zero, but the underlying 

individual population pair-wise correlations are non-zero (Pesaran et al., 2008). In addition, 

in stationary dynamic panel data models, the CD test fails to reject the null hypothesis when 

the factor loadings contain zero mean in the cross-sectional dimension. To overcome these 

problems, Pesaran et al. (2008) propose a bias-adjusted test, which is a modified version of 

the LM test by using the exact mean and variance of the LM statistic. The bias-adjusted LM 

test is 

𝐿𝑀𝑎𝑑𝑗 = √(
2𝑇

𝑁(𝑁−1)
) ∑ ∑ 𝜌̂𝑖𝑗

𝑁
𝑗=𝑖+1

(𝑇−𝑘)𝜌̂𝑖𝑗
2 −𝜇𝑇𝑖𝑗

√𝑣𝑇𝑖𝑗
2

𝑁−1
𝐼=1 ,    (3) 

where 𝜇𝑇𝑖𝑗  and 𝑣𝑇𝑖𝑗
2  are the exact mean and variance of (𝑇 − 𝑘)𝜌̂𝑖𝑗

2 , respectively, which 

Pesaran et al. (2008) provides. Under the null hypothesis with first 𝑇 → ∞ and 𝑁 →

∞ , 𝑡ℎ𝑒 𝐿𝑀𝑎𝑑𝑗  test is asymptotically normally distributed. 

3.2 Testing slope homogeneity 

We next check whether the slope coefficients are homogeneous in a panel data analysis. The 

causality from one to another variable with the joint restriction imposed for entire panel 

generates the strong null hypothesis (Granger, 2003). Moreover, the homogeneity assumption 
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for the parameters cannot capture heterogeneity due to region-specific characteristics 

(Breitung, 2005). 

The most well-known way to test the null hypothesis of slope homogeneity -- 

𝐻0: 𝛽𝑖 = 𝛽 for all 𝑖  -- against the hypothesis of heterogeneity -- 𝐻1: 𝛽𝑖 ≠ 𝛽 for a non-zero 

fraction of pair-wise slopes for 𝑖 ≠ 𝑗 -- employs the standard F test. The F test is valid when 

the cross-section dimension (N) of the panel is relatively small and the time dimension (T) is 

relatively large; the explanatory variables are strictly exogenous; and the error variances are 

homoscedastic. By relaxing the homoscedasticity assumption in the F test, Swamy (1970) 

developed the slope homogeneity test on the dispersion of individual slope estimates from a 

suitable pooled estimator. Both the F and Swamy’s test require panel data, where N is small 

relative to T. Pesaran and Yamagata (2008) proposed a standardized version of Swamy’s test 

(the ∆̃ test) for testing slope homogeneity in large panels. The ∆̃ test is valid when (𝑁, 𝑇) →

∞ without any restrictions on the relative expansion rates of N and T as the error terms are 

normally distributed. In the ∆̃ test approach, the first step computes the following modified 

version of the Swamy’s test as in Pesaran and Yamagata (2008)
4
: 

𝑆̃ = ∑ (𝛽⏞
𝑖

− 𝛽𝑊𝐹𝐸)′ 𝑥𝑖
′𝑀𝜏𝑥𝑖

𝜎̃𝑖
2

𝑁
𝑖=1 (𝛽⏞

𝑖
− 𝛽𝑊𝐹𝐸),     (4) 

where 𝛽⏞
𝑖
 is the pooled OLS estimatoer, 𝛽𝑊𝐹𝐸 is the weighted fixed effect pooled estimator, 

𝑀𝜏  is an identity matrix, and 𝜎̃𝑖
2  is the estimator of 𝜎𝑖

2 . Then the standardized dispersion 

statistic is as follows: 

∆̃=  √𝑁(
𝑁−1𝑆̃−𝑘

√2𝑘
).        (5) 

Under the null hypothesis with the condition of (𝑁, 𝑇) → ∞ (as long as √𝑁/𝑇 → ∞) and the 

error terms are normally distributed, the ∆̃ test is asymptotically normally distributed. Under 

the normally distributed errors, the small sample properties of the ∆̃ test improve when using 

                                                           
4 See Pesaran and Yamagata (2008) for the details of estimators and for Swamy’s test. 
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the following bias-adjusted version: 

∆̃𝑎𝑑𝑗=  √𝑁(
𝑁−1𝑆̃−𝐸(𝑧𝑖𝑡)

√𝑣𝑎𝑟(𝑧𝑖𝑡)
),       (6) 

where 𝐸(𝑧̃𝑖𝑡) = 𝑘 and 𝑣𝑎𝑟(𝑧̃𝑖𝑡) = 2𝑘(𝑇 − 𝑘 − 1) 𝑇⁄ + 1. 

If cross-sectional dependence and heterogeneity exist, then the panel causality test 

that imposes the homogeneity restriction and does not account for spillover effects may 

produce misleading inferences. Table 1 summarizes the results of these selected tests. We can 

reject the nulls of slope homogeneity and cross-sectional independence, hence, confirming 

the evidence of heterogeneity as well as spillover effects across the U.S. states. The findings 

reported in Table 1 motivate the decision to rely on the methodology for causal analysis 

proposed by Emirmahmutoglu and Kose (2011), which addresses heterogeneous mixed 

panels and cross-sectional dependence. 

3.3 Panel Granger causality analysis 

The panel Granger causality test proposed by Emirmahmutoglu and Kose (2011) uses the 

Meta analysis of Fisher (1932). Emirmahmutoglu and Kose (2011) extend the Lag 

Augmented VAR (LA-VAR) approach by Toda and Yamamoto (1995), which uses the level 

VAR model with extra dmax lags to test Granger causality between variables in 

heterogeneous mixed panels. Consider a level VAR model with 𝑘𝑖 + 𝑑max𝑖  lags in 

heterogeneous mixed panels: 

𝑥𝑖,𝑡 = 𝜇𝑖
𝑥 + ∑ 𝐴11,𝑖𝑗

𝑘𝑖+𝑑max𝑖
𝑗=1 𝑥𝑖,𝑡−𝑗 + ∑ 𝐴12,𝑖𝑗

𝑘𝑖+𝑑max𝑖
𝑗=1 𝑦𝑖,𝑡−𝑗 + 𝑢𝑖,𝑡

𝑥  and (7) 

𝑦𝑖,𝑡 = 𝜇𝑖
𝑦

+ ∑ 𝐴21,𝑖𝑗
𝑘𝑖+𝑑max𝑖
𝑗=1 𝑥𝑖,𝑡−𝑗 + ∑ 𝐴22,𝑖𝑗

𝑘𝑖+𝑑max𝑖
𝑗=1 𝑦𝑖,𝑡−𝑗 + 𝑢𝑖,𝑡

𝑦
,  (8) 

where 𝑖 (𝑖 = 1, … , 𝑁) denotes individual cross-sectional units; 𝑡 (𝑡 = 1, … , 𝑇) denotes time 

period; 𝜇𝑖
𝑥 and 𝜇𝑖

𝑦
 are two vectors of fixed effects; 𝑢𝑖,𝑡

𝑥  and 𝑢𝑖,𝑡
𝑦

 are column vectors of error 

terms; 𝑘𝑖is the lag structure, which we assume to know and may differ across cross-sectional 
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units; and 𝑑max𝑖 is the maximal order of integration in the system for each i. Following the 

bootstrap procedure in Emirmahmutoglu and Kose (2011), we test for causality from x to y as 

follows: 

Step 1. We determine the maximal order 𝑑max𝑖 of integration of variables in the system for 

each cross-section unit based on the Augmented Dickey Fuller (ADF) unit-root test and select 

the lag orders 𝑘𝑖’s via Akaike information criterion or Schwarz information criterion (AIC or 

SIC) by estimating the regression (2) using the OLS method.  

Step 2. We re-estimate Equation (2) using the 𝑑max𝑖  and 𝑘𝑖  under the non-causality 

hypothesis and attain the residuals for each individual as follows: 

𝑢̂𝑖,𝑡
𝑦

= 𝑦𝑖,𝑡 − 𝜇̂𝑖
𝑦

− ∑ 𝐴̂21,𝑖𝑗
𝑘𝑖+𝑑max𝑖
𝑗=1 𝑥𝑖,𝑡−𝑗 − ∑ 𝐴̂22,𝑖𝑗

𝑘𝑖+𝑑max𝑖
𝑗=1 𝑦𝑖,𝑡−𝑗  (9) 

Step 3. We center the residuals using the suggestion of Stine (1987) as follows: 

𝑢̃𝑡 = 𝑢̂𝑡 − (𝑇 − 𝑘 − 𝑙 − 2)−1 ∑ 𝑢̂𝑡
𝑘𝑖+𝑑max𝑖
𝑗=1 ,     (10) 

where 𝑢̂𝑡 = (𝑢̂1𝑡, 𝑢̂2𝑡 , … , 𝑢̂𝑁𝑡)′, 𝑘 = max(𝑘𝑖) and 𝑙 = max (𝑑max𝑖). Furthermore, we develop 

the [𝑢̃𝑖𝑡]𝑁×𝑇 from these residuals. We select randomly a full column with replacement from 

the matrix at a time to preserve the cross covariance structure of the errors. We denote the 

bootstrap residuals as 𝑢̃𝑡
∗ where (t=1,…, T). 

Step 4. We generate a bootstrap sample of 𝑦𝑖,𝑡
∗  under the null hypothesis: 

𝑦𝑖,𝑡
∗ = 𝜇̂𝑖

𝑦
+ ∑ 𝐴̂21,𝑖𝑗

𝑘𝑖+𝑑max𝑖
𝑗=1 𝑥𝑖,𝑡−𝑗 + ∑ 𝐴̂22,𝑖𝑗

𝑘𝑖+𝑑max𝑖
𝑗=1 𝑦𝑖,𝑡−𝑗

∗ + 𝑢𝑖,𝑡
∗  ,  (11) 

where 𝜇̂𝑖
𝑦

, 𝐴̂21,𝑖𝑗, and 𝐴̂22,𝑖𝑗 are the estimates from step 2.  

Step 5. For each individual, we calculate Wald statistics to test for the non-causality null 

hypothesis by substituting 𝑦𝑖,𝑡
∗  for 𝑦𝑖,𝑡  and estimating Equation (2) without imposing any 

parameter restrictions. Using individual p-values that correspond to the Wald statistic of the 

i
th

 individual cross-section, we calculate the Fisher test statistic λ as follows: 

λ =  −2 ∑ ln(𝑝𝑖) , 𝑖 = 1, … , 𝑁𝑁
𝑖=1 .      (12) 
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We generate the bootstrap empirical distribution of the Fisher test statistics by repeating steps 

3 to 5 10,000 times and specifying the bootstrap critical values by selecting the appropriate 

percentiles of these sampling distributions. Using simulation studies, Emirmahmutoglu and 

Kose (2011) demonstrate that the performance of LA-VAR approach under both cross-

section independency and dependency seem to perform satisfactory for the entire range of 

values for T and N.  

4. Empirical Analysis 

As mentioned in the methodology section, we first need to examine for possible cross-

sectional dependence and slope heterogeneity, using four different tests 

( 𝐶𝐷𝐵𝑃, 𝐶𝐷𝐿𝑀, 𝐶𝐷, 𝐿𝑀𝑎𝑑𝑗 ) with a null hypothesis of no cross-sectional dependence. The 

results conclude that we can reject the null hypothesis at the 1-percent level of significance 

(see Table 1, 4 rows from the top). This outcome implies that evidence exists of cross-

sectional dependence, meaning that a shock originating in one state may spillover into other 

states. As shown in the methodology section, the causality tests of Emirmahmutoglu and 

Kose (2011) control for this dependency.  

Also, Table 1 (3 rows from the bottom) shows the results of the slope homogeneity 

tests. According to ∆̃ test, we can reject the null hypothesis of homogenous slopes at the 1-

percent level of significance. Furthermore, at least one of the tests rejects null hypothesis of 

slope homogeneity with the ∆̃ 𝑎𝑑𝑗 test and the Swamy Shat test. This implies that imposing 

slope homogeneity on the panel causality analysis may result in misinterpretation. Hence, we 

need to consider possible state-specific characteristics. 

Establishing the existence of cross-sectional dependence and heterogeneity across the 

48 U.S. states suggests the suitability of the bootstrap panel causality approach developed by 

Emirmahmutoglu and Kose (2011), which accounts for these econometric issues. Table 2 

through 7 report the bootstrap test causality results. We chose the appropriate lag length using 

the Akaike Information Criterion for each state.  
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The overall causality results between income inequality and personal income suggest 

that we can reject both the null of no Granger causality from inequality to income and from 

income to inequality at 1-percent level of significance (i.e. bi-directional causality) except for 

Top 1% income share, suggesting the possible existence of a trend relationship between 

increasing income and widening income inequality.  

Table 2 shows the causality between personal income and the Atkinson Index. Under 

AIC and SBC, the asymptotic chi-square values applied with the Fisher test are higher for 

inequality led hypothesis. This suggests that individual states results are more consistent for 

the inequality led hypothesis than the income led hypothesis. That is, only 3 states out of 48 

display insignificant Wald statistics (high p-values) for the inequality led hypothesis, namely 

New Mexico, North Dakota, and Wyoming. For the income led hypothesis, 6 states display 

insignificant Wald statistics, namely Arizona, Florida, Maryland, Missouri, New Hampshire, 

and Wyoming. Thus, Wyoming confirms the neutrality hypothesis. 

Table 3 shows causality between personal income and the Gini coefficient. Under AIC 

and SBC, the asymptotic chi-square values applied with the Fisher test are higher for 

inequality led hypothesis. This suggests that individual results are more consistent for the 

inequality led hypothesis than the income led hypothesis. That is, 4 states display 

insignificant Wald statistics (high p-values) for inequality led hypothesis, namely Kansas, 

Montana, Nebraska, and Wyoming. For the income led hypothesis, 11 states display an 

insignificant Wald statistics, namely Arkansas, Colorado, Iowa, Louisiana, Maryland, 

Mississippi, Missouri, South Carolina, Texas, Wisconsin, and Wyoming. Once again, 

Wyoming confirms to the neutrality hypothesis. 

Table 4 shows causality between personal income and the Relative Mean Deviation.  

Under AIC and SBC, the asymptotic chi-square values applied with the Fisher test are higher 

for inequality led hypothesis. This suggests that individual results are more consistent for the 
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inequality led hypothesis than the income led hypothesis. Only South Dakota displays an 

insignificant Wald statistic (high p-value) for the inequality led hypothesis. For the income 

led hypothesis, only 3 states out of 48 states display an insignificant Wald statistics, namely 

Iowa, Texas, and Wyoming. No state conforms to the neutrality hypothesis in this case.  

Table 5 shows causality between personal income and Theil’s entropy. Under AIC and 

SBC, the asymptotic chi-square values applied with the Fisher test are higher for the 

inequality led hypothesis. This suggests that individual results are more consistent for the 

inequality led hypothesis than the income led hypothesis. 12 states display insignificant Wald 

statistics (high p-values) for the inequality led hypothesis, namely Arkansas, Idaho, Indiana, 

Maryland, Mississippi, Nebraska, New Mexico, North Carolina, Oregon, South Dakota, 

Vermont, and Wyoming. For the income led hypothesis, 30 states display an insignificant 

Wald statistics, namely Arizona, Colorado, Connecticut, Florida, Idaho, Indiana, Iowa, 

Louisiana, Maryland, Massachusetts, Minnesota, Mississippi, Missouri, Nevada, New 

Hampshire, New Jersey, New York, North Dakota, Ohio, Oregon, Pennsylvania, South 

Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Washington, Wisconsin, and 

Wyoming. Thus, we confirm the neutrality hypothesis for 8 states, namely, Idaho, Indiana, 

Maryland, Mississippi, Oregon, South Dakota, Vermont, and Wyoming. 

Table 6 shows causality between personal income and Top 10% income share. 4 states 

display insignificant Wald statistics (high p-values) for the inequality led hypothesis, namely 

Arizona, Montana, South Dakota, and Wyoming. For the income led hypothesis, 4 states 

display an insignificant Wald statistics, namely Arizona, Florida, New York, and Utah. Thus, 

we confirm the neutrality hypothesis only for Arizona. 

Table 7 shows that the overall results confirm no causality between Top 1% income 

share and Income.  

The differences of the results underline the advantages of panel over individual 
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regressions such as capturing more complex dynamic models, identifying unobserved effects, 

and mitigating multicollinearity problems (Baltagi, 2008). 

5. Conclusion 

In this paper, we followed the procedure of Emirmahmutoglu and Kose (2011), a panel 

Granger causality methodology that controls for heterogeneity and cross-sectional 

dependence, to test for the existence and direction of causal relationships between income 

and income inequality, using annual data for the 48 U.S. states from 1929-2012. The panel 

data literature has shown possible cross-sectional dependence with panel data resulting in 

biased estimates (Pesaran; 2006). 

In this study, we found evidence of bi-directional causal relationship exists for the 

Atkinson Index, Gini Coefficient, the Relative Mean Deviation, Theil’s entropy Index, and 

Top 10% measures of inequality. For Top 1% income share, we found no evidence of a 

causal relationship. Also, we found state-specific causal relationships between personal 

income and inequality. 

The reason for focusing on inequality across states reflects the fact that inequality-

related policy can occur at the state and local levels, which can produce different inequality 

profiles across states. For instance, federal tax and transfer policies affect inequality. States 

can selectively adopt and/or implement some federal policies or supplement them with state 

policies. For example, states (and local municipalities) can increase the minimum wage 

applicable within its borders as seen with the recent adoption of $15 minimum wage in some 

cities. Progressive state personal income tax policies can alter the progressivity of the federal 

code. As another example, states responded differently to the Affordable Care Act (Obama 

Care) with respect to providing or not providing Medicaid to state residents. 

As another example, most immigrants from Mexico settled in California and Texas 

and the immigration probably increased inequality. Legalisation of immigration for many 

U.S. residents would attract those who currently work off the books onto the IRS tax rolls, 
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which, in turn, would increase the state-level Earned Income Tax Credits, reducing 

inequality. As immigration policy is a federal government issue, however, state-level efforts 

to address rising inequality by immigrants through the tax might face limitations. In the long 

term, states can make changes to their policy on human-capital investment that can raise 

middle-class incomes and reduce inequality (Heinrich and Smeedling, 2014). Better access to 

education and health service and well-targeted social policies can help rise the income share 

for the poor and the middle income group. No one-size-fits-all policy exists to tackling 

inequality issues, however. 

Since some of the literature supports a positive effect of inequality on growth, some 

degree of inequality may not prove beneficial. For instance, returns to education and 

differentiation in labour earnings can motivate human capital accumulation and economic 

growth, despite its association with higher income inequality (Lazear and Rosen, 1981). 

Rising inequality, however, can result in large social cost, as income inequality can 

significantly undermine individual’s educational and occupational choices. Further, a 

possibility exists that income inequality does not generate the “right” incentives if it rests on 

rents (Stiglitz, 2012). In that case, individuals have an incentive to divert their efforts toward 

protection, such as resource misallocation and corruption. Thus, the appropriate policies 

depend on the underlying drivers and state-specific policy and institutional settings.  
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Table 1. Cross-sectional Dependence and Homogeneity Tests (Inequality and Income) 

 Atkin05 Gini Rmeandev Theil Top 10% Top1% 

BPCD  42343.951*** 34514.356*** 29210.937*** 28955.723*** 42343.951*** 45076.726*** 

LMCD  867.752*** 702.910*** 591.252*** 585.879*** 867.752*** 925.288*** 

CD  202.945*** 181.227*** 163.112*** 163.445*** 202.945*** 208.543*** 

adjLM  1708.916*** 1735.807*** 1656.264*** 1569.867*** 1583.094*** 1600.792*** 

  178.457*** 168.938*** 189.290*** 106.396*** 73.039*** 100.942*** 

adj  2.188*** 2.072*** 2.321*** 1.304* 0.895 1.237* 

Swamy Shat 1796.522*** 1703.247*** 1902.657 1090.463*** 763.639*** 1037.030*** 

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively. 
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Table 2. Results of Granger causality between Personal Income and Atkinson Index 

State 
Lag 

length 

Income led hypothesis 

H0: Income sorted does not  

Granger Cause Atkinson Index 

Inequality led hypothesis 

H0: Atkinson Index does not  

Granger Cause Income sorted  

AIC, 
dmax=1 

 
SBC, 

dmax=1 
 

AIC, 
dmax=2 

 
AIC, 

dmax=1 
 

SBC, 
dmax=1 

 
AIC, 

dmax=2 
 

Alabama 8 25.243 *** 26.764 *** 16.262 ** 12.778  16.581 *** 9.122  

Arizona 5 6.528  6.528  5.55  22.237 *** 22.237 *** 23.579 *** 

Arkansas 8 37.695 *** 7.663 ** 30.128 *** 14.198 * 7.196 ** 14.125 * 
California 8 27.116 *** 10.139 * 23.986 *** 23.346 *** 24.117 *** 27.374 *** 

Colorado 8 19.89 ** 7.427  17.301 ** 28.372 *** 25.05 *** 22.622 *** 

Connecticut 8 15.266 * 3.236  11.833  26 *** 1.031  24.24 *** 
Delaware 8 23.568 *** 23.568 *** 20.911 *** 24.067 *** 24.067 *** 33.252 *** 

Florida 8 8.477  4.639  11.371  34.657 *** 34.386 *** 32.549 *** 

Georgia 8 19.321 ** 27.941 *** 12.241  15.135 * 16.351 *** 13.013  
Idaho 7 15.137 ** 15.137 ** 20.856 *** 13.499 * 13.499 * 15.404 ** 

Illinois 8 17.215 ** 16.62 ** 8.689  39.786 *** 18.825 *** 16.121 ** 

Indiana 7 14.512 ** 10.298 * 14.711 ** 21.553 *** 20.149 *** 22.656 *** 
Iowa 8 18.628 ** 9.075  11.481  14.893 * 11.82 * 10.521  

Kansas 8 27.39 *** 8.618 * 22.049 *** 15.191 * 14.026 *** 17.118 ** 

Kentucky 7 13.669 * 13.669 * 9.226  31.324 *** 31.324 *** 33.187 *** 
Louisiana 8 25.906 *** 25.906 *** 20.825 *** 68.666 *** 68.666 *** 55.252 *** 

Maine 8 26.861 *** 18.057 *** 15.615 ** 25.112 *** 8.675 * 24.205 *** 

Maryland 7 9.416  1.279  8.296  13.485 * 16.189 *** 9.895  
Massachusetts 8 15.779 ** 9.284 * 9.363  25.205 *** 15.596 *** 16.121 ** 

Michigan 7 21.779 *** 21.779 *** 20.834 *** 16.496 ** 16.496 ** 13.123 * 

Minnesota 8 22.488 *** 6.961  19.037 ** 32.389 *** 35.564 *** 27.528 *** 
Mississippi 8 28.768 *** 6.793  13.947 * 20.589 *** 14.99 ** 15.462 * 

Missouri 5 4.49  4.49  4.792  29.07 *** 29.07 *** 24.523 *** 

Montana 8 22.544 *** 9.095 *** 18.146 ** 18.376 ** 0.143  15.233 * 
Nebraska 8 25.576 *** 3.62 * 19.23 ** 13.819 * 0.077  11.274  

Nevada 8 12.658  0.704  15.767 ** 25.026 *** 0.116  27.156 *** 

N. Hampshire 8 9.119  2.469  8.477  17.807 ** 16.075 *** 9.797  
New Jersey 8 29.883 *** 1.277  19.935 ** 25.051 *** 1.099  15.531 * 

New Mexico 7 24.556 *** 14.876 *** 27.617 *** 9.042  7.024  11.722  

New York 8 24.731 *** 14.514 ** 13.476 * 18.166 ** 15.847 *** 10.262  
North Carolina 7 34.874 *** 26.277 *** 36.815 *** 8.911  14.632 ** 7.357  

North Dakota 3 7.647 * 5.484 ** 8.86 ** 1.939  2.672  2.612  

Ohio 6 8.631  9.71 * 7.847  19.974 *** 19.883 *** 11.476 * 
Oklahoma 8 13.681 * 4.459  19.044 ** 53.313 *** 13.453 *** 38.353 *** 

Oregon 8 22.257 *** 23.711 *** 14.618 * 16.886 ** 12.787 ** 16.204 ** 

Pennsylvania 8 27.514 *** 9.639 * 15.984 ** 24.827 *** 25.649 *** 14.635 * 
Rhode Island 8 21.403 *** 0.851  25.862 *** 29.094 *** 0.428  25.027 *** 

South Carolina 8 19.82 ** 11.37 ** 9.879  21.9 *** 22.958 *** 18.047 ** 

South Dakota 8 18.99 ** 20.228 *** 16.508 ** 13.829 * 11.351  13.566 * 
Tennessee 8 10.567  15.4 *** 5.952  32.855 *** 28.916 *** 18.181 ** 

Texas 7 14.116 ** 1.445  9.594  19.126 *** 15.481 *** 18.662 *** 

Utah 8 31.591 *** 31.591 *** 14.81 * 31.403 *** 31.403 *** 39.529 *** 
Vermont 8 27.173 *** 2.639  21.117 *** 19.313 ** 0.033  15.121 * 

Virginia 8 29.202 *** 15.693 *** 30.481 *** 35.329 *** 23.939 *** 44.449 *** 

Washington 8 15.371 * 6.278  8.104  25.357 *** 26.354 *** 23.325 *** 
West Virginia 7 16.507 ** 17.826 *** 13.157 * 22.013 *** 17.089 *** 12.96 * 

Wisconsin 8 16.69 ** 8.075  8.056  21.937 *** 21.205 *** 10.718  
Wyoming 6 4.027  6.261  4.044  3.275  2.108  3.407  

Fisher test 

statistic value 
 460.96      592.007      

AIC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV 10%  

  220.318  176.509  157.391  217.998  174.965  155.848  

Fisher test 
statistic value 

 339.978      544.594      

SBC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV 10%  

  190.624  156.549  141.928  194.822  163.103  145.22  
Fisher test 

statistic value 
 327.115      473.219      

AIC dmax=2  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV 10%  
  193.25  160.971  147.621  192.065  162.099  147.444  

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05 and 0.1 levels, respectively. 

2. Bootstrap critical values are obtained from 10,000 replications. 

3. The number of appropriate lag orders in level VAR systems are selected by minimizing the Schwarz Baysian 

criteria. Lag order 8 is used for all states. 
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Table 3. Results of Granger causality between Personal Income and Gini Coefficient 

State 
Lag 

length 

Income led hypothesis 

H0: Income sorted does not  

Granger Cause Gini Coefficient 

Inequality led hypothesis 

H0: Gini Coefficient does not  

Granger Cause Income sorted  

AIC, 
dmax=1 

 
SBC, 

dmax=1 
 

AIC, 
dmax=2 

 
AIC, 

dmax=1 
 

SBC, 
dmax=1 

 
AIC, 

dmax=2 
 

Alabama 8 19.887 ** 17.559 ** 22.351 *** 22.256 *** 13.508 * 19.545 ** 

Arizona 7 10.473  10.282 ** 9.076  27.38 *** 18.692 *** 24.208 *** 

Arkansas 5 7.233  6.858  5.596  11.678 ** 11.801 ** 10.328 * 
California 8 22.147 *** 22.147 *** 22.624 *** 32.812 *** 32.812 *** 35.881 *** 

Colorado 8 10.196  10.196  11.024  55.989 *** 55.989 *** 46.064 *** 

Connecticut 8 15.452 * 15.452 * 16.522 ** 39.298 *** 39.298 *** 33.853 *** 
Delaware 8 32.253 *** 32.253 *** 29.065 *** 29.988 *** 29.988 *** 48.714 *** 

Florida 8 17.96 ** 18.095 *** 7.772  42.687 *** 31.849 *** 40.247 *** 

Georgia 8 14.704 * 26.133 *** 11.949  30.804 *** 25.738 *** 23.324 *** 
Idaho 8 25.735 *** 24.052 *** 39.289 *** 36.555 *** 27.708 *** 24.445 *** 

Illinois 8 26.938 *** 24.456 *** 23.009 *** 43.683 *** 12.701 ** 18.715 ** 

Indiana 8 13.929 * 16.592 ** 14.242 * 31.284 *** 26.709 *** 15.142 * 
Iowa 8 9.659  10.183  10.213  18.077 ** 19.575 *** 15.543 ** 

Kansas 8 30.99 *** 21.377 *** 29.793 *** 10.668   6.91   11.849   

Kentucky 7 13.531 * 13.531 * 10.233  29.003 *** 29.003 *** 27.639 *** 
Louisiana 8 7.223  7.223  13.309  49.444 *** 49.444 *** 39.748 *** 

Maine 8 21.894 *** 17.475 *** 15.222 * 23.82 *** 3.243   21.952 *** 

Maryland 8 10.677  3.068  10.587  32.318 *** 22.196 *** 18.708 ** 
Massachusetts 8 25.499 *** 14.45 *** 27.519 *** 31.296 *** 12.94 ** 20.578 *** 

Michigan 7 20.019 *** 20.019 *** 18.064 ** 23.333 *** 23.333 *** 19.581 *** 

Minnesota 8 23.947 *** 23.947 *** 22.838 *** 30.771 *** 30.771 *** 23.545 *** 
Mississippi 7 4.567  3.003  5.253  12.434 * 16.857 ** 10.653   

Missouri 6 7.814  5.031  6.565  30.093 *** 29.495 *** 25.475 *** 

Montana 8 7.483  4.165 ** 10.477  7.974   0.865   7.731   
Nebraska 8 27.569 *** 0.031  27.134 *** 11.697   0.124   10.912   

Nevada 8 33.182 *** 32.823 *** 31.505 *** 23.092 *** 20.313 *** 26.067 *** 

N. Hampshire 8 12.864  1.522  14.006 * 36.156 *** 23.675 *** 25.262 *** 
New Jersey 8 29.34 *** 1.706  25.357 *** 38.293 *** 1.74   26.72 *** 

New Mexico 8 13.825 * 9.112 * 14.015 * 22.624 *** 9.25 * 18.665 ** 

New York 8 38.057 *** 23.227 *** 34.05 *** 23.141 *** 12.155 ** 15.091 * 
North Carolina 7 12.02  17.3 *** 15.188 ** 8.688   12.087 ** 8.074   

North Dakota 7 13.617 * 5.479 ** 11.182  9.373   3.958 ** 11.883   

Ohio 7 15.987 ** 14.907 ** 14.34 ** 28.587 *** 21.887 *** 35.665 *** 
Oklahoma 8 12.962  2.988  15.727 ** 26.494 *** 15.802 *** 15.483 * 

Oregon 8 25.954 *** 29.587 *** 28.088 *** 15.414 * 32.636 *** 16.437 ** 

Pennsylvania 8 22.906 *** 19.1 *** 22.825 *** 26.292 *** 19.752 *** 16.124 ** 
Rhode Island 8 23.26 *** 0.285  24.934 *** 46.823 *** 0.018   37.505 *** 

South Carolina 8 5.384  2.539  7.358  20.272 *** 15.253 *** 21.077 *** 

South Dakota 8 22.612 *** 23.157 *** 23.249 *** 11.926   12.378 * 8.772   
Tennessee 8 13.75 * 19.254 *** 14.084 * 24.44 *** 19.887 *** 11.48   

Texas 7 9.824  9.824  6.037  13.694 * 13.694 * 12.533 * 

Utah 8 48.434 *** 34.767 *** 33.875 *** 38.466 *** 26.511 *** 39.858 *** 
Vermont 8 16.903 ** 9.453 * 17.442 ** 25.032 *** 12.377 ** 17.925 ** 

Virginia 8 16.962 ** 14.577 ** 16.99 ** 55.66 *** 36.194 *** 43.315 *** 

Washington 8 19.015 ** 13.797 ** 19.705 ** 18.105 ** 19.295 *** 14.616 * 
West Virginia 7 13.35 * 17.523 *** 6.929  19.205 *** 17.19 *** 13.024 * 

Wisconsin 8 5.435  6.18  8.418  22.367 *** 25.542 *** 10.575   
Wyoming 4 2.139  2.139  2.139  2.045   2.045   2.557   

Fisher test 

statistic value 
 405.633      724.19      

AIC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV 10%  

  225.97  180.168  159.523  224.271  182.758  161.691  

Fisher test 
statistic value 

 403.825      609.102      

SBC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV 10%  

  193.456  160.408  144.1  198.094  163.79  148.543  
Fisher test 

statistic value 
 382.65      546.644      

AIC dmax=2  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV 10%  
  205.921  168.096  151.267  206.634  170.309  153.597  

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05 and 0.1 levels, respectively. 

2. Bootstrap critical values are obtained from 10,000 replications. 
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Table 4. Results of Granger causality between Personal Income and Relative Mean 

Deviation 

state 
Lag 

length 

Income led hypothesis 

H0: Income sorted does not  

Granger Cause the Relative Mean Deviation 

Inequality led hypothesis 

H0: the Relative Mean Deviation does not  

Granger Cause Income sorted  

AIC, 
dmax=1 

 
SBC, 

dmax=1 
 

AIC, 
dmax=2 

 
AIC, 

dmax=1 
 

SBC, 
dmax=1 

 
AIC, 

dmax=2 
 

Alabama 8 28.149 *** 14.627 ** 23.048 *** 24.951 *** 41.917 *** 19.38 ** 

Arizona 7 17.213 ** 17.213 ** 16.157 ** 30.047 *** 30.047 *** 25.985 *** 

Arkansas 8 15.508 * 7.795   16.975 ** 31.824 *** 33.372 *** 31.76 *** 
California 8 30.529 *** 30.529 *** 29.334 *** 33.28 *** 33.28 *** 28.322 *** 

Colorado 8 15.053 * 15.053 * 18.418 ** 51.176 *** 51.176 *** 40.199 *** 

Connecticut 8 19.107 ** 19.107 ** 21.47 *** 44.127 *** 44.127 *** 29.442 *** 
Delaware 8 42.638 *** 42.638 *** 46.287 *** 33.777 *** 33.777 *** 54.156 *** 

Florida 8 13.616 * 13.616 * 16.197 ** 56.789 *** 56.789 *** 53.687 *** 

Georgia 8 14.005 * 14.005 * 11.296   72.398 *** 72.398 *** 62.814 *** 

Idaho 8 35.665 *** 35.595 *** 50.548 *** 60.299 *** 33.387 *** 38.491 *** 

Illinois 8 28.096 *** 8.531   22.72 *** 72.855 *** 28.827 *** 38.574 *** 

Indiana 8 32.506 *** 17.017 ** 23.154 *** 48.274 *** 36.978 *** 21.639 *** 

Iowa 8 7.606   7.606   7.955   23.488 *** 23.488 *** 21.596 *** 
Kansas 8 51.205 *** 51.205 *** 36.928 *** 21.615 *** 21.615 *** 17.971 ** 

Kentucky 7 15.917 ** 15.917 ** 13.515 * 51.057 *** 51.057 *** 42.928 *** 

Louisiana 8 20.228 ** 20.228 ** 25.578 *** 61.421 *** 61.421 *** 43.11 *** 
Maine 8 21.815 *** 16.558 ** 22.828 *** 29.503 *** 20.784 *** 23.558 *** 

Maryland 8 26.154 *** 5.34   23.852 *** 44.449 *** 23.757 *** 28.718 *** 

Massachusetts 8 14.103 * 9.795 * 17.495 ** 46.562 *** 20.412 *** 32.301 *** 
Michigan 8 71.539 *** 31.564 *** 80.467 *** 58.039 *** 28.435 *** 29.076 *** 

Minnesota 8 38.335 *** 38.335 *** 36.85 *** 34.265 *** 34.265 *** 23.766 *** 

Mississippi 8 31.203 *** 13.147 ** 31.683 *** 35.735 *** 22.961 *** 52.04 *** 
Missouri 8 15.018 * 7.1   14.546 * 52.076 *** 44.011 *** 32.87 *** 

Montana 8 14.412 * 6.791 *** 16.013 ** 17.637 ** 0.229   14.897 * 

Nebraska 8 28.939 *** 28.939 *** 29.36 *** 18.448 ** 18.448 ** 17.022 ** 
Nevada 8 13.561 * 13.561 * 16.279 ** 27.103 *** 27.103 *** 23.696 *** 

N. Hampshire 8 14.605 * 2.376   16.744 ** 43.557 *** 27.62 *** 28.039 *** 

New Jersey 8 22.593 *** 5.973   33.982 *** 70.425 *** 41.288 *** 55.034 *** 
New Mexico 7 20.056 *** 20.056 *** 16.457 ** 37.007 *** 37.007 *** 37.344 *** 

New York 8 21.771 *** 6.895   13.177   51.467 *** 34.689 *** 38.247 *** 

North Carolina 8 23.031 *** 30.513 *** 29.145 *** 18.953 ** 22.925 *** 33.549 *** 
North Dakota 8 18.655 ** 6.802 *** 20.378 *** 11.417   3.054 * 9.937   

Ohio 8 40.161 *** 11.247 ** 37.793 *** 51.38 *** 25.62 *** 29.73 *** 

Oklahoma 8 20.784 *** 20.784 *** 18.538 ** 53.59 *** 53.59 *** 38.283 *** 
Oregon 8 26.285 *** 32.143 *** 19.443 ** 37.192 *** 56.901 *** 33.422 *** 

Pennsylvania 8 30.813 *** 30.813 *** 28.284 *** 52.64 *** 52.64 *** 26.244 *** 

Rhode Island 8 33.388 *** 33.388 *** 45.494 *** 43.036 *** 43.036 *** 31.824 *** 
South Carolina 8 11.754   13.863 ** 13.212   36.016 *** 29.302 *** 28.211 *** 

South Dakota 8 21.891 *** 21.891 *** 24.321 *** 12.702   12.702   9.74   

Tennessee 8 9.462   16.611 *** 8.278   68.402 *** 62.575 *** 40.406 *** 
Texas 7 8.706   8.706   7.386   38.555 *** 38.555 *** 35.399 *** 

Utah 8 62.683 *** 62.683 *** 40.606 *** 30.458 *** 30.458 *** 35.671 *** 

Vermont 8 32.492 *** 16.112 *** 29.772 *** 35.337 *** 20.51 *** 26.145 *** 
Virginia 8 28.294 *** 28.294 *** 33.7 *** 99.248 *** 99.248 *** 101.589 *** 

Washington 8 16.836 ** 9.852   13.935 * 33.563 *** 27.803 *** 30.008 *** 
West Virginia 8 27.015 *** 17.296 *** 34.261 *** 32.821 *** 24.227 *** 35.979 *** 

Wisconsin 8 11.667   11.667   14.444 * 28.49 *** 28.49 *** 10.623   

Wyoming 6 2.94   1.602   2.977   11.677 * 3.208   11.566 * 
Fisher test 

statistic value 
 631.99      inf      

AIC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  
  232.605  181.288  161.302  253.533  196.213  170.298  

Fisher test 

statistic value 
 515.951      inf      

SBC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  

  203.074  170.01  153.255  217.667  175.752  158.151  

Fisher test 
statistic value 

 634.493      inf      

AIC dmax=2  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV 0%  

  201.294  166.744  149.775  211.049  211.049  153.337  

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05 and 0.1 levels, respectively. 

2. Bootstrap critical values are obtained from 10,000 replications. 
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Table 5. Results of Granger causality between Personal Income and Theil’s Entropy 

Index 

state 
Lag 

length 

Income led hypothesis 

H0: Income sorted does not  

Granger Cause Theil’s entropy Index 

Inequality led hypothesis 

H0: Theil’s entropy Index does not  

Granger Cause Income sorted  

AIC, 
dmax=1 

 
SBC, 

dmax=1 
 

AIC, 
dmax=2 

 
AIC, 

dmax=1 
 

SBC, 
dmax=1 

 
AIC, 

dmax=2 
 

Alabama 8 8.645   9.458 * 8.762   6.806   10.801 * 5.293   

Arizona 6 5.656   7.794   4.92   19.333 *** 14.939 ** 16.692 ** 

Arkansas 8 15.441 * 1.086   13.206   9.604   0.944   5.116   
California 5 10.725 * 13.195 ** 10.115 * 15.797 *** 15.744 *** 14.322 ** 

Colorado 8 12.999   8.054   13.068   24.829 *** 19.237 *** 24.384 *** 

Connecticut 8 9.282   2.635   7.067   27.099 *** 0.923   31.57 *** 
Delaware 8 27.436 *** 27.436 *** 21.024 *** 16.415 ** 16.415 ** 18.619 ** 

Florida 8 6.624   4.064   7.144   27.708 *** 32.26 *** 27.291 *** 

Georgia 8 15.36 * 17.382 *** 14.269 * 17.319 ** 8.198   16.457 ** 

Idaho 7 6.493   6.493   10.823   10.725   10.725   7.144   

Illinois 6 12.717 ** 12.717 ** 9.18   18.203 *** 18.203 *** 18.859 *** 

Indiana 5 8.807   8.807   7.26   8.878   8.878   3.745   
Iowa 8 11.892   5.275   12.005   11.604   17.427 *** 8.113   

Kansas 8 14.87 * 4.409   15.153 * 11.351   5.105   15.803 ** 

Kentucky 7 12.005   10.117 * 8.487   13.932 * 13.932 ** 13.549 * 
Louisiana 8 8.226   8.226   5.794   28.124 *** 28.124 *** 20.184 ** 

Maine 8 33.844 *** 23.86 *** 16.495 ** 29.327 *** 24.89 *** 32.603 *** 

Maryland 7 7.085   3.098   6.473   8.731   1.877   8.554   
Massachusetts 8 9.087   1.679   6.5   20.992 *** 0.776   12.316   

Michigan 7 13.755 * 12.168 ** 14.973 ** 15.71 ** 15.171 ** 14.612 ** 

Minnesota 7 9.216   4.037   8.829   24.147 *** 30.052 *** 25.188 *** 
Mississippi 8 6.282   2.939   3.996   9.261   4.172   5.358   

Missouri 5 5.142   5.142   4.78   16.747 *** 16.747 *** 13.538 ** 

Montana 8 7.393   6.053 ** 5.279   16.833 ** 0.209   15.046 * 
Nebraska 8 13.751 * 1.953   12.025   12.289   0.562   11.618   

Nevada 8 10.561   0.906   12.251   21.458 *** 0.148   18.858 ** 

N. Hampshire 8 7.043   2.329   6.619   13.622 * 13.977 *** 7.492   

New Jersey 8 12.568   0.972   9.378   17.752 ** 0.327   11.354   

New Mexico 7 15.423 ** 10.88 ** 15.149 ** 5.272   3.679   5.223   

New York 8 11.66   8.589   6.914   13.075   10.402 * 7.232   
N. Carolina 7 21.734 *** 14.201 ** 23.919 *** 4.187   7.423   3.401   

North Dakota 5 7.888   2.565   8.237   3.769   4.315 ** 3.126   

Ohio 6 8.954   7.661   8.297   14.779 ** 12.868 ** 8.254   
Oklahoma 8 13.693 * 1.019   17.123 ** 26.68 *** 5.016   16.161 ** 

Oregon 8 9.83   5.375   8.063   7.078   7.6   7.056   

Pennsylvania 5 8.602   8.602   9.113   20.777 **c* 20.777 *** 16.536 *** 
Rhode Island 8 13.567 * 0.257   16.219 ** 18.294 ** 0.176   15.348 * 

S. Carolina 8 12.493   3.55   8.5   17.745 ** 8.181 * 13.552 * 

South Dakota 8 7.694   3.906   6.412   7.27   6.381   6.353   
Tennessee 5 8.671   8.671   7.208   10.367 * 10.367 * 6.856   

Texas 7 10.352   2.869   9.707   18.797 *** 16.445 *** 17.291 ** 

Utah 8 9.512   4.523   7.571   24.829 *** 2.5   32.135 *** 
Vermont 8 10.863   3.792   9.244   12.964   1.302   10.313   

Virginia 8 21.911 *** 9.036   19.394 ** 34.717 *** 31.896 *** 35.845 *** 
Washington 8 5.707   3.303   3.261   25.911 *** 23.161 *** 24.473 *** 

West Virginia 7 10.983   12.707 ** 9.095   10.899   10.095 * 7.086   

Wisconsin 8 3.138   3.998   1.504   13.782 * 10.308 * 7.813   
Wyoming 5 4.489   4.489   6.913   2.373   2.373   1.828   

Fisher test 

statistic value 
 202.651      360.295      

AIC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  

  202.863  166.808  150.332  194.826  161.299  146.306  

Fisher test 
statistic value 

 182.723      325.608      

SBC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  C10%  

  181.017  151.489  136.852  184.273  152.324  138.087  
Fisher test 

statistic value 
 166.494      299.788      

AIC dmax=2  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  
  195.072  163.16  148.601  184.903  155.609  141.827  

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05 and 0.1 levels, respectively. 

2. Bootstrap critical values are obtained from 10,000 replications. 
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Table 6. Results of Granger causality between Personal Income and Top 10% Income 

Share 

state 
Lag 

length 

Income led hypothesis 

H0: Income sorted does not  

Granger Cause Top 10 

Inequality led hypothesis 

H0: Top10 does not  

Granger Cause Income sorted  

AIC, 
dmax=1 

 
SBC, 

dmax=1 
 

AIC, 
dmax=2 

 
AIC, 

dmax=1 
 

SBC, 
dmax=1 

 
AIC, 

dmax=2 
 

Alabama 8 30.204 *** 15.645 ** 21.126 *** 15.121 * 12.367 * 25.563 *** 

Arizona 8 8.861   8.69   7.078   13.279   8.644   10.53   

Arkansas 8 31.152 *** 14.916 ** 21.402 *** 24.521 *** 14.038 ** 21.988 *** 
California 8 20.806 *** 17.368 *** 13.388 * 13.976 * 2.968   14.761 * 

Colorado 8 17.779 ** 13.776 * 11.137   33.022 *** 26.372 *** 43.062 *** 

Connecticut 8 21.282 *** 11.865 *** 21.306 *** 23.197 *** 0.637   32.508 *** 
Delaware 8 53.424 *** 53.424 *** 49.834 *** 29.735 *** 29.735 *** 34.973 *** 

Florida 8 12.773   5.174   9.024   22.774 *** 21.731 *** 23.158 *** 

Georgia 8 18.024 ** 5.113 * 12.949   20.107 ** 1.759   19.746 ** 

Idaho 8 23.788 *** 9.326   27.543 *** 18.707 ** 7.425   14.669 * 

Illinois 8 35.141 *** 12.094 ** 28.561 *** 17.119 ** 6.489   19.125 ** 

Indiana 8 30.106 *** 10.874 * 21.738 *** 24.834 *** 7.723   31.706 *** 
Iowa 8 22.876 *** 19.08 *** 23.894 *** 11.155   6.783   18.21 ** 

Kansas 8 20.696 *** 20.696 *** 21.302 *** 23.557 *** 23.557 *** 36.126 *** 

Kentucky 7 18.726 *** 8.168 * 14.871 ** 12.194 * 2.809   13.871 * 
Louisiana 8 19.768 ** 12.296 ** 13.625 * 34.085 *** 12.186 ** 34.256 *** 

Maine 6 33.116 *** 33.116 *** 29.674 *** 17.875 *** 17.875 *** 16.539 ** 

Maryland 6 11.9 * 8.986 ** 13.643 ** 16.917 ** 4.586   16.9 ** 
Massachusetts 8 15.354 * 9.641 *** 13.152   16.434 ** 1.471   19.374 ** 

Michigan 8 29.351 *** 9.833 * 21.725 *** 23.037 *** 8.879   24.068 *** 

Minnesota 8 18.839 ** 3.288 * 18.59 ** 8.761   2.746 * 11.219   
Mississippi 8 18.581 ** 12.311 ** 12.733   27.259 *** 10.583 * 30.474 *** 

Missouri 8 28.813 *** 14.091 *** 26.55 *** 21.61 *** 8.342 * 16.216 ** 

Montana 8 18.499 ** 3.69   15.133 * 8.858   0.1   6.829   
Nebraska 8 14.708 * 4.972 ** 11.613   21.622 *** 3.072 * 28.692 *** 

Nevada 8 28.686 *** 0.602   31.354 *** 40.408 *** 0.138   43.527 *** 

N. Hampshire 8 15.011 * 5.581   14.272 * 12.459   4.621   13.708 * 

New Jersey 8 19.817 ** 4.488   16.76 ** 14.901 * 1.269   20.436 *** 

New Mexico 8 38.304 *** 20.027 *** 18.634 ** 26.916 *** 6.896   22.503 *** 

New York 8 13.233   1.446   10.458   23.244 *** 12.578 ** 30.074 *** 
North Carolina 8 25.813 *** 14.553 ** 20.285 *** 21.171 *** 18.847 *** 22.958 *** 

North Dakota 8 12.288   6.337 * 9.758   18.522 ** 12.061 *** 20.451 *** 

Ohio 8 22.118 *** 5.293   16.818 ** 23.57 *** 4.728   26.181 *** 
Oklahoma 8 21.455 *** 7.606   16.414 ** 42.613 *** 8.8 * 35.26 *** 

Oregon 8 26.54 *** 15.57 ** 19.833 ** 21.537 *** 9.523   25.192 *** 

Pennsylvania 8 16.892 ** 14.372 ** 14.697 * 19.805 ** 13.136 ** 17.658 ** 
Rhode Island 8 26.306 *** 12.154 *** 25.566 *** 17.419 ** 0.557   28.954 *** 

South Carolina 8 26.772 *** 16.123 ** 18.945 ** 42.875 *** 27.277 *** 47.694 *** 

South Dakota 8 14.198 * 6.339   15.308 * 12.496   5.708   10.972   
Tennessee 8 21.624 *** 8.022   16.768 ** 21.614 *** 9.857 * 30.508 *** 

Texas 7 11.717   13.982 *** 13.078 * 11.722   1.544   13.49 * 

Utah 8 10.991   5.419   6.846   26.146 *** 2.883   30.387 *** 
Vermont 8 14.959 * 1.484   15.925 ** 13.765 * 0.932   19.048 ** 

Virginia 8 31.989 *** 15.596 *** 28.673 *** 33.88 *** 0.994   32.422 *** 
Washington 8 20.113 ** 10.904 * 19.457 ** 30.157 *** 15.208 ** 28.589 *** 

West Virginia 8 33.404 *** 6.966   38.472 *** 23.924 *** 14.147 ** 32.255 *** 

Wisconsin 8 22.77 *** 22.77 *** 16.026 ** 12.937   12.937   14.667 * 
Wyoming 4 9.934 ** 9.934 ** 7.896 * 1.305   1.305   2.396   

Fisher test 

statistic value 
 540.201      505.618      

AIC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  

  281.844  212.179  176.999  247.208  188.594  163.684  

Fisher test 
statistic value 

 361.418      243.683      

SBC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  

  196.409  162.499  146.44  187.813  157.424  142.62  
Fisher test 

statistic value 
 419.744      599.351      

AIC dmax=2  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  
  251.99  194.244  168.82  230.001  179.012  156.34  

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05 and 0.1 levels, respectively. 

2. Bootstrap critical values are obtained from 10,000 replications. 
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Table 7. Results of Granger causality between Personal Income and Top 1% Income     

Share 

state 
Lag 

length 

Income led hypothesis 

H0: Income sorted does not  

Granger Cause Top 1 

Inequality led hypothesis 

H0: Top1 does not  

Granger Cause Income sorted  

AIC, 
dmax=1 

 
SBC, 

dmax=1 
 

AIC, 
dmax=2 

 
AIC, 

dmax=1 
 

SBC, 
dmax=1 

 
AIC, 

dmax=2 
 

Alabama 7 1.589   3.441   3.002   8.4   12.367 * 8.765   

Arizona 8 3.085   1.171   2.81   12.114   8.644   13.969 * 

Arkansas 5 4.021   1.729   4.141   2.751   14.038 ** 2.889   
California 4 4.822   1.997   4.567   2.72   2.968   3.279   

Colorado 8 5.045   3.553   4.247   11.044   26.372 *** 15.286 * 

Connecticut 8 6.533   2.746   6.961   9.724   0.637   14.425 * 
Delaware 8 24.83 *** 10.129 *** 23.733 *** 16.53 ** 29.735 *** 17.553 ** 

Florida 8 9.556   0.661   8.566   16.181 ** 21.731 *** 19.259 ** 

Georgia 8 9.142   0.613   6.551   8.402   1.759   8.126   

Idaho 8 12.271   12.271   10.03   8.483   7.425   6.839   

Illinois 5 6.068   6.633   6.024   2.882   6.489   2.65   

Indiana 8 7.68   6.222   7.522   9.708   7.723   8.48   
Iowa 8 3.909   0.361   4.338   3.878   6.783   4.93   

Kansas 8 7.055   7.055   7.07   21.101 *** 23.557 *** 16.936 ** 

Kentucky 7 4.56   2.625   4.028   5.239   2.809   6.035   
Louisiana 8 8.162   9.803 ** 5.212   15.234 * 12.186 ** 19.918 ** 

Maine 6 16.135 ** 16.135 ** 15.288 ** 19.316 *** 17.875 *** 17.14 *** 

Maryland 6 4.335   3.415   4.945   5.806   4.586   6.544   
Massachusetts 4 4.282   2.801   3.744   2.779   1.471   4.755   

Michigan 5 3.7   3.7   4.628   5.592   8.879   6.211   

Minnesota 8 5.384   1.912   5.515   4.774   2.746 * 4.211   
Mississippi 8 6.312   2.783   7.822   9.045   10.583 * 5.739   

Missouri 4 3.161   3.161   2.731   1.769   8.342 * 2.193   

Montana 8 10.077   0.073   8.698   9.828   0.1   8.523   
Nebraska 8 1.93   0.005   2.021   7.544   3.072 * 9.652   

Nevada 8 7.084   0.293   8.827   23.573 *** 0.138   20.844 *** 

N. Hampshire 8 10.235   1.786   8.009   8.032   4.621   8.356   

New Jersey 4 1.815   2.282   1.081   1.508   1.269   2.03   

New Mexico 8 18.437 ** 8.041 * 9.698   10.858   6.896   6.445   

New York 4 1.812   1.812   2.449   7.313   12.578 ** 10.742 ** 
North Carolina 8 5.992   2.062   6.143   5.065   18.847 *** 3.938   

North Dakota 3 4.589   0.333   2.952   4.465   12.061 *** 3.169   

Ohio 8 4.846   3.608   4.238   11.844   4.728   8.733   
Oklahoma 8 13.094   2.618   8.503   17.758 ** 8.8 * 14.247 * 

Oregon 7 3.07   2.386   3.056   6.138   9.523   3.97   

Pennsylvania 8 8.559   3.489   7.554   9.134   13.136 ** 6.779   
Rhode Island 8 12.245   3.15   14.969 * 10.821   0.557   13.925 * 

South Carolina 8 11.607   3.119   8.816   17.616 ** 27.277 *** 15.228 * 

South Dakota 8 6.436   0.482   7.494   7.212   5.708   6.065   
Tennessee 5 3.672   2.078   4.306   2.553   9.857 * 2.403   

Texas 8 11.923   5.789   7.823   12.666   1.544   13.357   

Utah 8 4.526   1.744   5.289   11.59   2.883   11.91   
Vermont 8 10.701   1.466   13.955 * 7.277   0.932   7.472   

Virginia 8 15.118 * 1.624   13.945 * 20.689 *** 0.994   18.323 ** 
Washington 8 3.576   4.266   3.306   10.145   15.208 ** 8.75   

West Virginia 5 2.79   2.79   2.646   4.616   14.147 ** 5.102   

Wisconsin 8 6.976   3.481   7.889   5.833   12.937   6.251   
Wyoming 4 18.231 *** 18.231 *** 12.839 ** 0.449   1.305   0.675   

Fisher test 

statistic value 
 115.424      149.679      

AIC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  

  234.786  179.873  158.107  200.43  164.751  146.759  

Fisher test 
statistic value 

 116.696      87.923      

SBC dmax=1  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  

  205.197  165.423  147.754  192.178  156.461  139.868  
Fisher test 

statistic value 
 95.33      148.621      

AIC dmax=2  CV 1%  CV 5%  CV10%  CV 1%  CV 5%  CV10%  
  227.524  176.982  154.646  203.913  164.843  147.944  

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05 and 0.1 levels, respectively. 

2. Bootstrap critical values are obtained from 10,000 replications. 
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Table 8. List of states which cannot reject H0  

Income does not Granger cause Atkinson Index Atkinson Index does not Granger cause Income  

Arizona, Florida, Maryland, Missouri, New 

Hampshire, Wyoming  

New Mexico, North Dakota, Wyoming 

Income does not Granger cause Gini Coefficient Gini Coefficient does not Granger cause Income 

Arkansas, Colorado, Iowa, Louisiana, Maryland, 

Mississippi, Missouri, South Carolina, Texas, 

Wisconsin, Wyoming 

Kansas, Montana, Nebraska, Wyoming 

Income does not Granger cause the Relative Mean 

Deviation 

the Relative Mean Deviation does not Granger 

cause Income 

Iowa, Texas, Wyoming South Dakota 

Income does not Granger cause Theil’s entropy 

Index 

Theil’s entropy Index does not Granger cause 

Income 

Arizona, Colorado, Connecticut, Florida, Idaho, 

Indiana, Iowa, Louisiana, Maryland, Massachusetts, 

Minnesota, Mississippi, Missouri, Nevada, New 

Hampshire, New Jersey, New York, North Dakota, 

Ohio. Oregon. Pennsylvania, South Carolina, South 

Dakota, Tennessee, Texas, Utah, Vermont, 

Washington, Wisconsin, Wyoming 

Arkansas, Idaho, Indiana, Maryland, Mississippi, 

Nebraska, New Mexico, North Carolina, Oregon, 

South Dakota, Vermont, Wyoming 

Income does not Granger cause Top 10 % income 

share 

Top 10 % income share does not Granger cause 

Income 

Arizona, Florida, New York, Utah Arizona, Montana, South Dakota, Wyoming 

Income does not Granger cause Top 1 % income 

share 

Top 1 % income share does not Granger cause 

Income 

Alabama, Arizona, Arkansas, California, Colorado, 

Connecticut, Florida, Georgia, Idaho, Illinois, Indiana, 

Iowa, Kansas, Kentucky, Maryland, Massachusetts, 

Michigan, Minnesota, Mississippi, Missouri, Montana,  

Nebraska, Nevada, New Hampshire, New Jersey, New 

York, North Carolina, North Dakota, Ohio, Oklahoma, 

Oregon, Pennsylvania, South Carolina, South Dakota, 

Tennessee, Texas, Utah, Washington, West Virginia, 

Wisconsin, Wyoming 

California, Georgia, Idaho, Illinois, Indiana, Iowa, 

Kentucky, Maryland, Massachusetts, Michigan, 

Montana, New Hampshire, New Jersey, New Mexico, 

Ohio, Oregon, South Dakota, Texas, Utah, Vermont 

Wisconsin, Wyoming 

 




