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markets. We also find that SPGCE and SPGO stocks possess the highest average optimal weight and hedging 

effectiveness for each other, implying that the positive performance of SPGCE stocks considerably compensates for 

the negative performance of SPGO stocks. For investors and regulators, the advancement and implementation of clean 

energy programs and policies, while reducing environmental debt and enhancing “green” growth and sustainable 

development, provide instruments and strategies to hedge the equity risks inherent in the oil and gas industry.  

Keywords: Clean energy stocks, Oil and gas stocks, Asymmetric BEKK, Dynamic Optimal 

Portfolios. 

JEL Codes: Q43, G11, C33 

* Corresponding author

mailto:m.ghaemi@khu.ac.ir
mailto:giorgio.canarella@unlv.edu
mailto:stephen.miller@unlv.edu


2 

1. Introduction

Fossil fuels such as coal and oil have driven economic development and growth over the past 200 

years. But economic growth does not necessarily rely on fossil fuel-based energy. In fact, 

increasing awareness of environmental problems, such as carbon dioxide (CO2) emissions due to 

burning fossil fuels, has prompted markets and governments to focus on the global transition to 

clean energy, for example, using wind and solar energy to enhance the decoupling of economic 

growth and carbon dioxide emissions (Mikayilov et al., 2018).  

The clean energy sector is now one of the fastest-growing sectors in the energy industry. 

For example, between 2006 and 2019, new investment in clean energy increased from 120.1 billion 

USD to 363.3 billion USD globally (Bloomberg New Energy Finance, 2019).  Renewable energy 

has progressively acquired an essential role to play in world energy development. The declining 

costs of alternative energy sources make them an increasingly viable choice in the competitive 

market. Despite the tremendous development of clean energy, crude oil and natural gas remain the 

largest sources of primary energy.  

The 2030 Agenda for Sustainable Development (United Nations, 2015), adopted by the 

United Nations in September 2015, represents the main framework to achieve sustainable 

development. The core of the Agenda is the 17 Sustainable Development Goals (SDGs) that must 

be met by 2030. One of these targets (SDG 7) promotes affordable and clean energy and targets 

increasing the share of renewable energy in the global energy mix substantially by 2030.  

Implementing the 2030 Agenda and achieving its Sustainable Development Goals 

(SDGs) requires deep transformations in the global energy industry. A strand of literature 

argues that in increasingly interdependent markets, and the development and sustainability of 

the renewable energy sector cannot be detached from the fossil fuel markets (Xia et al., 2019). 
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That is, the prices of the traditional fossil fuel sector affect investment and returns of renewable 

energy in capital markets, as there is a strong competitive substitution relationship between fossil 

fuels and renewable energy (Ji et al., 2018; Reboredo, 2015). For example, when the price of fossil 

fuels increases, incentives to invest in renewable energy becomes stronger, which results in a rise 

in the stock prices of renewable energy companies (Maghyereh et al., 2019; Xia et al., 2019). In 

contrast, the decoupling hypothesis (Ahmad, 2017; Ferrer et al., 2018; Gullaksen and Auran, 2017) 

argues that crude oil and clean energy no longer compete in the same markets. Crude oil produces 

transportation fuel, while clean energy produces electricity. When the price of one of them falls, 

the demand for the other does not necessarily decrease.  

A vast empirical literature exists that considers the linkages between the market of crude 

oil and national stock markets (see, e.g., Yousaf and Hassan (2019), Sarwar et al. (2019), Lin et 

al. (2014), Batten et al. (2019), and Ahmed and Huo (2020)) and how holding crude oil can 

diversify away risks in the stock market (e.g., Chkili et al. (2014), Lin et al. (2014), Basher and 

Sadorsky (2016), and Batten et al. (2017)). The literature considering linkages between crude oil 

and clean energy stocks proves relatively scant but becomes increasingly relevant due to 

developments in energy policy and sustainability targets.  

Two main research avenues dominate the limited literature on the oil market and the stocks 

of clean energy companies. First, researchers consider the dynamic interdependence of return and 

volatility of oil prices and return and volatility of clean energy and technology stock prices. The 

literature on clean energy stocks has developed applying some econometric techniques to analyze 

the interdependence between the oil market and clean energy stocks (e.g., Henriques and Sadorsky 

(2008), Sadorsky (2012), and Ferrer et al. (2018)). Thus, these results of this research suggest that 

the clean energy industry is decoupled from traditional energy markets. Contrary to these findings, 
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a series of recent papers find supporting evidence of the association between clean energy stock 

prices and oil prices (e.g., Kumar et al. (2012), Managi and Okimoto (2013), Bondia et al. (2016);  

Maghyereh et al. (2019), Reboredo et al. (2017), Kocaarslan and Soytas (2019), and Abdallah and 

Ghorbela (2018)). 

Second, other researchers consider portfolio diversification and hedging strategies. Clean 

equity stocks generally exhibit high volatility, which makes the issue of hedging risks crucial for 

gaining portfolio diversification (Ahmad, Sadorsky, et al., 2018). Only a few papers explicitly 

calculate the hedge ratios for clean energy stocks (Abdallah and Ghorbela, 2018; Ahmad, 2017; 

Dutta et al., 2020; Sadorsky, 2012). 

The primary focus of the previous papers is the oil market. This paper extends the analysis 

and examines the returns, shocks, and spillover effects among the traditional energy markets and 

global energy stock markets using daily data from March 1, 2010, to February 25, 2020. Our 

emphasis is on two global energy stock indices: The S&P Global Clean Energy index, (SPGCE) 

and the S&P Global Oil Index (SPGO), two non-renewable energy commodities (natural gas and 

crude oil), and three products of crude oil distillation (heating oil, gasoline, and propane). This is 

the most extensive set of energy commodities ever analyzed in the literature. Specifically, we 

consider 1) returns and volatility transmission between SPGCE and SPGO; 2) pairwise returns and 

volatility mechanisms between SPGCE and the five energy commodities markets; and 3) pairwise 

returns and volatility transmission between SPGO and the five energy commodity markets. We 

employ global indices, not regional, sectorial, or country indices, which is more common in the 

literature (e.g., Abid et al. (2019), Bouri (2015), Choi and Hammoudeh (2010), Hedi Arouri and 

Khuong Nguyen (2010), Jammazi and Aloui (2010), Ma et al. (2019), and Wang and Wang 

(2019)), which broadens the perspective of the interrelationships to global markets.   
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This paper contributes to the existing literature on energy equity-energy commodity market 

linkages along at least three dimensions. First, we estimate MGARCH models for natural gas, 

heating oil, conventional gasoline, crude oil, and propane, where we pair each of them 

independently with SPGCE and SPGO. In contrast to many previous studies on energy markets 

that use symmetric MGARCH models, such as the symmetric BEKK MGARCH model (e.g., 

Abdallah and Ghorbela (2018), Sarwar et al. (2019), and Batten et al. (2019)) or the symmetric 

dynamic conditional correlation (DCC) MGARCH model (e.g., Dutta et al. (2020), Ahmad, Rais, 

et al. (2018), Maghyereh et al. (2019), and Kumar (2014)), we employ the asymmetric BEKK 

MGARCH model (Kroner and Ng, 1998), where “bad news” emanating from energy markets, 

SPGCE, or SPGO differs in effect from “good news.” In other words, the asymmetric BEKK 

model determines how sensitive the volatility spillover between SPGCE stocks, SPGO stocks, and 

energy commodities is to (positive or negative) news. Applications of the asymmetric BEKK 

MGARCH model to energy markets are few and recent (e.g., Efimova and Serletis (2014), Wen 

et al. (2014), and Chen et al. (2020)).  

Second, we examine two risk minimization strategies which provide useful information 

and guidance on portfolio management and hedging options for investors in clean energy, 

producers of clean energy, energy-market policymakers, energy industry practitioners and other 

energy market stakeholders (Ashfaq et al., 2019; Lin and Chen, 2019; Nguyen et al., 2020; Wu et 

al., 2019). Specifically, we analyze and compare the time-varying optimal portfolio allocation 

between each pair of the five energy commodities and SPGO and SPGCE. This provides insights 

into portfolio optimization between energy commodities and energy stocks and smoothing 

strategies of portfolio risk. We compute minimum variance portfolio weights, hedge ratios, and 

effectiveness metrics using the estimated results of the asymmetric BEKK model.  
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Third, the sample includes several episodes of increased volatility in energy markets: first, 

the European debt crisis that reached its peak between 2010 and 2012; second, the military 

annexation of the Crimean peninsula by Russia that took place between February and March 2014; 

and, third, the natural gas disputes over prices and debts between Ukraine and Russia that 

culminated in November 2014 with the cut-off of natural gas to Ukraine by Russia’s Gazprom. 

We examine these events and their contagious effects on global stock markets and explore how 

these economic and geopolitical events affected dynamic portfolio optimization.  

Our analysis reveals several remarkable results that are of interest to investors in SPGCE 

equities. The average hedge ratio for natural gas is negative, while for the remaining commodities 

as well as for SPGO, they are positive. This means that investors can hedge an investment in 

SPGCE by taking long positions in SPGCE and a long position in natural gas, or by taking a long 

position in SPGCE and a short position in SPGO or the remaining energy commodities other than 

natural gas. 

The remainder of this study unfolds as follows: Section 2 presents the econometric 

framework for the analysis of the spillover dynamics of the energy stocks and energy markets and 

the hedging strategies for optimal portfolio allocation for risk management. Section 3 examines 

the data and their stochastic features. Section 4 summarizes and discusses the main empirical 

results. We provide the main conclusions and policy implications in Section 5. 

2. Econometric framework 

MGARCH models, first proposed by Bollerslev et al. (1988), are well-established in the literature 

and are frequently used in the analysis of dynamic covariance structures for multiple asset returns 

of financial time series. Standard applications include asset pricing, portfolio theory, value at risk 
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(VaR) estimation, and risk management and diversification, and any application that requires the 

computation of volatilities and volatilities spillovers of several markets (Bauwens et al., 2006).  

Different MGARCH models have been proposed, differing in the characterization of the 

conditional variance-covariance matrix of a stochastic vector process. The multivariate models 

require that the variance-covariance matrix must be positive definite at each period for the 

likelihood function to be defined.  

Various parametric formulations exist that overcome this problem, including the VEC and 

BEKK models. In the VEC model (Bollerslev et al., 1988), each conditional variance and 

covariance depends on all lagged conditional variances and covariances as well as lagged squared 

returns and cross-products of returns. Thus, parameter estimation of VEC models proves 

computationally demanding. Further, the conditions necessary for a positive definite covariance 

matrix for all periods are restrictive. The diagonal VEC model (Bollerslev et al., 1988) simplifies 

and assumes that the coefficient matrices on lagged squared returns and lagged conditional 

variances are diagonal matrices. This version, however, does not allow interaction across different 

variances and covariances.  

In the BEKK model (Baba et al., 1990; Engle and Kroner, 1995), the variance-covariance 

matrix is positive definite by construction (Engle and Kroner, 1995).   

Karolyi (1995), among others, finds this model suitable for modeling volatility 

transmissions. Ding and Engle (2001) propose the diagonal version of the BEKK model, which 

diagonalizes the coefficient matrices. This parameterization is computationally more tractable as 

the number of estimated parameters is reduced substantially, but as in the diagonal VEC, it is less 

suitable for modeling interactions among the elements of the variance-covariance matrix. 
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Kroner and Ng (1998) extend the BEKK model to incorporate asymmetric effects of 

shocks. Empirical applications of the asymmetric BEKK model include Grier et al. (2004), Li and 

Majerowska (2008), Efimova and Serletis (2014), Wen et al. (2014) and Majumder and Nag 

(2017), among others.  

We adopt a bivariate VAR(1)-Asymmetric BEKK-MGARCH(1,1) framework to model 

the dynamic return and volatility linkages between the stock prices of clean energy companies, the 

stock prices of oil and gas companies, and the prices of five energy products, natural gas, heating 

oil, conventional gasoline, crude oil, and propane. Compared to other MGARCH models, such as 

the DCC models, the asymmetric BEKK model suffers from the so-called “curse of 

dimensionality.” Estimating the model with more than two variables creates problems of 

convergence in the optimization algorithm, and the likelihood function behaves poorly, which, in 

turn, complicates the process of parameter estimation (see for details Ledoit et al. (2003) and 

Bauwens et al. (2006)). Thus, while ideally, our model should estimate a seven-variable VAR(1) 

MGARCH model with an asymmetric BEKK parameterization. This would require estimating 56 

parameters in the first moment and 175 parameters in the second moment, which is almost 

impossible with the prevailing computing technology and numerical methods. Thus, the bivariate 

approach represents a reasonable compromise between model complexity (i.e., the number of 

parameters) and model tractability (i.e., the computational convergence of the optimization 

algorithms) (Dean et al., 2010; Wen et al., 2014). 

2.1 The VAR(1) asymmetric BEKK MGARCH(1,1) 

The econometric specification of the VAR(1)-Asymmetric BEKK-MGARCH(1,1) model 

comprises Eqs. (1) and (2).  
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Eq. (1) specifies in matrix form the returns process as a VAR(1) model, which is suggested 

by Iglesias-Casal et al. (2020), Liu et al. (2017), Yu et al. (2019), Jayasinghe et al. (2014), and 

Mensi et al. (2014), among others and is frequently used to capture the linear interdependencies 

among returns in a system. VAR models generalize numerous univariate autoregressive (AR) 

models by allowing for more than one evolving variable. Each variable corresponds to an equation, 

which explains its evolution based on its own lagged values, the lagged values of the other model 

variables, and an error term. The VAR(1) is given as:  

𝑹𝒕 = 𝝁 + 𝜱𝑹𝒕−𝟏 + 𝝐𝒕,     𝝐𝒕|𝛀𝒕−𝟏
∼ 𝑵(𝟎, 𝑯𝒕)  (1) 

where  𝑹𝒕 = [
𝑅1𝑡

𝑅2𝑡
] ,    𝜱 = [

𝜑11 𝜑12

𝜑21 𝜑22
],   𝝁 = [

𝜇1

𝜇2
],     𝝐𝒕 = [

𝜖1𝑡

𝜖2𝑡
]     𝑹𝒕−𝟏 = [

𝑅1𝑡−1

𝑅2𝑡−1
] 

In Eq. (1), 𝑹𝒕  is a vector of returns, 𝜱 is the coefficients matrix of first-order autoregressive 

parameters, 𝝁 is a vector of constants, and 𝝐𝒕 is a vector of idiosyncratic errors. We assume that 𝜖𝑡 

follows a bivariate normal distribution conditional on the past information set 𝛀𝒕−𝟏 .   

Eq. (2) specifies in matrix form the time-varying conditional variance-covariance matrix 

𝐻𝑡, as a first-order asymmetric BEKK model: 

 

𝑯𝒕 = 𝑪′𝑪 + 𝑨′𝝐𝒕−𝟏𝝐𝒕−𝟏
′ 𝑨 + 𝑩′𝑯𝒕−𝟏𝑩 + 𝑫′𝒖𝒕−𝟏𝒖𝒕−𝟏

′ 𝑫                                                                 (2) 

where 𝑯𝒕 = [
ℎ11,𝑡 ℎ12,𝑡

ℎ12,𝑡 ℎ22,𝑡
] , 𝑪 = [

𝑐11 0
𝑐21 𝑐22

], 𝑨 = [
𝑎11 𝑎12

𝑎21 𝑎22
], 𝑩 = [

𝑏11 𝑏12

𝑏21 𝑏22
],  

 𝑫 = [
𝑑11 𝑑12

𝑑21 𝑑22
],   𝝐𝒕−𝟏𝝐𝒕−𝟏

′ = [
𝜖1𝑡−1

2 𝜖1,𝑡−1𝜖2,𝑡−1

𝜖2,𝑡−1𝜖1,𝑡−1 𝜖2,𝑡−1
2 ], 𝑯𝒕−𝟏 = [

ℎ11,𝑡−1 ℎ12,𝑡−1

ℎ12,𝑡−1 ℎ22,𝑡−1
], 

𝒖𝒕 = [
𝑚𝑖𝑛(𝜖1𝑡 , 0)
𝑚𝑖𝑛(𝜖2𝑡 , 0)

]      

 

𝑪 is a lower triangular matrix, A is a matrix of ARCH coefficients that capture shock effects, B is 

a matrix of GARCH coefficients that capture volatility effects, and D is a matrix of coefficients 
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that capture asymmetry in response to shocks. The vector 𝒖𝒕−𝟏 is zero if 𝝐𝒕, > 𝟎 and 𝒖𝒕−𝟏 = 𝝐𝒕 

when 𝝐𝒕, < 𝟎. The purpose of decomposing the constant term in Eq. (2) into a product of the two 

triangular matrices guarantees the positive semi-definiteness of 𝑯𝒕. The asymmetric BEKK is not 

linear in the parameters, which makes the convergence of the model relatively difficult.  

From Eqs. (1) and (2), we can distinguish four types of spillover effects: mean spillover 

effects, shock spillover effects, variability spillover effects, and asymmetric shock spillover 

effects. Each of these effects, in turn, has an “own” version and a “cross” version. 

Own-mean spillovers refer to the diagonal elements in matrix 𝜱  (i.e., 𝜑11 and 𝜑22) and 

capture a one-way causal relation between past returns and current returns in the same market, 

whereas cross-mean spillovers refer to the off-diagonal elements in matrix 𝜱 (i.e., 𝜑12and 𝜑21) 

and capture a one-way causal relation between past returns in one market and current returns in 

another market.  

Own-shocks spillovers refer to the diagonal elements in matrix A (i.e., 𝑎11 and 𝑎22) and 

indicate a one-way causal relation between past shocks and the current volatility in the same 

market, whereas cross-shock spillover refers to the off-diagonal elements in matrix A (i.e., 𝑎12 and 

𝑎21) and capture a one-way causal link between past shocks in one market and the current volatility 

in another market.  

Own-volatility spillovers refer to the diagonal elements in matrix B (i.e., 𝑏11 and 𝑏22) and 

indicate a one-way causal relation between past volatility and the current volatility in the same 

market, whereas cross-volatility spillovers refer to the off-diagonal elements in matrix B (i.e., 𝑏12 

and 𝑏21) and capture a one-way causal link between past volatility in one market and the current 

volatility in another market.  
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Finally, own-asymmetric shocks spillovers refer to the diagonal elements in matrix D (i.e., 

𝑑11 and 𝑑22) and measure the asymmetric response of the current conditional variance to own past 

negative shocks (i.e., “bad news” from its own market), whereas cross-asymmetric shocks 

spillovers refer to the off-diagonal elements in matrix D (i.e.,  𝑑21 and 𝑑12 ) and measure the 

asymmetric response of the current conditional variance to past negative shocks from another 

market (i.e., “bad news” from another market). A negative value of elements in matrix D means 

that a negative shock (bad news) increases volatility more than a positive shock (good news), while 

a positive value implies that a positive shock (good news) increases volatility more than the 

negative shock. 

We note that the asymmetric BEKK model reduces to the BEKK model if all asymmetric 

coefficients jointly equal to 0 (i.e., 𝑑𝑖𝑗 = 0 for all 𝑖 and 𝑗). Furthermore, if 𝑑𝑖𝑗 = 0 for all i and j, 

and A and B are diagonal matrices; then, the BEKK reduces to the Constant Conditional 

Correlation (CCC) model. We can estimate the bivariate system VAR(1)-asymmetric-BEKK-

MGARCH(1,1) efficiently and consistently using full information maximum-likelihood method 

(Engle and Kroner, 1995; Kroner and Ng, 1998). The log-likelihood function, 𝐿(𝜃), assuming 

conditional normality of the errors (Liu et al., 2017) can be written as follows: 

𝐿(𝜃) = −𝑇log(2𝜋) − 0.5 ∑ log|𝐻𝑡(𝜃)|𝑇
𝑡=1 − 0.5 ∑ 𝜖𝑡(𝜃)′𝐻𝑡

−1𝜖𝑡(𝜃)𝑇
𝑡=1 ,  (3) 

Where 𝑇  and 𝜃  are the number of observations and the vector of all unknown parameters, 

respectively. We use the BFGS algorithm to find the estimates of the parameters and their standard 

errors. We do not estimate the mean and variance parameters separately, thus avoiding the Lee et 

al. (1995) problem of generated regressors.  

2.2 Optimal portfolio allocation and risk management 
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The dynamics of shocks and volatility transmission affects risk management, in general, and 

optimal portfolio allocation and hedging strategy, in particular. We employ the estimated 

conditional variance-covariance of the energy stocks and energy commodities returns generated 

by the asymmetric BEKK bivariate specifications to generate the optimal portfolio weights and 

optimal hedge ratios. This information provides investors, regulators, and market analysts with 

insight into optimal risk-minimizing portfolios. The optimal weights (Kroner and Ng (1998) in a 

two-asset (i, j) portfolio are given by 

𝑤𝑖𝑗,𝑡 =
ℎ𝑗𝑗,𝑡 − ℎ𝑖𝑗,𝑡

ℎ𝑖𝑖,𝑡 − 2ℎ𝑖𝑗,𝑡 + ℎ𝑗𝑗,𝑡
, with      𝑤𝑖𝑗,𝑡 = {

0                   𝑤𝑖𝑗,𝑡 < 0

𝑤𝑖𝑗,𝑡    0 ≤ 𝑤𝑖𝑗,𝑡 ≤ 1

1                   𝑤𝑖𝑗,𝑡 > 1
, (4) 

where 𝑤𝑖𝑗,𝑡 denotes the weight of asset 𝑖 in a portfolio of asset 𝑖 and asset 𝑗 at time 𝑡, ℎ𝑖𝑗,𝑡 is the 

conditional covariance between assets i and j at time t, ℎ𝑖𝑖,𝑡 is the conditional variance of asset i at 

time t, and ℎ𝑗𝑗,𝑡 is the conditional variance of asset 𝑗 at time t, respectively (e.g., Kang et al. (2017), 

Ashfaq et al. (2019), and Lin and Chen (2019)).  

We also use the results of the estimated variance-covariance to compute the optimal (i.e., 

risk-minimizing) hedge ratios. We employ the hedge ratio approach of Kroner and Sultan (1993), 

which shows that the risk of a two-asset (i, j) portfolio is minimized by taking a long position (buy) 

of one dollar in the market of asset 𝑖 and simultaneously a short position (sell) of 𝛽𝑖𝑗,𝑡 dollars in 

the market of asset 𝑗: 

𝛽𝑖𝑗,𝑡 =
ℎ𝑖𝑗,𝑡

ℎ𝑗𝑗,𝑡
, (5) 

where 𝛽𝑖𝑗,𝑡 is the hedge ratio and ℎ𝑖𝑗,𝑡 and ℎ𝑖𝑖,𝑡 are defined in Eq. (6). Investors can reduce their 

risk exposure against turbulent movements in asset j by holding asset i, where 𝑤𝑖𝑗,𝑡  is the 

proportion assigned to asset i and (1 − 𝑤𝑖𝑗,𝑡) is the proportion assigned to asset j (e.g., Kang et al. 
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(2017) and Sarwar et al. (2019)). Finally, following the Dutta et al. (2020) and Ku et al. (2007), 

we evaluate the hedging performance of the optimal hedge ratio and the optimal portfolio weight 

strategies using a hedge effectiveness index defined as:   

𝐻𝐸 =  (𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑 − 𝑉𝑎𝑟ℎ𝑒𝑑𝑔𝑒𝑑) 𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑⁄   (6) 

where 𝑽𝒂𝒓𝒖𝒏𝒉𝒆𝒅𝒈𝒆𝒅 designates the variance of the unhedged long position in clean energy stocks, 

and 𝑽𝒂𝒓𝒉𝒆𝒅𝒈𝒆𝒅 denotes the variance of the hedged portfolio, constructed as in the Dutta et al. 

(2020).  

The hedge effectiveness index measures the percentage of risk mitigated under the hedged 

portfolio compared to the unhedged position. A higher hedging effectiveness estimate for a given 

portfolio indicates a favorable hedging strategy based on the significant amount of reduction of 

portfolio risk (Dutta et al., 2020). However, we note that evaluating hedge effectiveness is an on-

going debate exists as to whether we should measure hedge effectiveness by the extent of 

minimizing portfolio risk while keeping unchanged the expected returns or by the degree of risk-

return trade-off in the hedge portfolio.  

3. Data 

We employ daily data from March 1, 2010, through February 25, 2020. The data include 2544 

observations for each series. We exclude non-trading days from the sample to avoid an excess of 

null returns. The data set includes seven series. Two series of stock prices: 1) stock prices of global 

clean energy companies and 2) stock prices of global oil and gas companies. Five series of energy 

commodity prices: 3) natural gas, 4) heating oil, 5) conventional gasoline, 6) crude oil, and 7) 

propane. Natural gas and crude oil dominate the energy markets. Gasoline and heating oil are by-

products of crude oil refining, while propane is a by-product of natural gas processing and crude 

oil refining. Specifically, energy commodity prices include 1) Henry Hub natural gas, 2) New York 
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Harbor No. 2 heating oil, 3) U.S. Gulf Coast conventional gasoline regular, 4) West Texas 

Intermediate (WTI) crude oil at Cushing, Oklahoma, and 5) Mount Belvieu, Texas propane. The 

price of natural gas is measured in dollars per million BTU, the prices of heating oil, gasoline and 

propane are in dollars per gallon, and the price of crude oil is in dollars per barrel. The data come 

from the Federal Reserve Economic Database (FRED) maintained by the Federal Reserve Bank 

of Saint Louis (https://fred.stlouisfed.org/). These price series are the most representative of the 

energy commodity markets. Note that unlike electricity, the pricing of these energy commodities 

includes the role of inventories. That is, production and consumption need not coincide, meaning 

that prices may not react quickly to supply and/or demand disruptions.  

We use the S&P Global Clean Energy (SPGCE) and the S&P Global Oil (SPGO) indexes 

to measure the performance of clean energy stocks and oil and gas stocks, respectively. The 

SPGCE provides liquid and tradable exposure to 30 companies from around the world that produce 

clean energy (solar, wind, hydropower, geothermal, and biomass) and the development of efficient, 

clean energy technology. The index comprises a diversified mix of clean energy production and 

clean energy equipment & technology companies [i.e., utilities (51.3%), industrials (25.5%), 

information technologies (20.8%), and materials (2.4%)]. The United States represents 35 percent 

of the total market capitalization, followed by Canada (9.8 percent), New Zealand (8.5 percent), 

and China (8.4 percent). The SPGO measures the performance of 120 of the largest, publicly-

traded companies engaged in oil and gas exploration, extraction, and production around the world. 

The U.S. represents 41.74 percent of the total market capitalization, followed by Russia (12.57 

percent), Canada (11.22 percent), the U.K. (8.05 percent), France (5.28 percent), and China (3.65 

percent). The stock index data come from the S&P Dow Jones Indices database 

(https://us.spindices.com).  

https://fred.stlouisfed.org/
https://us.spindices.com/
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The daily (continuously compounded) percentage return is computed as 𝑅𝑖𝑡 =

𝑙𝑛(𝑃𝑖𝑡 𝑃𝑖𝑡−1⁄ ) × 100, where 𝑃𝑖𝑡 and 𝑃𝑖𝑡−1 are the closing prices on days t and t-1 of asset i ( i = 

energy commodities and energy indices). See Appendix A for Figures and discussion of the data.  

Table 1 reports key descriptive statistics for the daily returns. Over the sample period, 

energy stocks and energy commodities did not experience any growth, and the average return is 

around zero. Heating oil achieved, on average, the highest return, followed by clean energy stocks, 

oil and gas stocks, and conventional gasoline. The average returns are near zero, indicating that no 

significant trend exists in the data. Volatility, as measured by the standard deviation, is higher for 

the energy commodities than energy stocks. Thus, energy commodities seem riskier than energy 

stocks. Natural gas achieved the highest volatility, while oil and gas stocks exhibited the lowest 

volatility. Energy markets also posted higher maximum and minimum values of returns. The 

returns exhibit significant deviations from the normal distribution, as indicated by the kurtosis and 

skewness statistics. The difference between the maximum and minimum returns is the highest for 

the natural gas market, suggesting that the natural gas experienced larger fluctuations compared to 

the other markets. The distribution of returns is negatively skewed in the case of conventional 

gasoline, propane, oil and gas stocks, and clean energy stocks, while the distribution of the returns 

for natural gas, heating oil, and crude oil is positively skewed. Thus, all returns possess empirical 

distributions that are typically asymmetric. In a negatively skewed distribution, the tail of the 

distribution extends further to the left, implying a greater probability of negative return than that 

of a normal distribution. Conversely, in a positively skewed distribution, the tail of the distribution 

extends further to the right, implying a greater probability of positive returns than that of a normal 

distribution. The empirical distribution of the returns of all series is leptokurtic relative to the 

normal distribution. The ‘fat-tail’ problem has important financial implications, especially because 
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it leads to a gross underestimation of risk since the probability of observing extreme values is 

higher for fat-tail distributions compared to normal distributions. Finally, the large values of the 

Jarque-Bera test confirm the rejection of the hypothesis of normality of return distributions at any 

reasonable significance level. 

Error! Reference source not found. reports unit-root and stationarity tests for each return 

series. The augmented Dickey-Fuller (ADF) (Dickey and Fuller, 1979) and Phillips-Perron (PP) 

(Phillips and Perron, 1988) unit-root tests reject the hypothesis that the returns contain a unit root 

at the 1 percent significance level, while the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

(Kwiatkowski et al., 1992) test fails to reject the hypothesis of stationarity. The number of lags for 

the ADF test is determined by the Schwarz information criterion (SIC). We report unit root and 

stationarity results for the “intercept only” case. The results for the “no intercept and no trend case” 

and “intercept and trend case” do not qualitatively differ. Additional tests include tests for 

autocorrelation and heteroskedasticity. The results of the Ljung–Box test for the returns and 

squared returns reject the null hypothesis of no autocorrelation, implying that returns are not white-

noise processes. Furthermore, the Ljung–Box Q statistics for the squared returns are much larger 

than those of the raw returns, suggesting the presence of time-varying volatility. Finally, the results 

of the ARCH-LM tests (Engle, 1982) provide significant evidence of ARCH effects for all return 

series, which support the use of GARCH-type models to investigate the dynamic correlation and 

volatility spillovers among energy markets.  

Table 3 reports the simple unconditional correlations over the sample period. In modern 

portfolio theory, the correlation coefficients decide the risk of a set of assets in the portfolio and, 

thus, is an essential tool for portfolio management. The unconditional correlations, however, depict 

linear relationship among two variables and cannot capture the true relationship between two 
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variables, if nonlinearities exist. Thus, the findings in Table 3 provide only preliminary evidence 

(Hassani et al., 2010; Jiang et al., 2019). The highest correlation exists between crude oil and 

heating oil (0.7279), followed by crude oil and conventional gasoline (0.5841), and crude oil and 

propane (0.4931). An evident positive correlation exists between SPGO and SPGCE (0.4023), 

whereas their correlations with energy commodities vary. Accurately, SPGO and SPGCE display 

a significant positive correlation with heating oil, conventional gasoline, crude oil, and propane, 

while no correlation exists with natural gas. Evidence also exists of positive correlations among 

energy commodities markets. The crude oil market positively correlates with the heating oil, 

propane, and conventional gasoline markets. The heating oil market also positively correlates with 

the propane and conventional gasoline markets. 

The natural gas market, on the other hand, only correlates with the propane market. These 

results highlight the difficulty that investors face when constructing diversified portfolios between 

energy commodities and energy stocks, and among energy commodities. Baur and Lucey (2010) 

identify the capability of an asset with testable definitions of diversifiers, hedges, and safe havens. 

According to Baur and Lucey (2010), a diversifier asset positively (but not perfectly) correlates 

with another asset or portfolio, on average; a hedge asset does not or negatively correlates with 

another asset or portfolio, on average; and a safe haven asset does not or negatively correlates with 

another asset or portfolio in times of market stress or turmoil. See, also, Bouri, Gupta, et al. (2017), 

Bouri, Molnár, et al. (2017), and Kliber et al. (2019) for details. Given these definitions, heating 

oil, conventional gasoline, crude oil, and propane are diversifier assets for the oil and gas stocks 

or clean energy stocks, as they positively correlate with them. Natural gas, on the other hand, does 

not correlate with SPGO and SPGCE,  suggesting a hedge asset with SPGO and SPGCE.  

4. Empirical results 
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This section reports the maximum likelihood (ML) estimates of the bivariate VAR(1) asymmetric 

BEKK-MGARCH (1,1) models. Results include estimates of the elements in vector 𝝁 and matrix 

𝜱 in mean Eq. (1) and the elements in matrices C, A, B, and D in variance Eq. (2). We arrange the 

presentation of the empirical results in Tables 4 and 5. In Table 4, we independently pair SPGCE 

with each of the non-renewable energy commodities (natural gas and crude oil), crude oil 

derivatives (heating oil, conventional gasoline, and propane), and SPGO. In Table 5, we 

independently pair SPGO with each of the energy commodities (natural gas, heating oil, 

conventional gasoline, crude oil, and propane) and SPGCE. Thus, a total of 12 bivariate VAR(1) 

asymmetric BEKK-MGARCH(1,1) models are estimated. All estimates and tests come from the 

econometric software package RATS 10.0. In all bivariate models, we estimate the parameters 

using maximum likelihood (ML) estimation and the joint normal density. We also estimated the 

model using the Student-t and GED distributions. The empirical results presented in this section 

use the normality assumption because that assumption produces the highest value of the log-

likelihood function. Results based on the Student-t and GED distributions are available on request.  

4.1 Results of the VAR(1)-Asymmetric-BEKK-MGARCH(1,1) model when SPGCE is 

paired with SPGO and energy commodities 

       Table 4, Panel A reports the parameter estimates and standard errors for the VAR(1) model. 

First, returns on stocks of clean energy companies exhibit a highly significant own-mean spillover 

in each bivariate model. The effect is positive, indicating that that returns on SPGCE are persistent, 

and that past information on SPGCE returns helps predict current SPGCE returns. This noteworthy 

finding rejects the weak-form version of the informational efficiency hypothesis for SPGCE 

returns.  

Second, a highly significant cross-mean spillover exists from the returns on SPGO to the 

returns on SPGCE, indicating that information in SPGO is transmitted into the pricing process of 
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SPGCE. Importantly, this cross-mean spillover effect dominates the own-mean spillover effect, 

suggesting that the returns on SPGCE importantly respond to the dynamics of the returns on 

SPGO. In contrast, we find no cross-mean spillover effects from the natural gas, heating oil, 

conventional gasoline, crude oil, and propane markets to the returns on SPGCE. 

Third, returns on SPGO and the returns on propane, heating oil, and crude oil markets 

exhibit significant own mean spillovers (i.e., respond to their lagged returns). These effects are 

positive in the returns on SPGO and the propane market, indicating persistence, but negative in 

the heating oil and crude oil markets, indicating a downward drift in these markets. In contrast, we 

find no evidence of own-mean spillover effects in the natural gas and conventional gasoline 

returns. Thus, the returns from these two markets do not exhibit persistence.  

Fourth, significant cross-mean spillovers occur from the returns on SPGCE to the returns 

on natural gas and the returns on SPGO. These spillovers are positive, indicating that an increase 

in returns on SPGCE positively influences their returns. Interestingly, returns on natural gas 

respond more to past returns on SPGCE than to their own past returns. The linkage between returns 

on SPGCE and returns on SPGO is, thus, a bidirectional one. This bidirectionality implies the 

existence of a degree of financial integration among the two global indices. In contrast, past 

information incorporated in the returns on SPGCE is not transmitted into the pricing process of 

the heating oil, conventional gasoline, crude oil, and propane markets. 

Panel B displays the estimates of the conditional variance-covariance equations 

incorporated in the A, B, and D matrices. The elements in the A matrix are conditional ARCH 

effects that measure (on the diagonal elements) own-shock and (on the off-diagonal elements) 

cross-shock effects from return. The variability of returns on SPGCE stocks is heavily affected by 
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its own shocks, as measured by 𝑎11, and by shocks originated from the returns on SPGO stocks, 

as measured by 𝑎12. 

In turn, the variability of the returns on SPGO stocks as well as the energy markets is also 

heavily affected by their own shocks, as measured by 𝑎22. In contrast, shocks originated from 

returns on SPGCE stocks, as measured by 𝑎21, influence only the variability of the returns on 

SPGO stocks. Thus, the estimates in Table 4 show that a significant bidirectional shock linking 

the variability of returns of SPGCE stocks and SPGO stocks.  

The elements in the B matrix are conditional GARCH effects that measure (on the diagonal 

elements) the own-volatility and (on the off-diagonal elements) the cross-volatility spillover 

effects. The own conditional GARCH effects 𝑏11  and 𝑏22 are positive and significant at the 1 

percent level. That is, each market is influenced by the volatility of its own market. For each 

market, the estimated 𝑎𝑖𝑖  diagonal values of the A matrix are smaller than their corresponding 

estimated 𝑏𝑖𝑖 diagonal values of the B matrix (i.e., own past volatility dominates own past shocks. 

In other words, long-run (GARCH) persistence dominates short-run (ARCH) persistence. As for 

the volatility spillover effects, both 𝑏12 and 𝑏21 prove insignificant in all bivariate models.  

The elements in the D matrix reflect the asymmetric shock spillover effects. The 

asymmetric own-shocks to returns on SPGCE stocks, as measured by 𝑑11 , are positive and 

significant in all models except with SPGO stocks., where 𝑑11 is positive but not significant. Thus, 

with this exception, “bad news” (i.e., negative shocks) from SPGCE stocks amplifies the volatility 

of SPGCE stocks to a greater extent than “good news.” The asymmetric own-shock to returns on 

SPGO stocks, as measured by  𝑑22, is positive and significant, suggesting that “bad news” from 

SPGO stocks increases the variability of SPGO stocks. In contrast, the asymmetric own-shock to 
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returns on energy commodities are negative and significant, indicating that “bad news” from these 

markets decrease their own variability.  

Three patterns exist of asymmetric cross-shocks spillover effects. First, the variability of 

the returns on stocks of clean energy companies is positively affected by asymmetric negative 

shocks originated in the heating oil, conventional gasoline, crude oil, and propane markets, which 

mean that “bad news” from these markets increase the volatility of the returns on SPGCE stocks. 

In contrast, negative shocks from SPGO stocks exerts a negative asymmetric effect on the 

variability of the returns SPGCE stocks. Shocks in the crude oil market possess the largest 

asymmetric effect on its own conditional variance. In contrast, “bad news” from the natural gas 

market has no asymmetric effects on the variability of the SPGCE stocks. Second, the variability 

of the returns on SPGCE stocks is negatively affected by negative shocks originating from SPGO 

stocks, which means that “bad news” from the SPGO stocks decreases the volatility of the returns 

on SPGCE stocks. Third, negative shocks from the SPGCE stocks exhibit an asymmetric negative 

spillover effect on the SPGO stocks and the propane market, which implies that “bad news” from 

the SPGCE stocks decreases the volatility of these assets. In contrast, negative shocks from the 

SPGCE stocks have no spillover effect with respect to the natural gas, heating oil, gasoline, and 

crude oil markets. We interpret these findings as evidence against the decoupling hypothesis.  

Finally, Panel C displays the post-estimation bivariate diagnostics. All models show no 

indication of serious misspecification. The Ljung-Box test and Engle ARCH-LM tests at 1 and 10 

lags are not significant. This implies no serial correlation and heteroskedasticity in the standardized 

residuals.  

Table 4 reports three Wald tests of parameter restrictions. Wald test 1, Wald test 2, and 

Wald test 3 report the chi-square statistics for the tests of diagonality in the returns matrix 
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(𝐻0: 𝜑12 = 𝜑21 = 0), diagonality in the conditional variance-covariance matrix (𝐻0: 𝑎12 = 𝑎21 =

𝑏12 = 𝑏21 = 𝑑12 = 𝑑21 = 0 ), and symmetry ( 𝐻0: 𝑑12 = 𝑑21 = 𝑑11 = 𝑑22 = 0 ), respectively. 

Wald test 1 finds no evidence of return spillover effects except in the bivariate model with SPGO 

stock returns. Wald test 2 rejects the hypothesis of diagonal conditional variance-covariance, and 

Wald test 3 rejects the hypothesis of symmetry of the conditional variance-covariance. These 

results establish that assuming symmetry and diagonality in the conditional variance-covariance 

matrix leads to the misspecification of the model.  

4.2 Results of the VAR (1)-Asymmetric BEKK-MGARCH model when SPGO is paired 

with SPGCE and energy commodities 

The empirical results in Table 5 share many similarities with the empirical results in Table 

4. There are, however, some relevant differences. The results of the VAR(1) model appear in Table 

5, Panel A.  

In addition to the bidirectional linkage between returns from SPGCE stocks and SPGCE 

stocks, which was found in Table 4, and is restated in the first column of Table 5, we find that a 

return spillover effect exists from the conventional gasoline market to SPGO stocks. We find an 

own-mean spillover exists only in SPGCE stocks, and the heating oil, crude oil, and propane 

markets. Natural gas and conventional gasoline do not exhibit persistence, which matches the 

result also found when these commodities are paired with SPGCE stocks. A positive return 

spillover effect is also present from SPGO stocks to heating oil, conventional gasoline, and crude 

oil markets, as returns on heating oil, conventional gasoline, and crude oil are influenced by lagged 

returns on SPGO stocks.  

Panel B presents the estimates of the variance-covariance matrix. The diagonal coefficients 

of the A matrix indicate that the volatility of SPGO stocks is significantly influenced by shocks of 

its own market, but only when SPGO stocks are paired with heating oil, conventional gasoline, 
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and propane. On the other hand, the volatility of the SPGCE stocks and energy commodities is 

significantly influenced by shocks in their own markets. The off-diagonal coefficients of the A 

matrix indicate that shocks to SPGCE stocks as well as in the heating oil, conventional gasoline, 

crude oil, and propane markets spillover over to SPGO stocks. The effect is negative with the 

energy commodities but positive with SPGCE stocks. Thus, positive (negative) shocks in these 

energy commodity markets decrease (increase) the volatility of SPGO stocks, while positive 

(negative) shocks emanating from SPGCE stocks increase (decrease) the volatility of SPGO 

stocks. Shocks from the oil market and the gasoline market exert the largest effect. On the other 

hand, shocks from SPGO stocks are transmitted only to the SPGCE stocks and the crude oil market. 

This result is similar to the findings of Hamdi et al. (2019), Sarwar et al. (2019), Liu et al. (2017), 

and Khalfaoui et al. (2015) that record a notable association between crude oil and stock markets.  

The diagonal coefficients of the B matrix, on the other hand, show that volatility of the 

energy stocks and energy commodities is affected by its own volatility. On the other hand, the off-

diagonal coefficients indicate that the only volatility spillover comes from the conventional 

gasoline market.  

The D matrix demonstrates the asymmetric shock spillover effects. The asymmetric shock 

coefficient of SPGO stocks is positive and significant in all pairs of bivariate estimates. The 

coefficient is positive, suggesting that “bad news” in SPGO stocks increases the volatility of SPGO 

stocks more than “good news”. On the other hand, the asymmetric shock coefficient is positive 

and significant only in the heating oil, crude oil, and propane markets. A few asymmetric cross-

shock effects exist. Negative shocks from SPGCE stocks affect SPGO stocks more than positive 

shocks. The effect, however, is negative, implying that “bad news” from SPGCE stocks lessen the 
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variability of SPGO stocks. In contrast, “bad news” from the conventional gasoline and propane 

markets amplify the volatility of SPGO stocks.  

Panel C displays the post-estimation bivariate diagnostics. All models show no indication 

of serious misspecification. The Ljung-Box test and Engle ARCH-LM tests at 1 and 10 lags are 

not significant. This implies no serial correlation and heteroskedasticity in the standardized 

residuals.  

Finally, the Wald tests of parameter restrictions reject the diagonality of the return matrix 

(Wald test 1), the joint diagonality of the A, B, and D matrices (Wald test 2), and the symmetry of 

the model (Wald test 3). 

Appendix B illustrates the time-varying dynamics of the estimated conditional correlations 

from each of the estimated pairs of the asymmetric BEKK(1,1) models.   

4.3 Portfolio design and risk management 

The relationships between SPGCE stocks, SPGO stocks, and energy commodities play an 

important role in terms of portfolio diversification. Figures C1 and C2 in Appendix C, display the 

dynamics of optimal portfolio allocations (optimal portfolio weights and optimal hedge ratios) 

between natural gas, heating oil, conventional gasoline, crude oil, propane and SPGO in SPGCE 

diversified portfolio (SPGCE-DP), and between natural gas, heating oil, conventional gasoline, 

crude oil, propane and SPGCE in SPGO diversified portfolio (SPGO-DP), respectively. The 

estimates of the optimal weights, hedge ratios, and hedge effectiveness metrics rely on the 

estimated conditional variances and covariances of the asymmetric BEKK(1,1), as suggested by 

Kroner and Ng (1998) using Eqs. (4), (5), and (6). 

The average optimal weights (in percent) for each pairwise SPGCE-DP and SPGO-DP 

between 2010-2020 appear in the first column of Table 8, respectively. The results in Table 6 show 
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that in an optimal SPGCE-DP, SPGO has the highest optimal weight (55.61%), followed by 

heating oil (35.47%), crude oil (29.35%), propane (28.32%), conventional gasoline (23.52%), and 

natural gas (17.52%). The optimal weight for SPGO suggests that investors in SPGCE stocks 

should invest 55.61 cents in SPGO stocks and the remaining 44.39 cents in SPGCE stocks for an 

optimal one-dollar SPGO-SPGCE-DP. Conversely, investors in SPGCE should invest 29.35 cents 

in crude oil and 70.65 cents in SPGCE to form an optimal one-dollar Oil-SPGCE-DP.    

The results in Table 7 show that in an optimal SPGO-DP, SPGCE has the highest optimal 

weight (44.39%), followed by heating oil (28.27%), propane (23.39%), crude oil (19.78%), 

conventional gasoline (17.30%) and natural gas (15.03%). The optimal weight for SPGCE 

suggests that investors in SPGCE stocks should invest 44.39 cents in SPGCE stocks and the 

remaining 55.61 cents in SPGO stocks for an optimal one-dollar SPGCE-SPGO-DP. It is not 

surprising that the weights are symmetric. Comparing the optimal weights of the energy 

commodities in SPGCE-DP and SPGO-DP, we note that the optimal weights in SPGCE-DP are 

constantly higher than the corresponding weights in SPGO-DP. Thus, investors in SPGCE stocks 

should invest more in energy commodities than investors in SPGO stocks for an optimal DP.  

The optimal weights for energy commodities in the SPGCE-DP and SPGO-DP are always 

less than 50 percent, which implies that keeping a limited amount of energy commodities in an 

SPGCE-DP and SPGO-DP can reduce the overall risk without reducing the expected return. 

Furthermore, an investor should hold more energy stocks in diversified portfolios when hedging 

with energy commodities. Also, the optimal weight of SPGE stocks in a diversified portfolio of 

SPGO stocks is lower than 50%, indicating investors should have more SPGO stocks in a 

diversified portfolio of SPGO stocks-SPGCE stocks to minimize the portfolio risk without any 

detracting effect on the expected returns. 
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The second column of Tables 6 and 7 shows the average hedge ratios for SPGCE-DP and 

SPGO-DP between 2010-2020. Table 6 shows that SPGO stocks maintain, on average, the highest 

(i.e., the most expensive) hedge ratio (20.34%) in an optimal SPGCE-DP, followed by 

conventional gasoline (14.92%), crude oil (13.73%), heating oil (10.64%), propane (7.42%), and 

natural gas (-5.25%). Similarly, in Table 7, SPGCE stocks maintain, on average, the highest 

optimal hedge ratio (28.78%) in an optimal SPGO-DP, followed closely by crude oil (28.72%), 

conventional gasoline (25.07%), heating oil (24.28%), propane (9.48%), and natural gas (-7.72%). 

These findings imply that a one-dollar long position in SPGCE stocks or SPGO stocks should be 

hedged with a short position of 14.92 and 25.07 cents in conventional gasoline, respectively; a 

one-dollar long position in SPGCE stocks or SPGO stocks should be hedged with a short position 

of 13.73 and 28.72 cents in the crude oil market, respectively; a one-dollar long position in SPGCE 

stocks or SPGO stocks should be hedged with a short position of 10.64 and 24.28 cents in heating 

oil, respectively; and a one-dollar long position in SPGCE stocks or SPGO stocks should be 

hedged with a short position of 7.42 and 9.48 cents in the propane market, respectively. The 

negative optimal hedge ratio of natural gas suggests that natural gas is an imperfect hedge against 

the energy stocks. The optimal hedge ratios of -5.25 and -7.72 imply that a one-dollar long position 

in SPGCE stocks or SPGO stocks should be hedged with another long position of 5.25 and 7.72 

cents in the natural gas market, respectively. Negative values for the hedge ratios are also reported 

by Tong (1996), Kim and In (2006), Lin et al. (2019), and Ghosh et al. (2020). 

We observe similar results for the optimal hedge ratios for SPGCE stocks (28.78%) and 

crude oil (28.72%) in SPGO-DP. SPGCE stocks and crude oil can substitute in the flattening of 

the unsystematic risk of SPGO-DP. Similarly, heating oil and conventional gasoline are close 

substitutes in SPGO-DP, as their hedge ratios are 24.28% and 25.07%, respectively. 
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Tables 8 and 9 report the hedging effectiveness measures of SPGCE-DP and SPGO-DP, 

respectively. Table 8 shows that combining SPGCE stocks with SPGO stocks or energy 

commodities reduces the risk of the portfolio. The largest hedge effectiveness measure in Table 8 

is 0.391, which indicates that including SPGO stocks in SPGCE-DP significantly reduces the 

portfolio risk by 39.1 percent as opposed to the unhedged portfolio. Table 9, on the other hand, 

suggests that including SPGCE stocks in SPGO-DP decreases the portfolio risk by 28.3% as 

opposed to the unhedged portfolio. Combining energy commodities with SPGCE-DP or SPGO-

DP does not have the same effect as combining SPGCE stocks to a portfolio containing SPGO 

stocks or combining SPGO stocks to a portfolio containing SPGCE stocks. On the other hand, 

natural gas offers near no diversification benefits in both SPGCE-DP and SPGO-DP. Interestingly, 

heating oil, rather than crude oil, offers the highest diversification benefits among energy 

commodities.  

Tables 10, 11, and 12 detail the abrupt changes in weights, hedge ratios, and hedge 

effectiveness before and after the European debt crisis (Greece, Italy, and Spain), which peaked 

between 2010 and 2012 and triggered stock market crashes across the United States, Europe, the 

Middle East, and Asia. These stock market declines, in turn, were directly transmitted to the energy 

markets and SPGO stocks and SPGCE stocks. The optimal weight of SPGO stocks in SPGCE-DP 

increase to 84.88 percent during the crisis, compared to 48.89 percent after the crisis, while the 

optimal weight of SPGCE stocks in SPGO-DP decline to 14.97 percent during the crisis compared 

to 51.11 percent after the crisis. To hedge risk for an optimal SPGCE-DP during the crisis, portfolio 

managers should hold a higher proportion of natural gas, heating oil, crude oil, gasoline, and 

propane. This increase can be explained by a significant increase in the demand for energy 

commodities – or “flight to safety” – due to the European debt crisis. Conversely, to hedge risk for 
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an optimal SPGO-DP, portfolio managers should increase the share of natural gas, heating oil, 

conventional gasoline, and propane, but decrease the weight of crude oil. Yousaf and Hassan 

(2019) also find that during the Chinese stock market crash of 2015, the weights of oil in oil-stock 

portfolios decrease compared to weights in the full sample.  

The hedge ratio during the crisis became more expensive in SPGCE-DP with heating oil, 

conventional gasoline, propane, and SPGO stocks. For example, during the crisis, a $1 long 

position in SPGCE stocks can be hedged with 31 cents of a short position in heating oil, compared 

to 5.9 cents after the crisis. The hedge ratio of crude oil in SPGCE-DP declines during the crisis, 

implying that the crude oil hedge is cheaper during the crisis compared to after the crisis. During 

the crisis, a $1 long position in SPGCE stocks can be hedged with 39 cents of a short position in 

crude oil, compared to 78 cents after the crisis. Conversely, the hedge ratios for the SPGO-DP are 

all higher, including crude oil, meaning that more of energy commodities and SPGCE stocks are 

required to minimize stockholder risk during crisis periods. The hedge ratio for natural gas in the 

SPGO-DP is close to zero, which means that SPGO stocks are not hedged at all with natural gas. 

The hedge effectiveness measures are significantly changed in the period of the European debt 

crisis. While for the entire sample and the post-crisis sample including SPGO stocks in SPGCE-

DP reduces the portfolio risk by 39.1 and 49.8 percent, during the crisis period the hedge 

effectiveness of SPGO stocks no longer reflects a larger risk reduction and no longer indicates that 

the portfolio management strategies that are valid in the post-crisis period are also valid during the 

crisis. Instead, propane, heating oil, and natural gas offer better hedging strategies, reducing 

portfolio risk by 52.7, 48.9, and 36.6 percent of the portfolio risk, respectively. During the crisis, 

the hedge effectiveness of SPGO stocks in SPGCE-DP is lower than that after the crisis, while the 

hedge effectiveness of energy commodities is higher during the crisis and lower after. In SPGO-
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DP, the hedge effectiveness of SPGCE stocks is near zero and increases substantially after the 

crisis. In contrast, the hedge effectiveness of energy commodities is higher during the crisis and 

lower after the crisis. During the crisis and in its aftermath, heating oil, and not crude oil, maintains 

higher hedge effectiveness.  

Table 13 refers to changes in optimal weight, hedge ratios, and effectiveness hedge of 

natural gas in the SPGCE-DP and SPGO-DP in 2014, the year of the Russia military annexation 

of Crimea and prolonged price and debt disputes between the Ukraine and Russia. The actions of 

Russia and the reactions of the West, together with the perceived fear of war, exerted a temporary 

impact on the global stock and energy markets, especially the national gas market. From the 

perspective of the SPGCE-DP and SPGO-DP, however, the weight, hedge ratio, and hedge 

effectiveness of natural gas exhibited only minor changes.  

5. Conclusions and Policy Implications 

This paper applies the bivariate VAR(1)-asymmetric BEKK-MGARCH(1,1) model to examine 

the dynamic relationships and transmission mechanisms among energy stocks (SPGCE stocks and 

SPGO stocks) and between energy stocks (SPGCE stocks and SPGO stocks), two non-renewable 

energy commodities (natural gas and crude oil) and three products of crude oil distillation (heating 

oil, gasoline, and propane). This is the largest set of energy commodities ever analyzed in the 

literature.  

The results of the VAR(1) estimation provide evidence that returns on SPGCE and SPGO 

stocks are persistent (i.e., influenced by their own past returns) and exhibit significant bidirectional 

linkages. The return on propane, heating oil, and crude are each influenced by its own return, but 

the effect is positive only in the propane market, indicating persistence, and negative in the heating 

oil and crude oil markets, indicating a downward drift in these markets. We find no spillover effect, 
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however, from the returns on natural gas, heating oil, conventional gasoline, crude oil, and propane 

markets to SPGCE stocks, as well as no spillover effect from the returns on SPGCE stocks to the 

returns on natural gas, heating oil, conventional gasoline, crude oil, and propane. This result 

supports the decoupling hypothesis (in returns) between SPGCE stocks and the selected energy 

commodities. In contrast, we find significant positive spillovers from the returns on SPGO stocks 

to the returns on heating oil, conventional gasoline, crude oil, and propane, which rejects the 

decoupling hypothesis (in returns) between SPGO stocks and these markets. Natural gas, on the 

other hand, exhibits evidence of decoupling (in returns). 

The results of the estimation of the MGARCH(1,1) in the asymmetric BEKK formulation 

provide significant evidence that the volatility of each sector is influenced by its own past shocks 

(ARCH effects) and volatility (GARCH effects). On the other hand, the results show no evidence 

of spillover effects in ARCH and GARCH transmission between SPGCE stocks and energy 

commodities. The results show evidence, however, of ARCH transmission from heating oil, 

conventional gasoline, crude oil, and propane to SPGO stocks, and evidence of GARCH 

transmission from the conventional gasoline market to SPGO stocks. SPGCE stocks, SPGO stocks, 

and energy commodities are, however, linked by significant patterns in asymmetric shocks.   

Two essential results warrant emphasis. First, the transmission mechanisms indicate that 

SPGCE stocks and SPGO stocks exert considerable spillovers on each other. SPGCE stocks do 

not compete against SPGO stocks; rather, they can hedge each other’s risk in an optimal portfolio 

with the highest hedge effectiveness. Second, the findings suggest that the interaction between 

SPGCE stocks and SPGO stocks is stronger than the interaction between energy commodities and 

energy stocks.  
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The adoption of effective risk management and hedging strategies is vital to portfolio 

managers, investors, and policymakers given the volatile nature of energy stocks and energy 

commodities. Investors need to consider the optimal portfolio allocation mechanisms between 

SPGCE stocks, SPGO stocks, and energy commodities. Policy managers need a comprehensive 

evaluation of the effectiveness of energy stock diversification with energy commodities. The time-

varying hedge ratios imply that portfolio investors need to adjust their hedging strategies 

frequently. This became most apparent during the European debt crisis. Our results suggest that 

SPGCE stocks provide the most effective diversification for SPGO stocks; SPGO stocks prove the 

most effective diversification for SPGCE stocks; and heating oil, crude oil, and conventional 

gasoline, respectively, are most suitable as “diversifiers” as they exhibit the highest hedge 

effectiveness in the diversification of SPGCE and SPGO stocks. Natural gas, on the other hand, 

provides an imperfect or weak hedge against SPGCE and SPGO stocks.  

Important policy implications emerge from our results. Any policy support for the oil and 

gas sector has considerable effects on the clean energy industry. This is due, in part, to a) the 

positive return spillover effects from SPGO stocks to SPGCE stocks, and 2) because SPGO stocks 

provide the most risk-mitigation effect to the diversified portfolio of SPGCE stocks. Our results, 

thus, recommend that investors in the oil and gas industry decarbonize their portfolios and swap 

fossil fuels for SPGCE stocks.  

From the diversification perspective, the analysis of the optimal portfolio weights suggests 

that SPGC stocks provide an efficient instrument for diversification of SPGO stocks, more 

effective than energy commodities markets. Thus, energy policymakers should place increased 

emphasis on SPGCE stocks rather than non-renewable energy commodities, and give more 

consideration to the complementary, rather than rival, character and diversification capabilities of 
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SPGCE stocks to minimize portfolio risk of SPGO stocks. The results suggest that support for 

policies to improve and develop clean energy markets serves the dual purpose of improving the 

environment and, at the same time, providing the most effective tool for diversification of the 

SPGO stocks. To encourage investment in SPGCE stocks, governments and policymakers could 

adjust the return on energy commodities by regulating environmental taxes on fossil fuels and re-

examining and fine-tuning the policies of subsidization for clean energy programs and projects to 

sustain a sound improvement of the clean energy industry. As the extension and completion of the 

clean energy value chain depend on innovation and technology more than it depends on the crude 

oil market in the short run, and is contingent on the crude oil market along with technology in the 

long run (Maghyereh et al., 2019), the supportive policies and regulations could include, among 

others, using R&D subsidies for clean power technologies (Aalbers et al., 2013), strenghtening 

decentralized renewable plants (Abdmouleh et al., 2015), implementing utility-scale auctions for 

renewable energies, guaranteeing electicity offtake and assurances in accomplishing required 

licenses and network links (Griffiths, 2017), establishing measures to boost private sector profit 

margins according to carbon alleviate through clean investments (Onifade, 2016), eliminating the 

“Valley of Death,” or the gap between innovation, appropriation, and distribution of new energy 

technologies (Bürer and Wüstenhagen, 2009; Sadorsky, 2012; Weyant, 2011) with setting higher 

costs on GHG emissions, and teaching the community concerning investment possibilities to 

diminish GHG emissions (Sadorsky, 2012; Weyant, 2011). In the final analysis, policymakers 

should comprehend that clean energy and oil and gas companies are more interweaved than energy 

companies and fossil fuels and that by promoting the clean energy industry, they can at the same 

time manage environmental concerns and arrange the risk of the oil and gas industry in the stock 
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market. Moreover, they should stimulate clean energy-related companies to incorporate their 

portfolio consciously with oil and gas-related companies’ stocks, rather than energy commodities. 

Finally, only bivariate models have been applied in this paper to grasp the importance of 

modeling covariances correctly in a simple hedge portfolio of two assets. The extension to multiple 

assets, though interesting in its own right, would obfuscate one of the main findings: For the series 

considered in this paper, applying a flexible volatility model is at least as important as allowing 

the covariances to change over time. An extension to a comparison of asymmetric BEKK 

parameterization to more than two series along the lines proposed in Yu and Meyer (2006), 

effectively following the framework of Engle (1982), could be an interesting possibility. 
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Table 1. Descriptive statistics of returns. 

Variables Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera 

Natural Gas -0.0360 0.0000 52.5353 -47.5610 4.1053 0.5865 36.4027 116413.3*** 

Heating Oil -0.0111 0.0000 14.8624 -12.7081 1.9120 0.1754  9.4180  4305.367*** 

Gasoline -0.0146 0.0000 13.5684 -23.1971 2.3646 -0.3563   9.4599  4401.592*** 

Crude Oil -0.0188 0.0462 14.1760 -11.1257 2.1043  0.1508   6.5854  1349.100*** 

Propane -0.0441 0.0000 19.9796 -15.4886 2.5841 -0.1137   9.3203  4168.209*** 

SPGO -0.0124 0.0072   8.2348   -7.3474 1.2215 -0.2184   6.5585  1339.505*** 

SPGCE -0.0122 0.0517   7.0589   -8.1433 1.3247 -0.2885   6.3010  1170.245*** 

Notes: The data for returns is daily and covers the period from March 1, 2010, to February 25, 2010. Superscript *** indicates significance at the 

1 percent level. SPGO is the index of oil and gas stocks; SPGCE is the index of clean energy stocks. 

 

Table 2. Unit root and stationarity tests and additional descriptive statistics. 

Variables ADF PP KPSS LB (1) LB (2) ARCH-LM (1) ARCH-LM (10) 

Natural Gas -28.5924*** -46.7260*** 0.0238 169.64*** 1088.6*** 189.9479*** 513.2844*** 

Heating Oil -53.4209*** -53.3653*** 0.1059 34.282** 750.64*** 261.9243*** 303.0561*** 

Gasoline -51.7690*** -51.7963*** 0.0504 36.728** 359.59*** 99.41118*** 170.7476*** 

Crude Oil -52.4413*** -52.4481*** 0.0693 18.275 816.18*** 104.2774*** 222.6357*** 

Propane -46.3608*** -46.2789*** 0.0656 32.778* 852.50*** 50.6695*** 232.1206*** 

SPGO -44.1343*** -43.9749*** 0.0402 63.248*** 1023.52*** 365.8412*** 365.8412*** 

SPGCE -42.9575*** -42.8157*** 0.0704 52.706*** 1728.0*** 85.69832*** 397.2847*** 

Notes: Superscripts ***, **, and * indicate significance at the 1, 5, and 10 percent levels, respectively. ADF, PP, and KPSS, are the (intercept-only) 

statistics of the Augmented Dickey and Fuller (1979), the Phillips and Perron (1988), the Kwiatkowski et al. (1992) tests, respectively. The number 

of lags is determined by the SIC criterion. LB (1) and LB (2) are the Q (24)) and Q2(24) of the Ljung–Box test for autocorrelation, respectively. 

The ARCH-LM (1) and ARCH-LM (10) tests of Engle (1982) check for the existence of autoregressive conditional heteroskedasticity (ARCH) 

effects.  
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Table 3. Correlation coefficients matrix. 

Variables Natural Gas Heating Oil Gasoline Crude Oil Propane SPGO SPGCE 

Natural Gas 1 

Heating Oil 
0.0263 

(1.3163) 
1 

Gasoline 
0.0096 

(0.4816) 

0.5888*** 

(36.4253) 
1 

Crude Oil 
0.0293 

(1.4658) 

0.7279*** 

(53.0763) 

0.5841*** 

(35.9803) 
1 

Propane 
0.0544*** 

(2.7267) 

0.4447*** 

(24.8219) 

0.3674*** 

(19.7514) 

0.4931*** 

(28.336) 
1 

SPGO 
-0.0111 

(-0.5561) 

0.1658*** 

(8.4055) 

0.1466*** 

(7.4092) 

0.1989*** 

(10.1473) 

0.0784*** 

(3.9357) 
1 

SPGCE 
-0.0117 

(-0.5898) 

0.1308*** 

(6.5974) 

0.1379*** 

(6.9640) 

0.1672*** 

(8.4815) 

0.0653*** 

(3.2714) 

0.4023*** 

(21.9689) 
1 

Notes: Superscript ***indicates significance at the 1 percent level. The numbers in parentheses are t-ratios. 

 

 

 

Table 4. Results of the VAR (1)-Asymmetric BEKK-MGARCH (1,1) model for the SPGCE model. 

 
SPGCE- 

SPGO 

SPGCE - 

Natural Gas 

SPGCE - 

Heating Oil 

 SPGCE- 

 Gasoline 

SPGCE- 

Crude Oil 

SPGCE- 

Propane 

Panel A: Estimates of the VAR(1) model 

𝜇1 
0.0191 

(0.0183) 

0.0207 

(0.0195) 

0.0228 

(0.0206) 

0.0226 

(0.02134) 

0.0298 

(0.0211) 

0.0184 

(0.0206) 

𝜑11 
0.0606*** 

(0.0166) 

0.1332*** 

(0.0184) 

0.1393*** 

(0.0195) 

0.1355*** 

(0.0208) 

0.1401*** 

(0.0207) 

0.1426*** 

(0.0203) 

𝜑12 
0.3625*** 

(0.0173) 

-0.0026 

(0.0047) 

0.0035 

(0.0119) 

0.0035 

(0.0097) 

0.0058 

(0.0114) 

-0.0071 

(0.0082) 

𝜇2 
0.0368** 

(0.0176) 

-0.0493 

(0.0438) 

0.0273 

(0.0275) 

0.0527 

(0.0387) 

0.0315 

(0.0328) 

0.0384 

(0.0341) 

𝜑22 
0.1732*** 

(0.0179) 

0.0314 

(0.0219) 

-0.0399* 

(0.0209) 

-0.0134 

(0.0205) 

-0.0370* 

(0.0211) 

0.1336*** 

(0.0217) 

𝜑21 
0.0496*** 

(0.0138) 

0.0711** 

(0.0345) 

0.0428 

(0.0207) 

0.0286 

(0.0288) 

0.0332 

(0.0261) 

-0.0133 

(0.0240) 

Wald test 1 186.3621*** 4.1806 0.6533 1.1716 0.6715 0.9982 

Panel B: Estimates of the asymmetric BEKK(1,1) model 

𝑐11 
0.12928*** 

(0.02912) 

0.17052*** 

(0.02675) 

0.14763*** 

(0.02524) 

0.15738*** 

(0.02627) 

0.13837*** 

(0.02140) 

0.14524*** 

(0.02689) 

𝑐21 
-0.03215 

(0.02437) 

-0.17631 

(0.11201) 

0.00215 

(0.03580) 

0.00616 

(0.07664) 

-0.03757 

(0.04092) 

0.00709 

(0.06838) 

𝑐22 
0.08622*** 

(0.02681) 

0.79073 

(0.07733) 

0.15241*** 

(0.03282) 

0.36311*** 

(0.05151) 

0.04050 

(0.12683) 

0.32234*** 

(0.04001) 

𝑎11 
0.23084*** 

(0.01925) 

0.12750*** 

(0.03327) 

0.19920*** 

(0.02598) 

0.17307*** 

(0.03013) 

0.22427*** 

(0.02317) 

0.19028*** 

(0.02816) 

𝑎12 
0.04767* 

(0.02509) 

-0.04065 

(0.05887) 

-0.01258 

(0.02336) 

-0.04708 

(0.04267) 

-0.00246 

(0.03360) 

-0.02486 

(0.02878) 

𝑎21 
0.05078** 

(0.02165) 

-0.00308 

(0.00349) 

-0.00336 

(0.01115) 

-0.00542 

(0.01163) 

-0.00117 

(0.01057) 

-0.00767 

(0.00753) 

𝑎22 
0.19116*** 

(0.03379) 

0.34947*** 

(0.02729) 

0.18303*** 

(0.02351) 

0.24666*** 

(0.03005) 

0.15581*** 

(0.02141) 

0.30372*** 

(0.02859) 

𝑏11 
0.95914*** 

(0.00765) 

0.96127*** 

(0.00724) 

0.96207*** 

(0.00691) 

0.96105*** 

(0.00777) 

0.96415*** 

(0.00589) 

0.96290*** 

(0.00733) 

𝑏12 
0.00149 

(0.00588) 

0.01286 

(0.01639) 

-0.00100 

(0.00607) 

0.00676 

(0.01093) 

-0.00138 

(0.00723) 

0.00636 

(0.00863) 
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Table 5. Results of the VAR (1)-Asymmetric BEKK-MGARCH (1,1) model for the SPGCE model. (continued) 

 
SPGCE- 

SPGO 

SPGCE - 

Natural Gas 

SPGCE - 

Heating Oil 

 SPGCE- 

 Gasoline 

SPGCE- 

Crude Oil 

SPGCE-

Propane 

𝑏21 
0.00099 

(0.00534) 

0.00352 

(0.00183) 

-0.00160 

(0.00285) 

0.00058 

(0.00397) 

0.00135 

(0.00258) 

-0.00098 

(0.00257) 

𝑏22 
0.96185*** 

(0.00592) 

0.89642* 

(0.01115) 

0.97285*** 

(0.00511) 

0.94863*** 

(0.00913) 

0.97275*** 

(0.00404) 

0.92411*** 

(0.00823) 

𝑑11 
0.05279 

(0.07495) 

0.30380*** 

(0.03125) 

0.22601*** 

(0.04036) 

0.24637*** 

(0.03463) 

0.12629*** 

(0.04648) 

0.24377*** 

(0.03361) 

𝑑12 
-0.17655*** 

(0.03902) 

0.05385 

(0.05788) 

0.16045*** 

(0.03255) 

0.22973*** 

(0.05163) 

0.30932*** 

(0.03421) 

0.18687*** 

(0.03778) 

𝑑21 
-0.08928*** 

(0.03082) 

0.00227 

(0.00801) 

-0.02550 

(0.02025) 

0.00784 

(0.01927) 

0.01237 

(0.01537) 

-0.02319** 

(0.01000) 

𝑑22 
0.25465*** 

(0.04864) 

-0.16305** 

(0.07071) 

-0.16493*** 

(0.03862) 

-0.17182*** 

(0.05052) 

-0.23421*** 

(0.02822) 

-0.3137*** 

(0.04297) 

Wald test 2 1091.334*** 331.4810*** 249.5141*** 263.6541*** 40.21441*** 134.6558*** 

Wald test 3 1402.880*** 2303.900*** 1423.294*** 1361.024*** 2498.556*** 1438.796*** 

Log-likelihood -7143.30 -10149.22 -8636.99 -9299.71 -8905.37 -9309.53 

Panel C: Diagnostic tests 

LB(1) 18.71802 29.445105 11.82673 22.710818 18.29161 27.43312 

LB(2) 26.40756 32.641085 26.56063 24.986958 33.05990 24.18572 

ARCH-LM (1) 1.407869 0.1912962 1.478326 1.6916833 0.099528 0.286996 

ARCH-LM(10) 1.087338 1.3678131 0.431166 1.1255526 1.551456 0.854039 
Notes: The mean equation is 𝑹𝒕 = 𝝁 + 𝜱𝑹𝒕−𝟏 + 𝝐𝒕 where 𝝐𝒕 follows the multivariate normal distribution with mean zero and conditional variance-

covariance 𝑯𝒕.  The conditional variance-covariance matrix is defined with asymmetric BEKK-MGARCH(1,1) formulation as 𝑯𝒕 = 𝑪′𝑪 +

𝑨′𝝐𝒕−𝟏𝝐𝒕−𝟏
′ 𝑨 + 𝑩′𝑯𝒕−𝟏𝑩 + 𝑫′𝒖𝒕−𝟏𝒖𝒕−𝟏

′ 𝑫 . Wald test 1, Wald test 2, and Wald test 3 report the chi-square statistics for the tests of diagonality in 

the returns matrix 𝜱 (𝐻0: 𝜑12 = 𝜑21 = 0), diagonality in the conditional variance-covariance matrix 𝑯𝒕  (𝐻0: 𝑎12 = 𝑎21 = 𝑏12 = 𝑏21 = 𝑑12 =

𝑑21 = 0), and symmetry (𝐻0: 𝑑12 = 𝑑21 = 𝑑11 = 𝑑22 = 0), respectively. LB(1) and LB(2) are the Q(24) and Q2(24) of the Ljung–Box test for 

autocorrelation, respectively. The ARCH-LM(1) and ARCH-LM(10) tests of Engle (1982) check for the existence of ARCH effects. Superscripts 

***, **, * indicate significance at the 1, 5, 10 percent levels, respectively. The numbers in parentheses are standard errors. Subscript 1 denotes the 

parameters of returns on SPGCE. Subscript 2 denotes the parameters of SPGO or energy commodities. 
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Table 6. Results of the VAR (1)-Asymmetric BEKK-MGARCH (1,1) model for the SPGO model. 

 
SPGO- 

SPGCE  

SPGO- 

Natural Gas 

SPGO- 

Heating Oil 

SPGO- 

Gasoline 

SPGO-  

Crude Oil 

SPGO- 

Propane 

Panel A: Estimates of the VAR(1) model 

𝜇1 
0.0368** 

(0.0176) 
0.0069 

(0.0173) 

0.0059 

(0.0171) 

0.0065 

(0.0176) 

0.0132 

(0.0146) 

0.0086 

(0.0182) 

𝜑11 
0.1732*** 

(0.0179) 

0.1243*** 

(0.0201) 

0.1057*** 

(0.0182) 

0.1091*** 

(0.0179) 

0.1164*** 

(0.0097) 

0.1154*** 

(0.0202) 

𝜑12 
0.0495*** 

(0.0138) 

0.00006 

(0.0042) 

0.0067 

(0.0103) 

0.0156* 

(0.0084) 

0.0067 

(0.0098) 

0.0027 

(0.0082) 

𝜇2 
0.0191 

(0.0183) 

-0.0176 

(0.0438) 

0.0092 

(0.0264) 

0.0203 

(0.0332) 

0.0128 

(0.0265) 

0.0218 

(0.0342) 

𝜑22 
0.0606*** 

(0.0167) 

0.0191 

(0.0197) 

-0.0516*** 

(0.0192) 

-0.0147 

(0.0185) 

-0.0448*** 

(0.0172) 

0.1358*** 

(0.0208) 

𝜑21 
0.3625*** 

(0.0173) 

0.0433 

(0.0365) 

0.0771*** 

(0.0228) 

0.0802** 

(0.0321) 

0.1188*** 

(0.02743) 

-0.0087 

(0.0273) 

Wald test 1 155.0899*** 0.1204 39.3901*** 36.2252*** 15.0924*** 0.5592 

Panel B: Estimates of the asymmetric BEKK(1,1) model  

𝑐11 
0.08622*** 

(0.02681) 

0.1185*** 

(0.01746) 

0.1147*** 

(0.01388) 

0.12719*** 

(0.01866) 

0.10808*** 

(0.01512) 

0.12992*** 

(0.01901) 

𝑐21 
-0.05195 

(0.03950) 

-0.16916 

(0.10426) 

0.03781 

(0.03406) 

0.05893 

(0.07271) 

-0.01041 

(0.03528) 

0.01704 

(0.06069) 

𝑐22 
0.12928*** 

(0.02912) 

0.63018*** 

(0.06623) 

0.13685*** 

(0.02868) 

0.34890*** 

(0.04868) 

0.05797 

(0.06860) 

0.30892*** 

(0.04012) 

𝑎11 
0.19116*** 

(0.03379) 

0.02973 

(0.02431) 

0.08790*** 

(0.02905) 

0.07729*** 

(0.03817) 

-0.02817 

(0.02278) 

0.10391*** 

(0.03066) 

𝑎12 
0.05078** 

(0.02165) 

0.06519 

(0.07125) 

-0.13216*** 

(0.02915) 

-0.30963*** 

(0.05214) 

-0.31622*** 

(0.02731) 

-0.08929** 

(0.04206) 

𝑎21 
0.04767* 

(0.02509) 

-0.00404 

(0.00307) 

-0.01078 

(0.01316) 

-0.02149 

(0.01321) 

-0.05864*** 

(0.00974) 

-0.00695 

(0.00886) 

𝑎22 
0.23084*** 

(0.01925) 

0.32678*** 

(0.01797) 

0.19753*** 

(0.02641) 

0.27088*** 

(0.02505) 

0.10503*** 

(0.02240) 

0.36444*** 

(0.03090) 

𝑏11 
0.96185*** 

(0.00592) 

0.96150*** 

(0.00554) 

0.97000*** 

(0.00343) 

0.96198*** 

(0.00582) 

0.96593*** 

(0.00481) 

0.96460*** 

(0.00507) 

𝑏12 
0.00099 

(0.00534) 

0.01582 

(0.01946) 

0.01007 

(0.00636) 

0.03250*** 

(0.01228) 

0.01029 

(0.00796) 

0.01244 

(0.00965) 

𝑏21 
0.00149 

(0.00588) 

0.00308 

(0.00200) 

-0.00363 

(0.00292) 

-0.00151 

(0.00399) 

0.00256 

(0.00262) 

0.00167 

(0.00278) 

𝑏22 
0.95914*** 

(0.00765) 

0.89315*** 

(0.01119) 

0.96843*** 

(0.00576) 

0.93879*** 

(0.00965) 

0.96710*** 

(0.00402) 

0.92057*** 

(0.00817) 

𝑑11 
0.25465*** 

(0.04864) 

0.29917*** 

(0.02221) 

0.28271*** 

(0.02163) 

0.28307*** 

(0.02714) 

0.31059*** 

(0.02368) 

0.29976*** 

(0.02747) 

𝑑12 
-0.08928*** 

(0.03082) 

-0.01455 

(0.06888) 

0.05039 

(0.04048) 

0.13763* 

(0.08137) 

-0.06668 

(0.04126) 

0.21944*** 

(0.05931) 

𝑑21 
-0.17655*** 

(0.03902) 

0.00923** 

(0.00439) 

0.02126 

(0.01881) 

0.05249*** 

(0.01361) 

-0.01873 

(0.01468) 

0.01928 

(0.01177) 

𝑑22 
0.05279 

(0.07495) 

-0.03335 

(0.07118) 

0.15050*** 

(0.04401) 

0.05935 

(0.06262) 

0.23889*** 

(0.02290) 

-0.16641* 

(0.09913) 

Wald test 2 101.8929*** 43.2439*** 71.6062*** 159.9048*** 84.5462*** 58.0119*** 

Wald test 3 80.38620*** 39.2190*** 77.9609*** 40.1566*** 37.3206*** 81.7316*** 

Log-likelihood -7143.30 -9933.06 -8351.74 -9031.35 -8560.23 -9220.43 

Panel C: Diagnostic tests 

LB (1) 18.7180 16.0625 22.6471 28.9813 16.7037 22.5211 

LB (2) 26.4075 20.6257 23.8683 32.0037 28.1753 38.1327 

ARCH-LM (1) 1.40786 0.03351 0.42823 1.77808* 0.0432 0.40437 

ARCH-LM (10) 1.08733 1.12057 1.43620 1.46392 1.1853 1.50337 

Notes: See Table 4. Subscript 1 denotes the parameters of oil and gas stocks. Subscript 2 denotes the parameters of clean energy stocks or energy 

commodities.  
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Table 7. Optimal weights and hedge ratios in SPGCE-DP. 

 Optimal portfolio weight  Optimal hedge ratio 

Natural Gas 17.52  -5.25 

Heating Oil 35.47  10.64 

Gasoline 23.52  14.92 

Crude Oil 29.35  13.73 

Propane 28.32  7.42 

SPGO 55.61  20.34 

Notes: The Table shows the average optimal portfolio weights and hedge ratios in SPGCE-DP holdings calculated from time-varying moments 

Table 8. Optimal weights and hedge ratios in SPGO-DP. 

 Optimal portfolio weight  Optimal hedge ratio 

Natural Gas 15.03  -7.72 

Heating Oil 28.27  24.28 

Gasoline 17.30  25.07 

Crude Oil 19.78  28.72 

Propane 23.39  9.48 

SPGCE 44.39  28.78 

Notes: The Table shows the average optimal portfolio weights and hedge ratios in SPGO-DP holdings calculated from time-varying moments 

Table 9. Hedge effectiveness of SPGCE-DP. 

 𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑 𝑉𝑎𝑟ℎ𝑒𝑑𝑔𝑒𝑑 HE 

Natural Gas 1.755 1.730 0.014 

Heating Oil 1.755 1.319 0.248 

Gasoline 1.755 1.483 0.154 

Crude Oil 1.755 1.429 0.185 

Propane 1.755 1.594 0.091 

SPGO 1.755 1.068 0.391 

Notes: 𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑, 𝑉𝑎𝑟ℎ𝑒𝑑𝑔𝑒𝑑, and HE are the variance of stock returns, the variance of portfolio returns, and hedging effectiveness, respectively.  

Table 10. Hedge effectiveness of SPGO-DP. 

 𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑 𝑉𝑎𝑟ℎ𝑒𝑑𝑔𝑒𝑑 HE 

Natural Gas 1.492 1.483 0.005 

Heating Oil 1.492 1.220 0.182 

Gasoline 1.492 1.305 0.125 

Crude Oil 1.492 1.303 0.126 

Propane 1.492 1.386 0.070 

SPGCE 1.492 1.068 0.283 

Notes: See note of Table 9. 



46 

 

Table 10. Optimal weights in SPGCE-DP and SPGO-DP during and after the European debt crisis. 

Diversified 

Portfolios 
Period 

Natural 

Gas 

Heating 

Oil 

Crude 

Oil 

Conventional 

Gasoline 
Propane SPGO SPGCE 

SPGCE-DP 
2010-2011 29.89 54.02 43.77 40.12 56.96 84.88 - 

2012-2020 14.59 31.08 26.4 19.64 21.69 48.89 - 

SPGO-DP 
2010-2011 21.94 35.91 15.49 23.09 44.75 - 14.97 

2012-2020 13.36 26.33 20.75 15.94 18.38 - 51.11 

 

 

Table 11. Optimal hedge ratios in SPGCE-DP and SPGO-DP during and after the European debt crisis. 

Diversified 

Portfolios 
Period 

Natural 

Gas 

Heating 

Oil 

Crude 

Oil 

Conventional 

Gasoline 
Propane SPGO SPGCE 

SPGCE-DP 
2010-2011 3.03 31.80 37.26 39.97 22.70 56.17 - 

2012-2020 -7.23 5.905 9.926 78.65 3.978 12.17 - 

SPGO-DP 
2010-2011 0.279 56.99 54.60 74.54 34.47 - 87.83 

2012-2020 -10.6 16.91 18.43 18.32 3.80 - 15.32 

 

 

Table 12. Hedge effectiveness of SPGCE-DP and SPGO-DP during and after the European debt crisis. 

Diversified 

Portfolios 
Period 

Natural 

Gas 

Heating 

Oil 

Crude 

Oil 

Conventional 

Gasoline 
Propane SPGO SPGCE 

SPGCE-DP 
2010-2011 0.366 0.489 0.330 0.306 0.527 0.385 - 

2012-2020 0.091 0.266 0.142 0.202 0.167 0.498 - 

SPGO-DP 
2010-2011 0.274 0.298 0.210 0.114 0.372 - 0.035 

2012-2020 0.095 0.198 0.105 0.146 0.113 - 0.495 

 

 

 Table 13. Hedging weights, hedge ratio, and hedge effectiveness of natural gas during the Ukraine-Russia crisis. 

Diversified Portfolios Year Weight Hedge Ratio Hedge Effectiveness 

SPGCE-DP 2014 14.91 10.16 0.039 

SPGO-DP 2014 11.54 -11.66 0.217 
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Figure A1. Price and return dynamics of the energy indices and energy commodities 

Figure A1 shows the evolution of the price and return series of the global energy stock 

indices (SPGCE and SPGO) and energy commodities (natural gas, heating oil, conventional 

gasoline, crude oil, and propane) over the sample period. Domestic issues and international 

conflicts contribute to the volatility of energy prices (Shahbaz et al., 2017). The prices of heating 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

3
/1

/2
0
1
0

1
0
/1

/2
0
1
0

5
/1

/2
0
1
1

1
2
/1

/2
0
1
1

7
/1

/2
0
1
2

2
/1

/2
0
1
3

9
/1

/2
0
1
3

4
/1

/2
0
1
4

1
1
/1

/2
0
1
4

6
/1

/2
0
1
5

1
/1

/2
0
1
6

8
/1

/2
0
1
6

3
/1

/2
0
1
7

1
0
/1

/2
0
1
7

5
/1

/2
0
1
8

1
2
/1

/2
0
1
8

7
/1

/2
0
1
9

2
/1

/2
0
2
0

Propane Prices

-20
-15
-10
-5
0
5

10
15
20
25

3
/1

/2
0
1
0

1
0
/1

/2
0
1
0

5
/1

/2
0
1
1

1
2
/1

/2
0
1
1

7
/1

/2
0
1
2

2
/1

/2
0
1
3

9
/1

/2
0
1
3

4
/1

/2
0
1
4

1
1
/1

/2
0
1
4

6
/1

/2
0
1
5

1
/1

/2
0
1
6

8
/1

/2
0
1
6

3
/1

/2
0
1
7

1
0
/1

/2
0
1
7

5
/1

/2
0
1
8

1
2
/1

/2
0
1
8

7
/1

/2
0
1
9

2
/1

/2
0
2
0

Propane Returns

0

500

1000

1500

2000

2500

3000

3
/1

/2
0
1
0

1
0
/1

/2
0
1
0

5
/1

/2
0
1
1

1
2
/1

/2
0
1
1

7
/1

/2
0
1
2

2
/1

/2
0
1
3

9
/1

/2
0
1
3

4
/1

/2
0
1
4

1
1
/1

/2
0
1
4

6
/1

/2
0
1
5

1
/1

/2
0
1
6

8
/1

/2
0
1
6

3
/1

/2
0
1
7

1
0
/1

/2
0
1
7

5
/1

/2
0
1
8

1
2
/1

/2
0
1
8

7
/1

/2
0
1
9

2
/1

/2
0
2
0

SPGO Index

-10
-8
-6
-4
-2
0
2
4
6
8

10

3
/1

/2
0
1
0

1
0
/1

/2
0
1
0

5
/1

/2
0
1
1

1
2
/1

/2
0
1
1

7
/1

/2
0
1
2

2
/1

/2
0
1
3

9
/1

/2
0
1
3

4
/1

/2
0
1
4

1
1
/1

/2
0
1
4

6
/1

/2
0
1
5

1
/1

/2
0
1
6

8
/1

/2
0
1
6

3
/1

/2
0
1
7

1
0
/1

/2
0
1
7

5
/1

/2
0
1
8

1
2
/1

/2
0
1
8

7
/1

/2
0
1
9

2
/1

/2
0
2
0

SPGO Returns

0

200

400

600

800

1000

1200

1400

3
/1

/2
0
1

0

1
0
/1

/2
0
1

0

5
/1

/2
0
1

1

1
2
/1

/2
0
1

1

7
/1

/2
0
1

2

2
/1

/2
0
1

3

9
/1

/2
0
1

3

4
/1

/2
0
1

4

1
1
/1

/2
0
1

4

6
/1

/2
0
1

5

1
/1

/2
0
1

6

8
/1

/2
0
1

6

3
/1

/2
0
1

7

1
0
/1

/2
0
1

7

5
/1

/2
0
1

8

1
2
/1

/2
0
1

8

7
/1

/2
0
1

9

2
/1

/2
0
2

0

SPGCE Index

-10

-8

-6

-4

-2

0

2

4

6

8

3
/1

/2
0
1

0

1
0
/1

/2
0
1

0

5
/1

/2
0
1

1

1
2
/1

/2
0
1

1

7
/1

/2
0
1

2

2
/1

/2
0
1

3

9
/1

/2
0
1

3

4
/1

/2
0
1

4

1
1
/1

/2
0
1

4

6
/1

/2
0
1

5

1
/1

/2
0
1

6

8
/1

/2
0
1

6

3
/1

/2
0
1

7

1
0
/1

/2
0
1

7

5
/1

/2
0
1

8

1
2
/1

/2
0
1

8

7
/1

/2
0
1

9

2
/1

/2
0
2

0

SPGCE Returns



49 

 

oil, gasoline, crude oil, and propane peaked in the post-Great Recession years, but have declined 

since. The decline in the price of crude oil reflects, in part, a significant increase in oil production 

in the United States. Since 2014, the U.S. shale oil industry generated a boom in domestic crude 

oil production. The European sovereign debt crisis (Greece, Italy, Spain), which began in late 2009 

and peaked between 2010 and 2012, associates with spikes in energy commodity markets (with 

the exception of natural gas). The prices of natural gas and propane, on the other hand, spiked in 

February-March 2014 because of the Ukraine-Russia crisis. The Crimea problem also surfaces in 

the price of oil and gas stocks, but not in the clean energy stocks. Extreme atmospheric activities, 

in the form of tropical storms and hurricanes, occur regularly in the Gulf of Mexico and reflect 

short-run demand and supply shocks. The Atlantic hurricane season that runs from June to 

November impacts the oil and gas industry, disrupting off-shore activities and refineries and 

causing sharp seasonal spikes in crude oil and natural gas prices (Efimova and Serletis, 2014; 

Hénaff et al., 2018; Nick and Thoenes, 2014). The spike in the price of natural gas in 2018 provides 

an informative example. The United States entered the peak winter demand season with gas 

inventories at a 15-year low, which left the natural gas markets vulnerable to unexpected bouts of 

cold weather. In November, Henry Hub natural gas prices jumped as high as $4.80 per million 

Btu, the highest price in roughly four years. The seasonal spike in demand from cold weather led 

to a sharp and sudden jump in prices. However, these high prices did not last long. By mid-

December, natural gas prices fell below $4 per million Btu, and by early January, they had fallen 

to $3 per million Btu. 

The returns display substantial and variable volatility. Visual inspection of the returns 

reveals that while the mean of the returns is almost zero, certain periods exist that show higher 

volatility. The volatility clustering of the returns appears to exist in Figure A1. The critical feature 
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of volatility clustering is that high volatility “today” frequently leads to high volatility “tomorrow”, 

and a low volatility “today” frequently leads to low volatility “tomorrow”. Recent past volatility 

often exerts more significant effects on current volatility than distant past volatility. In other words, 

ARCH effects may exist in the series.  
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Appendix B: 
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Figure B1. Time-varying conditional correlations 

Generally, the BEKK model estimates the conditional covariance and the DCC model 

estimates conditional correlations. Nevertheless, the conditional correlation can easily be extracted 

from the BEKK model, as can easily extract the conditional covariance from the DCC model. 

Moreover, the conditional correlation derived from the BEKK model is consistent with the true 

conditional correlation (Caporin and McAleer, 2012). Figure B1 shows that correlations between 

energy commodity markets and SPGCE stocks and SPGO stocks are time-varying or dynamic. 
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The conditional correlations increase dramatically during the European debt crisis, which may be 

attributed to the fact that market integration tends to increase at the time of stress due to the 

contagion effect. The correlations between natural gas and SPGCE stocks and SPGO stocks, 

however, do not exhibit any sensitivity to the European debt crisis and the stock market contagion. 

On the other hand, the correlation between natural gas and SPGCE stocks and SPGO stocks 

increases in 2014. This may be attributed to the Russian military action in Crimea and the natural 

gas disputes between Ukraine and Russia.  
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Figure C1. Time-varying optimal portfolio weights in SPGO-DP and SPGCE-DP 
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Figure C2. Optimal hedge ratios in SPGO-DP and SPGCE-DP 
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