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1 Introduction

In economic theory, we often try to conclude long run structural relationships among eco-
nomic variables over periods of time. When economic time series possess an exact unit-root, the
structural relationships between the non-stationary I(1) variables are captured by the concept of
cointegration in Engle and Granger (1987). In most of macroeconomic applications, however, it is
arguable that fundamental economic variables follow the exact unit root process, e.g., Christiano
and Eichenbaum (1990). In fact, modeling key variables in the cointegration system using unit
roots usually come in practice through failure to reject the unit root hypothesis with a limited
span of time series data (Elliott, 1998). Thus, the assumption of unit root in cointegration model
may represent a lack of ‘knowledge’about economic interactions behind the common stochastic
trends. See, for more details, Christiano and Eichenbaum (1990), Elliott (1998), and Müller and
Watson (2008, 2013).

In this paper, we develop robust t and F inferences on the triangular cointegrated system
when we are not sure whether the economic variables exhibit the exact unit root or are close to
being local to unity. The long run relationship in the cointegration regression can be equivalently
understood as low-frequency behaviors of time series. By transforming time series from the
original time domain, the analysis is carried on the domain of frequencies, such as short-run or
long-run business cycles. There is a growing focus in recent time series literature that projects
the time series on the domain of low frequencies and make inference about long-run variability
using the transformed data. See Müller and Watson (2017, 2018) for more discussion on the low-
frequency transformations and their applications in econometrics. The low frequency approach
also includes the analysis of cointegrated relation, as in Bierens (1997), Müller and Watson (2013),
Phillips (2014), and Hwang and Sun (2017).

A recent study by Hwang and Sun (2017, HS hereafter) develops convenient t and F tests for
the cointegration vector. The triangular cointegrated system is characterized by I(1) regressors,
which are endogenous within the structural relation. To keep it general, the short-run dynamics
deviated from the cointegrated relationship are allowed to have serial dependence of unknown
forms. After transforming the original non-stationary time series data and its first differences
into a K number of low-frequency transformations, HS (2017) runs a transformed and augmented
ordinary least square (TA-OLS) with the K number of observations. Then, practitioners can
easily perform robust t and F inferences in cointegration regression using any canned statistical
program that can compute the t and F statistics in the classical Gaussian linear regression.
Small sample simulation evidence in HS (2017) is favorably compared to existing tests such as
the fully-modified OLS estimator of Phillips and Hansen (1990) and the trend IV estimator of
Phillips (2014).

One of the key assumptions in HS (2017) is that I(1) regressors in the cointegrated system
are under the exact unit root process. Since the asymptotic inference of TA-OLS method in HS
(2017) crucially relies on the exact unit root assumption, it is questionable whether the t and
F tests of TA-OLS are still (asymptotically) valid once the cointegration system departs from
the unit root assumption. In fact, the inference about cointegration vectors in the time domain
framework can lead to flawed inference once we fail to account for the exact order of integration
of the data, e.g. Elliott (1998). To account for the order of integration, we adopt a local to
unity approximation of cointegration regressors and investigate the asymptotic behaviors of the
TA-OLS estimator and corresponding test statistics. The local to unity assumption has gained
an attractive feature of the modeling devices for the nearly integrated regressor, as in Bobkoski
(1983), Cavanagh (1985), and Phillips (1987). Instead of maintaining a strict dichotomy between
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integrated and non-integrated regressor, the assumption of the local to unity regressor allows for a
smoother transition between two processes and thus can provide a more reasonable approximation
to the TA-OLS methods, especially when the length of time series is small.

We first derive the fixed-K limiting distributions of TA-OLS and show that the TA-OLS is
still consistent and share a common mixture of the normal distribution as found in HS (2017).
However, due to the local to unity regressor, the limits of the TA-OLS estimator have an asymp-
totic bias term. The asymptotic bias is a product of the two important characteristics in our
cointegration model: the deviation from the exact unit root and the degree of long run endo-
geneity within the cointegration system. It is analytically shown that the limiting distributions
of TA-OLS statistics are mixtures of non-central t and F distributions where the random non-
centrality parameter depends on the asymptotic bias from the local to unity regressors. The
presence of the random non-centrality parameter indicates that the convenient t and F approx-
imations in HS (2017) are no longer valid asymptotically. This result is consistent with Elliott
(1998) whose approximation of cointegration model is based on the time-domain. Our numerical
results also show that the empirical size of TA-OLS method to test the cointegration vector can
be extremely large for even very small deviations from a unit root regressor. On the other hand,
we find that the TA-OLS estimator of the long run endogeneity coeffi cient in the augmented
cointegrated system is still asymptotically centered toward its true value. Thus, even if there is
a source of asymptotic bias in the cointegration system by the mistakenly first differenced I(1)
regressors, one can still precisely perform the long-run endogeneity test using the t and F tests
with the TA-OLS framework.

Since the goal of an empirical researcher is making a valid inference for the cointegration
vector, our next analysis is to provide modified TA-OLS statistics that correct the asymptotic
bias. The modified statistics not only adjust the locational bias but also correct the estimation
uncertainty of the long run endogeneity parameter in the bias correction term. After we fully
account for both effects on the plugged-in bias correction formula, we show that the modified
statistics have the asymptotic t and F limits. Thus, using our modified TA-OLS statistics,
practitioners can conveniently implement robust t and F tests for the cointegration vector.

The modified test statistics in this paper require the knowledge of the local to unity parameter
which is not consistently estimable in general. However, there are several ways developed in the
time series literature to measure the uncertainty of the local to unity parameter in the context of
unit -root testing problem. For example, Elliott and Stock (2001) constructs a nontrivial confi-
dence interval (CI) for the unknown local to unity parameter by inverting a sequence of optimal
tests in Gaussian autoregressions. Using the CI of local to unity parameter in Elliott and Stock
(2001), we provide a simple Bonferroni method to the modified TA-OLS in the second stage. The
idea of the Bonferroni confidence interval in the presence of unidentified nuisance parameters has
been widely used in various context in statistics and econometrics. See, for example, Cavanagh,
Elliott, and Stock (1995), Cambell and Yogo (2006), and McCloskey (2017). From Bonferroni’s
inequality, our Bonferroni CI for the cointegration parameter yields an asymptotically correct
inference at least nominal coverage rate.

Our Monte Carlo results show that under the local to unity regressor, the unmodified TA-
OLS methods in HS (2017) suffer from severe size distortions, especially when there exists a
moderate amount of long-run endogeneity. Our finite sample studies further show the modified
TA-OLS statistic plugged by the true local to unity parameter methods successfully controls the
size distortions. The feasible version of the modified TA-OLS statistics using the Bonferroni
method also has asymptotically correct sizes but is expected to result in some power loss because
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the Bonferroni correction yields to more conservative tests. We show that the power loss is
increasing in the squared long-run correlation and the local to unity parameter.

Our paper contributes to recent literature in low frequency econometrics which first transforms
time series onto a space of low frequencies and employs the fixed-K asymptotics for the finite
number of transformed data (Müller and Watson; 2008, 2017). The low frequency transformation
of time series has a long history in statistics and engineering; see, for example, the contribution
of Thomson (1982) and Chapter 5 of Stoica and Moses (2005) for a textbook treatment. In the
context of the cointegrated time series, Phillips (1991) estimates the cointegration parameter
using frequency domain techniques, and Bierens (1997) proposes a nonparametric tests for the
number of cointegrations using a transformed time series. More recently, Phillips (2014) develops
an optimal estimation of cointegration using trend instrumental variables, and Müller and Watson
(2013) use the Neyman-Pearson decision-theoretic framework to design robust and nearly optimal
tests about the cointegration vectors using a fixed number of transformed data.

While this paper employs basis function transformation as a tool to estimate the main para-
meters of interest, the approach has also been used in the recent heteroskedasticity and autocor-
relation robust inference (HAR) literature for time series models. The recent research along this
line was inspired by Phillips (2005), Müller (2007), and Sun et al. (2008). See also Hwang and
Sun (2017), Lazarus et al. (2018), and Lazarus et al. (2019).

The rest of the paper is organized as follows. Section 2 introduces an idea of low-frequency
transformed regression analysis of cointegration and the fixed-K asymptotics limits of the TA-
OLS estimator and the corresponding t and F tests. Section 3 extends the low frequency
transformed cointegration system in the presence of a local to unity regressor. The next sections
provide a method to correct the asymptotic bias of TA-OLS test statistics and suggest a feasible
Bonferroni approach. Section 6 presents simulation evidence. The last section concludes. Proofs
are given in the Appendix.
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2 Low Frequency Transformation of Time Series

To illustrate the idea of the low-frequency transformed regression analysis of cointegration, we
start by considering

yt = α0 + x′tβ0 + u0t for t = 1, . . . , T, (1)

where yt is a scalar time series and xt is a d×1 vector of time series. The main focus of interest is
a parameter vector β0 ∈ Rd. There are two-key features for the cointegration regression equation
in (1). First, the regressor xt has a unit root with a stationary innovation uxt as

xt = xt−1 + uxt for t = 1, . . . , T, (2)

and x0 = Op (1) .To maintain the generality, we allow the I(0) errors ut ≡ (u0t, u
′
xt)
′ ∈ Rm with

m = d+ 1 to be weakly stationary with serial dependence of unknown forms with the following
long run variance (LRV) matrix Ω:

Ω
m×m

=
∞∑

j=−∞
Eutu

′
t−j =

 σ2
0

1×1
σ0x
1×d

σx0
d×1

Ωxx
d×d

 .

We assume that Ωxx is positive definite, and hence xt is a full-rank integrated process. Letting
u0·xt = u0t − δ′0uxt for δ0 = Ω−1

xxσx0, a long-run projection of u0t onto uxt, we can re-write the
cointegrated regression equation in (1) in the following augmented form

yt = α0 + x′tβ0 + δ′0∆xt + u0·xt for t = 1, ..., T, (3)

where ∆xt = xt − xt−1 = uxt.
The low frequency transformation of the cointegration system starts by projecting the original

time series data {yt, x′t,∆x′t}Tt=1 onto a space spanned by K number of basis functions {φi}Ki=1,
which leads the following set of transformed data: For i = 1, ...,K,

Wy,i =
1√
T

T∑
t=1

ytφi(
t

T
), Wx,i =

1√
T

T∑
t=1

xtφi(
t

T
), and W∆x,i=

1√
T

T∑
t=1

∆xtφi(
t

T
). (4)

With these transformed data, the long run behaviors of the original time series are captured
by choosing a proper set of basis functions {φi(·)}Ki=1 which can concentrate on the low frequency
components of time series. Examples include Fourier basis functions considered in Sun (2013,
2014) and HS (2017):{

φ2j−1 (r) =
√

2 cos (2jπr) , φ2j =
√

2 sin (2jπr) , j = 1, . . . ,K/2
}
, (5)

and cosine basis functions suggested in Müller and Watson (2008, 2013):{
φj (r) =

√
2 cos (jπr) , j = 1, . . . ,K

}
. (6)

The low-frequency transformations enjoy several advantages for estimating and making an
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inference about the parameter of the long-run relationship β0. Letting

Φi = [φi(1/T ), . . . , φi((T − 1) /T ), φi(1)]′ ∈ RT

as a basis vector corresponding to the basis functions in (5)—(6), one can easily show that a
matrix of K basis vectors Φ = [lT ,Φ1, . . . ,ΦK ] ∈ RT×(K+1) including the column of ones lT =
(1, ..., 1)′ ∈ RT satisfy (Φ′Φ)−1 = T−1IK+1. Therefore, the transformed data becomes a scale
of the OLS regression coeffi cient of the original time series data on the space basis functions.
For example, with X = (x1, x2, ..., xT )′, the vector of (scaled) transformed data W̃x = {W̃x,i}Ki=1

with W̃x,i= Wx,i/
√
T and the sample mean x̄T = T−1

∑T
j=1 xt is equal to the OLS coeffi cient of

(Φ′Φ)−1Φ′X = Φ′X. Then, the low-frequency movement of time series can be captured by using
the non-stochastic trend predictor Φ multiplied by the OLS coeffi cient (x̄T , W̃′x)′ as

xt = x̄+ φ1(
t

T
)W̃x,1 + . . .+ φK(

t

T
)W̃x,K︸ ︷︷ ︸

Low Frequency Components

+ ûxt.

The low frequency component captures the long run movements of the original data with
periodicity longer than 2T/j for j = 1, ...,K years of cycles. A useful rule of thumb introduced
in Müller (2014) and Müller and Watson (2017) suggests a choice of K = 16 to capture the
low-frequency movements of T = 65 years of Post World War II macro data with periodicity
higher than the commonly accepted business cycle period of T/ (K/2) ' 8 years. The low-
frequency transformation also has substantive empirical content in the context of the cointegration
regression system in (1)—(2), as the cointegration model itself seeks a long run relation among
economic time series.

Using linearity of low frequency transformations in (4), we can translate the augmented coin-
tegration regression in (3) into the following form of transformed and augmented (TA) regression:

Wy,i = W′x,iβ0 +W′∆x,iδ0 +W0·x,i for i = 1, ...,K, (7)

where W0·x,i := T−1//2
∑T

t=1 φi(
t
T )u0·xt. Throughout the paper, we maintain functional central

limit theorem (FCLT) for {ut}

T−1/2

[T ·]∑
t=1

ut ⇒ B(·) := Ω1/2W (·) =

(
σ0·xw0(·) + σ0xΩ

−1/2
xx Wx(·)

Ω
1/2
xx Wx(·)

)
, (8)

where W (·) := (w0(·),W ′x(·))′ is an m-dimensional standard Brownian process, σ2
0·x = σ2

0 −
σ0xΩ−1

xxσx0, and Ω1/2 is a Cholesky decomposition of the LRV Ω. One can find primitive conditions
to hold the FCLT assumption in Durlauf (1986), Phillips and Solo (1992), Davidson (1994), among
others. With the FCLT assumption in (8), we can use summation by parts, continuous mapping
theorem, and integration by parts to get

W∆x,i ⇒ Ω1/2
xx

∫ 1

0
φi (r) dWx(r) ∼ N(0,Ωxx), (9)

W0·x,i ⇒ σ0·x

∫ 1

0
φi (r) dw0(r) ∼ N(0, σ2

0·x) (10)
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for i = 1, ...,K. Also, invoking the continuous mapping theorem together with (8), we have

Wx,i

T
=

1

T 3/2

T∑
s=1

φi

( s
T

)
xs ⇒ Ω1/2

xx

∫ 1

0
φi (r)Wx(r)dr ∼ N(0,Ω1/2

xx ΣΩ1/2
xx ), (11)

where Σ =
∫ 1

0

∫ 1
0 φi(r)φi(s) min(r, s)drds · Id, for i = 1, ...,K. Since the weak convergences in

(9)—(11) hold jointly, the TA regression in (7) naturally leads us to consider a small sample
approximately Gaussian linear regression model

Wy,i ' (S′x,i)βT,0 + S′∆x,iδ0 + S0·x,i for i = 1, ...,K, (12)

where βT,0 = Tβ0, S∆x,i, S0·x,i, and Sx,i are the Gaussian weak convergence limits ofW∆x,i,W0·x,i,
andWx,i/T, respectively, which are specified in (9), (10), and (11), respectively. Since Wx(·) and
w0(·) are independent, {Sx,i,S∆x,i}Ki=1,the functional of Wx(·), and {S0·x,i}Ki=1, the functional of
w0(·), are independent. Also, the orthonormal property of the basis functions {φi(·)}Ki=1 ensures
the errors of regression {S0·x,i}Ki=1 are i.i.d normal with zero mean and variance σ

2
0·x. Therefore,

standard OLS framework of the sample Gaussian linear regression model can be applied to
estimate the parameters βT,0 and δ0. HS (2017) runs the OLS estimator for γ0 = (β′0, δ

′
0)′ based

on (7) and defines TA-OLS estimator of γ0 as

γ̂ = (β̂
′
, δ̂
′
)′ = (W′XWX)−1W′XWy,

where WX = (Wx,W∆x) . HS (2017) shows

β̂
A∼ N

[
β0, σ

2
0·x(W′xM∆xWx)−1

]
, (13)

and
δ̂
A∼ N

[
δ0, σ

2
0·x(W′∆xMxW∆x)−1

]
, (14)

where M∆x = IK − W∆x (W′∆xW∆x)−1W′∆x and Mx = IK − Wx (W′xWx)−1W′x. To test a
hypothesis of

Hβ
0 : Rββ0 = rβ vs. H1 : Rββ0 6= rβ, (15)

where R is a pβ × d matrix, HS (2017) constructs the following Wald statistic and derives its
limiting distribution by

F (β̂) =
1

σ̂2
0·x

(Rββ̂ − rβ)′
[
Rβ(W′xM∆xWx)−1R′β

]−1
(Rββ̂ − rβ)/pβ (16)

⇒ K

K − 2d
· Fpβ ,K−2d,

where Fpβ ,K−2d is the F distribution with degrees of freedom pβ and K − 2d. When p = 1, the

t-statistic can be constructed in a similar manner. Here, σ̂2
0·x = K−1

∑K
i=1 Ŵ2

0·x,i is a natural

variance estimate of the regression error, where Ŵ0·x,i = Wy,i −W′x,iβ̂ −W′∆x,iδ̂ is a residual of
the small sample regression in (12).

It is important to note that the asymptotic variances in (13)—(14) are different with conver-
gence orders, (W′xM∆xWx)−1 = Op(T

−2) while (W′∆xMxW∆x)−1 = Op(1). The different conver-
gence rates imply different orders of convergence for estimators β̂ and δ̂ with T (β̂ − β0) = Op(1)
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and (δ̂−δ0) = Op(1), respectively. The latter estimator δ̂ for the long-run endogeneity parameter
is inconsistent but yields to asymptotically valid t and F tests for H0 : δ = δ0 as in (16). The
testing hypothesis is

Hδ
0 : Rδδ0 = rδ vs. H

δ
1 : Rδδ0 6= rδ, (17)

where R is a pδ × d matrix, one can construct Wald statistic and obtain its limiting distribution
as

F (δ̂) =
1

σ̂2
0·x

(Rδ δ̂ − rδ)′
[
Rδ(W′∆xMxW∆x)−1Rδ

]−1
(Rδ δ̂ − rδ)/pδ (18)

⇒ K

K − 2d
· Fpδ,K−2d.

3 Asymptotic Behavior of TA-OLS with a Near Unity Regressor

Although the TA-OLS method is very convenient for practitioners with standard t and F tests,
it crucially relies on the exact unit root assumption on the cointegration regressor xt. The ex-
act unit root assumption in xt makes the low-frequency transformations of the first difference
{W∆x,i}Ki=1 to be same as those of {uxt}, i.e. W∆x,i = Wux,i = T−1/2

∑T
t=1 uxtφi(

t
T ). As a result,

the low-frequency transformations of the projected errors W0·x,i = T−1/2
∑T

t=1 φi(
t
T )u0·xt, are

asymptotically independent of the regressors {Wx,i}Ki=1 and {W∆x,i}Ki=1 which govern long-run
and short-run dynamics of the TA regression system, respectively. However, once the cointe-
gration system departs from the unit root assumption, it is questionable whether the Gaussian
approximation of the TA cointegration system is still valid. To answer this, we adopt a local to
unity approximation of the cointegration regressor

xt = ρTxt−1 + uxt where ρT = 1− c

T
(19)

for c ≥ 0. When c = 0, the regressor xt has an exact unit root the I(0) errors. Modeling
the cointegration regressor xt as in (19) allows for a smooth transition between stationary but
highly persistent and the “exact” I(1) non-stationary series and provides a more reasonable
approximation to the TA cointegration system in (7). This is especially when the length of time
series is not enough to identify the exact nature of the auto-regressive root of xt.

With the local to unity approximation of regressor xt in (19), the first difference process ∆xt
becomes

∆xt = −cxt−1

T
+ ux,t for t = 1, ..., T.

Thus, the low frequency transformation {W∆x,i}Ki=1 is no longer the same as {Wux,i}Ki=1 but is
now a combination of two transformed data

W∆x,i=
1√
T

T∑
t=1

uxtφi(
t

T
)− c 1√

T

T∑
t=1

[xt−1

T

]
φi(

t

T
) (20)

for i = 1, ...,K. The augmented cointegration regression in (3) is modified into

yt = α0 + x′tβ0 + δ′0∆xt + ũ0·xt for t = 1, ..., T,
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where

ũ0·xt := u0·xt + c

[
δ′xt−1

T

]
,

and thus the transformed regression model in (7) changes to

Wy,i = W′x,iβ0 +W′∆x,iδ0 + W̃0·x,i for i = 1, ...,K, (21)

where

W̃0·x,i := W0·x,i +
c

T 3/2

[
T∑
t=1

δ′0xt−1φi(
t

T
)

]
.

Since the null distributions of parameters in small sample Gaussian regression are invariant to
the (asymptotic) variance of the regressors, we expect the two sets of transformed regressors
{Wx,i}Ki=1 and {W∆x,i}Ki=1in (21) to have the same role as what we obtained under the exact unit
root regressor in (7). However, the regression equation in (21) now involves an additional error
of low frequency transformation inside W̃0·x,i, and it is now questionable whether the convenient
features of the asymptotic t and F tests in (16)—(18) can still be maintained by the structure
of small sample Gaussian regression model in (21). To answer this, we first make the following
assumptions to formally establish the asymptotic properties of the TA-OLS estimator γ̂ = (β̂

′
, δ̂
′
)′.

Assumption 1 The vector process {ut = (u0t, u
′
xt)
′}Tt=1 satisfies the FCLT in (8).

Assumption 2 (i) For i = 1, . . . ,K, each function φi (·) is continuously differentiable; (ii) For
i = 1, . . . ,K, each function φi (·) satisfies

∫ 1
0 φi (x) dx = 0; (iii) The functions {φi (·)}Ki=1 are

orthonormal in L2[0, 1].

Together with the local to unity regressors in (19), Assumption 1 of FCLT enables us to invoke
the result in Phillips (1987) and get

1√
T
x[Tr] ⇒ Ω1/2

xx Jc(r), (22)

where the Ornstein-Uhlenbeck (OU) process is defined by Jc(r) =
∫ r

0 exp(−c(r−s))dWx(s). Since
Assumption 2 holds in both (5) and (6), we can repeat the weak convergence approximations in
(11) allowing the local to unity assumption in (19)

Wx,i

T
⇒ Ω1/2

xx

∫ 1

0
φi (r) Jc(r)dr ∼ N(0,Ω1/2

xx ΣcΩ
1/2
xx ), (23)

where Σc = 1
2c

∫ 1
0

∫ 1
0 φi(r)φi(s){exp[−c|r−s|]−exp[−c(r+s)]drds · Id, for i = 1, ...,K. The above

weak convergence shows that the local to unity assumption does not change the Gaussian limits
but is has different asymptotic variance from (10). In the proof of Proposition 1, we show that

1

T 3/2

T∑
t=1

xt−1φi(
t

T
) =

Wx,i

T
+Op(

1

T
).

Thus, the transformed first difference W∆x,i and the regression error W̃0·x,i have the following
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weak convergence limits of

W∆x,i ⇒ Ω1/2
xx

[∫ 1

0
φi(r)dWx(r)− c ·

∫ 1

0
φi(r)Jc(r)dr

]
, (24)

W̃0·x,i ⇒ σ0·x

∫ 1

0
φi(r)dw0(r) + c ·

[
Ω1/2
xx δ0

]′ ∫ 1

0
φi(r)Jc(r)dr

for i = 1, ...K, respectively. Combining these results, the TA regression in (21) is now asymptot-
ically equivalent to:

Wy,i ' S′x,iβT,0 + S′∆x,iδ0 +
[
S0·x,i + cδ′0Sx,i

]
for i = 1, ...,K,

where Sx,i, S∆x,i, and S0·x,i are the Gaussian random limits ofWx,i/T,W∆x,i, andW0·x,i, respec-
tively, which are specified in (23), (24), and (10), respectively. Then, the asymptotic behavior of
TA-OLS estimator is captured by

T (β̂ − β0) =

[
W′x
T

(IK − P∆x)
Wx

T

]−1 [W′x
T

(IK − P∆x)W̃0·x

]
⇒
[
S′x(IK − PS∆x

)Sx
]−1 S′x(IK − PS∆x

)S0·x + cδ0,

where PS∆x
= S∆x(S′∆xS∆x)−1S′∆x. Conditioning on Sx and S∆x, the first majorant term char-

acterizes the weak Gaussian limit of TA-OLS estimator under the unit root regressors which is
centered toward the true parameter β0. This limit is the same as what is derived under the exact
unit root regressor in HS (2017), except for the covariance structure of the conditioning random
variables Sx and S∆x. The second term cδ0 indicates the asymptotic distribution of β̂ possesses a
bias term cδ0. When c = 0, the results are the same as the previous I(0) cointegrated regression.
We formally state the weak convergences result of TA-OLS estimator including δ̂ in the following
Proposition. Define

ΥT =

 T · Id 0
d×d

0
d×d

Id

 .

Proposition 1 Let SX = [S′x, S′∆x]′ . Under Assumptions 1—2, and the local to unity regressors
in (19), as T →∞ but holding K fixed,

ΥT (γ̂ − γ0) =

(
T (β̂ − β0)

δ̂ − δ0

)
⇒
[
cδ0

0

]
+MN(0, σ2

0·x(S′XSX)−1).

The result of Proposition 1 can be summarized by

T (β̂ − β0)⇒MN
[
cδ0, σ

2
0·x(S′xMS∆x

Sx)−1
]
,

δ̂ − δ0 ⇒MN
[
0, σ2

0·x(S′∆xMSxS∆x)−1
]
,

where the convergences hold jointly. As we expected, the local to unity regressor affects the limit
behavior of β̂ by shifting the center of the weak limit T (β̂−β0) from zero to the asymptotic bias
term cδ0. This implies the TA-OLS estimator β̂ is asymptotically unbiased i) if the regressors
have the exact unit root processes, i.e. c = 0 or ii) there is no long-run simultaneity between ut
and uxt, i.e. δ0 = 0. Both of these cases, however, are unlikely to show up in practice. The results
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are similar with Elliott (1998) which finds the fragility of time-domain cointegration inference in
the presence of local to unity regressors. Our work also shows that the same asymptotic bias
terms appear in the domain of low frequencies.

Although the limiting distribution of cointegration vector is affected by the local to unity
regressor, the result in Proposition 1 also indicates that δ̂ is still asymptotically centered toward
δ0 and has the exact same asymptotic behavior as the case of exact unit root regressors. Given
that the source of asymptotic bias β̂ is originated by the mistakenly first differenced data ∆xt in
(21), it is very interesting to observe that the TA-OLS estimator δ̂ still yields an asymptotically
unbiased estimation of the long-run endogeneity parameter δ0. The TA-OLS estimator δ̂ of δ0 is
not consistent in our framework, but weakly converges to a random limit centered toward the
true parameter β0. This is because the underlying approximation scheme of our low-frequency
transformed regression is based on “fixed-K”asymptotics which let the sample size T grow to
infinity but holding K fixed. If one considers a different limiting experiment of approximating γ̂
where K increases with T but at a slower rate, e.g. Phillips (2005, 2014), we expect δ̂ becomes a
consistent estimator for δ0. Searching for more accurate approximations of finite sample estimator
γ̂ (and thus δ̂), however, the results of our “fixed-K”asymptotics about δ̂ can provide a robust
way of making inference for δ0. Formally, under the null hypotheses in (15) and (17), the results
in Proposition 1 gives

T (Rββ̂ − rβ) ⇒ MN(cRβδ0, σ
2
0·x
[
Rβ(S′xMS∆x

Sx)−1R′β
]
), (25)

(Rδ δ̂ − rδ) ⇒ MN(0, σ2
0·x
[
Rδ(S′∆xMSxS∆x)−1R′δ

]
),

respectively. In view of the joint weak convergence results in (23)—(24), it is easy to check

Rβ
[
(W′x/T )M∆x(W′x/T )

]−1
R′β ⇒ Rβ

[
S′xMS∆x

Sx
]−1

R′β, (26)

Rδ(W′∆xMxW∆x)−1R′δ ⇒ Rδ
[
S′∆xMSxS∆x

]−1
R′δ.

Thus, if one finds an asymptotic behavior of σ̂2
0·x under the near-unity regressor in (19), we are

able to find a weak limit of Wald and t statistics for the parameters γ = (β′0, δ
′
0). The results are

summarized in the following Proposition.

Proposition 2 Let Assumptions 1 and 2, and the null hypotheses in (15)-(17) hold . Under the
fixed-K asymptotics, we have

(a) F (β̂)⇒ K
K−2d · Fpβ ,K−2d(‖ θ ‖2);

(b) t(β̂)⇒
√

K
K−2d · tK−2d(θ), where

θ =
[
Rβ
[
S′xMS∆x

Sx
]−1

R′β

]−1/2
·
[
cRβδ0

σ0·x

]
.

(c) F (δ̂)⇒ K
K−2d · Fpδ,K−2d;

(d) t(δ̂)⇒
√

K
K−2d · tK−2d.

In the proof of Proposition 2, we show the asymptotic variance estimate σ̂2
0·x for the long-

run projected variance σ2
0·x weakly converges to χ

2
K−2d limiting distribution. Since all other

components of test statistics except the bias term cRβδ0 behave the same way as in the case
of the exact unit root regressors, we can capture the effect of the local to unity regressors on
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the hypothesis tests of β0 only by looking at the random non-centrality parameter ‖ θ ‖2in the
limiting F and t distributions.

To get some intuition on the random noncentrality parameter, suppose p = 1 and testing for
a single hypothesis about the cointegration parameter H0 : Rβ = r. Then, the non-centrality
parameter ‖ θ ‖2 becomes

‖ θ ‖2=
c2

σ2
0·x
· ‖Rβδ0‖2[
RβΩ

−1/2
xx

]
[η′xMξηx]−1

[
Ω
−1/2
xx R′β

] ,
for a random variable η′xMξηx where ηx = (ηx,1, ..., ηx,K)′,Mξ = IK−ξ(ξ′ξ)−1ξ′, and ξ =(ξ1, ..., ξK)′

with

ηx,i :=

∫ 1

0
φi (r) Jc(r)dr, ξ :=

∫ 1

0
φi (r) dW (r),

for i = 1, ...,K. Choose H = ((RβΩ
−1/2
xx )′/

∥∥∥RβΩ
−1/2
xx

∥∥∥ , H̃)′ for some H̃ such that H is orthogonal,

then we can express the denominator by[
RβΩ−1/2

xx

] [
η′xMξηx

]−1
[
Ω−1/2
xx R′β

]
= RβΩ−1/2

xx H ′(H
[
η′xMξηx

]−1
H ′)HΩ−1/2

xx R′β

=
∥∥∥RβΩ−1/2

xx

∥∥∥2 [
e′d
[
Hη′xMξηxH

′]−1
ed

]
d
= RβΩ−1

xxR
′
β · e′d

[
η′xMξηx

]−1
ed,

where ed = (1, 0, ..., 0)′ ∈ Rd and the last equality comes from a rotational invariance property of
random vector ηx. With this result and some additional algebra, we can show that the random
non-centrality parameter ‖ θ ‖2 is equivalent in distribution to

‖θ‖2 d
= c2 ·

[
σ0xΩ

−1/2
xx

σ0·x

]
P

Ω
−1/2
xx R′β

[
Ω
−1/2
xx σx0

σ0·x

][
1

e′d [η′xMξηx]−1 ed

]
,

where P
Ω
−1/2
xx R′β

is a projection matrix onto a space spanned by Ω
−1/2
xx R′β. Since

σ0xΩ−1
xxσx0

σ2
0·x

=
r2

1− r2
and r2 =

σ0xΩ−1
xxσx0

σ0
,

the random variable ‖ θ ‖2 is proportional to a long-run correlation vector between {u0t} and
{uxt} projected on to Ω

−1/2
xx R′β. When d = p = 1, the non-random part of ‖θ‖2 is equal to

c2 · r2/(1− r2) so that the degree of overrejection approaches to one when the squared long-run
correlation r2 gets close to one. The quantitative message is consistent with Elliott (1998) whose
approximation of cointegration model is based on the time-domain. The presence of non-zero
‖ θ ‖2 implies that the hypothesis test using the Wald statistics in (16) will tend to over-reject.
However, the results in Proposition 2 (c)—(d) indicate we can still perform asymptotically valid
Wald and t tests about the long run endogeneity coeffi cient δ0. This is expected from our previous
investigation on the limit behavior of δ̂ which is not affected by the local to unity regressors.

Although the TA-OLS tests for δ̂ lead asymptotically valid F and t-tests regardless of the
dependency properties of the cointegration regressors, the goal of an empirical researcher is
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making a valid inference for the cointegration vector β0. Since the presence of the local to
unity regressors has an impact on the limiting distributions of β̂, the result of Proposition 2
(a)—(b) indicates that the corresponding testing procedures no longer have t and F limits and the
inferences on β0 are in danger of severe size distortions. The resulting mixed noncentral F and t
limiting distributions in Proposition 2 (a)—(b) shows that the random non-centrality parameter
‖ θ ‖2 (and θ) depend on the local to unity parameter c, the basis functions, and function of
LRV matrix Ω. Given c and TA-OLS estimators δ̂, σ̂2

0·x, and HAR estimator of LRV Ω̂xx, one
can consider the following plug-in estimation of random non-central parameter θ:

θ̂ = c
[
RβΩ̂−1/2

xx (η′xMξηx)−1Ω̂−1/2
xx Rβ′

]−1/2
[
Rβ δ̂

σ̂0·x

]
.

With this random variable θ̂, one can simulate the critical values of mixed non-central Fpβ ,K−2d(‖
θ̂ ‖2) and tK−2d(θ̂) random variables. These critical values are data-dependent and rely on the
knowledge of local to unity parameter c, but similar ideas of plugged-in critical values have been
suggested by Cavanagh, Elliott, and Stock (1995) and Campbell and Yogo (2006) in the context
of time series regression with local to unity regressor. However, we note that this method of
corrected critical value still has some diffi culties for practitioners to apply in practice. The issue
involves estimation uncertainty of plugged-in parameters δ̂ and σ̂0·x. The results in this section
show that these two parameters weakly converge to random limit and thus inconsistent under
the fixed-K asymptotics. Thus, plugging these parameters to critical value simulations without
considering these random limits might lead a poor finite sample approximation of underlying test
statistics. A similar issue involves with a large estimation uncertainty in Ω̂xx which is typically
estimated nonparametrically, e.g. Newey and West (1987) and Andrews (1991). The nonpara-
metric estimation of Ω̂xx requires a user choice of weighting (kernel) function and the smoothing
parameter. In finite samples, both the kernel function and the bandwidth, especially the latter,
do affect the sampling distribution of Ω̂xx and largely affects the preciseness of associated critical
values. See, for example, Kiefer and Vogelsang (2005), Sun, Phillips, and Jin (2008), and Hwang
and Sun (2018).

4 Bias Corrected Inferences for β0 under a near unity regressor

In this section, we provide a method to correct the asymptotic bias of TAOLS test statistics for
β0. Let Γc be p×2d matrix formed by the hypothesis matrix Rβ and the local to unity parameter
c.

Γc :=
(
Rβ −cRβ

)
.

Then, under Hβ
0 : Rββ0 = rβ,

ΓcΥT [γ̂ − γ0] =
(
Rβ −cRβ

)( T (β̂ − β0)

δ̂ − δ0

)
(27)

= T
[
Rβ(β̂ − c · δ̂/T )− r

]
+ cRβδ0.
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Using the joint convergence result in Proposition 1 and continuous mapping theorem, we have

ΓcΥT [γ̂ − γ0] = T (Rβ(β̂ − c · δ̂/T )− rβ) + cRβδ0 (28)

⇒ Γc

[
cδ0

0

]
+ Γc(S′XSX)−1S′XS0·x

d
= MN(cRβδ0, σ

2
0·xΓc(S′XSX)−1Γ′c).

Therefore, the plug in estimator of β̂+c · δ̂T can correct the bias of c ·
δ0
T in the limiting distribution

of T (β̂ − β0), because (28) implies that the limiting distribution of β̂ + c · δ̂T is

T (Rβ(β̂ − c · δ̂/T )− rβ)⇒MN(0, σ2
0·xΓc(S′XSX)−1Γ′c), (29)

which is centered toward zero. It is important to point out the asymptotic variance of the plug-in
estimator β̂ − c · δ̂/T is no longer the same as that of T (β̂ − β0). This is because the asymptotic
variance of the plug-in estimator has to reflect the estimation uncertainty of δ̂ in its limiting
distribution. This motivates us to construct the following modified Wald statistic:

F (β̂; c) =
T 2

σ̂2
0·x

(Rβ[β̂ − c · δ̂/T ]− rβ)′
[
Γc(Υ

−1
T W

′
XWXΥ−1

T )−1Γ′c
]−1

(30)

×(Rβ[β̂ − c · δ̂/T ]− rβ)/p.

When p = 1 and for a one-sided alternative hypothesis, we would construct the modified t statistic
as below

t(β̂; c) =
T (Rβ[β̂ − c · δ̂/T ]− rβ)√

σ̂2
0·xΓc(Υ

−1
T W′XWXΥ−1

T )−1Γ′c

. (31)

The theorem below establishes the limiting null distributions of F (β̂; c) and t(β̂; c) under the
fixed-K asymptotics.

Theorem 3 Under Assumptions 1—2, as T →∞ but holding K fixed,

F (β̂; c)⇒ K

K − 2d
· Fp,K−2d,

and

t(β̂; c)⇒
√

K

K − 2d
· tK−2d.

The results of theorem indicate one can construct valid t and F tests using the modified t and
Wald statistics. The modified statistics not only adjust the locational bias but also reflect the
estimation uncertainty of the δ̂ in the bias correction term. After we fully account the effect of the
plugged-in bias correction c · δ̂/T on the modified statistics, we obtain the exact same asymptotic
F and t limits. This means one can conveniently implement the modified test statistics using the
standard t and F testing methods.

When pβ = 1, Theorem 3 shows a valid (1−α) · 100% confidence interval (CI) for the testing
parameter Rβ0 can be constructed as

CIRβ0
(c; 1− α) = [β1−α

R,l (c) , β1−α
R,h (c)], (32)
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where

β1−α
R,l (c) = Rβ

[
β̂ − cδ̂

T

]
− 1

T

√
σ̂2

0·xΓc
[
Υ−1
T W′XWXΥ−1

T

]−1
Γ′c ·

√
K

K − 2d
· t1−α/2K−2d ,

β1−α
R,h (c) = Rβ

[
β̂ − cδ̂

T

]
+

1

T

√
σ̂2

0·xΓc
[
Υ−1
T W′XWXΥ−1

T

]−1
Γ′c ·

√
K

K − 2d
· t1−α/2K−2d ,

and tαK−2d is the (1− α) quantile from the tp,K−2d distribution. When the regressors are nearly
integrated with c > 0, the modified confidence interval in (32) shifts the location of the interval
up to −cRδ̂/T. With the location adjustment −cRδ̂/T, one may come up with the following CI

Rβ

[
β̂ − cδ̂

T

]
± 1

T

√
σ̂2

0·xRβ(W′XM∆xWX)−1R′β ·
√

K

K − 2d
· t1−α/2K−2d . (33)

The common critical value t1−α/2K−2d and estimated variance terms σ̂
2
0·x reflect the uncertainty of

time series in the (un)modified confidence intervals, but there is notable difference in the margin
of errors of two confidence intervals in (32) and (33). With some additional algebra, we can
express the term in (32) by

Γc
[
Υ−1
T W

′
XWXΥ−1

T

]−1
Γ′c

= Rβ

[
Λ1(c)

(
W′xM∆xWx

)−1
+ Λ2(c)

(
W′∆xMxW∆x

)−1
]
R′β,

where

Λ1(c) = T 2(Id + cT−1
[
W′∆xW∆x

]−1W′∆xWx),

Λ2(c) = c2Id + cT
[
W′xWx

]−1W′xW∆x.

That is, the measure of uncertainty in the confidence interval (32) is a weight average of standard
error terms for β̂ and δ̂ weighted by Λ1(c) = Op(T

2) and Λ2(c) = Op(1), respectively. The relative
difference in the order of magnitude between these weights is based on the different convergence
rates of the variance estimates (W′xM∆xWx)−1 = Op(T

−2) and (W′∆xMxW∆x)−1 = Op(1) for the
estimators β̂ and δ̂, respectively. Interestingly, the weights are functions of the OLS coeffi cients
from the two transformed regressors Wx and W∆x and the local to unity parameter c.

Lastly, when c = 0, i.e. the regressor xt has an exact unit root, it is easy to check that the
above confidence interval of β0 reduces to the standard form of symmetric confidence interval,

Rββ̂ ±
√
σ̂2

0·xRβ(W′XM∆xWX)−1R′β ·
√

K

K − 2d
· t1−α/2K−2d ,

which is same as the TA-OLS tests in HS (2017).
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5 Implementation: Bonferroni Confidence Interval

The near-unity approximation of the modified test statistics F (β̂; c) and t(β̂; c) requires the knowl-
edge of the local to unity parameter c which is not consistently estimable in general. However,
There are several ways developed in the literature on time series to measure the uncertainty of c
in the context of unit root testing problem, andone can still construct a nontrivial and informative
confidence interval (CI) for the unknown parameter c. See, for example, Stock (1991), Andrews
(1993), Elliott and Stock (2001), Mikusheva (2007), and Phillips (2014) for constructing CI of
the local to unity parameter c. In this section, we follow Elliott and Stock (1991)’s approach to
construct CI [cl, ch] for c with 100(1−ε)% coverage rate where ε ≤ α. The detailed procedures are
summarized in the Appendix. When pβ = 1, the Bonferroni CI for Rβ0 can be simply constructed
as

CIBRβ0
(c; 1− α) = ∪

c∈[cl,ch]
CIRβ0

(c; 1− α+ ε)

=

[
min

c∈[cl,ch]
βα−εR,l (c) , max

c∈[cl,ch]
βα−εR,h (c)

]
,

where βα−εR,l (c) and βα−εR,h (c) are defined in (32). The idea of constructing the robust Bonferroni
confidence interval where there exists unidentified nuisance parameters has been used in vari-
ous contexts in statistics and econometrics. See, for example, McCloskey (2012) and references
therein. By Bonferroni’s inequality, the above Bonferroni CI yields a confidence level of at least
100(1−α)%. Since the infeasible confidence interval [βα−εR,l (c) , βα−εR,h (c)] depends on c only through

T−1cδ̂ and Γ(c), the computational cost of finding is low when one searches the maximum (and
minimum) of βα−εR,u (c) (and βα−εR,l (c)) over [cl, ch].

One potential limitation to the Bonferroni based method is that the CI is often too wide,
and the resulting coverage rate is usually higher than the nominal one. One convenient way is
to consider the union of CIRβ0

(c; 1− α) for nominal α-test, instead of CIRβ0
(c; 1− α+ ε), over

[cl, ch] which is 100(1 − ε)% coverage rate. For the choice of ε, we follow Sun (2014b) and set
ε = 0.10 in our Monte Carlo simulations. There can be several ways to improve the performance
of the Bonferroni based method. See Cavanagh, Elliott, and Stock (1995) and McCloskey (2017)
for more details.

6 Monte Carlo Evidences

We evaluate the performance of our modified TA-OLS method, presented in the previous section,
in a finite sample. We compare it with several other methods, including the unmodified TA-OLS
approach in HS (2017). For cointegration models, we consider the following bivariate cointegration
model as in Phillips (2014) and HS (2017)

yt = α0 + xtβ0 + u0t

xt = ρTxt−1 + uxt
, ut =

(
u0t

uxt

)
= Θut−1 + εt, (34)
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with a local to unity coeffi cient ρT = 1− c
T and

εt =

(
ε0t
εxt

)
∼ i.i.d N (0,Σ) , Θ = ψ · I2, Σ = J2,2 · φ+ I2 · (1− φ),

and J2,2 is the 2 × 2 matrix of ones. The true cointegration regression coeffi cients are set to
be α0 = 1 and β0 = 1. The initial value of the error process ut drawn from standard normal
distribution. To minimize the initialization effect, we generate a time series of length 2T and
drop the first T observations. The parameter ψ controls the persistence of individual components
in ut = (u0t, u

′
xt)
′ ∈ Rd+1. We set the values of ψ as {0.50, 0.75}, so the stationary cointegration

error ut reasonably persistent. The parameter φ is a pairwise correlation coeffi cient between the
elements of ut and characterizes the degree of endogenity. With some algebraic manipulations,
it is straightforward to obtain the LRV Ω of ut as

Ω = (Id+1 −Θ)−1 Σ (Id+1 −Θ)−1′ =

(
1

1− ψ

)2

·
(

1 φ · J1,d

φ · Jd,1 Jd,d · φ+ Id · (1− φ)

)
.

It then follows that the squared long run correlation is expressed by

r2 =
σ0xΩ−1

xxσx0

σ2
0

=
dφ2

(1− φ) + dφ
.

Using the formula above, we set φ to satisfy r2 ∈ {0, 0.15, 0.25, 0.35, 0.50, 0.75}. For the
autoregressive coeffi cient of the cointegration regressor xt, we take ρT ∈ {1, 0.975, 0.95, 0.925}
with sample size T = 200, so the corresponding local to unity parameters are c ∈ {0, 5, 10, 15}.

The null hypotheses of interest for the true parameter is

H0 : β0 = 1 and H0 : β0 6= 1.

Also, in the case of r2 = 0, we test the long run endogenity parameter with the following null
hypothesis of

H0 : δ0 = 0 and H0 : δ0 6= 0.

We consider Fourier basis functions given in (5) for our TAOLS framework, as the same
numerical evidences hold for the cosine transformation in (6). See Section 6 of HS (2017) for the
detail. For fixed values of K, we set K = 8 and K = 16 for the AR(1) parameters ψ = 0.75 and
ψ = 0.50, respectively. These choices of K are shown to have good finite sample performances in
various literature of fixed smoothing asymptotics with extensive numerical experiments. See, for
example, Müller and Watson (2013, 2017), HS (2017), and Lazarus, Lewis, Stock, and Watson
(2018).

We first examine the empirical size of four different type of TAOLS t-tests at nominal size
α = 5%. The first test is the unmodified TA-OLS test considered in HS (2017) and Phillips (2014).
As a second group of tests, we consider two infeasible TA-OLS t-tests which treat the true local
to unity parameter c as known: the first one is the plugged-in type modification of TA-OLS
in (33), and the second one is the modified TA-OLS t-test in (31) and (32). It is imporant to
point out that the plugged-in TA-OLS test only shifts the location of the confidence interval by
cδ̂/T, whereas the modified TA-OLS fully accounts for the asymptotic uncertainty of plugged-in
estimator δ̂ as well as the bias correction term cδ̂/T . All of these three tests employ the same
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tK−2 critical values. The last test we consider is a feasible version of the modified TA-OLS test
which is based on the Bonferroni correction (Bonferroni TA-OLS, hereafter) in Section 5.

Figures 1—2 and Tables 1—2 report the empirical size of the four different TAOLS tests. The
number of simulation replications is 10, 000. The results are summarized below.

From Table 1, in the unit root case, that is c = 0, the first three TA-OLS tests have empirical
sizes very close to the nominal size of 5%. This is not surprising given that the unmodified TA-
OLS asymptotically valid under the exact unit-root assumption. The plugged-in TAOLS and
the modified TAOLS are numerically equivalent to the unmodified TAOLS when c = 0. The
Bonferroni TA-OLS yields to a correct empirical size although it is mildly undersized varying
from 3.2% to 4.2%. While the feasible Bonferroni TA-OLS test is conservative, the conservatism
only comes from the Bonferroni step as we check the infeasible modified TA-OLS provides very
accurate size control.

Second, as c deviates from zero, the unmodified TA-OLS suffers from severe size distortions,
especially, when the squared long-run correlation, r2, and the local to unity parameter, c, grow.
This confirms our theoretical results in Proposition 2. The plugged-in TA-OLS test improves
the size distortion of the unmodified TA-OLS, but still has empirical rejection rates greater than
the nominal size. For example, when ψ = 0.75 in Table 1, the empirical rejection rate of the
plugged-in TAOLS is between 8% ∼ 17% for c ∈ {5, 10, 15}. This is because there is a large
amount of finite sample noise in δ̂ which is Op(1) in our fixed-K asymptotics. We find that our
modified TA-OLS test, equipped with both the bias correction and the variance adjustment, has
accurate finite sample size for all values of r2 and c considered. Lastly, the Bonferroni TA-OLS
test has correct size, varying from 1.8% to 6.2%, and also it is conservative in finite sample as
expected.

To sum up, first there is a large amount of size distortions for the unmodified TA-OLS in the
local to unity case when r2 and c deviate from zero. Second, treating c as known, our modified
TA-OLS successfully corrects the size distortions of the unmodified TA-OLS. When c is unknown,
the feasible version of our modified TAOLS with Bonferroni correction is also size-corrected but
is mildly undersized. The conservatism is expected to result in power loss compared to the
modified TA-OLS test which is infeasible in practice. To investigate the power loss of the feasible
Bonferroni TAOLS procedure, we compare its finite sample power with the modified TA-OLS.
The true parameter of cointegration is now from the local alternative hypothesis β = β0 + b/T,
where b ∈ [−25, 25] measures the magnitude of the local departure. All other DGPs are the same
as before.

Figures 3—5 present the finite sample power curve of each procedure for r2 ∈ {0.15, 0.35, 0.50, 0.75}
and c ∈ {5, 10, 15} when ψ = 0.75. In all cases, the power of the infeasible modified TA-OLS test
outperforms the feasible Bonferroni TA-OLS. However, the modified TA-OLS test is infeasible
when c is unknown. The cost of lack of knowledge of c is reflected on the relative power loss of
the Bonferroni TA-OLS test. Figures 3—5 indicate that the power loss is increasing in the squared
long-run correlation r2, but we also show that the power of the Bonferroni TA-OLS test increases
along with |b|.

Lastly, our results also indicate that we can precisely perform the endogenity test, i.e., a test
of whether δ0 = 0, regardless of the local to -unity parameters c. This is consistent with our
fixed-K asymptotic results in Proposition 2 (c)-(d) which indicate that, in the presence of the
local to unity regressor, δ̂ is still asymptotically centered toward its true value and yields a robust
test for the long-run endogenity parameter δ0.
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7 Conclusion

In this paper, we develop a theory that adopts a local to unity approximations to a triangular
cointegrated system. Our analysis is carried on the domain of low frequencies by transforming
data from the original time domain. Instead of maintaining a strict dichotomy between integrated
and non-integrated regressors, our assumption of the local to unity regressor allows for a smoother
transition between the two processes. It thus can provide a more reasonable approximation to
the low frequency transformed methods.

We show that the unmodified TA-OLS in HS (2017) approach is still consistent and share a
common mixture of normal distribution in the limit. However, the unmodified TA-OLS possesses
an asymptotic bias term in the limiting distribution. As a result, the unmodified TA-OLS suffers
from severe size distortions, especially, when the degree of long run endogeneity grows, or the
cointegration regressor deviates from the exact unit root.

We develop a modified TA-OLS test statistics, which yields to a convenient t and F inferences
for the cointegrating vector and long run endogeneity parameter. The modified TA-OLS not
only adjusts for the asymptotic bias arising from the local to unity regressor but also corrects
for the uncertainty of the plugged-in bias correction term. When the local to unity parameter is
unknown, we also provide a feasible version of our modified TA-OLS, which considers a Bonferroni
correction. Our Monte Carlo analysis shows that the Bonferroni TA-OLS test is size-corrected
and mildly undersized. Also, there is an increasing power gain of the Bonferroni TA-OLS test
when the true parameter departs from the value of the parameter under the null hypothesis.
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Table 1: Empirical size of 5% various TA-OLS methods with T=200, K=8 and AR(1) error with
ψ = 0.75.

ψ = 0.75 and K = 8

c = 0 Unmodified Plugged-in Modified Bonferroni
(Infeasible) (Infeasible)

0 0.055 0.055 0.055 0.040
0.15 0.058 0.058 0.058 0.042
0.25 0.056 0.056 0.056 0.039
0.35 0.053 0.053 0.053 0.037
0.50 0.054 0.054 0.054 0.036
0.75 0.050 0.050 0.050 0.032
c = 5 Unmodified Plugged-in Modified Bonferroni

(Infeasible) (Infeasible)

0 0.052 0.079 0.054 0.029
0.15 0.075 0.074 0.051 0.027
0.25 0.090 0.076 0.050 0.021
0.35 0.117 0.078 0.053 0.021
0.50 0.166 0.080 0.055 0.019
0.75 0.367 0.081 0.054 0.018
c = 10 Unmodified Plugged-in Modified Bonferroni

(Infeasible) (Infeasible)

0 0.052 0.112 0.053 0.026
0.15 0.097 0.115 0.050 0.025
0.25 0.142 0.125 0.056 0.026
0.35 0.190 0.114 0.049 0.022
0.50 0.299 0.120 0.055 0.027
0.75 0.624 0.120 0.049 0.032

c = 15 Unmodified Plugged-in Modified Bonferroni
(Infeasible) (Infeasible)

0 0.048 0.158 0.047 0.022
0.15 0.114 0.166 0.049 0.029
0.25 0.176 0.173 0.054 0.032
0.35 0.251 0.171 0.053 0.034
0.50 0.393 0.170 0.057 0.041
0.75 0.757 0.170 0.054 0.062
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Table 2: Empirical size of 5% various TA-OLS methods with T=200, K=16 and AR(1) error
with ψ = 0.50.

ψ = 0.50 and K = 16

c = 0 Unmodified Plugged-in Modified Bonferroni
(Infeasible) (Infeasible)

0 0.053 0.053 0.053 0.042
0.15 0.052 0.052 0.052 0.038
0.25 0.056 0.056 0.056 0.038
0.35 0.053 0.053 0.053 0.036
0.50 0.052 0.052 0.052 0.033
0.75 0.053 0.053 0.053 0.033
c = 5 Unmodified Plugged-in Modified Bonferroni

(Infeasible) (Infeasible)

0 0.058 0.072 0.056 0.032
0.15 0.079 0.068 0.053 0.025
0.25 0.107 0.071 0.054 0.017
0.35 0.133 0.063 0.049 0.014
0.50 0.206 0.071 0.053 0.012
0.75 0.458 0.072 0.056 0.014
c = 10 Unmodified Plugged-in Modified Bonferroni

(Infeasible) (Infeasible)

0 0.054 0.092 0.052 0.026
0.15 0.118 0.091 0.051 0.022
0.25 0.174 0.093 0.052 0.018
0.35 0.250 0.092 0.054 0.017
0.50 0.399 0.095 0.053 0.017
0.75 0.783 0.096 0.055 0.023

c = 15 Unmodified Plugged-in Modified Bonferroni
(Infeasible) (Infeasible)

0 0.054 0.115 0.053 0.029
0.15 0.152 0.117 0.052 0.024
0.25 0.235 0.122 0.054 0.025
0.35 0.355 0.125 0.057 0.026
0.50 0.538 0.117 0.056 0.024
0.75 0.898 0.125 0.055 0.035
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Figure 1: Empirical size of 5% fixed-smoothing tests (TAOLS, Infeasible Plugged-in TAOLS,
Infeasible Modified TAOLS, and Feasible Bonferrnoi Modified TAOLS) with K = 8 and AR(1)
error with ψ = 0.75.
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Figure 2: Empirical size of 5% fixed-smoothing tests (TAOLS, Infeasible Plugged-in TAOLS,
Infeasible Modified TAOLS, and Feasible Bonferrnoi Modified TAOLS) with K = 16 and AR(1)
error with ψ = 0.50.
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Figure 3: Finite sample power of 5% fixed-smoothing tests (Modified TAOLS and Feasible Bon-
ferrnoi Modified TAOLS) with K = 8, c = 5, and AR(1) error with ψ = 0.75.
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Figure 4: Finite sample power of 5% fixed-smoothing tests (Modified TAOLS and Feasible Bon-
ferrnoi Modified TAOLS) with K = 8, c = 10, and AR(1) error with ψ = 0.75.
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Figure 5: Finite sample power of 5% fixed-smoothing tests (Modified TAOLS and Feasible Bon-
ferrnoi Modified TAOLS) with K = 8, c = 15, and AR(1) error with ψ = 0.75.
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8 Appendix of Proofs

Proof of Proposition 1. We begin by showing the asymptotic equivalence between 1
T 3/2

∑T
t=1 xt−1φi(

t
T )

and the transformed regressor Wx/T in (24), that is,

1

T 3/2

T∑
t=1

xt−1φi

(
t

T

)
=

1

T 3/2

T∑
t=1

xtφi

(
t

T

)
+Op

(
1

T

)
.

The left side of equation is

1

T

T∑
t=1

xt−1√
T
φi

(
t

T

)
=

1

T

T−1∑
s=0

xs√
T
φi

( s
T

)
+

1

T

T∑
t=1

xt−1√
T

[
φi

(
t

T

)
− φi

(
t− 1

T

)]
. (35)

By mean value theorem,

φi

(
t

T

)
= φi

(
t− 1

T

)
+ φ′(r∗t )

(
1

T

)
for some r∗t ∈

[
t− 1

T
,
t

T

]
,

and Assumption 2 yields

φi

(
t

T

)
− φi

(
t− 1

T

)
=
φ′(r∗t )

T
≤ M

T

for some M > 0 uniformly over t. Therefore, the second term in (35) satisfies

1

T

T∑
t=1

xt−1√
T

[
φi

(
t

T

)
− φi

(
t− 1

T

)]
≤
(
M

T

)[
1

T

T−1∑
t=0

xt√
T

]
= Op

(
1

T

)
.

For the first term in (35),

1

T

T−1∑
s=0

xs√
T
φi

( s
T

)
=

1

T

T∑
s=1

xs√
T
φi

( s
T

)
+

x0

T 3/2
φi(0)− xT

T 3/2
φi(1) (36)

=
1

T

T∑
s=1

xs√
T
φi

( s
T

)
+Op

(
1

T

)
,

where the second equality follows from x0 = Op(1) and the equation (22). With this result and
the weak convergences in (9), (10), and (11), we get

Υ−1
T WX = (Wx/T,W∆x)⇒ SX = (Sx,S∆x) , (37)

W̃x ⇒ S0·x + c · Sxδ0,

where W̃x = (W̃x,1, ..., W̃x,K)′.Then, by the definition of γ̂ and ΥT , we have

ΥT (γ̂ − γ0) = (Υ−1
T W

′
XWXΥ−1

T )−1Υ−1
T W

′
XW̃0·x

⇒
(
S′XSX

)−1 S′X [S0·x + c · Sxδ0]

=
(
S′XSX

)−1 S′XS0·x + c ·
(
S′XSX

)−1 S′XSxδ0.
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Since S0·x,is are i.i.d normal random variable with variance σ2
0·x over i = 1, ...,K and independent

with SX = (Sx,S∆x), the latter component can be expressed by a mixture of normal distribution

MN(0, σ2
0·x
(
S′XSX

)−1
).

The second component can be written more explicitly as

c ·
(
S′XSX

)−1 S′XSxδ0 = c ·
(

S′xSx S′xS∆x

S′∆xSx S′∆xS∆x

)−1( S′xSxδ0

S∆xSxδ0

)
=

(
c · (S′xMS∆x

Sx)−1 S′xMS∆x
Sxδ0

c · (S′∆xMSxS∆x)−1 S′∆xMSxSxδ0

)
=

(
cδ0

0

)
,

which finishes the proof.
Proof of Proposition 2. We prove the result for the F statistic only, as the result for t
statistic can be proved in a similar manner. Note that

σ̂2
0·x =

1

K

K∑
i=1

ω̂2
0·x,i =

1

K
W′Y

[
IK −WX(W′XWX)−1W′X

]
WY (38)

=
1

K
W̃′0·x

[
IK −WX(W′XWX)−1W′X

]
W̃0·x

⇒ 1

K
[S0·x + c · Sxδ0]′

[
IK − SX(S′XSX)−1S′X

]
[S0·x + c · Sxδ0] .

Since PSX = SX(S′XSX)−1S′X is a projection matrix onto a space generated by [Sx, S∆x] , it is
easy to check [

IK − SX(S′XSX)−1S′X
]

[c · Sxδ0] = 0.

Therefore, the weak convergence limit of the estimator σ̂2
0·x simplifies to

σ̂2
0·x ⇒

1

K
S′0·xMSXS0·x ∼

σ2
0·x
K

χ2
K−2d,

where MSX := IK − SX(S′XSX)−1S′X . Combining this result with

T (Rββ̂ − rβ)⇒ Rβ
[
S′xMS∆x

Sx
]−1 S′xMS∆x

S0·x + cRβδ0

and
Rβ
[
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]−1
R′β ⇒ Rβ

[
S′xMS∆x

Sx
]−1

R′β,

we get

F (β̂)⇒ K

pβ

∥∥∥∥ Z
σ0·x
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[
Rβ [S′xMS∆x

Sx]−1R′β

]−1/2
·
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cRβδ0

σ0·x

]∥∥∥∥2
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S′0·xMSX S0·x

σ2
0·X
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where

Z =
[
Rβ
[
S′xMS∆x

Sx
]−1

Rβ

]−1/2
Rβ
[
S′xMS∆x

Sx
]−1 S′xMS∆x

S0·x ∼ N(0, σ2
0·x · IK).
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Conditional on SX = (Sx, S∆x), MSXS0·x and SxMS∆x
S0·x are independent, as bothMSXS0·x and

S′xMS∆x
S0·x are normal and its conditional covariance is

cov
(
MSXS0·x, S′xMS∆x

S0·x
)

= σ2
0·x
[
IK − SX(S′XSX)−1S′X

]
MS∆x

Sx = 0.

This implies that Z is independent of S′0·xMSXS0·x conditional on SX = (Sx, S∆x), and hence
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where
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]
.

Similarly, with Z =
[
Rδ [S′∆xMSXS∆x]−1Rδ

]−1/2
Rδ [S′∆xMSXS∆x]−1 S′∆xMSXS0·x, we obtain

F (δ̂)⇒ K

pδ

∥∥∥ Z
σ0·x

∥∥∥2[
S′0·xMSX S0·x

σ2
0·X

] d
=

K

K − 2d
Fpδ,K−2d.

Proof of Theorem 3.
We prove the result for the Wald statistic only as the same proof goes through for the t

statistic with obvious modifications. From (29) and (29), we have

T

(
Rβ

[
β̂ − c · δ̂

T

]
− rβ

)
⇒ Γc(S′XSX)−1S′XS0·x,

Γc(Υ
−1
T W

′
XWXΥ−1

T )−1Γ′c ⇒ Γc(S′XSX)−1Γ′c.

Combining these results with (38), we have

F (β̂; c) =
T 2

σ̂2
0·x

(Rβ[β̂ − c · δ̂/T ]− rβ)′
[
Γc(Υ

−1
T W

′
XWXΥ−1

T )−1Γ′c
]−1

×(Rβ[β̂ − c · δ̂/T ]− rβ)/p.

⇒
[
K

pβ

] [
Γc(S′XSX)−1S′XS0·x

]′ [
Γc(S′XSX)−1Γ′c

]−1 [
Γc(S′XSX)−1S′XS0·x

]
S′0·xMSXS0·x

Using a similar argument in the proof of Proposition 2, the conditional limit of Wald statistics
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F (β̂; c) can be expressed as[
K

pβ

] [
Γc(S′XSX)−1S′XS0·x

]′ [
Γc(S′XSX)−1Γ′c

]−1 [
Γc(S′XSX)−1S′XS0·x

]
S′0·xMSXS0·x

d
=
K

p

χ2
pβ

χ2
K−2d

, χ2
p ⊥ χ2

K−2d

d
=

K

K − 2d
Fp,K−2d,

which is invariant to the conditioning variable SX . Thus, it is also the unconditional distribution
which proves

F (β̂; c)⇒ K

K − 2d
Fp,K−2d.
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9 Appendix: Construction of [cl,ch] in Elliott and Stock (2001)

Consider
xt = µ+ ρxt−1 + uxt where ρ = 1− c

T
,

where uxt has a serial dependence of unknown forms with Ωxx =
∑∞

j=−∞E[uxtu
′
xt−j ]. For

simplicity, we only discuss a scalar regressor xt with d = 1.

Step 0: Obtain a heteroskedasticity autocorrelation robust (HAR) estimator Ω̂xx by

Ω̂xx =
T−1∑

j=−(T−1)

k

(
j

bT

)
Γ̂j where Γ̂j =

{
1
T

∑T
t=j+1 û

∗
t û
∗′
t−j for j = 0;

1
T

∑T
t=−j+1 û

∗
t+j û

∗′
t for j < 0,

and û∗t = ût − T−1
∑T

t=1 ût with ût = xt − ρ̂OLSxt−1 for t = 1, .., T, and b ∈ (0, 1] is the
bandwidth parameter with a kernel function k(·). Here, we use Bartlett-kernel function in
Newey and West (1987) and the optimal bandwidth rule suggested by Andrews (1991).

Step 1: Given the choice of the number of gridsm, saym = 200,make a fine grid to get C = [0, c∗1, c
∗
2, c
∗
T ]

with c∗T = 0.2T.

Step 2: Following Elliott and Stock (2001, pp161), we choose c̄ = 7 with ρ̄ = 1− c̄
T and construct

the following test statistics:

PT (0, c̄) :=
1

Ω̂xx

[
T∑
t=1

(uGLS,t(ρ̄))2 − ρ̄
T∑
t=1

(uGLS,t(1))2

]
,

where

Z(ρ) =


z1

z2
...
zT

 =


1

1− ρ
...

1− ρ

 , x(ρ) =


x1

x2
...
xT

 =


x1

x2 − x1
...

xT − xT−1

 ,
and

uGLS,t(ρ) = xt(ρ)− zt(ρ)′β(ρ) for t = 1, ..., T,

β(ρ) = (Z ′(ρ)Z(ρ))−1Z ′(ρ)x(ρ).

Step 3: Let W (·) be a standard Wiener process and Jc(·) be OU-process Jc(r) =
∫ r

0 exp(−c(r −
s))dW (s). Given c∗ ∈ C, simulate the following two quantities (p1(c∗), p2(c∗))

p1(c∗) = 100 · ε1% percentile of P (c∗, c̄);

p2(c∗) = 100 · (1− ε2)% percentile of P (c∗, c̄),

where

P (c∗, c̄) = c̄2

∫ 1

0
(Jc∗(s))

2 ds+ c̄J2
c∗(1).
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For ε = 0.10, we choose ε1 = 0.06 and ε2 = 0.04 by following Eliiott and Stock (2001).
Here, with a very large number B, say B = 5, 000, the random variable P (c∗; 0, c̄) can be

simulated by

p̂B(c∗; 0, c̄) := c̄2 · 1

B

B∑
b=1

(
Ĵc∗(

b

B
)

)2

+ c̄
(
Ĵc∗(1)

)2
,

Ĵc∗(
s

B
) :=

1√
B

s∑
b=1

exp

(
c∗(

s− b
B

)

)
eb,

where eb’s are
i.i.d∼ N(0, 1).

Step 4 Keep c∗ ∈ [cl, cu] if
pαl(c

∗, c̄) ≤ PT (0, c̄) ≤ p1−αu(c∗, c̄).
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