

Department of Economics Working Paper Series

Causality between Output and Income Inequality across U.S. States: Evidence from a Heterogeneous Mixed Panel Approach

by

Shinhye Chang University of Pretoria

Hsiao-Ping Chu Ling-Tung University

Rangan Gupta University of Pretoria

Stephen M. Miller University of Nevada - Las Vegas

> Working Paper 2018-07 June 2018

> > 365 Fairfield Way, Unit 1063 Storrs, CT 06269-1063 Phone: (860) 486-3022 Fax: (860) 486-4463 http://www.econ.uconn.edu/

This working paper is indexed in RePEc, http://repec.org

Causality between Output and Income Inequality across U.S. States:

Evidence from a Heterogeneous Mixed Panel Approach

Shinhye Chang,^a Hsiao-Ping Chu,^b Rangan Gupta,^c and Stephen M. Miller^d

Abstract

In this paper, we investigate the causal relationship between output, proxied by personal income, and income inequality in a panel data of 48 states from 1929 to 2012. We employ the causality methodology proposed by Emirmahmutoglu and Kose (2011), as it incorporates possible slope heterogeneity and cross-sectional dependence in a multivariate panel. Evidence of bi-directional causal relationship exists for several inequality measures -- the Atkinson Index, Gini Coefficient, the Relative Mean Deviation, Theil's entropy Index and Top 10% -- but no evidence of the causal relationship for the Top 1 % measure. Also, this paper finds state-specific causal relationships between personal income and inequality.

JEL classification code: C33, D31, D63

Keywords:

Income inequality, Panel data, Personal Income, Granger causality

^a Department of Economics, University of Pretoria, Pretoria, 0002, South Africa. Email: <u>c.shin.h@gmail.com</u>. ^b Department of Business Administration, Ling-Tung University, Taichung, Taiwan. Email:

clare@teamail.ltu.edu.tw.

^c Department of Economics, University of Pretoria, Pretoria, 0002, South Africa. Email: <u>rangan.gupta@up.ac.za</u>. ^d Corresponding author. Department of Economics, Lee Business School, University of Nevada, Las Vegas, 4505 Maryland Parkway, Box 456005, Las Vegas, NV 89154-6005, USA. Email: stephen.miller@unlv.edu.

1. Introduction

The issue of income inequality has drawn great interest from researchers, politicians, and policy makers, since the well-being of an individual often depends on the distribution of income. Many researchers show that the U.S. economy experienced increasing income inequality over the last 30 years. Consequently, the determinants of income inequality and political and/or economic solutions to reduce inequality have become important discussions.

Researchers consider many possible explanations for this widening gap, yet no consensus exists on what can explain its emergence and on what can reduce differences among individuals. Most of the existing literature examines the effects of income inequality on economic growth in personal income, since personal income exerts a large effect on consumer consumption, and since consumer spending drives much of the economy. Studies provide evidence that more income inequality slows economic growth over the medium and long terms (Alesina and Perotti, 1996; Alesina and Rodrik, 1994; Person and Tabellini, 1992; Birdsall et al., 1995; Clarke, 1995; Deininger and Squire, 1996; Easterly, 2007; Wilkinson and Pickett, 2007; Berg et al., 2012). In contrast, some studies provide evidence that more income inequality promotes economic growth (Lazear and Rosen, 1981; Hassler and Mora, 2000; Kaldor, 1955; Bourguignon 1981; Saint-Pal and Verdier, 1993; Barro, 2000). Depending on the specific research method and sample, this literature discovers a complex set of interactions between inequality and economic growth and highlights the difficulty of capturing a definitive causal relationship. Inequality either promotes, slows, or does not affect growth.

Studies also exist that examines the causality between income growth and inequality using panel data. Using cross-country data, Dollar and Kraay (2002) document that the share of income going to the poorest fifth of the income distribution does not change when mean income fluctuates. Their finding implies that income of the poor grows at the same rate as the growth rate of the economy. On the other hand, Parker and Vissing-Jorgensen (2009), using U.S. income tax returns, find that the top-end of the income distribution carries a high share of aggregate income fluctuations. Although inequality rose in almost all U.S. states and regions between 1980 and the present, some states and regions experienced substantially greater increases in inequality than did others (see, for example, Partridge et al., 1996; Partridge et al., 1998; Morrill, 2000). The decentralisation of the analysis to states and regions allows geographic policy differences to emerge. At the same time, a cross-state consistency also can exist in how those policies respond to the macroeconomic economic shocks such as the Great Recession. Although many researchers analyse state differences in poverty, health insurance, social mobility, and taxes, less study occurs on state differences in causality between personal income and inequality.

Even though many researchers analyse causality relationships using cross-state data, a couple of issues are not addressed such as the possible existence of heterogeneity, cross-sectional dependence, and interdependencies. We use a modified version of the panel causality developed by Emirmahmutoglu and Kose (2011), which was originally designed to analyse causality in a bivariate-setting, to control not only for heterogeneity and cross-sectional dependence across state, but also to permit interactions between personal income and inequality.

Since U.S. states experience significant spatial effects given their high level of integration, we need to address the concern expressed in Pesaran (2004), who notes that ignoring cross-sectional dependency may lead to substantial bias and size distortions. Furthermore, unlike traditional causality approaches that rely on cointegration techniques, the bootstrap methodology does not require testing for cointegration, hence obviating pre-test bias (Emirmahmutoglu and Kose, 2011). The bootstrap methodology also provides evidence for the entire panel as well as each of the cross-sectional units comprising the panel. Thus, we

can consider state-specific policies, since we possess causality test results for each of the series in the panel. A multivariate panel setup allows for greater inference due to the greater degrees of freedom, stemming from the larger data set that a panel provides. The panel also allows us to control for omitted variables.

Our sample period covers a series of different events – the Great Depression (1929-1944), the Great Compression (1945-1979), the Great Divergence (1980-present), the Great Moderation (1982-2007) and the Great Recession (2007-2009). Goldin and Margo (1991) categorized the Great Compression as the time after the Great Depression, when income inequality fell significantly compared to the Great Depression. Krugman (2007) identified the period after the Great Compression as the Great Divergence, when income inequality grew. Piketty and Saez (2003) argue that the Great Compression ended in the 1970s and then income inequality worsened in the United States. Many studies show high income inequality during the 1920s, strong growth and shared prosperity for the early post-war period, followed by slower growth and growing inequality since the 1970s¹.

This paper is structured as follows. Section 2 describes data. Section 3 discusses the methodology. Section 4 reports and analyses the empirical results. Concluding remarks appear in Section 5.

2. Data

Our analysis relies on the natural logarithm of U.S. per capita real personal income and the six income inequality measures² - Atkinson Index, Gini Coefficient, the Relative Mean Deviation, Theil's entropy Index, the Top 10% income share, and the Top 1% income share - as proxies for inequality across the income distribution (Leigh, 2007). The annual data cover 1929 – 2012. Income inequality measures and income share measures come from the

¹ For example, see Dew-Becker and Gordon (2005), Gordon (2009)

 $^{^{2}}$ We take natural logarithms to correct for potential heteroskedasticity and dimensional differences between the series. Also, by taking natural logarithms, we can interpret the coefficients as elasticities.

online data segment of Professor Mark W. Frank's website.³ U.S. per capita nominal personal income comes from the Bureau of Economic Analysis (BEA), which we deflate using the U.S. aggregate Consumer Price Index (Index 1982-84=100). By using cross-state panel data, we minimize the problems associated with data comparability often encountered in cross-country studies related to income inequality.

3. Methodology

As we use cross-state panel dataset, cross-sectional dependency may create some bias in identifying causal linkages between personal income and inequality. The high degree of economic integration across U.S. states can cause spillover effects of shocks originating in one state to other states and these effects, if ignored, may produce misleading inferences due to misspecification. Also, the homogeneity restriction, which imposes constant parameters with cross-section-specific characteristics, can produce similar outcomes (Granger, 2003; Breitung, 2005). To determine the appropriate specification, we test for cross-sectional dependence and slope homogeneity.

3.1 Testing for cross-sectional dependence

To test for cross-sectional dependence, researchers typically use the *Lagrange Multiplier* (*LM*) test of Breusch and Pagan (1980). To compute the *LM* test, we implement the following panel-data estimation:

$$y_{it} = \alpha_i + \beta'_i x_{it} + u_{it} \text{ for } i = 1, 2, \dots, N \text{ ; } t = 1, 2, \dots, T,$$
(1)

where *i* is the cross-section dimension, *t* is the time dimension, x_{it} is $k \times 1$ vector of expnatory variables, α_i and β_i are the individual intercepts and slope coefficients that we allow to vary across states, respectively. In the *LM* test, we test the null hypothesis of nocross-sectional dependence -- H_0 : $Cov(u_{it}, u_{jt}) = 0$ for all *t* and $i \neq j$ --- against the

³ <u>http://www.shsu.edu/eco_mwf/inequality.html</u>. Professor Frank constructed the dataset based on Internal Revenue Service (IRS) data, which omits some individuals earning less than a threshold level of gross income. For this reason, we focus more on the top income shares as primary indicators of inequality measures. We examine six inequality measures as each offers a different insight as to the inequality of income.

alternative hypothesis of cross-sectional dependence $H_1: Cov(u_{it}, u_{jt}) \neq 0$, for at least one pair of $i \neq j$. To test the null hypothesis, Breusch and Pagan (1980) developed the *LM* test as follows:

$$LM = T \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{ij}^{2},$$
(2)

where $\hat{\rho}_{ij}$ is the sample estimate of the pair-wise correlation of the residuals from Ordinary Least Squares (OLS) estimation of equation (1) for each *i*. Under the null hypothesis, the *LM* statistics possesses an asymptotic chi-squared distribution with $\left(\frac{N(N-1)}{2}\right)$ degrees of freedom. Note that the *LM* test is valid for *N* relatively small and *T* sufficiently large.

The *Cross-sectional Dependence* (*CD*) test may decrease in power under certain situations -- when the population average pair-wise correlations are zero, but the underlying individual population pair-wise correlations are non-zero (Pesaran et al., 2008). In addition, in stationary dynamic panel data models, the *CD* test fails to reject the null hypothesis when the factor loadings contain zero mean in the cross-sectional dimension. To overcome these problems, Pesaran et al. (2008) propose a bias-adjusted test, which is a modified version of the *LM* test by using the exact mean and variance of the *LM* statistic. The bias-adjusted *LM* test is

$$LM_{adj} = \sqrt{\left(\frac{2T}{N(N-1)}\right)} \sum_{l=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{ij} \frac{(T-k)\hat{\rho}_{ij}^2 - \mu_{Tij}}{\sqrt{\nu_{Tij}^2}},$$
(3)

where μ_{Tij} and v_{Tij}^2 are the exact mean and variance of $(T - k)\hat{\rho}_{ij}^2$, respectively, which Pesaran et al. (2008) provides. Under the null hypothesis with first $T \to \infty$ and $N \to \infty$, the LM_{adj} test is asymptotically normally distributed.

3.2 Testing slope homogeneity

We next check whether the slope coefficients are homogeneous in a panel data analysis. The causality from one to another variable with the joint restriction imposed for entire panel generates the strong null hypothesis (Granger, 2003). Moreover, the homogeneity assumption

for the parameters cannot capture heterogeneity due to region-specific characteristics (Breitung, 2005).

The most well-known way to test the null hypothesis of slope homogeneity -- $H_0: \beta_i = \beta$ for all *i* -- against the hypothesis of heterogeneity -- $H_1: \beta_i \neq \beta$ for a non-zero fraction of pair-wise slopes for $i \neq j$ -- employs the standard *F* test. The *F* test is valid when the cross-section dimension (*N*) of the panel is relatively small and the time dimension (*T*) is relatively large; the explanatory variables are strictly exogenous; and the error variances are homoscedastic. By relaxing the homoscedasticity assumption in the *F* test, Swamy (1970) developed the slope homogeneity test on the dispersion of individual slope estimates from a suitable pooled estimator. Both the *F* and Swamy's test require panel data, where *N* is small relative to *T*. Pesaran and Yamagata (2008) proposed a standardized version of Swamy's test (the $\tilde{\Delta}$ test) for testing slope homogeneity in large panels. The $\tilde{\Delta}$ test is valid when (*N*,*T*) \rightarrow ∞ without any restrictions on the relative expansion rates of *N* and *T* as the error terms are normally distributed. In the $\tilde{\Delta}$ test approach, the first step computes the following modified version of the Swamy's test as in Pesaran and Yamagata (2008)⁴:

$$\tilde{S} = \sum_{i=1}^{N} (\hat{\beta}_{i} - \tilde{\beta}_{WFE})' \frac{x_{i}' M_{\tau} x_{i}}{\tilde{\sigma}_{i}^{2}} (\hat{\beta}_{i} - \tilde{\beta}_{WFE}), \qquad (4)$$

where $\hat{\beta}_i$ is the pooled OLS estimatoer, $\tilde{\beta}_{WFE}$ is the weighted fixed effect pooled estimator, M_{τ} is an identity matrix, and $\tilde{\sigma}_i^2$ is the estimator of σ_i^2 . Then the standardized dispersion statistic is as follows:

$$\tilde{\Delta} = \sqrt{N} \left(\frac{N^{-1} \tilde{S} - k}{\sqrt{2k}} \right).$$
(5)

Under the null hypothesis with the condition of $(N, T) \rightarrow \infty$ (as long as $\sqrt{N}/T \rightarrow \infty$) and the error terms are normally distributed, the $\tilde{\Delta}$ test is asymptotically normally distributed. Under the normally distributed errors, the small sample properties of the $\tilde{\Delta}$ test improve when using

⁴ See Pesaran and Yamagata (2008) for the details of estimators and for Swamy's test.

the following bias-adjusted version:

$$\tilde{\Delta}_{adj} = \sqrt{N} \left(\frac{N^{-1} \tilde{S} - E(\tilde{z}_{it})}{\sqrt{var(\tilde{z}_{it})}} \right), \tag{6}$$

where $E(\tilde{z}_{it}) = k$ and $var(\tilde{z}_{it}) = 2k(T - k - 1)/T + 1$.

If cross-sectional dependence and heterogeneity exist, then the panel causality test that imposes the homogeneity restriction and does not account for spillover effects may produce misleading inferences. Table 1 summarizes the results of these selected tests. We can reject the nulls of slope homogeneity and cross-sectional independence, hence, confirming the evidence of heterogeneity as well as spillover effects across the U.S. states. The findings reported in Table 1 motivate the decision to rely on the methodology for causal analysis proposed by Emirmahmutoglu and Kose (2011), which addresses heterogeneous mixed panels and cross-sectional dependence.

3.3 Panel Granger causality analysis

The panel Granger causality test proposed by Emirmahmutoglu and Kose (2011) uses the Meta analysis of Fisher (1932). Emirmahmutoglu and Kose (2011) extend the Lag Augmented VAR (LA-VAR) approach by Toda and Yamamoto (1995), which uses the level VAR model with extra *d*max lags to test Granger causality between variables in heterogeneous mixed panels. Consider a level VAR model with $k_i + d\max_i$ lags in heterogeneous mixed panels:

$$x_{i,t} = \mu_i^x + \sum_{j=1}^{k_i + d\max_i} A_{11,ij} x_{i,t-j} + \sum_{j=1}^{k_i + d\max_i} A_{12,ij} y_{i,t-j} + u_{i,t}^x \text{ and } (7)$$

$$y_{i,t} = \mu_i^{\mathcal{Y}} + \sum_{j=1}^{k_i + d\max_i} A_{21,ij} x_{i,t-j} + \sum_{j=1}^{k_i + d\max_i} A_{22,ij} y_{i,t-j} + u_{i,t}^{\mathcal{Y}},$$
(8)

where i (i = 1, ..., N) denotes individual cross-sectional units; t (t = 1, ..., T) denotes time period; μ_i^x and μ_i^y are two vectors of fixed effects; $u_{i,t}^x$ and $u_{i,t}^y$ are column vectors of error terms; k_i is the lag structure, which we assume to know and may differ across cross-sectional units; and $d\max_i$ is the maximal order of integration in the system for each *i*. Following the bootstrap procedure in Emirmahmutoglu and Kose (2011), we test for causality from *x* to *y* as follows:

Step 1. We determine the maximal order $d\max_i$ of integration of variables in the system for each cross-section unit based on the Augmented Dickey Fuller (ADF) unit-root test and select the lag orders k_i 's via Akaike information criterion or Schwarz information criterion (AIC or SIC) by estimating the regression (2) using the OLS method.

Step 2. We re-estimate Equation (2) using the $d\max_i$ and k_i under the non-causality hypothesis and attain the residuals for each individual as follows:

$$\hat{u}_{i,t}^{y} = y_{i,t} - \hat{\mu}_{i}^{y} - \sum_{j=1}^{k_{i}+d\max_{i}} \hat{A}_{21,ij} \, x_{i,t-j} - \sum_{j=1}^{k_{i}+d\max_{i}} \hat{A}_{22,ij} \, y_{i,t-j} \tag{9}$$

Step 3. We center the residuals using the suggestion of Stine (1987) as follows:

$$\tilde{u}_t = \hat{u}_t - (T - k - l - 2)^{-1} \sum_{j=1}^{k_i + d\max_i} \hat{u}_t,$$
(10)

where $\hat{u}_t = (\hat{u}_{1t}, \hat{u}_{2t}, ..., \hat{u}_{Nt})'$, $k = \max(k_i)$ and $l = \max(d\max_i)$. Furthermore, we develop the $[\tilde{u}_{it}]_{N \times T}$ from these residuals. We select randomly a full column with replacement from the matrix at a time to preserve the cross covariance structure of the errors. We denote the bootstrap residuals as \tilde{u}_t^* where (t=1,...,T).

Step 4. We generate a bootstrap sample of $y_{i,t}^*$ under the null hypothesis:

$$y_{i,t}^* = \hat{\mu}_i^y + \sum_{j=1}^{k_i + d\max_i} \hat{A}_{21,ij} x_{i,t-j} + \sum_{j=1}^{k_i + d\max_i} \hat{A}_{22,ij} y_{i,t-j}^* + u_{i,t}^*, \quad (11)$$

where $\hat{\mu}_{i}^{y}$, $\hat{A}_{21,ij}$, and $\hat{A}_{22,ij}$ are the estimates from step 2.

Step 5. For each individual, we calculate Wald statistics to test for the non-causality null hypothesis by substituting $y_{i,t}^*$ for $y_{i,t}$ and estimating Equation (2) without imposing any parameter restrictions. Using individual *p*-values that correspond to the Wald statistic of the i^{th} individual cross-section, we calculate the Fisher test statistic λ as follows:

$$\lambda = -2\sum_{i=1}^{N} \ln(p_i), i = 1, ..., N.$$
(12)

9

We generate the bootstrap empirical distribution of the Fisher test statistics by repeating steps 3 to 5 10,000 times and specifying the bootstrap critical values by selecting the appropriate percentiles of these sampling distributions. Using simulation studies, Emirmahmutoglu and Kose (2011) demonstrate that the performance of LA-VAR approach under both crosssection independency and dependency seem to perform satisfactory for the entire range of values for *T* and *N*.

4. Empirical Analysis

As mentioned in the methodology section, we first need to examine for possible crosssectional dependence and slope heterogeneity, using four different tests $(CD_{BP}, CD_{LM}, CD, LM_{adj})$ with a null hypothesis of no cross-sectional dependence. The results conclude that we can reject the null hypothesis at the 1-percent level of significance (see Table 1, 4 rows from the top). This outcome implies that evidence exists of crosssectional dependence, meaning that a shock originating in one state may spillover into other states. As shown in the methodology section, the causality tests of Emirmahmutoglu and Kose (2011) control for this dependency.

Also, Table 1 (3 rows from the bottom) shows the results of the slope homogeneity tests. According to $\tilde{\Delta}$ test, we can reject the null hypothesis of homogenous slopes at the 1-percent level of significance. Furthermore, at least one of the tests rejects null hypothesis of slope homogeneity with the $\tilde{\Delta}_{adj}$ test and the Swamy Shat test. This implies that imposing slope homogeneity on the panel causality analysis may result in misinterpretation. Hence, we need to consider possible state-specific characteristics.

Establishing the existence of cross-sectional dependence and heterogeneity across the 48 U.S. states suggests the suitability of the bootstrap panel causality approach developed by Emirmahmutoglu and Kose (2011), which accounts for these econometric issues. Table 2 through 7 report the bootstrap test causality results. We chose the appropriate lag length using the Akaike Information Criterion for each state.

The overall causality results between income inequality and personal income suggest that we can reject both the null of no Granger causality from inequality to income and from income to inequality at 1-percent level of significance (i.e. bi-directional causality) except for Top 1% income share, suggesting the possible existence of a trend relationship between increasing income and widening income inequality.

Table 2 shows the causality between personal income and the Atkinson Index. Under AIC and SBC, the asymptotic chi-square values applied with the Fisher test are higher for inequality led hypothesis. This suggests that individual states results are more consistent for the inequality led hypothesis than the income led hypothesis. That is, only 3 states out of 48 display insignificant Wald statistics (high *p*-values) for the inequality led hypothesis, namely New Mexico, North Dakota, and Wyoming. For the income led hypothesis, 6 states display insignificant Wald statistics, namely Arizona, Florida, Maryland, Missouri, New Hampshire, and Wyoming. Thus, Wyoming confirms the neutrality hypothesis.

Table 3 shows causality between personal income and the Gini coefficient. Under AIC and SBC, the asymptotic chi-square values applied with the Fisher test are higher for inequality led hypothesis. This suggests that individual results are more consistent for the inequality led hypothesis than the income led hypothesis. That is, 4 states display insignificant Wald statistics (high *p*-values) for inequality led hypothesis, namely Kansas, Montana, Nebraska, and Wyoming. For the income led hypothesis, 11 states display an insignificant Wald statistics, namely Arkansas, Colorado, Iowa, Louisiana, Maryland, Mississippi, Missouri, South Carolina, Texas, Wisconsin, and Wyoming. Once again, Wyoming confirms to the neutrality hypothesis.

Table 4 shows causality between personal income and the Relative Mean Deviation. Under AIC and SBC, the asymptotic chi-square values applied with the Fisher test are higher for inequality led hypothesis. This suggests that individual results are more consistent for the

11

inequality led hypothesis than the income led hypothesis. Only South Dakota displays an insignificant Wald statistic (high *p*-value) for the inequality led hypothesis. For the income led hypothesis, only 3 states out of 48 states display an insignificant Wald statistics, namely Iowa, Texas, and Wyoming. No state conforms to the neutrality hypothesis in this case.

Table 5 shows causality between personal income and Theil's entropy. Under AIC and SBC, the asymptotic chi-square values applied with the Fisher test are higher for the inequality led hypothesis. This suggests that individual results are more consistent for the inequality led hypothesis than the income led hypothesis. 12 states display insignificant Wald statistics (high *p*-values) for the inequality led hypothesis, namely Arkansas, Idaho, Indiana, Maryland, Mississippi, Nebraska, New Mexico, North Carolina, Oregon, South Dakota, Vermont, and Wyoming. For the income led hypothesis, 30 states display an insignificant Wald statistics, namely Arizona, Colorado, Connecticut, Florida, Idaho, Indiana, Iowa, Louisiana, Maryland, Massachusetts, Minnesota, Mississippi, Missouri, Nevada, New Hampshire, New Jersey, New York, North Dakota, Ohio, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Washington, Wisconsin, and Wyoming. Thus, we confirm the neutrality hypothesis for 8 states, namely, Idaho, Indiana, Maryland, Mississippi, Oregon, South Dakota, Vermont, and Wyoming.

Table 6 shows causality between personal income and Top 10% income share. 4 states display insignificant Wald statistics (high *p*-values) for the inequality led hypothesis, namely Arizona, Montana, South Dakota, and Wyoming. For the income led hypothesis, 4 states display an insignificant Wald statistics, namely Arizona, Florida, New York, and Utah. Thus, we confirm the neutrality hypothesis only for Arizona.

Table 7 shows that the overall results confirm no causality between Top 1% income share and Income.

The differences of the results underline the advantages of panel over individual

regressions such as capturing more complex dynamic models, identifying unobserved effects, and mitigating multicollinearity problems (Baltagi, 2008).

5. Conclusion

In this paper, we followed the procedure of Emirmahmutoglu and Kose (2011), a panel Granger causality methodology that controls for heterogeneity and cross-sectional dependence, to test for the existence and direction of causal relationships between income and income inequality, using annual data for the 48 U.S. states from 1929-2012. The panel data literature has shown possible cross-sectional dependence with panel data resulting in biased estimates (Pesaran; 2006).

In this study, we found evidence of bi-directional causal relationship exists for the Atkinson Index, Gini Coefficient, the Relative Mean Deviation, Theil's entropy Index, and Top 10% measures of inequality. For Top 1% income share, we found no evidence of a causal relationship. Also, we found state-specific causal relationships between personal income and inequality.

The reason for focusing on inequality across states reflects the fact that inequalityrelated policy can occur at the state and local levels, which can produce different inequality profiles across states. For instance, federal tax and transfer policies affect inequality. States can selectively adopt and/or implement some federal policies or supplement them with state policies. For example, states (and local municipalities) can increase the minimum wage applicable within its borders as seen with the recent adoption of \$15 minimum wage in some cities. Progressive state personal income tax policies can alter the progressivity of the federal code. As another example, states responded differently to the Affordable Care Act (Obama Care) with respect to providing or not providing Medicaid to state residents.

As another example, most immigrants from Mexico settled in California and Texas and the immigration probably increased inequality. Legalisation of immigration for many U.S. residents would attract those who currently work off the books onto the IRS tax rolls,

13

which, in turn, would increase the state-level Earned Income Tax Credits, reducing inequality. As immigration policy is a federal government issue, however, state-level efforts to address rising inequality by immigrants through the tax might face limitations. In the long term, states can make changes to their policy on human-capital investment that can raise middle-class incomes and reduce inequality (Heinrich and Smeedling, 2014). Better access to education and health service and well-targeted social policies can help rise the income share for the poor and the middle income group. No one-size-fits-all policy exists to tackling inequality issues, however.

Since some of the literature supports a positive effect of inequality on growth, some degree of inequality may not prove beneficial. For instance, returns to education and differentiation in labour earnings can motivate human capital accumulation and economic growth, despite its association with higher income inequality (Lazear and Rosen, 1981). Rising inequality, however, can result in large social cost, as income inequality can significantly undermine individual's educational and occupational choices. Further, a possibility exists that income inequality does not generate the "right" incentives if it rests on rents (Stiglitz, 2012). In that case, individuals have an incentive to divert their efforts toward protection, such as resource misallocation and corruption. Thus, the appropriate policies depend on the underlying drivers and state-specific policy and institutional settings.

Reference

- Alesina, A., & Perotti, R. (1996). Income distribution, political instability, and investment. *European Economic Review*, 40(6), 1203-1228.
- Alesina, A., & Rodrik, D. (1994). Distributive politics and economic growth. *The Quarterly Journal of Economics*, *109*(2), 465-490.
- Baltagi, B.H. (2008). Econometrics.4th Edition, Springer-Verlag Berlin Heidelberg.
- Barro, R. J. (2000). Inequality and Growth in a Panel of Countries. *Journal of Economic Growth*, 5(1), 5-32.

- Berg, A., Ostry, J. D., & Zettelmeyer, J. (2012). What makes growth sustained?. *Journal of Development Economics*, 98(2), 149-166.
- Birdsall, N., Ross, D., & Sabot, R. (1995). Inequality and growth reconsidered: lessons from East Asia. *The World Bank Economic Review*, 9(3), 477-508.
- Bourguignon, F. (1981). Pareto superiority of unegalitarian equilibria in Stiglitz' model of wealth distribution with convex saving function. *Econometrica*, 1469-1475.
- Breitung, J. 2005. A parametic approach to the estimation of cointegration vectors in panel data. *Econometric Reviews*, 24:151-173.
- Breusch, T.S., and Pagan, A. R. 1980. The Lagrange Multiplier test and its applications to model specification in econometrics. *The Review of Economic Studies*, 47(1):239-253.
- Clarke, G. R. (1995). More evidence on income distribution and growth. *Journal of Development Economics*, 47(2), 403-427.
- Deininger, K., & Squire, L. (1996). A new data set measuring income inequality. *The World Bank Economic Review*, 10(3), 565-591.
- Dew-Becker, I., & Gordon, R. J. (2005). *Where did the productivity growth go? Inflation dynamics and the distribution of income* (No. w11842). National Bureau of Economic Research.
- Dollar, D., & Kraay, A. (2002). Growth is Good for the Poor. Journal of Economic Growth, 7(3), 195-225.
- Dougherty, S. M. The Effect of Career and Technical Education on Human Capital Accumulation: Causal Evidence from Massachusetts.
- Easterly, W. (2007). Inequality does cause underdevelopment: Insights from a new instrument. *Journal of Development Economics*, 84(2), 755-776.
- Emirmahmutoglu, F. and N. Kose. 2011. Testing for Granger causality in heterogeneous mixed panels. *Economic Modelling* 28: 870-876.
- Fisher, R. A. (1932). Statistical methods for research workers. Edinburgh: Oliver and Boyd, 1925. *Fisher Statistical Methods for Research Workers1925*.
- Goldin, C., & Margo, R. A. (1992). The Great Compression: The Wage Structure in the United States at Mid-Century. *The Quarterly Journal of Economics*, 107(1), 1-34.
- Gordon, R. J. (2009). Has the Rise in American Inequality Been Exaggerated?. *Challenge*, 52(3), 92-120.
- Granger, C.W.J. 2003. Some aspects of causal relationships. *Journal of Econometrics*, 112:69-71.

- Hassler, J., & Mora, J. V. R. (2000). Intelligence, social mobility, and growth. *American Economic Review*, 888-908.
- Heinrich, C., & Smeeding, T. (2014). Building human capital and economic potential. *Fast Focus*, (21).
- Kaldor, N. (1955). Alternative theories of distribution. *The Review of Economic Studies*, 83-100.
- Krugman, P., 2007. *The Conscience of a Liberal*. W.W. Norton & Company, New York, 124-128.
- Lazear, E. P., & Rosen, S. (1981). Rank-Order Tournaments as Optimum Labor Contracts. *The Journal of Political Economy*, 89(5), 841-864.
- Leigh, A. (2007). How closely do top income shares track other measures of inequality?. *The Economic Journal*, *117*(524), F619-F633.
- Morrill, R. (2000). Geographic variation in change in income inequality among US states, 1970–1990. *The Annals of Regional Science*, *34*(1), 109-130.
- Parker, J. A., & Vissing-Jorgensen, A. (2009). *Who bears aggregate fluctuations and how?* (No. w14665). National Bureau of Economic Research.
- Partridge, J. S., Partridge, M. D., & Rickman, D. S. (1998). State patterns in family income inequality. *Contemporary Economic Policy*, *16*(3), 277-294.
- Partridge, M. D., Rickman, D. S., & Levernier, W. (1996). Trends in US income inequality: evidence from a panel of states. *The Quarterly Review of Economics and Finance*, *36*(1), 17-37.
- Piketty, T., & Saez, E. (2001). Income Inequality in the United States, 1913-1998 (series updated to 2000 available) (No. w8467). National Bureau of Economic Research.
- Persson, T., & Tabellini, G. (1992). Growth, distribution and politics. *European Economic Review*, 36(2), 593-602.
- Pesaran, M.H. 2006. Estimation and Inference in Large Heterogeneous Panels with Multifactor Error Structure. *Econometrica* 74 (4): 967-1012.
- Pesaran, M.H. (2004). General diagnostic tests for cross section dependence in panels. CESifo Working Papers No.1233, 255–60.
- Pesaran, M.H., Ullah, A. and Yamagata, T. 2008. A bias-adjusted LM test of error crosssection independence. *Econometrics Journal* 11:105–127.
- Saint-Paul, G., & Verdier, T. (1993). Education, democracy and growth. *Journal of Development Economics*, 42(2), 399-407.

- Pesaran, M.H., Yamagata, T. 2008. Testing slope homogeneity in large panels. Journal of *Econometrics* 142:50–93.
- Saint-Paul, G., & Verdier, T. (1993). Education, democracy and growth. *Journal of Development Economics*, 42(2), 399-407.
- Stiglitz, J. E. (2012). *The Price of Inequality: How Today's Divided Society Endangers Our Future*. WW Norton & Company.
- Swamy, P.A.V.B. 1970. Efficient inference in a random coefficient regression model. *Econometrica* 38:311–323.
- Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. *Journal of Econometrics*, 66(1), 225-250.
- Wilkinson, R. G., & Pickett, K. E. (2007). The problems of relative deprivation: why some societies do better than others. *Social Science & Medicine*, 65(9), 1965-1978.

	Atkin05	Gini	Rmeandev	Theil	Top 10%	Top1%
CD_{BP}	42343.951***	34514.356***	29210.937***	28955.723***	42343.951***	45076.726***
CD_{LM}	867.752***	702.910***	591.252***	585.879***	867.752***	925.288***
CD	202.945***	181.227***	163.112***	163.445***	202.945***	208.543***
LM_{adj}	1708.916***	1735.807***	1656.264***	1569.867***	1583.094***	1600.792***
$ ilde{\Delta}$	178.457***	168.938***	189.290***	106.396***	73.039***	100.942***
$ ilde{\Delta}_{adj}$	2.188***	2.072***	2.321***	1.304*	0.895	1.237*
Swamy Shat	1796.522***	1703.247***	1902.657	1090.463***	763.639***	1037.030***

 Table 1. Cross-sectional Dependence and Homogeneity Tests (Inequality and Income)

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels, respectively.

Income led hypothesis						Inequality led hypothesis							
	_		H0.	Income sort	ted doe	s not			H0	: Atkinson	a nypot Index da	nesis	
State	Lag		Grang	er Cause At	tkinson	Index			Gra	nger Cause	Income	e sorted	
	length	AIC,		SBC,		AIC,		AIC,		SBC,		AIC,	
		dmax=1		dmax=1		dmax=2		dmax=1		dmax=1		dmax=2	
Alabama	8	25.243	***	26.764	***	16.262	**	12.778		16.581	***	9.122	
Arizona	5	6.528		6.528		5.55		22.237	***	22.237	***	23.579	***
Arkansas	8	37.695	***	7.663	**	30.128	***	14.198	*	7.196	**	14.125	*
California	8	27.116	***	10.139	*	23.986	***	23.346	***	24.117	***	27.374	***
Colorado	8	19.89	*	1.427		1/.301	* *	28.372	***	25.05	***	22.622	***
Deleware	8	15.200	***	3.230	***	20.011	***	20	***	1.031	***	24.24	***
Elorida	8	23.308	4.4.4.	25.508		20.911		24.007	***	24.007	***	33.232 32.540	***
Georgia	0 8	10 321	**	4.039	***	12 241		15 135	*	16 351	***	13 013	
Idaho	7	15 137	**	15 137	**	20.856	***	13 499	*	13 499	*	15 404	**
Illinois	8	17.215	**	16.62	**	8.689		39.786	***	18.825	***	16.121	**
Indiana	7	14.512	**	10.298	*	14.711	**	21.553	***	20.149	***	22.656	***
Iowa	8	18.628	**	9.075		11.481		14.893	*	11.82	*	10.521	
Kansas	8	27.39	***	8.618	*	22.049	***	15.191	*	14.026	***	17.118	**
Kentucky	7	13.669	*	13.669	*	9.226		31.324	***	31.324	***	33.187	***
Louisiana	8	25.906	***	25.906	***	20.825	***	68.666	***	68.666	***	55.252	***
Maine	8	26.861	***	18.057	***	15.615	**	25.112	***	8.675	*	24.205	***
Maryland	7	9.416		1.279		8.296		13.485	*	16.189	***	9.895	.de .de
Massachusetts	8	15.779	**	9.284	*	9.363	***	25.205	***	15.596	***	16.121	**
Minnagata	0	21.//9	***	21.//9	***	20.834	**	16.496	***	16.496	***	13.123	***
Mississippi	0 8	22.400	***	6 703		13.037	*	52.589 20.580	***	1/ 00	**	27.328	*
Missouri	0 5	20.700		0.795 4 49		4 792		20.389	***	29.07	***	24 523	***
Montana	8	22 544	***	9.095	***	18 146	**	18 376	**	0 143		15 233	*
Nebraska	8	25.576	***	3.62	*	19.23	**	13.819	*	0.077		11.274	
Nevada	8	12.658		0.704		15.767	**	25.026	***	0.116		27.156	***
N. Hampshire	8	9.119		2.469		8.477		17.807	**	16.075	***	9.797	
New Jersey	8	29.883	***	1.277		19.935	**	25.051	***	1.099		15.531	*
New Mexico	7	24.556	***	14.876	***	27.617	***	9.042		7.024		11.722	
New York	8	24.731	***	14.514	**	13.476	*	18.166	**	15.847	***	10.262	
North Carolina	7	34.874	***	26.277	***	36.815	***	8.911		14.632	**	7.357	
North Dakota	3	7.647	*	5.484	**	8.86	**	1.939	de ele ele	2.672	de de de	2.612	
Ohio	6	8.631	*	9.71	*	7.847	**	19.974	***	19.883	***	11.476	*
Oklanoma	8	13.081	***	4.459	***	19.044	*	33.313	**	13.453	**	38.333	**
Diegon	8	22.237	***	25.711	*	14.018	**	24 827	***	12.707	***	14.635	*
Rhode Island	8	21.314	***	9.039		25 862	***	29.094	***	0 428		25 027	***
South Carolina	8	19.82	**	11.37	**	9.879		21.9	***	22.958	***	18.047	**
South Dakota	8	18.99	**	20.228	***	16.508	**	13.829	*	11.351		13.566	*
Tennessee	8	10.567		15.4	***	5.952		32.855	***	28.916	***	18.181	**
Texas	7	14.116	**	1.445		9.594		19.126	***	15.481	***	18.662	***
Utah	8	31.591	***	31.591	***	14.81	*	31.403	***	31.403	***	39.529	***
Vermont	8	27.173	***	2.639		21.117	***	19.313	**	0.033		15.121	*
Virginia	8	29.202	***	15.693	***	30.481	***	35.329	***	23.939	***	44.449	***
Washington	8	15.371	*	6.278	de de de	8.104		25.357	***	26.354	***	23.325	***
West Virginia	7	16.507	**	17.826	***	13.157	*	22.013	***	17.089	***	12.96	*
Wisconsin	8	10.09	* *	8.075		8.056		21.937	***	21.205	***	10./18	
Fisher test	0	4.027		0.201		4.044		5.275		2.108		5.407	
statistic value		460.96						592.007					
AIC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV 10%	
The units T		220.318		176.509		157.391		217.998		174.965		155.848	
Fisher test				1,0.009		107.071				171.500		100.010	
statistic value		339.978						544.594					
SBC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV 10%	
		190.624		156.549		141.928		194.822		163.103		145.22	
Fisher test		327 115						473 210					
statistic value		547.115						TIJ.219					
AIC dmax=2		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV 10%	
		193.25		160.971		147.621		192.065		162.099		147.444	

Table 2.	Results of	Granger	causality	between	Personal	Income and	Atkinson	Index
				~~~~~				

Note: 1. ***, **, and * indicate significance at the 0.01, 0.05 and 0.1 levels, respectively.2. Bootstrap critical values are obtained from 10,000 replications.3. The number of appropriate lag orders in level VAR systems are selected by minimizing the Schwarz Baysian criteria. Lag order 8 is used for all states.

		Income led hypothesis						Inequality led hypothesis					
Stata	Lag		H0: Grange	Income sort	ed doe	s not fficient			H0: Gra	Gini Coeff	icient d	oes not	
State	length	AIC	Utalig	SBC		AIC		AIC	Ula	SBC	meome	AIC	
		dmax=1		dmax=1		dmax=2		dmax=1		dmax=1		dmax=2	
Alabama	8	19.887	**	17.559	**	22.351	***	22.256	***	13.508	*	19.545	**
Arizona	7	10.473		10.282	**	9.076		27.38	***	18.692	***	24.208	***
Arkansas	5	7.233		6.858		5.596		11.678	**	11.801	**	10.328	*
California	8	22.147	***	22.147	***	22.624	***	32.812	***	32.812	***	35.881	***
Colorado	8	10.196		10.196		11.024		55.989	***	55.989	***	46.064	***
Connecticut	8	15.452	*	15.452	*	16.522	**	39.298	***	39.298	***	33.853	***
Elorida	8	32.233	**	32.233	***	29.005 7 772		29.988	***	29.988	***	48./14	***
Georgia	8	14 704	*	26 133	***	11 949		30 804	***	25 738	***	23 324	***
Idaho	8	25.735	***	24.052	***	39.289	***	36.555	***	27.708	***	24.445	***
Illinois	8	26.938	***	24.456	***	23.009	***	43.683	***	12.701	**	18.715	**
Indiana	8	13.929	*	16.592	**	14.242	*	31.284	***	26.709	***	15.142	*
Iowa	8	9.659		10.183		10.213		18.077	**	19.575	***	15.543	**
Kansas	8	30.99	***	21.377	***	29.793	***	10.668		6.91		11.849	
Kentucky	7	13.531	*	13.531	*	10.233		29.003	***	29.003	***	27.639	***
Louisiana	8	7.223	ale ale ale	7.223	باد باد باد	13.309		49.444	***	49.444	***	39.748	***
Maine	8	21.894	***	1/.4/5	***	15.222	*	23.82	***	3.243	***	21.952	**
Massachusetts	8	10.077	***	5.008	***	10.587	***	32.318	***	12 04	**	18.708	***
Michigan	8 7	20.019	***	20.019	***	18 064	**	23 333	***	23 333	***	19 581	***
Minnesota	8	23.947	***	23.947	***	22.838	***	30.771	***	30.771	***	23.545	***
Mississippi	7	4.567		3.003		5.253		12.434	*	16.857	**	10.653	
Missouri	6	7.814		5.031		6.565		30.093	***	29.495	***	25.475	***
Montana	8	7.483		4.165	**	10.477		7.974		0.865		7.731	
Nebraska	8	27.569	***	0.031		27.134	***	11.697		0.124		10.912	
Nevada	8	33.182	***	32.823	***	31.505	***	23.092	***	20.313	***	26.067	***
N. Hampshire	8	12.864	***	1.522		14.006	*	36.156	***	23.675	***	25.262	***
New Jersey	8	29.34	*	1./06	*	25.357	*	38.293	***	1./4	*	26.72	**
New Wexico	8	38.057	***	9.112	***	34.015	***	22.024	***	9.25	**	15.005	*
North Carolina	7	12.02		17.3	***	15.188	**	8.688		12.087	**	8.074	
North Dakota	, 7	13.617	*	5.479	**	11.182		9.373		3.958	**	11.883	
Ohio	7	15.987	**	14.907	**	14.34	**	28.587	***	21.887	***	35.665	***
Oklahoma	8	12.962		2.988		15.727	**	26.494	***	15.802	***	15.483	*
Oregon	8	25.954	***	29.587	***	28.088	***	15.414	*	32.636	***	16.437	**
Pennsylvania	8	22.906	***	19.1	***	22.825	***	26.292	***	19.752	***	16.124	**
Rhode Island	8	23.26	***	0.285		24.934	***	46.823	***	0.018	***	37.505	***
South Carolina	8	5.384	***	2.539	***	/.358	***	20.272	***	15.255	*	21.077	***
Tennessee	8	13 75	*	25.157	***	25.249	*	24 44	***	12.378	***	0.772 11.48	
Texas	7	9 824		9 824		6.037		13 694	*	13 694	*	12 533	*
Utah	8	48.434	***	34.767	***	33.875	***	38.466	***	26.511	***	39.858	***
Vermont	8	16.903	**	9.453	*	17.442	**	25.032	***	12.377	**	17.925	**
Virginia	8	16.962	**	14.577	**	16.99	**	55.66	***	36.194	***	43.315	***
Washington	8	19.015	**	13.797	**	19.705	**	18.105	**	19.295	***	14.616	*
West Virginia	7	13.35	*	17.523	***	6.929		19.205	***	17.19	***	13.024	*
Wisconsin	8	5.435		6.18		8.418		22.367	***	25.542	***	10.575	
Wyoming Fisher test	4	2.139		2.139		2.139		2.045		2.045		2.557	
statistic value		405.633						724.19					
AIC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV 10%	
The unity T		225.97		180.168		159.523		224.271		182.758		161.691	
Fisher test statistic value		403.825						609.102					
SBC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV 10%	
Fisher test		193.456		160.408		144.1		198.094		163.79		148.543	
statistic value		382.65						546.644					
AIC dmax=2		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV 10%	
		203.921		100.090		131.20/		200.034		170.309		133.37/	

Table 3. Results of Granger causality between Personal Income and Gini Coefficient

		Income led hypothesis						Inequality led hypothesis						
			H0.	Income sort	ed doe	s not		H0: the Relative Mean Deviation does not						
state	Lag	Grang	er Cau	se the Relat	ive Me	an Deviatio	n		Gran	ger Cause Ir	ncome s	sorted		
State	length	AIC.	,	SBC.		AIC.		AIC.		SBC.		AIC.		
		dmax=1		dmax=1		dmax=2		dmax=1		dmax=1		dmax=2		
Alabama	8	28,149	***	14.627	**	23.048	***	24.951	***	41.917	***	19.38	**	
Arizona	7	17.213	**	17.213	**	16.157	**	30.047	***	30.047	***	25.985	***	
Arkansas	8	15.508	*	7.795		16.975	**	31.824	***	33.372	***	31.76	***	
California	8	30.529	***	30.529	***	29.334	***	33.28	***	33.28	***	28.322	***	
Colorado	8	15.053	*	15.053	*	18.418	**	51.176	***	51.176	***	40.199	***	
Connecticut	8	19.107	**	19.107	**	21.47	***	44.127	***	44.127	***	29.442	***	
Delaware	8	42.638	***	42.638	***	46.287	***	33.777	***	33.777	***	54.156	***	
Florida	8	13.616	*	13.616	*	16.197	**	56.789	***	56.789	***	53.687	***	
Georgia	8	14.005	* ***	14.005	~ ***	11.296	***	/2.398	***	/2.398	***	62.814	***	
Idano	8	35.665	***	35.595	ጥጥጥ	50.548	***	60.299	***	33.38/	***	38.491	***	
lilinois	8	28.096	***	8.531	باد باد	22.72	***	72.855	***	28.827	***	38.574	***	
Indiana	8	32.506	***	1/.01/	**	23.154	***	48.274	***	36.978	***	21.639	***	
lowa	8	/.606	***	/.606	***	26.028	***	23.488	***	23.488	***	21.596	**	
Kantucky	8 7	15 017	**	31.203 15.017	**	50.928 13 515	*	21.013	***	21.013	***	17.971	***	
Louisiana	8	20 228	**	20 228	**	25 578	***	61 421	***	61 421	***	42.928	***	
Maine	8	21.815	***	16 558	**	22.578	***	29 503	***	20 784	***	23 558	***	
Maryland	8	26 154	***	5 34		23.852	***	44 449	***	23 757	***	28 718	***	
Massachusetts	8	14.103	*	9,795	*	17.495	**	46.562	***	20.412	***	32.301	***	
Michigan	8	71.539	***	31.564	***	80.467	***	58.039	***	28.435	***	29.076	***	
Minnesota	8	38.335	***	38.335	***	36.85	***	34.265	***	34.265	***	23.766	***	
Mississippi	8	31.203	***	13.147	**	31.683	***	35.735	***	22.961	***	52.04	***	
Missouri	8	15.018	*	7.1		14.546	*	52.076	***	44.011	***	32.87	***	
Montana	8	14.412	*	6.791	***	16.013	**	17.637	**	0.229		14.897	*	
Nebraska	8	28.939	***	28.939	***	29.36	***	18.448	**	18.448	**	17.022	**	
Nevada	8	13.561	*	13.561	*	16.279	**	27.103	***	27.103	***	23.696	***	
N. Hampshire	8	14.605	*	2.376		16.744	**	43.557	***	27.62	***	28.039	***	
New Jersey	87	22.593	***	5.9/3	***	33.982	**	/0.425	***	41.288	***	55.034 27.244	***	
New Wexico	/ 0	20.030	***	20.030		10.437		51.007	***	24.680	***	28 247	***	
North Carolina	8	23.031	***	30 513	***	29 145	***	18 953	**	22 925	***	33 5/10	***	
North Dakota	8	18 655	**	6 802	***	20.378	***	11 417		3 054	*	9 937		
Ohio	8	40.161	***	11.247	**	37,793	***	51.38	***	25.62	***	29.73	***	
Oklahoma	8	20.784	***	20.784	***	18.538	**	53.59	***	53.59	***	38.283	***	
Oregon	8	26.285	***	32.143	***	19.443	**	37.192	***	56.901	***	33.422	***	
Pennsylvania	8	30.813	***	30.813	***	28.284	***	52.64	***	52.64	***	26.244	***	
Rhode Island	8	33.388	***	33.388	***	45.494	***	43.036	***	43.036	***	31.824	***	
South Carolina	8	11.754		13.863	**	13.212		36.016	***	29.302	***	28.211	***	
South Dakota	8	21.891	***	21.891	***	24.321	***	12.702		12.702		9.74		
Tennessee	8	9.462		16.611	***	8.278		68.402	***	62.575	***	40.406	***	
Texas	7	8.706	***	8.706	***	7.386	***	38.555	***	38.555	***	35.399	***	
Utah	8	62.683	***	62.683	***	40.606	***	30.458	***	30.458	***	35.6/1	***	
Virginio	0	32.492 28.204	***	28 204	***	29.112	***	55.557 00.248	***	20.31	***	20.143	***	
Washington	8	16.836	**	0 852		13 935	*	33 563	***	99.240 27.803	***	30.008	***	
West Virginia	8	27.015	***	17 296	***	34 261	***	32 821	***	24.005	***	35 979	***	
Wisconsin	8	11.667		11.667		14.444	*	28.49	***	28.49	***	10.623		
Wyoming	6	2.94		1.602		2.977		11.677	*	3.208		11.566	*	
Fisher test		(21.00												
statistic value		631.99						inf						
AIC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV10%		
		232.605		181.288		161.302		253.533		196.213		170.298		
Fisher test		515 951						inf						
statistic value		515.751												
SBC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV10%		
		203.074		170.01		153.255		217.667		175.752		158.151		
Fisher test statistic value		634.493						inf						
AIC dmax=2		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV 0%		
		201.294		166.744		149.775		211.049		211.049		153.337		

Table 4. Results of Granger causality between Personal Income and Relative Mean Deviation

		· · · · · · · · · · · · · · · · · · ·							T 14 1 11 41						
			In	come led hy	ypothe	sis		Inequality led hypothesis							
	Lag		H0:	Income sort	ed doe	s not			H0: Th	eil's entropy	Index of	does not			
state	length	Gi	ranger (	Cause Theil	's entro	opy Index			Gran	iger Cause Ir	come s	sorted			
	length	AIC,		SBC,		AIC,		AIC,		SBC,		AIC,			
		dmax=1		dmax=1		dmax=2		dmax=1		dmax=1		dmax=2			
Alabama	8	8 645		9 4 5 8	*	8 762		6 806		10 801	*	5 293			
Arizona	6	5 656		7 794		4 92		19 333	***	14 939	**	16 692	**		
Arkansas	8	15 441	*	1.086		13 206		9 604		0 944		5 116			
California	5	10 725	*	13 195	**	10.115	*	15 797	***	15 744	***	14 322	**		
Colorado	8	12 999		8 054		13.068		24 829	***	19.744	***	24 384	***		
Connacticut	0	0.282		2 625		7.067		27.000	***	0.023		21.57	***		
Doloworo	0	9.202	***	2.035	***	21.024	***	27.099	**	0.923	**	18 610	**		
Delawale	0	27.430		27.430		21.024		27 709	***	10.415	***	27 201	***		
Connela	0	0.024	*	4.004	***	/.144	*	27.708	**	52.20		27.291	**		
Georgia	07	13.30		17.362		14.209	•	17.519		0.190		7 1 4 4	••		
		0.493	**	0.493	**	10.823		10.725	***	10.725	***	/.144	***		
llinois	6	12./1/	**	12./1/	~~	9.18		18.203	***	18.203	***	18.859	ጥጥጥ		
Indiana	5	8.807		8.807		/.26		8.8/8		8.8/8	ale ale ale	3.745			
lowa	8	11.892	di.	5.275		12.005		11.604		17.427	***	8.113	de de		
Kansas	8	14.87	*	4.409		15.153	*	11.351		5.105		15.803	**		
Kentucky	7	12.005		10.117	*	8.487		13.932	*	13.932	**	13.549	*		
Louisiana	8	8.226		8.226		5.794		28.124	***	28.124	***	20.184	**		
Maine	8	33.844	***	23.86	***	16.495	**	29.327	***	24.89	***	32.603	***		
Maryland	7	7.085		3.098		6.473		8.731		1.877		8.554			
Massachusetts	8	9.087		1.679		6.5		20.992	***	0.776		12.316			
Michigan	7	13.755	*	12.168	**	14.973	**	15.71	**	15.171	**	14.612	**		
Minnesota	7	9.216		4.037		8.829		24.147	***	30.052	***	25.188	***		
Mississippi	8	6.282		2.939		3.996		9.261		4.172		5.358			
Missouri	5	5.142		5.142		4.78		16.747	***	16.747	***	13.538	**		
Montana	8	7.393		6.053	**	5.279		16.833	**	0.209		15.046	*		
Nebraska	8	13.751	*	1.953		12.025		12.289		0.562		11.618			
Nevada	8	10.561		0.906		12.251		21.458	***	0.148		18.858	**		
N. Hampshire	8	7.043		2.329		6.619		13.622	*	13.977	***	7.492			
New Jersev	8	12.568		0.972		9.378		17.752	**	0.327		11.354			
New Mexico	7	15.423	**	10.88	**	15.149	**	5.272		3.679		5.223			
New York	8	11.66		8.589		6.914		13.075		10.402	*	7.232			
N. Carolina	7	21.734	***	14.201	**	23.919	***	4.187		7.423		3.401			
North Dakota	5	7.888		2.565		8.237		3.769		4.315	**	3.126			
Ohio	6	8 954		7 661		8 297		14 779	**	12.868	**	8 2 5 4			
Oklahoma	8	13 693	*	1 019		17 123	**	26.68	***	5 016		16 161	**		
Oregon	8	9.83		5 375		8 063		7 078		7.6		7 056			
Pennsylvania	5	8 602		8 602		9 113		20 777	**c*	20 777	***	16 536	***		
Rhode Island	8	13 567	*	0.257		16 219	**	18 294	**	0.176		15 348	*		
S Carolina	8	12 493		3 55		8.5		17 745	**	8 181	*	13 552	*		
South Dakota	8	7 694		3 906		6.412		7 27		6 3 8 1		6 3 5 3			
Tennessee	5	8 671		8 671		7 208		10 367	*	10 367	*	6 8 5 6			
Texas	7	10 352		2 860		9 707		18 707	***	16.445	***	17 201	**		
Utah	8	0.512		4 523		7 571		24 820	***	2.5		32 135	***		
Vermont	0	9.312		3 702		0 244		12 061		1 202		10 212			
Virginia	0	21 011	***	0.192 0.026		7.244 10 201	**	12.904 31 717	***	31 904	***	25 945	***		
Washington	0	21.711 5 707		2 202		2 761	·	25 011	***	22 161	***	21 172	***		
Washington	ð 7	3./0/		5.303	**	5.201		23.911		23.101	*	24.4/3			
west virginia	/	10.985		12.707		9.095		10.899	*	10.095	*	7.080			
Wisconsin	8	5.138		3.998		1.504		13.782	*	10.308		/.813			
wyoming	3	4.489		4.489		0.915		2.373		2.373		1.828			
risner test		202.651						360.295							
statistic value		CT 1 10/		GT 1 50/		CT 11 00 /		CT 1 10/		CT 1 50/		CT 11 OA /			
AIC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV10%			
		202.863		166.808		150.332		194.826		161.299		146.306			
Fisher test		182.723						325.608							
statistic value												~			
SBC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		C10%			
		181.017		151.489		136.852		184.273		152.324		138.087			
Fisher test		166.494						299.788							
AIC drawner		CW 10/		CW 50/		CV100/		CW 10/		CV 50/		CV100/			
AIC umax=2		UV 1% 105.072		162 16		149 601		184 002		UV 3% 155 600		141 227			
		195.072		103.10		140.001		104.903		155.009		141.02/			

Table 5. Results of Granger causality between Personal Income and Theil's Entropy Index

		Income led hypothesis						Inequality led hypothesis						
stata	Lag		H0:	Income sort	ed doe	s not		Granger Cause Income sorted						
state	length	AIC	U	SBC	se top	AIC		AIC	Ula	SBC		AIC		
		dmax=1		dmax=1		dmax=2		dmax=1		dmax=1		dmax=2		
Alabama	8	30.204	***	15.645	**	21.126	***	15.121	*	12.367	*	25.563	***	
Arizona	8	8.861		8.69		7.078		13.279		8.644		10.53		
Arkansas	8	31.152	***	14.916	**	21.402	***	24.521	***	14.038	**	21.988	***	
California	8	20.806	***	17.368	***	13.388	*	13.976	*	2.968	***	14.761	*	
Connecticut	8	17.779	***	13.770	***	21 306	***	55.022 23.107	***	20.372		43.062	***	
Delaware	8	53 424	***	53 424	***	49 834	***	29 735	***	29 735	***	34 973	***	
Florida	8	12.773		5.174		9.024		22.774	***	21.731	***	23.158	***	
Georgia	8	18.024	**	5.113	*	12.949		20.107	**	1.759		19.746	**	
Idaho	8	23.788	***	9.326		27.543	***	18.707	**	7.425		14.669	*	
Illinois	8	35.141	***	12.094	**	28.561	***	17.119	**	6.489		19.125	**	
Indiana	8	30.106	***	10.874	*	21.738	***	24.834	***	7.723		31.706	***	
Iowa Kansas	8	22.870	***	20.606	***	25.894	***	23 557	***	0.783	***	18.21	***	
Kentucky	7	18 726	***	20.090	*	14 871	**	12 194	*	23.337		13 871	*	
Louisiana	8	19.768	**	12.296	**	13.625	*	34.085	***	12.186	**	34.256	***	
Maine	6	33.116	***	33.116	***	29.674	***	17.875	***	17.875	***	16.539	**	
Maryland	6	11.9	*	8.986	**	13.643	**	16.917	**	4.586		16.9	**	
Massachusetts	8	15.354	*	9.641	***	13.152		16.434	**	1.471		19.374	**	
Michigan	8	29.351	***	9.833	*	21.725	***	23.037	***	8.879		24.068	***	
Minnesota	8	18.839	**	3.288	*	18.59	**	8.761	***	2.746	*	11.219	***	
Mississippi	8	18.381	***	12.311	***	26.55	***	27.259	***	10.585	*	30.474	**	
Montana	8	18 499	**	3 69		15 133	*	8 8 5 8		0.1		6.829		
Nebraska	8	14.708	*	4.972	**	11.613		21.622	***	3.072	*	28.692	***	
Nevada	8	28.686	***	0.602		31.354	***	40.408	***	0.138		43.527	***	
N. Hampshire	8	15.011	*	5.581		14.272	*	12.459		4.621		13.708	*	
New Jersey	8	19.817	**	4.488		16.76	**	14.901	*	1.269		20.436	***	
New Mexico	8	38.304	***	20.027	***	18.634	**	26.916	***	6.896		22.503	***	
New York	8	13.233	***	1.446	**	10.458	***	23.244	***	12.578	**	30.074	***	
North Dakota	8 8	12 288		6 3 3 7	*	20.283 9.758		18 522	**	10.047	***	22.938	***	
Ohio	8	22.118	***	5 293		16 818	**	23 57	***	4 728		26.181	***	
Oklahoma	8	21.455	***	7.606		16.414	**	42.613	***	8.8	*	35.26	***	
Oregon	8	26.54	***	15.57	**	19.833	**	21.537	***	9.523		25.192	***	
Pennsylvania	8	16.892	**	14.372	**	14.697	*	19.805	**	13.136	**	17.658	**	
Rhode Island	8	26.306	***	12.154	***	25.566	***	17.419	**	0.557		28.954	***	
South Carolina	8	26.772	***	16.123	**	18.945	**	42.875	***	27.277	***	47.694	***	
South Dakota	8	14.198	***	6.339 8.022		15.308	**	12.496	***	5./08 0.857	*	10.972	***	
Texas	7	11 717		13 982	***	13 078	*	11 722		1 544		13 49	*	
Utah	8	10.991		5.419		6.846		26.146	***	2.883		30.387	***	
Vermont	8	14.959	*	1.484		15.925	**	13.765	*	0.932		19.048	**	
Virginia	8	31.989	***	15.596	***	28.673	***	33.88	***	0.994		32.422	***	
Washington	8	20.113	**	10.904	*	19.457	**	30.157	***	15.208	**	28.589	***	
West Virginia	8	33.404	***	6.966	ماد ماد ماد	38.472	***	23.924	***	14.147	**	32.255	***	
Wisconsin	8	22.77	**	22.77	**	16.026	*	12.937		12.937		14.66/	*	
Fisher test	4	9.934		9.934		7.090		1.505		1.505		2.390		
statistic value		540.201						505.618						
AIC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV10%		
		281.844		212.179		176.999		247.208		188.594		163.684		
Fisher test		361 418						243 683						
statistic value		GV 10/		CT 1 50 /		GT 11 00 /		245.005		<b>CT</b> 7 <b>C</b> 7		CT II OO (		
SBC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV10%		
Fisher test		190.409		102.499		140.44		187.813		137.424		142.62		
statistic value		419.744						599.351						
AIC dmax=2		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV10%		
		251.99		194.244		168.82		230.001		179.012		156.34		

Table 6. Results of Granger causality between Personal Income and Top 10% Income Share

			In H0·	come led hy	ypothes	sis s not			In	equality led I	hypothe	esis	
state	Lag		6	anger Cau	se Top	1			Grar	nger Cause Ir	ncome s	sorted	
State	length	AIC.	~	SBC.	p	AIC.		AIC.		SBC.		AIC.	
		dmax=1		dmax=1		dmax=2		dmax=1		dmax=1		dmax=2	
Alabama	7	1.589		3.441		3.002		8.4		12.367	*	8.765	
Arizona	8	3.085		1.171		2.81		12.114		8.644		13.969	*
Arkansas	5	4.021		1.729		4.141		2.751		14.038	**	2.889	
California	4	4.822		1.997		4.567		2.72		2.968		3.279	
Colorado	8	5.045		3.553		4.247		11.044		26.372	***	15.286	*
Connecticut	8	6.533		2.746		6.961		9.724		0.637		14.425	*
Delaware	8	24.83	***	10.129	***	23.733	***	16.53	**	29.735	***	17.553	**
Florida	8	9.556		0.661		8.566		16.181	**	21.731	***	19.259	**
Georgia	8	9.142		0.015		0.001		8.402		1./39		8.120 6.920	
Illinois	0 5	6.068		6.633		6.024		0.403		6 4 8 9		2 65	
Indiana	8	7.68		6 222		7 522		9 708		7 723		2.05 8.48	
Iowa	8	3,909		0.361		4.338		3.878		6.783		4.93	
Kansas	8	7.055		7.055		7.07		21.101	***	23.557	***	16.936	**
Kentucky	7	4.56		2.625		4.028		5.239		2.809		6.035	
Louisiana	8	8.162		9.803	**	5.212		15.234	*	12.186	**	19.918	**
Maine	6	16.135	**	16.135	**	15.288	**	19.316	***	17.875	***	17.14	***
Maryland	6	4.335		3.415		4.945		5.806		4.586		6.544	
Massachusetts	4	4.282		2.801		3.744		2.779		1.471		4.755	
Michigan	5	3.7		3.7		4.628		5.592		8.879		6.211	
Minnesota	8	5.384		1.912		5.515		4.774		2.746	*	4.211	
Mississippi	8	6.312		2.783		7.822		9.045		10.583	*	5.739	
Missouri	4	3.161		3.161		2.731		1.769		8.342	*	2.193	
Montana	8	10.077		0.073		8.698		9.828		0.1	*	8.523	
Nebraska	8	1.93		0.005		2.021		/.544	***	3.072	Ŧ	9.652	***
Nevaua N Hampshire	8	10 235		0.295		0.027 8.000		25.575		0.138		20.844	
New Jersey	4	1 8 1 5		2 282		1 081		1 508		1 269		2.03	
New Mexico	8	18 437	**	8 041	*	9 698		10.858		6.896		6 4 4 5	
New York	4	1 812		1 812		2,449		7 313		12.578	**	10 742	**
North Carolina	8	5.992		2.062		6.143		5.065		18.847	***	3.938	
North Dakota	3	4.589		0.333		2.952		4.465		12.061	***	3.169	
Ohio	8	4.846		3.608		4.238		11.844		4.728		8.733	
Oklahoma	8	13.094		2.618		8.503		17.758	**	8.8	*	14.247	*
Oregon	7	3.07		2.386		3.056		6.138		9.523		3.97	
Pennsylvania	8	8.559		3.489		7.554		9.134		13.136	**	6.779	
Rhode Island	8	12.245		3.15		14.969	*	10.821		0.557		13.925	*
South Carolina	8	11.607		3.119		8.816		17.616	**	27.277	***	15.228	*
South Dakota	8	6.436		0.482		7.494		7.212		5.708	*	6.065	
Tennessee	5	3.6/2		2.078		4.306		2.555		9.857	Ŧ	2.403	
Itah	0 8	11.925		5.789 1.744		7.823 5.289		12.000		1.344		15.557	
Vermont	8	10 701		1.744		13 955	*	7 277		0.932		7 472	
Virginia	8	15 118	*	1.400		13 945	*	20.689	***	0.992		18 323	**
Washington	8	3.576		4.266		3.306		10.145		15.208	**	8.75	
West Virginia	5	2.79		2.79		2.646		4.616		14.147	**	5.102	
Wisconsin	8	6.976		3.481		7.889		5.833		12.937		6.251	
Wyoming	4	18.231	***	18.231	***	12.839	**	0.449		1.305		0.675	
Fisher test		115 424						149 679					
statistic value		115.727						147.077					
AIC dmax=1		CV 1% 234.786		CV 5% 179.873		CV10% 158.107		CV 1% 200.43		CV 5% 164.751		CV10% 146.759	
Fisher test statistic value		116.696						87.923					
SBC dmax=1		CV 1%		CV 5%		CV10%		CV 1%		CV 5%		CV10%	
Fisher test		95.33		105.425		147.734		192.170		150.401		137.000	
statistic value		CV 10/		CN 50/		CV100/		CV 10/		CVI 50/		CV100/	
AIC umax=2		227.524		Cv 5% 176.982		154.646		203.913		CV 5% 164.843		147.944	

# Table 7. Results of Granger causality between Personal Income and Top 1% Income Share

# Table 8. List of states which cannot reject H0

Income does not Granger cause Atkinson Index	Atkinson Index does not Granger cause Income
Arizona, Florida, Maryland, Missouri, New	New Mexico, North Dakota, Wyoming
Hampshire, Wyoming	
Income does not Granger cause Gini Coefficient	Gini Coefficient does not Granger cause Income
Arkansas, Colorado, Iowa, Louisiana, Maryland,	Kansas, Montana, Nebraska, Wyoming
Mississippi, Missouri, South Carolina, Texas,	
Wisconsin, Wyoming	
Income does not Granger cause the Relative Mean	the Relative Mean Deviation does not Granger
Deviation	cause Income
Iowa, Texas, Wyoming	South Dakota
Income does not Granger cause Theil's entropy	Theil's entropy Index does not Granger cause
Index	Income
Arizona, Colorado, Connecticut, Florida, Idaho,	Arkansas, Idaho, Indiana, Maryland, Mississippi,
Indiana, Iowa, Louisiana, Maryland, Massachusetts,	Nebraska, New Mexico, North Carolina, Oregon,
Minnesota, Mississippi, Missouri, Nevada, New	South Dakota, Vermont, Wyoming
Hampshire, New Jersey, New York, North Dakota,	
Ohio. Oregon. Pennsylvania, South Carolina, South	
Dakota, Tennessee, Texas, Utah, Vermont,	
Washington, Wisconsin, Wyoming	
Income does not Granger cause Top 10 % income	Top 10 % income share does not Granger cause
share	Income
Arizona, Florida, New York, Utah	Arizona, Montana, South Dakota, Wyoming
Income does not Granger cause Top 1 % income	Top 1 % income share does not Granger cause
share	Income
Alabama, Arizona, Arkansas, California, Colorado,	California, Georgia, Idaho, Illinois, Indiana, Iowa,
Connecticut, Florida, Georgia, Idaho, Illinois, Indiana,	Kentucky, Maryland, Massachusetts, Michigan,
Iowa, Kansas, Kentucky, Maryland, Massachusetts,	Montana, New Hampshire, New Jersey, New Mexico,
Michigan, Minnesota, Mississippi, Missouri, Montana,	Ohio, Oregon, South Dakota, Texas, Utah, Vermont
Nebraska, Nevada, New Hampshire, New Jersey, New	Wisconsin, Wyoming
York, North Carolina, North Dakota, Ohio, Oklahoma,	
Oregon, Pennsylvania, South Carolina, South Dakota,	
Tennessee, Texas, Utan, Wasnington, West Virginia,	
wisconsin, wyoming	