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1. Introduction

Performance evaluation in any decision making situation involves comparing the outcome from the 

decision actually made with what is deemed to be the most preferred outcome within the constraints of 

the decision making problem. To evaluate the performance of a firm producing a single output from a 

specific bundle of inputs one compares its actual output with the maximum producible quantity from the 

bundle of inputs it is using. In textbook economics, the production function defines the maximum output 

producible from any given bundle of inputs. The actual output may fall below this maximum due to 

inefficiency. In practice, there is no readily available scientific formula showing the maximum output 

from a given input and the production function has to be constructed from observed input-output data. 

The common practice in empirical research is to start with an explicit functional specification of the 

production function and to use regression to estimate the parameters of the model. However, the two-

sided residuals imply that that for some observations, the observed output actually exceeds the fitted 

value. This violates the assumption that the regression provides an upper limit on the producible output. 

In the Stochastic Frontier Analysis (SFA) literature this problem has been addressed in various ways. 

These include adjusting the intercept upwards to cover all data points from above (Greene 1980), 

specifying a one-sided distribution (like the Gamma distribution) for the error term (Richmond 1974), and 

a full blown stochastic frontier incorporating a one-sided error term representing inefficiency alongside a 

two-sided disturbance capturing random variation in the frontier (Aigner, Lovell, and Schmidt 1977). 

An alternative to the parametric econometric analysis is the nonparametric approach of Data Envelopment 

Analysis (DEA) introduced by Charnes, Cooper, and Rhodes (1978). In neoclassical production theory 

the intellectual roots of DEA go all the way back to Debreu (1951), Koopmans (1953), Shephard (1953, 

1970) , Farrell (1957), Farrell and Fieldhouse (1962), Afriat (1972), and Hanoch and Rothschild (1972) 

among many others. In this strand of the efficiency literature, one makes only a number of general 

assumptions about the properties of the underlying production technology but leaves the production 

function unspecified. The observed input-output data are used to solve various mathematical 
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programming problems to measure the technical efficiency of a firm (as in Farrell (1957) or Farrell and 

Fieldhouse (1962) or to ascertain whether there exists any production technology satisfying the 

assumption relative to which the data would be consistent with optimizing behavior by the firms (Afriat 

(1972), Hanoch and Rothschild (1972), Diewert and Parkan (1983), Varian (1984), and Banker and 

Maindiratta (1988)).    

The parametric approach of SFA has several advantages over DEA. Being an econometric approach it 

readily yields standard errors of the parameter estimates and allows application of standard statistical 

tests. Moreover, one can derive marginal productivities and various elasticities from the estimated model. 

However, validity of the entire empirical analysis rests critically on the validity of the functional form 

specified. If, for example, the true technology is log quadratic (Translog) but one estimates a Cobb 

Douglas production function, specification error may be interpreted as inefficiency. Moreover, the 

estimated model may violate regularity conditions like non-negative marginal productivities or negative 

own price elasticities of conditional input demand either globally or at individual data points. When the 

estimated model itself is invalid, little insight can be gained from standard errors of the coefficients.  

 In DEA the regularity conditions are imposed on the technology but no functional form is specified. 

Hence, (weak) monotonicity of the production function or convexity of isoquants are guaranteed to hold. 

A major weakness of DEA is that it treats all deviations from the frontier as inefficiency and does not 

readily accommodate random noise. It is possible, however, to generate an empirical distribution function 

of technical efficiency through bootstrapping and construct a confidence interval. 

This chapter presents an overview of the DEA approach to measurement of technical efficiency. Special 

attention is paid to alternative returns to scale assumptions about the technology. The rest of the chapter is 

organized as follows. Section 2 introduces the production Possibility Set (PPS) as the foundation of 

neoclassical production economics and the Shephard Distance Function as a way to measure the 

proximity of an observed input output bundle to the frontier of the PPS. Section 3 details the 

nonparametric methodology of production analysis and measurement of output and input oriented radial 

technical efficiency under alternative returns to scale assumptions. Section 4 presents the so called 

‘multiplier model’ form of the DEA linear programming problem and derives the CCR ratio measure of 

technical efficiency directly from  the transformation function for a multiple output multiple input 

technology. Section 5 looks at the mathematical programming model of Aigner and Chu (1968) for 

estimating a deterministic parametric frontier production frontier and links it to DEA. Section 6 deals with 

measurement of scale efficiency and uses the Most Productive Scale Size (MPSS) to identify the nature of 

local returns to scale at different input-output bundles both those which are on the frontier and those 

which are below the frontier. Section 7 explains non-radial measures of technical efficiency. Section 8 
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covers Graph efficiency measurement including Graph Hyperbolic efficiency, Directional Distance 

Function, and Pareto-Koopmans efficiency. Section 9 is the conclusion. 

2.  Conceptual Foundations 

The logical starting point of any discussion of production efficiency is the concept of the Production 

Possibility Set (PPS). An input vector 
0 nx R  and an output vector 

0 my R  together constitute a 

feasible production plan if 
0y  can be produced from 

0.x The production possibility set consists of all 

feasible production plans and is defined as 

                          ( , ) :  can be produced from .m nT x y y R x R                                    (1) 

It is assumed that T is a closed set. In any given context the size and shape of the set T  depends not only 

on the state of technical knowledge but also on a host of physical, legal, and cultural factors. In the single 

output case, it is a common practice to define a production function 

              
* ( ); 0,( 1,2,.., )

i

f

x
y f x i n




                                                                              (2) 

where
*y is the maximum quantity of output producible from a given input bundle .x  The PPS can then 

be defined as 

          ( , ) : ( ), , .nT x y y f x y R x R                                                            (3) 

Note that while 
*y is the maximum output producible from the input bundle ,x  the actual output ( )y  can 

be less than 
*y  due to inefficiency. For multiple output multiple input production one uses the 

transformation function 

           ( , ) 0; 0,( 1,2,..., ); 0,( 1,2,..., ).
i j

F F
x y

F x y i n j m 
 

                                         (4)                                                                                           

In that case 

                   ( , ) : ( , ) 0; , .m nT x y F x y x R x R                                                           (5) 

The definition in (3) is a special case of the more general definition in (5) with ( , ) ( ).F x y y f x   If 

0 0 0 0( , ) 0,( , )F x y x y  is a boundary point of T. Any reduction in all inputs or increase in all outputs 
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will result in a strictly positive value of the transformation function and the new input-output bundle will 

be infeasible. The graph of the technology1 is the set 

                ( , ) : ( , ) 0; , .m nG x y F x y x R x R                                                          (6) 

If 
0 0 0 0( , ) 0,( , )F x y x y is an interior point. Similarly, if 

0 0 0 0( , ) 0,( , )F x y x y is infeasible.  

2.1 Distance Functions and Technical Efficiency  

Technical efficiency in production lies in producing the maximum output quantity (or a maximal output 

bundle) from a given bundle of inputs or in using a minimal input bundle to producing a given output 

quantity (or bundle).The question of efficiency in production was first formally addressed by Debreu 

(1951) who introduced the concept of the ‘Coefficient of Resource Utilization’. It was essentially a 

macroeconomic concept measuring production efficiency at the economy level. Technical efficiency of 

any individual producer depends on the location of its actual input-output bundle relative to the boundary 

of the PPS or the graph of the technology. Shephard (1953) introduced the Distance function for the one 

output production technology (subsequently generalized to the multiple output multiple input case by 

Shephard (1970) and McFadden (1978))2 which provides a measure of technical efficiency of an 

individual production decision making unit.   

The Output Distance Function evaluated at a specific input-output bundle 
0 0( , )x y  relative to the PPS 

( )T  is 

  
0 0 0 01( , ) min :( , ) .yD x y x y T


                                               (6) 

If one represents the PPS by the transformation function as in (5), the Output Distance Function becomes 

                         
0 0 0 01( , ) min : ( , ) 0.yD x y F x y


                                              (7) 

If 
0 0( , ) 1,yD x y  the output bundle 

0y is not producible from 
0x  so that

0 0( , ) .x y T   On the other 

hand, if   
0 0 0 0( , ) 1, ( , ) 0yD x y F x y  and    

0 0( , ) .x y T  Of Course, if 
0 0( , ) 1,yD x y  0 0( , ) .x y G  

Thus, an alternative way to define the PPS is 

                        ( , ) : ( , ) 1; , .y m nT x y D x y x R x R                                         (8) 

                                                           
1 Some writer prefer to call it the Graph of the transformation function. 
2 Although the volume was published in 1978, McFadden’s paper has been available since 1968. 
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Comparable to the Output Distance Function is the Input Distance Function 

                      
0 0 0 01( , ) max : ( , ) 0.xD x y F x y


                                                 (9) 

Thus, yet another alternative definition of the PPS is 

                      ( , ) : ( , ) 1; , .x m nT x y D x y x R x R                                          (10) 

As noted earlier, technical efficiency precludes the possibility of increasing outputs without increasing 

inputs or reducing inputs without reducing outputs. At this point, it is important to distinguish between 

weak and strong efficiency. An input-output bundle ( , )x y T  is weakly efficient in its output orientation 

if 1 ( , ) .x y T     Similarly, ( , )x y T is weakly efficient in its input-orientation if 

1 ( , ) .x y T     As is quite apparent, weak efficiency rules out simultaneous increase in all outputs 

leaving the inputs unchanged or simultaneous reduction in all inputs without changing outputs. However, 

it does not rule out potential increase in one or several outputs or reduction in one or several inputs.3 By 

contrast, ( , )x y T is strongly output efficient if ( , ) .y y x y T    Here the vector inequality y y 

means that y  is at least as large as y  in every coordinate and is strictly larger in some coordinate(s). 

Thus, strong technical efficiency in output orientation rules out increasing any individual output without 

reducing any output or increasing any input. Similarly, ( , )x y T is strongly input efficient if 

( , ) .x x x y T    Weak efficiency is also described as radial efficiency because it relates to equi-

proportional change in all outputs or all inputs. Strong efficiency, on the other hand, is called non-radial 

efficiency.  

The output-oriented radial technical efficiency of a firm producing output 
0y  from the input 

0x  is 

                             *

0 0 1( , )y x y


                                                                         (11) 

where 

                           
* 0 0max : ( , ) .x y T                                                         (12) 

Clearly, 

                              
0 0 0 0( , ) ( , ).y

y x y D x y                                                        (13)  

                                                           
3 This can happen if 0

j

F
y



  for some outputs or 0
i

F
x


  for some inputs. 
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The input-oriented radial technical efficiency is 

                          
0 0 0 0( , ) min : ( , ) .x x y x y T                                            (14) 

This time, 

                         0 0

0 0 1

( , )
( , ) .yx D x y
x y                                                                (15) 

Farrell (1957) was the first to formally define and measure technical efficiency in production using input-

output data.4 However, the first mathematical formulation of technical efficiency measurement as a 

Linear Programming (LP) optimization problem can be found in the appendix of Farrell and Fieldhouse 

(1962) where is it set up as an output oriented model.5  

Measurement of output and input oriented technical efficiencies is shown graphically in Figures 1 and 2. 

In both figures the curve OP is the graph of the production function ( )y f x  and the points A and B are 

the input-output quantities ( , )A AX Y  and   ( , ).B BX Y In Figure 1, the points 
* *andA B  are their output-

oriented efficient projections. Hence, *( , ) A

A

AX

y A A A X
X Y   and *( , ) .B

B

BX

y B B B X
X Y   Similarly, the points C 

and D are the input-oriented efficient projections of A and B. Thus, ( , ) A

A

CY

x A A AY
X Y  and 

( , ) .B

B

DY

x B B BY
X Y   

3. The Nonparametric methodology 

In order to measure technical efficiency in any empirical application one has to define the production 

possibility set by specifying the production function (in the single output case) or the transformation 

function (in the multiple output case). In parametric models, this requires an explicit functional 

specification like the Cobb Douglas, Constant Elasticity of Substitution (CES), or the Translog production 

function. Measures of technical efficiency as well as elasticities of substitution between inputs derived 

from the calibrated model are all contingent upon the validity of the specified functional form. By 

contrast, in the nonparametric approach of Data Envelopment Analysis (DEA) one relies on a number of 

                                                           
4 The computation method in Farrell’s paper was extremely burdensome. It involved comparing the input vector per 

unit of the output used by any unit with convex combinations of all other pairs of such (per unit) input bundles. The 

technical efficiency of the unit under evaluation was the minimum contraction factor feasible in its unit input bundle 

compared to any such convex combination. As is apparent from Diagram 2 on page 256 of Farrell (1957) it was an 

input oriented measure.  
5 Of course, under the CRS assumption (as shown below) the output and input oriented measures of technical 

efficiency are identical. 
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quite general assumptions about the underlying technology and employs Mathematical Programming 

techniques to construct the frontier of the production possibility set. 

Consider an industry producing m outputs from n inputs. Let ( , )j jx y be the observed input-output 

bundle of firm j. Designate the sample of N observations as 

                       ( , ), 1,2,...,j jx y j N   .                                 (16) 

Assumptions 

(A1) Every observed input-output bundle is feasible. Thus, 

                   ( , ) ( , ) .j j j jx y x y T       

(A2) The production possibility set is convex.         

         0 0 1 1 0 1 0 1( , ) ( , ) (1 ) , (1 ) (0,1).x y T x y T x x y y T                

(A3) Inputs are freely disposable. 

                  
0 0 1 0 1 0( , ) ( , ) .x y T x x x y T                    

(A4) Outputs are freely disposable. 

                  
0 0 1 0 0 1( , ) ( , ) .x y T y y x y T      

One can use the data set   and the assumptions (A1-A4) to construct the production possibility set 

empirically as 

              
1 1 1

ˆ ( , ) : ; ; 1; 0;( 1,2,..., )
N N N

j j

j j j j

j j j

T x y x x y y j N   
  

 
      
 

    (17) 

The intuition behind (17) is quite simple. By virtue of (A1) and (A2), every convex combination 

1 1 1

( , ) , | 1
N N N

j j

j j j

j j j

x y x y  
  

 
  
 
    is feasible. Further, by (A3), x x  implies ( , )x y  is feasible. 

Finally by (A4) y y  implies ( , )x y  is feasible. The set T̂  is often described as the free disposal convex 

hull of the observed input-output bundles and is the smallest set satisfying assumptions (A1-A4). The 

frontier of this empirically constructed production possibility set envelops the observed data points most 
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tightly from above. Hence, measuring efficiency using this frontier as the benchmark for evaluation is 

called Data Envelopment Analysis (DEA). 

3.1 Output and Input oriented Radial Technical Efficiency  

Banker, Charnes, and Cooper (BCC) (1984) formulated the following LP model to measure the output 

oriented technical efficiency of a firm using input 
0 nx R  and producing output 

0 my R : 

0

1

0

1

1

max

. . ( 1,2,..., );

( 1,2,..., );

1;

0, ( 1,2,..., ); unrestricted.

N
j

j r r

j

N
j

j i i

j

N

j

j

j

s t y y r m

x x i n

j N



 





 







 

 



 







           (18) 

The optimal solution of (18) yields *

0 0 1( , )y x y


  . 

It may be noted that even though φ is unrestricted, when 
0 0( , )x y is one of the bundles in    (say the bundle 

of firm k),  1, 0( ), 1k j j k      is a feasible solution and, in that case, 1 would be a lower bound 

for  . But even when 
0 0( , )x y is not one of the observed bundles non-negativity of the λs and the outputs 

will ensure that φ will never be negative6. 

The benchmark input-output bundle for 
0 0( , )x y is 

* * * *

1 1

,
N N

j j

j j

j j

x x y y 
 

 
  

 
  constructed from the 

optimal solution of the problem. For any output r the difference between the left hand side and the right 

hand side of the relevant output constraint,
* * 0

1

N
j

r j r r

j

s y y 



  , is the output slack representing the 

additional expansion of the output feasible beyond the common expansion by the scalar φ*. Similarly, the 

input slack,
0 *

1

N
j

i i j i

j

s x x



  , is the potential reduction in input i. The scalar 
*  shows the factor by which 

all outputs can be expanded without requiring any additional input. In fact, some outputs can be expanded 

                                                           
6 However, if any individual input in the bundle x0

 is smaller than the smallest value of the corresponding input 

across all observations in the data set  , (14) will not have a feasible solution. 
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further when there are positive output slacks. Similarly, some inputs can even be reduced if there are 

positive input slacks. The BCC output oriented model yields a radial measure of technical efficiency 

because it is the inverse of the radial output expansion factor 
*  and does not incorporate the output slacks. 

In the single output case the optimal value of the objective function in the output-oriented DEA problem 

(φ*) yields an estimate of the maximum output producible from the input bundle 
0x  as 

    
0 *

0
ˆ( ) .f x y                                                   (19) 

The true maximum output that can be produced from
0x may actually be considerably higher than

*

0y  . 

But we cannot infer that on the basis of the observed input-output bundles without making additional 

assumptions about the technology. However, it cannot be any smaller than  
*

0y  if the assumptions (A1-

A4) hold, In that sense, it is the most conservative estimate of the frontier output and, hence, 

*

0 1
0( , )y x y


  is an upper bound on the output orient technical efficiency of the firm.7 

The corresponding input oriented technical efficiency of the firm using input 
0x and producing output 

0y  

may be evaluated as 

 
0 0 *( , )x x y  , where 

*

0

1

0

1

1

min

. . ( 1,2,..., );

( 1,2,..., );

1;

0, ( 1,2,..., ); unrestricted.

N
j

j r r

j

N
j

j i i

j

N

j

j

j

s t y y r m

x x i n

j N

 



 



 









 

 



 







                                (20) 

Again, it is obvious that 
*0 1.  It should be noted that the benchmark input-output bundle 

* * * *

1 1

,
N N

j j

j j

j j

x x y y 
 

 
  

 
  on the frontier for the input oriented DEA problem, will, in general, be 

different from what was obtained for the output oriented problem. 

                                                           
7 We use superscripts for vectors and subscripts for scalars. 
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3.2 Constant Returns to Scale 

If one assumes constant returns to scale (CRS), we get the additional assumption 

(A5) ( , ) ( , ) 0.x y T kx ky T k       

An implication of the CRS assumption is that in the single output case the production function 

* ( )y f x  is homogenous of degree 1. That is, ( ) ( ).f kx kf x  In the multiple output case, CRS implies 

that the transformation function is homogeneous of degree 0. That is ( , ) ( , ).F kx ky F x y  This ensures 

that if 
0 0 0 0( , ) 0, then ( , ) 0.F x y F kx ky   Hence, if 

0 0( , )x y  is feasible, so is 
0 0( , ).kx ky   

Under the additional assumption of CRS, the empirically constructed PPS is 

         
1 1

ˆ ( , ) : ; ; 0;( 1,2,..., )
N N

j j

C j j j

j j

T x y x x y y j N  
 

 
     
 

         (21) 

To understand why the constraint 
1

1
N

j

j




  is no longer included consider the following.  We have seen 

above that under (A1-A2), 
1 1 1

( , ) , | 1
N N N

j j

j j j

j j j

x y x y  
  

 
  
 
    is feasible. But now, with the added 

assumption of CRS, 
1 1 1

( , ) , | ; 0.
N N N

j j

j j j

j j j

kx ky x y k k  
  

 
   
 
    is feasible for any 0.k   But non-

negativity of k  is automatically satisfied by the non-negativity constraints on the sj and no additional 

constraint on the sum of the λs is needed. 

The CCR output oriented CRS DEA LP model is 

                          

*

0

1

0

1

max

. . ( 1,2,..., );

( 1,2,..., );

0, ( 1,2,..., ); unrestricted.

C C

N
j

j r C r

j

N
j

j i i

j

j

s t y y r m

x x i n

j N

 

 



 







 

 

 




                       (22) 

The CRS output oriented radial technical efficiency is 

                         *

0 0 1( , ) .
C

C

y x y


                                                          (23) 
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The corresponding CRS input oriented model is 

                       

*

0

1

0

1

min

. . ( 1,2,..., );

( 1,2,..., );

0, ( 1,2,..., ); unrestricted.

C

N
j

j r r

j

N
j

j i i

j

j

s t y y r m

x x i n

j N

 



 

 







 

 

 




                         (24) 

The CRS input oriented technical efficiency is   

                                    
0 0 *( , ) .C

x Cx y                                        (25) 

To prove that under CRS the input and output oriented radial measures of technical efficiency are 

identical we first rewrite the objective function in (22) as 
* 1min

CC 
   and then divide the constraints by 

C  to rewrite the problem as 

                                

1

0

1

01

1

min

. . ( 1,2,..., );

( 1,2,..., );

0, ( 1,2,..., ); unrestricted.

C

j

C

j

C C

N
j

r r

j

N
j

i i

j

j C

s t y y r m

x x i n

j N









 

 





 

 

 





  (26) 

Now define 1 and .j

C Cj



 
    Note that, as explained before, even though in principle 

C  is 

unrestricted in sign, non-negativity of outputs ensures that it will never be negative. Hence j will also be 

non-negative for each observation j. Hence, the CRS output oriented problem can be reduced to 

                     

0

1

0

1

min

. . ( 1,2,..., );

( 1,2,..., );

0, ( 1,2,..., ); unrestricted.

N
j

j r r

j

N
j

j i i

j

j

s t y y r m

x x i n

j N





 

 





 

 

 




        (27) 
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The problem in (27) is exactly the same as the input oriented problem in (24). Hence,
*  in (27) equals 

*

C  in (24) and *

1

C
 from (22). This proves that 

0 0 0 0( , ) ( , ).C C

y xx y x y   

4. The CCR Ratio and the Multiplier Model 

In their seminal paper introducing DEA Charnes, Cooper, and Rhodes (1978) defined technical efficiency 

as 

                    

0

0 0 1

0

1

1

1

( , ) max

. . 1;( 1,2,..., )

, 0;( 1,2,..., ; 1, 2,..., ).

m

r r

r

n

i i

i

m
j

r r

r

n
j

i i

i

r i

u y

h x y

v x

u y

s t j N

v x

u v r m i n











 

  









    (28) 

In the OR/MS literature, the numerator 
0

1

m

r r

r

u y


 is described as the virtual output and the denominator 

0

1

n

i i

i

v x


 as the virtual input of the unit under evaluation. In that sense, 
0 0( , )h x y is a measure of total 

factor productivity rather than of technical efficiency.  Because 
0 0( , )x y   the constraint in (28) 

ensures that 
0 0( , )h x y   cannot exceed unity. Further, because the objective function and the constraints 

are all homogeneous of degree 0 in u and v, we can normalize the aggregation weights as 
0

1

1.
n

i i

i

v x


  

The linear fractional functional programming problem in (28) can then be equivalently written as the 

following LP problem: 
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0 0 0

1

1 1

0

1

( , ) max

. . 0;( 1,2,..., )

1;

, 0;( 1,2,..., ; 1, 2,..., ).

m

r r

r

m n
j j

r r i i

r i

n

i i

i

r i

h x y u y

s t u y v x j N

v x

u v r m i n



 





  



  



 



                 (29) 

The problem in (29) is the linear programming dual of the optimization problem for the CRS input 

oriented technical efficiency in (24). Hence, by standard duality results, the CCR Ratio 
0 0( , )h x y  in (29) 

equals 
0 0( , )C

x x y  from (24) and under CRS also equals
0 0( , ).C

y x y Ray (2017) provides a derivation of 

the CCR ratio directly from the transformation function. Consider the input-output bundle (x0, y0) and 

assume that
0 0( , ) 0F x y  so that 

0 0( , )x y is an inefficient bundle. Next, consider the Shephard Distance 

Function 

       0 0 0 0 0 01 1( , ) min : , , 0.yD x y x y T F x y
 

                (30) 

It is the inverse of the largest scalar  such that 
0 0( , ) 0F x y  and is the same as the output oriented 

Farrell efficiency. Clearly, for 
0 0( , ),x y 1  and 1.   

Focus now on the efficient input-output bundle 
0 * 0 0

0( , ) ( , )x y x y lying on the graph of the technology. 

Thus 0 *

0( , ) 0.F x y  Now, due to homogeneity of degree 0, 

          
0 * 0 *

0 0

0 * *

0 0 0, ,
( , ) ( ) ( ) 0.

i r

F F
i rx yx y x y

i r

F x y x y 
 

      (31) 

Define                  0 *
0

0

,
( ) ( 1,2,..., )

i

F
i x x y

F i n


                                (32)                           

and                          0 *
0

0

,
( ) ( 1,2,..., ).

r

F
r y x y

F r m


                          (33) 

Then (31) becomes 

                                   0 0 *

0 0 0.i i r r

i r

F x F y                                 (34) 

Because 
*

0 0 ,r ry y (34) leads to 
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                                     0 0

0 0.r r i i

r i

F y F x                                (35) 

Thus, 

                                                

0

0

1

0

0

.
r r

r

i i

i

F y

F x


  





                       (36) 

Finally, define 
0 0andr r i iu F v F   to derive 

                      
0

1

0

.
r r

r

i i

i

u y

v x


  



                                                 (37) 

This shows that the CCR ratio in (28) is the same as the Shephard Distance Function or the Farrell 

measure of technical efficiency. Finally, 
1 1

0
m n

r r i i

r i

u y v x
 

   is a supporting hyperplane to the PPS at 

0 * 0( , )x y  and due to convexity 
1 1

0 ( , )
m n

j j j j

r r i i

r i

u y v x x y
 

     .The multipliers (u and v) are the 

vectors of shadow prices of outputs and inputs. In that sense, the CCR ratio is the ‘shadow return on 

outlay’ and the inequality constraints are comparable to the ‘no positive profit’ condition in a competitive 

market under CRS.  

The dual LP problem for the output oriented VRS DEA (also known as the BCC) model is 

                  

0

0

1

0

1 1

0

1

min

. . 0;( 1,2,..., )

1;

, 0;( 1,2,..., ; 1, 2,..., ).

n

i i

i

n m
j j

i i r r

i r

n

r r

i

r i

v v x

s t v v x u y j N

u y

u v r m i n



 





   



  



 



              (38) 

In the next section, we show how the BCC DEA problem relates to the deterministic parametric frontier 

model of Aigner and Chu (1968).  

5. A Deterministic Parametric Frontier as a special DEA Problem 
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As noted earlier, in the single output case the observed input-output data must satisfy the inequality 

( ).y f x  It is convenient, therefore to write the deterministic production frontier8 as 

                         ( ). , 0uy f x e u                                                        (39)   

Aigner and Chu (1968) specified the Cobb Doulas form of the frontier production function 

            1 2

1 2( ) .. .k

kf x Ax x x
 

                                                       (40) 

Then (39) can be written in logarithmic form for each individual observation j as 

          0 1 1 2 2ln ln ... ln ln 0j j j

j k k ju x x x y                        (41) 

Given the one-sided distribution of u, the usual OLS estimation procedure does not work in this case.  

Aigner and Chu proposed minimizing either 
2

1

N

j

j

u


  or 
1

N

j

j

u


 subject to the constraints that each estimated 

residual ju  is non-negative. Note that minimizing 
1

N

j

j

u


 is equivalent to minimizing                              

1
0 1 1 2 2

1

ln ln ... ln ln
N

j k kN

j

u u x x x y   


                   (42) 

Further, ln y  is a constant and plays no role in the minimization problem. Hence, the Aigner-Chu 

problem can be formulated as 

               

0 1 1 2 2

0 1 1 2 2

0

min ln ln ... ln

. . ln ln ... ln ln

0( 1,2,.., ); unrestricted.

k k

j j j

k k j

i

x x x

s t x x x y

i k

   

   

 

   

    

 

               (43) 

The LP dual to (43) is 

                                                           
8 In the parametric frontier production function literature, (39) is described as a deterministic frontier. It needs to be 

made clear that what is deterministic above is the frontier output 
* ( )y f x  but the actual output y  is stochastic 

because 
ue

 , the inefficiency component, is still random. 
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1

1

1

max ln

. . ln ln ( 1,2, , )

1; 0( 1,2,..., )

N

j j

j

N
j

j i i

j

N

j j

j

y

s t x x i m

j N





 







 

  







                                     (44) 

Next, define 
1

ln

.
ln

N

j j

j

y

y









 Because 1

j N
   for all j is a feasible solution for (44), 

1

ln ln .
N

j j

j

y y 


  Hence, (44) can be equivalently written as 

                                

1

1

1

max

. . ln ln ;

ln ln ( 1,2, , )

1; 0( 1,2,..., )

N

j j

j

N
j

j i i

j

N

j j

j

s t y y

x x i m

j N



 



 









 

  







                       (45) 

Thus, the Aigner-Chu model actually solves the BCC DEA output oriented problem evaluating the 

efficiency of the geometric mean of the input-output bundle in the (log) input-output space.9 

6. Scale Efficiency 

The concept of scale efficiency is best explained for a 1-ouput 1-input technology. Consider a firm with 

the input-output pair 
0 0( , )x y . At the observed point, the average productivity of the firm is  0

00 .
y

x
AP    

If the firm is inefficient, its output can be increased to 
0 0( )f x y  and as result its average productivity 

would increase to 0

0

( )

0( ) .
f x

x
AP x  Thus, eliminating technical inefficiency would automatically raise 

average productivity. However, once the firm has been projected on to the frontier, no further increase in 

average productivity is possible without changing the input level. All points on the frontier are technically 

efficient. However, unless CRS holds globally across the frontier, average productivity will vary across 

different points on the frontier. We may define average productivity along the frontier as 
( )

( ) .
f x

x
AP x   

                                                           
9 For an MLE interpretation of the Aigner-Chu model, see Schmidt (1976). 
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Frisch (1965) defined the input level, 
*x , where ( )AP x reaches a maximum as the technically optimal 

production scale (TOPS). A measure of scale efficiency of the firm would then be 

                              0

*

( )

0 ( )
( ) .

AP x

AP x
SE x                                            (46) 

It is well known from standard microeconomics that the first order condition for a maximum of ( )AP x  is

( )
( ) ( ) ( ).

f x

x
f x f x xf x    Hence, at the input level 

* * *, ( ) ( ).x AP x f x  Define the constant

*( )f x  and a counter factual CRS production function 

  ( ) .r x x                                                      (47) 

Two things may be emphasized. First, by the definition of the TOPS, for every input level x  

                           

*

*

( ) ( )* *( ) ( ) ( )

( ) ( ).

f x f x

x x
AP x AP x f x

f x x r x





    

  
 (48) 

Second,  

                         0 0 0

*
0 0

( ) ( ) ( )

0 ( )( )
( ) 1.

AP x f x f x

x r xAP x
SE x


              (49) 

One can also write (49) as 

                         

0

00

0 0

0

( )( )

0 ( )

( )

( ) .

y

r xf x

r x y

f x

SE x                    (50) 

Now, 
* ( )y f x  is the true VRS frontier and 0

0 0 0( )
( , )

y

yf x
x y  is a measure of the output oriented VRS 

technical efficiency. On the other hand, 
** ( )y r x is an artificial CRS frontier and 0

0 0 0r( )
( , )

y C

yx
x y  is a 

measure of the output oriented CRS technical efficiency. Hence, a simple measure of scale efficiency is 

                     
0 0

0 0

( , )

0 ( , )
( ) .

C
y

y

x y

x y
SE x




                           (51) 

. In Figure 3 the point A shows the input-output bundle 
0 0( , )x y  and the point B on the production 

function 
* ( )y f x  is the output oriented technically efficient projection. The most productive input 

scale is 
*x  and 

* *
0

* *
0

( )*( ) .
Dxf x Cx
Oxx Ox

AP x     Also, the tangent to the production function at the point C can 

be treated as a counterfactual CRS production function 
** *( ) ; ( ).y r x x f x      Thus, 
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0 0 0

0 0 0 0 00 0

*
0 00 0 0 0

* 0 0

( )

( ) ( , )( )

0 ( ) ( , )( )
( )

( ) .
y
C

y

f x Ax y

x Dx r x D x yBx f x

Dx r xAx y D x yf x
Bx f xx

SE x        

6.1 Ray Average Productivity and Returns to Scale 

The concept of average productivity is unequivocal only in a single-output single-input case. When 

multiple inputs are used for production (as is almost universally the case in real life) one can measure 

partial average productivities but to obtain a single measure of total factor productivity one must 

aggregate the individual inputs into a scalar. In the multiple-output case, the individual outputs also need 

to be aggregated. One way to avoid such aggregation is to consider only proportional variations in all 

inputs and the consequent proportional variation in all outputs. Consider a technically efficient pair of 

input-output bundles 
0 0( , )x y satisfying 

0 0( , ) 0.F x y  Now consider another input bundle 
1 0.x x  

Thus the two input bundles have the same input-proportions and differ only in scale. Next consider an 

output bundle y  satisfying 
1( , ) 0.F x y  There will be many output bundles y satisfying 

1( , ) 0.F x y 

Out of them we select the one which is proportional to 
0.y  Denote this as

1 0.y y  Now compare the 

bundles 
0 0( , )x y and 

1 1 0 0( , ) ( , ).x y x y  Note that because outputs increase (decrease) with inputs, 

1   implies 1.   If we treat 
0x  as a single unit of a composite input and 

0y  as a single unit of a 

composite output then 
1 1( , )x y corresponds to   units of the composite input and units of the 

composite output. In terms of the composite input and output, the ray average productivity at 
0 0( , )x y is 1 

and at 
1 1( , )x y it is .

   Now, if   , we conclude that ray average productivity has increased and 

increasing returns to scale holds locally at 
0 0( , )x y . Similarly, locally DRS holds when 1.


 Of 

particular interest is a bundle for which 1

 showing locally CRS.  

Note that between any two points ( , )and( , )x y x dx y dy  both on the frontier                     

                      
1 1

1 1

0

0ji

i j

n m

i i j j

i j

n m
dydx

i i j jx y

i j

dF Fdx F dy

F x F y

 

 

  

  

 

 
                              (52) 

But when the input bundles are proportional, i

i

dx

x
 equals some constant 

1q  for every input i. Similarly, 

proportionality of the output bundles implies 
j

j

dy

y
equals a constant 

2q  for every output j. Hence, from (52) 
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12

1

1

1 2

1 1

0

.

n

i i

i

m

j j

j

n m

i i j j

i j

F x
q

q
F y

q F x q F y





 



 


 



 

                                  (53) 

Now, 
1(1 )x dx q x    and 

2(1 ) .y dy q y   Define 
11 q    and 

21 .q    Then 
2 1q q  

implies    and locally IRS holds at ( , ).x y Similarly,  
2 1q q  implies locally DRS. Finally, 

2 1q q  

implies locally CRS. Starrett (1977) defined the degree of increasing returns as 

                               2

1
1.

q

q
DIR                                                         (54) 

6.2 Most Productive Scale Size and Local Returns to Scale 

Banker (1984) defined the most productive scale size (MPSS) in the context of multiple output multiple 

input production as a generalization of Frisch’s concept of the TOPS. According to his definition,  

an input-output bundle 
0 0( , )x y  is an MPSS if for all non-negative real numbers ( , )   such that 

0 0( , )x y   is feasible, 1.

  

In other words,
0 0( , )x y is an MPSS if and only if there is no other input output bundle proportional to it 

with a higher ray average productivity. Obviously, an inefficient bundle cannot be an MPSS because both 

its output oriented projection 
0 * 0( , )x y  and its input oriented projection 

* 0 0( , )x y will have a higher 

ray average productivity. 

6.3 Identifying Local Returns to Scale at an Efficient Bundle 

In the DEA literature there are three alternative ways to identify the local returns to scale properties of an 

input-output bundle that lies on the frontier of the PPS (a) Banker’s Primal approach, (b) a Dual approach 

to due to BCC, and (c) a Nesting approach due to Färe, Grosskopf, and Lovell (FGL) (1985). Of course, 

all of them lead to the same conclusion. 

Banker’s Primal Approach 

Assume that the bundle 
0 0( , )x y  is efficient under VRS. The following theorem in Banker (1984) 

identifies whether or not it is an MPSS.  
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Theorem: An input-output bundle
0 0( , )x y is an MPSS if and only if the optimal value of the objective 

function of a CCR-DEA model equals unity for this input-output combination. 

Proof: See Banker (1984, p 40). 

This theorem only determines if the bundle
0 0( , )x y is an MPSS. If it is not, all we know is that locally 

CRS does not hold at this point on the frontier. That does not, by itself, pick between IRS and DRS. 

However, the following corollaries from the theorem can be used to identify local  RTS properties by 

looking at the optimal solution of the CCR DEA problem: 

1. If 
*

1

1,
N

j

j

k 


  0 0( , )x y is an MPSS and CRS holds locally. 

2. If 
*

1

1,
N

j

j

k 


   IRS holds locally at 
0 0( , )x y . 

3. If 
*

1

1,
N

j

j

k 


   DRS holds locally at 
0 0( , )x y .  

Note that the corollaries (1-3) hold both for the output-oriented problem in (22) and the input-oriented 

problem in (24). One potential problem with this approach is that there may be alternative optimal 

solutions to the CCR DEA LP problem with the optimal values of the λs adding up to greater than 1 in 

one and less than 1 in another. To resolve this ambiguity, one should modify the corollaries above and 

require that the respective conditions for IRS and DRS should hold at all optimal solutions of the CCR 

DEA problem. 

To implement this, one would first solve either the output or the input oriented CRS DEA problem (22) or 

(24) and obtain the optimal value. Suppose that one selected the output oriented model and obtained 
*  

from (22). Next one would use 
* as a parameter to solve the following problem 

                      

1

* 0

1

0

1

max

. . ( 1,2,..., );

( 1,2,..., );

0, ( 1,2,..., ).

N

j

j

N
j

j r r

j

N
j

j i i

j

j

k

s t y y r m

x x i n

j N



 













 

 

 







                                 (55) 
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One would conclude that the condition in corollary 2 holds in all optimal solutions of (22) if the optimal 

*k  in (55) is less than 1.  

To check for the condition in corollary 3, one would set up (55) as a minimization problem and conclude 

that DRS holds at 
0 0( , )x y if the minimum of k is greater than 1. 

The BCC Dual Approach 

Banker, Charnes, and Cooper (BCC) (1984) offer an alternative method of identifying local returns to scale 

from the following dual of the output-oriented VRS DEA problem shown in (38) above.                           

BCC have shown that  

(i) CRS holds at 
0 0( , )x y  if at the optimal solution of (38) 

0v   is zero; 

(ii) IRS holds at 
0 0( , )x y  if at the optimal solution of (38) 

0v is < 0; 

(iii)  DRS holds at 
0 0( , )x y if at the optimal solution of (38) 

0v is >  0. 

A simple proof of (i)-(iii) follows from Ray (2017). Because 
0 0( , )x y is efficient by assumption, at the 

optimal solution of (38) 
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But, as defined above 
0 0andr r i iu F v F    and in the present context (53) can also be written as 

                                   

* 0

1 12

1 * 0

1 1

* 0 * 0

1 12

1 * 0

1

1 .

n n

i i i i

i i

m m

j j r r

j j

n m

i i r r

i j

m

r r

j

F x v x
q

q
F y u y

v x u y
q

q
u y

 

 

 







 
 
 

 
  



                             (57) 



23 
 

Because the denominator in (57) is always positive, the sign of the ratio is determined by the sign of the 

numerator. Specifically, when IRS holds,  

                                    

2

1

* 0 * 0 *

0

1 1

*

0

1 0

0

0.

q

q

n m

i i r r
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v x u y v

v

 

 

     

 

           (58) 

By the same logic, DRS implies 2

1
1 0

q

q
  and 

*

0 0.v   Finally, for CRS 
1 2q q  and  

*

0 0.v   Of course, 

as in the case of Banker’s approach, multiple optimal solutions pose a problem and the conditions (ii) and (iii) 

have to be appropriately modified. 

A Nesting Approach 

Fӓre, Grosskopf, and Lovell (FGL) (1985) consider a technology that lies in between CRS and the VRS 

technologies. They call it a non-increasing returns to scale (NIRS) technology. Under the assumption of NIRS  

                              
0 0 0 0( , ) ( , ) ;0 1.x y T kx ky T k                 (59) 

Thus, any feasible input-output bundle remains feasible if it is scaled downwards but not necessarily feasible 

if scaled upwards. 

The DEA estimate of an NIRS production possibility set is 

1 1 1

ˆ ( , ) : ; ; 1 0; ( 1,2,..., )
N N N

N j j

j j j j j

j j j

T x y x x y y j N   
  

 
      
 

   (60) 

Note that the three different sets in (17), (21) , and (60) are nested so that  ˆ ˆ ˆ .N CT T T   Because the 

VRS PPS is the most and the CRS PPS is the least restrictive, the measured technical efficiency will be the 

highest under VRS and lowest under CRS. The frontiers of the CRS and NIRS production possibility sets 

coincide in the region of IRS. Similarly, the VRS and NIRS frontiers are identical in the DRS region. 
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Therefore, when IRS holds at
0 0( , )x y , in an input-oriented model 

* * *

C NIRS V    where the superscripts 

C, N, and V refer to CRS, NIRS, and VRS. Similarly, 
* * *

C NIRS V    implies DRS. Of course, in the case 

of CRS, all three estimates of technical efficiency equal unity. Note that in this nesting approach the possibility 

of  multiple optimal solutions does not pose any problem because the objective function value does not differ 

across alternative optimal solutions. 

6.4 Returns to Scale Properties of an Inefficient Input-Output Bundle 

As has been noted earlier, returns to scale is a meaningful concept only when the input-output bundle is 

efficient and is a point on the frontier of the PPS. In the foregoing discussion it was assumed  that 
0 0( , )x y  is 

technically efficient. When that is not the case, one must first project it on to the frontier and only then can 

examine the local RTS properties at the efficient projection. This, however, creates an ambiguity because 

there would be two alternative projections – the input oriented 
* 0 0( , )x y  and the output oriented  

0 * 0( , ).x y The nature of local RTS can be different at the two different points. 

At this point it would helpful to define for any given input-output pair the 2-dimensional conditional PPS: 

                            0 0 0 0( , ) ( , ) : ( , ) ; , 0 .T x y x y T                       (61) 

In terms of the transformation function 

                           0 0 0 0( , ) ( , ) : ( , ) 0; , 0 .T x y F x y                     (62) 

Similarly, the conditional graph of the technology is 

                        0 0 0 0( , ) ( , ) : ( , ) 0; , 0 .G x y F x y                       (63) 

One can think of the graph in (63) as the ray production function 

                                       ( )g                                                               (64) 
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The MPSS for 
0 0( , )x y corresponds to the highest ray average productivity along (64). 

The following lemma from Ray (2010) shows that when the production possibility set is convex, IRS holds 

at all scales smaller than the smallest MPSS. Similarly, DRS holds at all scales larger than the largest MPSS.10 

Lemma: For any convex productivity possibility set T, if there exist non-negative scalars α and β such 

that α >β >1, and both ( , )x y and ( , ) ,x y G    then    for every γ and δ such that 1<δ<β and 

( , ) .x y G    

Proof: Because ( , )x y and ( , )x y  are both feasible, by convexity of T, for every 

(0,1),(( (1 ) ) , ( (1 ) ) )x y           is also feasible. Now select  such that .)1(    

Further, define .)1(    Using these notations, ( , ) .x y T    But, because ( , ) ,x y G  

 However, because  Hence,  

An implication of this lemma is that, when the production possibility set is convex, if the technology 

exhibits locally diminishing returns to scale at smaller input scale, it cannot exhibit increasing returns at a 

bigger input scale. This is easily understood in the single-input single-output case. When both x and y are 

scalars, average productivity at  ,x y   is
y

x
 and at ( , )x y   is .

y

x



  Thus, when average 

productivity has increased. The above lemma implies that for every input level x in between x  and x , 

average productivity is greater than . Thus, average productivity could not first decline and then 

increase as the input level increased from x  and x . 

Two results follow immediately. First, locally increasing returns to scale holds at every input-output 

bundle (x, y)  that is smaller than the smallest MPSS. Second, locally diminishing returns to scale 

holds at every input-output bundle (x, y)  that is greater than the largest MPSS. To see this, let x =bx* 

and y = ay*, where (x*, y*) is the smallest MPSS for the given input and output mix. Because (x, y) is not 

an MPSS, .1b
a Further, assume that b < 1. Define and Then (x*, y*) = (βx, αy) and  

 Because ray average productivity is higher at a larger input scale, by virtue of the lemma, locally 

increasing returns to scale holds at (x, y). Next assume that b > 1. Again, because (x, y) is not an MPSS, 

<1. That is ray average productivity has fallen as the input scale is increased from x* to x = bx*. Then, 

                                                           
10 For a different proof see Banker and Thrall (1992). 

.  .,   . 

, 

x

y

G

G

)1(1  b .1
a

.1


b
a
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by virtue of the lemma, ray average product could not be any higher than at a slightly greater input 

scale, (1 ) .x x  But, because (x, y) is not an MPSS, ray average product cannot remain constant as the 

input scale is slightly increased. Hence, ray average product must fall as the input scale is slightly 

increased from x. Thus, locally diminishing returns to scale holds at every (x, y) ,G when x is larger 

than the largest MPSS. 

6.5 Finding the MPSS 

One can solve the following optimization problem proposed by Cooper, Thompson, and Thrall (1996) to 

find the MPSS for the input-output bundle 
0 0( , )x y : 
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                              (65) 

Even though the objective function is nonlinear, it can be easily transformed into a linear programming 

problem by defining 
1t and μj = tλj (j = 1, 2,…,N). Note that non-negativity of β and λjs ensures that t 

and μjs are also non-negative. Problem (65) can, therefore, be reformulated as the following linear 

programming problem: 
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                     (66) 

From the optimal solution of this problem we can derive *

1*

t
 and .*

**

t

  One can then infer the nature 

of returns to scale from these values of α* and  β*. It may be pointed out here that because the only restriction 

b
a
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on t is non-negativity, (67) is simply the output-oriented CCR DEA problem and  *

1


is the same as the 

output-oriented CRS technical efficiency 
0 0( , ).C

y x y Thus, (67) is in reality a minor modification of 

Banker (1984). 

Because 
0 0( , )x y is a feasible input-output bundle, )1(   is a feasible solution for this 

problem. Hence, the optimal value 
*  is always greater than or equal to 1.When *

**



  exceeds unity, 

we know that 
0 0( , )x y is not an MPSS. But, we can also conclude that 

* 0 * 0( , )x y  is an MPSS. When 

the bundle
0 0( , )x y  is not itself an MPSS, 1*  so that .**     

We may invoke the lemma above to determine the local RTS properties at 
0 0( , )x y by comparing it with 

its MPSS. Note that in the conditional PPS (61), 
0 0( , )x y  corresponds to ( , ) (1,1).   Let the MPSS be 

designated as 
* 0 * 0 * *( , ) ( , ).x y x y    If the MPSS is unique, there are five different possibilities:   

(i) 
**1   ;        (ii) 1**  ;  

(iii) 
* *1   ;      (iv) 

* *1   ,   (v) 
* *1   .  

In case (i), 
0 * 0 * 0 * 0 *and .x x x y y y     Thus, 

0 0( , )x y lies towards the southwest of the MPSS. 

Both input- and output-oriented projections of the bundle (x0, y0) fall in the region of IRS. In this case, the 

unit is conclusively too small relative to its MPSS. Similarly, in case (ii) 

0 * 0 * 0 * 0 *and x x x y y y     and both input- and output-oriented projections fall in the region of 

DRS. The implication is that the unit is too large. In case (iii), the RTS characterization depends on the 

direction of projection. Because 
* * 01, x x   , and  the input scale is bigger than the MPSS. The output-

oriented projection falls in the region of DRS. At the same time, because 
* *1 , oy y   the output-scale 

is smaller than the MPSS and the input-oriented projection falls in the region of IRS. In case (iv) 

0 * 0 *but .x x y y  This time the input scale corresponds to the MPSS but the output scale is too small. 

Eliminating output oriented technical inefficiency will automatically project the observed bundle on to its 

MPSS. Similarly in case (v) 
0 * 0 *but .y y x x   The input oriented efficient projection is the MPSS. 

Figure 4 shows how the local RTS properties of an input-output bundle can be determined by comparing 

it to its MPSS. In this diagram the scale of the input bundle 
0x  is measured as   along the horizontal 

axis and the scale of the output bundle 
0y  is measured as   up the vertical axis. The piecewise 
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connected line ABCDE shows the pairs ( , )   for which the corresponding input-output bundle

0 0( , )x y   is on the frontier of the PPS. Two points of special interest are ( , ) (1,1)    and the point 

C, 
* *( , ) ( , ).    The former is the location of the observed bundle 

0 0( , )x y and the latter is its 

MPSS. The local RTS properties of 
0 0( , )x y depends on where ( , ) (1,1)   is located relative to C in 

this diagram. This is true even when (1,1) lies on the ABCDE line and is technically efficient. If (1,1) lies 

in area (1) to the southwest of C, both input and output oriented projections will be smaller than the 

MPSS and IRS holds unequivocally at 
0 0( , )x y . If it lies in area (2) towards the northeast of C both 

projections will be larger than the MPSS and DRS holds at 
0 0( , )x y . By contrast, area (3) is an inclusive 

region. Here the output oriented projection is larger than the MPSS implying DRS but the input oriented 

projection is smaller than the MPSS implying IRS. The unit is too small judged by its output scale but is 

too large when judged by the input scale. Case (iv) corresponds to points on the vertical line 
*C  while 

points on the horizontal line through C below the frontier correspond to case (v). 

The Case of Multiple MPSS 

Next we consider the possibility of multiple MPSS. This is depicted graphically in Figure 5. Here both C1 

and C2 are MPSS and so are their convex combinations lying on the line segment connecting them. At C1,

),( *

1

*

1  is the smallest MPSS. Similarly, ),( *

2

*

2  at C2 is the largest MPSS. It is obvious that when the 

problem in (66) has a unique optimal solution (in particular, t* is unique), there cannot be multiple MPSS. 

For multiple optimal solutions, the largest 
j

jt **  across all optimal solutions of (66) corresponds to 

the smallest MPSS, 
*

1 . Similarly, 
*

2 corresponds to the smallest 
j

jt **  at an optimal solution.  

Note that across all optimal solutions the value of the objective function is the same (*). Hence, *
1

1*

1 t
 , 

where 

                  
j

jt max*

1  

s.t. 

             
j

j

j xx ;0  
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                  
j

j

j yy ;0*      (67) 

            .0),...,2,1(  Njj
 

                   

Similarly, *
2

1*

2 t
 , where 

                  
j

jt min*

2  

s.t. 

             
j

j

j xx ;0  

                  
j

j

j yy ;0*      (68) 

            .0),...,2,1(  Njj
 

Once 
*

1 and 
*

2 have been determined from (67) and (68), the corresponding values of  are readily 

obtained as 
*

1

**

1   and .*

2

**

2    

As shown in Figure 5, the set of output-input scales (α, β) for which the input-output bundles 
0 0( , )x y   

are feasible can be partitioned into six different regions defined below: 

(i) In region (1) towards the southwest of the smallest MPSS (C1), ).;( *

1

*

1    When 

0 0( , )x y falls in this region, 
*

1

*

11   . Hence, increasing returns to scale holds 

unambiguously. 

(ii) In region (2) to the northeast of the largest MPSS (C2), ).;( *

2

*

2    If 
0 0( , )x y falls in 

this region, 1*

1

*

1  . Diminishing returns to scale holds unambiguously in this region. 

(iii) In region (3), 
*

2

*

1    while 
*

2

*

1   . Points in this region lie between the 

smallest and the largest MPSS. It is interesting to note, that even if the point (α= 1, β= 1) is 

not technically efficient and lies below the C1C2 line, both the input- and the output-oriented 

projection of the inefficient bundle will fall in the region of constant returns to scale. Thus, 

there is no scale inefficiency in this region even though there may be technical inefficiency. 



30 
 

(iv) In region (4), 
*

1

*

2 ;   . When the actual input-output bundle lies here, 
*

1

*

2 1   . 

The input bundle x0 is larger than the largest MPSS hence the output oriented projection falls 

in the area of diminishing returns. At the same time, the actual output bundle is smaller than 

the smallest MPSS. Hence, increasing returns to scale holds at the input oriented projection. 

Thus, returns to scale cannot be unambiguously defined at the actual input-output bundle. 

(v) In region (5a), 
*

2

*

1    but .*

1  When the actual input-output bundle lies here, y 0 

is smaller than the smallest MPSS and the input oriented projection falls in the area of 

increasing returns. At the same time, the actual input bundle lies between the smallest and the 

largest  MPSS. Hence, constant returns to scale holds at the output oriented projection. Here 

also the returns to scale characterization depends on the orientation. 

(vi) In region (5b),  *

2  while .*

2

*

1   When the actual input-output bundle lies here, x0 

is larger than the largest MPSS. Hence the output oriented projection falls in the area of 

diminishing returns. At the same time, the actual output bundle lies between the smallest and 

the largest MPSS. Hence, constant returns to scale holds at the input oriented projection. Here 

the input bundle is too large. But the actual output bundle, if produced from the technically 

efficient input bundle would correspond to an MPSS. 

 

7. Non-radial Measures of Efficiency 

A problem with the radial models both input and output oriented is that when slacks are present in the 

input or output constraints at the optimal solution of the relevant DEA problem, the extent of inefficiency 

is underestimated. In an output oriented model, for example, a positive slack in any output constraint 

represents the amount by which the concerned output can be further expanded beyond the common 

expansion factor 
*( ).  In an extreme example, if there is no room to increase one specific output without 

increasing inputs even if the other outputs can be doubled, the radial efficiency measure of the firm under 

evaluation will be 100%. 11 

One way out of this paradoxical situation is to consider a non-radial measure of technical efficiency that 

reflects the full potential for increasing in every output even though not equi-proportionately. Fӓre and 

                                                           
11 In fact, CCR (1979) included a small penalty ( )  for slacks in their DEA models. However, because   is 

assumed to be an arbitrarily small (non-Archimedian) number, it cannot be incorporated in any practical application. 
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Lovell (1978) introduced what they called a Russell measure of technical efficiency that rules out the 

presence of output slacks in an output-oriented model and input slacks in an input oriented model.12 

7.1 Output Oriented Russell Measure 

The output-oriented Russell measure of technical efficiency is the inverse of the maximum average 

expansion factor across the individual outputs and is measured as 

                                    0 0

0 0 1
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RM x y
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                 (69) 

where 

                                 

0 0 1

1

0

1

0

1

1

( , ) max

. . ; ( 1,2,..., );

; ( 1,2,..., )

1;

1; ( 1,2,..., );

0;( 1,2,..., ).

m

y rm

r

N
j

j r r r

j

N
j

j i i

j

N

j

j

r

j

x y

s t y y r m

x x i n

r m

j N

 

 



















 

 



 

 









             (70) 

It can be seen that the radial output-oriented model can be recovered from this non-radial model by 

imposing the additional restriction for each input ( 1,2,..., ).r r r m    This, the BCC output-

oriented measure under VRS (or the CCR measure under CRS) is a special case of the Russell measure 

and 

                    
0 0 0 0( , ) ( , ).y yx y RM x y                                         (71)  

7.2 Non-radial Russell Input Efficiency 

Analogous to (70) above is the input oriented Russell efficiency measure is the arithmetic mean of the 

input specific contraction factors  ( )i  across all inputs 

                                        

                                                           
12 Input slacks may still be present in an output oriented model and output slacks in an input oriented model. 
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   (72) 

Again, the radial input oriented technical efficiency is a restricted version of the Russell input-oriented 

measure with for all i i   and 

             
0 0 0 0( , ) ( , ).x xx y RM x y                            (73) 

8. Graph Efficiency Measures 

The alternative measures of efficiency considered so far are either output oriented or input oriented. In an 

output oriented model, an inefficient unit is projected on to the frontier by the maximum proportional 

expansion of all of its outputs, but reducing inputs is not an objective. Similarly, in an input oriented 

model, the objective is only to scale down all inputs proportionately as much as possible. In measuring 

graph efficiency, one seeks to achieve some reduction in inputs side by side with expansion of outputs. 

The problem in this case would be that unlike in an output oriented or an input oriented model, the 

direction of projection on to the frontier is arbitrary. Two popular measured of graph efficiency are the 

ones based on the Graph Hyperbolic Distance Function due to Fӓre, Grosskopf, and Lovell (FGL) (1985) 

and the Directional Distance Function introduced by Chambers, Chung, and Fӓre (CCF) (1996). 

8.1 Graph Hyperbolic Efficiency 

For the Graph Hyperbolic efficiency measure one selects the point on the frontier that lies on a 

rectangular hyperbola through the observed input-output bundle. In a single output single input case both 

the actual point 
0 0( , )x y  and the efficient point 

* *( , )x y satisfy the equation .xy k  This is shown in 
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Figure 6 where the point A represents the observed input-output bundle
0 0( , )x y and the point B on the 

production frontier is the efficient projection 
* *( , )x y . The level of efficiency is 

*
0

* *
0

1 .
OyOx

Ox Oy
    

To obtain the efficient projection in the multiple output case, one needs to solve the problem: 

                                  

0

1

01

1

1

max

. . ; ( 1,2,..., );

; ( 1,2,..., )

1;

0;( 1,2,..., ); unrestricted

N
j

j r r

j

N
j

j i i

j

N

j

j

j

s t y y r m

x x i n

j N





 





 







 

 



 







 (74) 

The Graph Hyperbolic measure of efficiency is 

                                 *

0 0 1( , ) .GH x y


                                  (75) 

Note that the input constraints in (74) are non-linear. However, if one assumes CRS, one can define 

2 and j j      to rewrite the model as 
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In this case,  

                                
*

0 0 1( , ) .C

GH x y


                                  (77) 

In the case of VRS, the problem in (72) remains non-linear. FGL linearize the input constraints using the 

Taylor’s series approximation 
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Using 
0 1   as the point of approximation, the linearized version of (74) is 

                 

0

1

0 0

1

1

max

. . ; ( 1,2,..., );

2 ;( 1,2,..., )

1;

0;( 1,2,..., ); unrestricted

N
j

j r r

j

N
j

j i i i

j

N

j

j

j

s t y y r m

x x x i n

j N



 

 



 







 

  



 







             (79) 

Note that assuming 
0 1  amounts to assuming that the observed pint is on the frontier. When this is not 

the case, the approximation will be rather poor. Ideally, one should use 
0 1  only as the starting point 

and iterate (78)-(79) until convergence. 

 

8.2 Directional Distance Function 

Building upon Luenberger’s (1992) benefit function, Chambers, Chung, and Fӓre (1996) introduced the 

Directional Distance Function (DDF) to measure the distance of an observed input-output bundle from the 

frontier of the PPS in a direction chosen by the analyst. Let 
1 2( , ,..., )x x x x n

ng g g g R   and 

1 2( , ,..., )y y y y m

mg g g g R  be two direction sub-vectors. Then the DDF can be defined as 

          
0 0 0 0( , ; , ) max :( , ) .x y x yD x y g g x g y g T                 (80) 

It is clear that one can recover the radial output oriented model by setting 
00and .x yg g y   In that 

case,  in (80) would equal ( 1)   in (18) or (22) depending on the returns to scale assumption. 

An interesting choice of the direction for projection would be 
0 0( , ) ( , ).x yg g x y  That leads to, 

          
0 0 0 0( , ; , ) max :((1 ) ,(1 ) ) .x yD x y g g x y T                 (81) 
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In that case  is the maximum percentage by which all outputs can be expanded and all inputs can be 

contracted simultaneously.  

In Figure 7, A is the observed bundle 
0 0( , ).x y  The point B

0

0( , )x yg x g y    defines the direction of 

movement. The point C on the production frontier shows the maximum feasible movement within the 

production possibility set in the direction parallel to OB. In this case, the Directional Distance Function is 

.AC OD
OB OB

     

For an arbitrary choice of ( , )x yg g , the relevant VRS DEA problem will be 
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                 (82) 

The flexibility of the DDF is apparent from the fact that it can be radial (setting 0xg   or 0yg  ), bi-

radial (setting 
0xg x  and 

0yg y ), or completely non radial for arbitrary choice of ( , )x yg g . 

Ray (2007) introduced a measure of overall inefficiency as 

                 
0 0 0 0( , ) max( ) :( , ) .x y x y T                    (83) 

In a radial output oriented model, a measure of technical inefficiency is  1   where   is the maximum 

scaling factor for all outputs. Similarly, the input oriented technical inefficiency is 1  where   is the 

minimum scaling factor for all inputs.  In that sense, the overall inefficiency is the sum of output and 

input inefficiencies. 

The DEA LP problem for (83) is 
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The dual LP for (81) is 
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Ray (2007) has shown that if the optimal 
*  in (85) is positive, then there does not exist any pair of non-

negative shadow price vector ( , )u v  corresponding to which the bundle 
0 0( , )x y  would be the profit 

maximizing input-output pair. 

Further, (84) can be seen to be a less restricted form of (81). Define 1y    and 1 .x     Then, 

(84) becomes  
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By imposing the restriction 
x y   one gets the problem in (81) except for scaling the objective 

function.13 

8.3 Pareto-Koopmans Measures 

 A Russell efficient output bundle contains no output slack. Similarly, no input slack can be present in a 

Russell efficient input bundle. However, to be Pareto-Koopmans efficient an input-output bundle must be 

simultaneously Russell efficient in both output and input orientations Thus, Pareto-Koopmans (PK) 

efficiency combines both input and output oriented Russell efficiency. There are different variants of this 

PK efficiency but the most popular of them is the product of the Russell output and input efficiencies.14 It 

is called Enhanced Russell Measure by Pastor, Louis, and Sirvent (PLS) (1999), Slack based Measure 

(SBM) by Tone (2001),15 and simply Pareto-Koopmans efficiency by Ray (2004) and can be measured as 
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               (87) 

Note that in (87) every input and output constraint will be strictly binding. Therefore at the optimal 

projection 
* * *

0 ( 1,2,..., ).i j ij i i

j

x x x i n     Define the total reduction in input i  as for each input 

0 * 0.i i is x x     This leads to  

                                               
*

0

* 1 .i i

io i

x s

i x x




                                  (88) 

Similarly by defining 
*

r r ros y y    , we can derive 

                                                           
13 The model in (86) is further developed in Aparicio, Pastor, and Ray (2013). 

14 Portela and Thanassoulis (2005) used the measure 
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 
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 

 
 
 

and called it the Geometric Distance Function.  

 
15 Tone’s SBM appeared in 2001 in EJOR but makes no reference to the PLS Enhanced Russell measure introduced 

in the same journal in 1999 and the two are virtually identical. 
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Hence the objective function in (87) becomes 
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which is the SBM.16 

Both PLS and Tone use the expression in (90) for the objective function and resort to a normalization to 

convert the linear fractional functional programming problem into an LP following Charnes and Cooper 

(1968). Ray (2004), Ray and Jeon (2009), and Ray and Ghose (2014) on the other hand, use a linear 

approximation of the objective function at ( 1, 1)( 1,2,..., ; 1,2,..., )i r i n r m      to get 
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and used 1 1min i rn n

i r

   as the objective function. At the optimal solution of (87), one can 

multiplicatively decompose the overall pareto-Koopmans efficiency as 

                        
0 0 0 0 0 0( , ) ( , ). ( , )PK x yx y PK x y PK x y                 (92) 

where  

                         
0 0 *1( , )x in

i

PK x y                                              (93) 

is the input efficiency and 

                       *1

0 0 1( , )
rm

r

yPK x y





                                                (94) 

is the output efficiency of the firm. 

9. Conclusion 

                                                           
16 A somewhat different measure of Pareto-Koopmans efficiency is the Range Adjusted measure (RAM) introduced 

by Cooper, Park, and Pastor (1999).   
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Over the decades since it was introduced in the Operations Research literature, new DEA models have 

been formulated to measure cost and profit efficiency as well as to test various characteristics of the 

technology like productivity change over time, capacity utilization, benefits of merger or break up of 

firms among many other areas of application in economics. In fact, DEA can now legitimately be 

described as a full blown nonparametric approach to production analysis and goes way beyond merely 

evaluating technical efficiency.17 Given its scope, this chapter deals only with measurement of different 

kinds of technical efficiency. Finally, as noted at the beginning one can generate empirical distributions of 

the frontier output at each input bundle through bootstrapping to create upper and lower bounds on the 

measured technical efficiency of each firm in the sample.18 

 

 

 

 

  

                                                           
17 For more detailed exposition of DEA as a nonparametric approach to neoclassical production economics see Fӓre, 

Grosskopf, and Lovell (1994) and Ray (2004). Cooper, Seiford, and Tone (2002) deals with most of the topics from 

an OR perspective. 
18 For details on how to bootstrap for DEA see Simar and Wilson (1998). 
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Figure 1: Output-oriented Technical Efficiency 
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Figure 2: Input-oriented Technical Efficiency 
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Figure 3: Scale Efficiency  
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Figure 4: MPSS and RTS Regions  
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Figure 5 

Multiple MPSS and the regions of the increasing, decreasing and the ambiguous returns to scale 
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                                                    Figure 6: Graph Hyperbolic Distance Function 
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Figure 7: Directional Distance Function 
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