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Abstract

This paper investigates the dynamic connectedness of random shocks to housing prices
between the 50 U.S. states and the District of Columbia. The paper implements a standard
vector autoregressive (VAR) model as well as three VAR models with shrinkage effects – Elastic
Net, Lasso, and Ridge VAR models. The transmission of random shocks on a regional basis
flows from Southern states to Western states to Midwestern states to Northeastern states.
Since VAR models generally confront parameter values between zero and one, the Elastic Net
and Lasso VAR models perform the best since the penalty involves the absolute value rather
than he squared value as in the Ridge VAR model. Our results have important implications
for investors and policymakers.
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1 Introduction

The housing markets play a critical role in the macroeconomy, affecting both the business cycle

and the financial system. The important role of housing markets in the business cycle became

dramatically clear during the sub-prime mortgage market collapse in late 2006 and the resulting

Great Recession and financial crisis of 2007-2009, the worst recession since World War II until the

COVID-19 recession of 2020. Shiller (2012), for example, argues that the housing bubble provided

the major, if not the only, cause of the sub-prime mortgage crisis and the worldwide Great Recession

and financial crisis of 2007–2009. Leamer et al. (2007) more provocatively asserts that “housing is

the business cycle” in the United States or, more precisely, that house prices drive the U.S. business

cycle.

One can argue that the recent Great Recession and financial crisis, more than any other macroe-

conomic event, makes a strong case for examining the dynamics of house prices, and, in particular,

the role of persistence and the effect of shocks on house price dynamics. This paper considers the

“connectedness” of housing markets across the 50 U.S. states and the District of Columbia. The

basis of connectedness comes from the estimation of a vector autoregressive (VAR) model, where

we examine how exogenous shocks to house prices in one state affect the exogenous shocks to house

prices in another state, or vice versa. That is, connectedness measures cross-state relationships be-

tween exogenous shocks to house prices and not the cross-state relationships between the movements

in the house prices themselves.

Given that the housing market leads the business cycles of the United States (Balcilar et al.,

2014; Leamer, 2015; Nyakabawo et al., 2015; Emirmahmutoglu et al., 2016), analysis of regional

housing market connectedness is an important question for policymakers. That is, determining

which states and/or regions drive the overall housing market allows policy authorities to undertake

policy decisions that target specific states or regions before implementing nationwide policies, which

might not work, due to the heterogeneity of the housing market (Fairchild et al., 2015). Moreover,
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determination of which states or regions act as the main transmitter of shocks provides informa-

tion to investors on acquiring housing assets in these markets rather than the ones that are more

susceptible to such shocks as net receivers.

Dividing the United States into four Census regions (Northeast, South, Midwest, and West), we

find that shocks in the South affect shocks in the Northeast, Midwest and the West. Shocks in the

West affect shocks in the Midwest and the Northeast. Shocks in the Midwest affect shocks in the

Northeast. Finally, shocks in the Northeast do not affect shocks in the other regions.

The remainder of this paper is organised as follows. Section 2 presents the relevant literature

review and Section 3 describes the empirical methodologies applied in the study. Furthermore,

Section 4 provides a short overview of the employed dataset whereas Section 5 illustrates the findings

of the study and discusses the relevant arguments. Finally, Section 6 summarises the key elements,

provides a framework for policy implications, and concludes the study.

2 Literature Review

A significant literature exists that considers the “ripple effect” in house prices in the United Kingdom

and the United States. This literature begins with theorizing and empirical analysis in the United

Kingdom. The ripple effect refers to the observation that house price increases in Southeastern

United Kingdom generally led with some time lag to house price increases in Northwest United

Kingdom (Meen, 1999). More recent work on the ripple effect in the United Kingdom includes Cook

(2003, 2005), Holmes and Grimes (2008), and Tsai (2015). Cook (2003, 2005) tests for convergence

and cointegration in house prices, introducing asymmetric responses to house price increases and

decreases. Holmes and Grimes (2008) apply unit root tests to the first principal component of the

set of regional to national house price differentials. Tsai (2015) examines regional and national

housing market spillover effects in the United Kingdom.

In the United States, Gupta and Miller (2012b,a) consider the cointegration and Granger causal-
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ity three metro areas (Los Angeles, Las Vegas, and Phoenix) in three different states (California,

Nevada, and Arizona) and between house prices in Southern California counties. Chiang and Tsai

(2016) examine regional and interregional ripple effects in the United States for eight metropolitan

areas – Los Angeles, San Diego, San Francisco, Chicago, Boston, New York, Miami, and Tampa

– and three regions – East, South, and West. Tsai (2018) considers the ripple effect for the four

Census regions (South, West, Midwest, and Northeast) in the United States. Tsai (2019) considers

the interrelationships between house prices in 10 U.S. metropolitan areas – Boston, Chicago, Den-

ver, Las Vegas, Los Angeles, Miami, New York, San Diego, San Francisco, and Washington DC –

at three price tiers – low, medium, and high price tiers.

The ripple effect literature relies on the concept of the Law of One Price (LOOP), which proposes

that a homogeneous good that sells in two different markets should sell for the same price, after

incorporation transaction and transportation costs. Fundamentally, the LOOP uses the arbitrage of

goods prices between markets to generate the convergence of prices across regional markets. That

is, for example, if one can transport the good between markets at relatively low cost, one can buy

in the low-price market and sell it in the high-price market after transporting the good from the

low-price market to the high-price market. Clearly, housing goods fail in, at least, two important

areas (i) lack of homogeneity in housing goods and (ii) lack of transportability between markets. In

addition, rather than comparing house prices, we compare house price indexes. Thus, comparing

house price indexes, rather than individual home prices, across geographic regions, activates the

idea of Purchasing Power Parity (PPP). PPP extends the LOOP to price indexes, implying that

trade between geographic regions of goods leads to a convergence of the regions’ price indexes for

goods. Once again, the successful operation of PPP requires the arbitrage of goods between regions.

Housing economists address the issue of non-homogeneous housing goods by considering their

characteristics. That is, hedonic housing good models allow the comparison of house prices based

on the characteristics imbedded into the housing good, such as the number of bedrooms the number

of baths, the square footage, and so on. In addition, researchers want to ensure that the house price
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index can accommodate the quality of the house. A “repeat-sales” index based on multiple sales of

the same home attempts to address this last issue. To do so successfully requires that the repeat

sales include information on renovations and depreciation. A “constant quality” index can compare

housing good prices across time and space. Typically, the geographic reach of the housing market

reflects the commuting shed for the metropolitan area. That is, houses compete with each other

within the same metropolitan area. Original work on this hypothesis was done by Tirtiroǧlu (1992)

and Clapp and Tirtiroglu (1994) examining housing market efficiency in the Hartford, Connecticut

spatial market.

Since moving houses from one metropolitan market to another proves too costly, does this

necessarily imply that the housing markets in different MSAs do not exhibit linkages? Trade theory

provides an answer. The factor price equalization theorem (Samuelson, 1948) shows that although

capital and labor frequently do not flow freely between countries, goods and services do flow and can

proxy for capital and labor flows. The flows of goods and services between countries cause the prices

of labor and capital to equalize, albeit absent any flow of capital and labor between countries. Since

housing goods cannot easily flow between markets, do other flows exist that can cause LOOP or PPP

to hold? First, the migration of home buyers can link the housing markets different metropolitan

areas. Second, large home builders operate in multiple metropolitan areas, allowing them to move

operations in repose to shifts in metropolitan demands and differential returns on home building

activity. In sum, the movement of home buyers and home builders’ operations between regions in

response to price differences can arbitrage the prices of homes, even though the homes themselves

do not move between regions.

Home builders face two basic components to their cost of supplying new housing – construction

(replacement) costs and land value. If the demand for housing rises in one region, that will draw

resources, including construction labor, from other regions. As a result, construction costs in

both regions will rise. It rises first in the market where the demand for housing rises to attract

more resources and construction workers. And as a consequence, as the supply of resources and
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construction workers in the other region fall, their costs and wages will rise. The equalizing of

construction costs tends to equilibrate house prices across regions.

Just as we cannot transport housing between regions, we cannot transport land as well. Thus,

if a region faces a fixed, or extremely inelastic, supply of land, then that regions house prices and

land values will rise. That is, since house prices include construction (replacement) costs and land

prices, higher land prices will drive up house prices even though construction (replacement) costs

may equilibrate between regions.

Antonakakis et al. (2018) analyzed the U.K. regional housing markets and Antonakakis et al.

(2019) examined the four aggregated U.S. regional housing markets, using the connectedness ap-

proach. Connectedness examines the relationships between the random shocks in a vector autore-

gressive (VAR) system, identifying the pattern of transmission of shocks across housing markets

in this case. Antonakakis et al. (2018) used quarterly data on 13 regions in the United Kingdom

(North, North West, West Midlands, Outer South East, London, Wales, Northern Ireland, Yorkshire

and Humberside, East Midlands, East Anglia, Outer Metropolitan, South West, and Scotland, ex-

amining the VAR model of annual nominal housing returns. Antonakakis et al. (2019) used monthly

data on four U.S. regions (Midwest, Northeast, South, and West), examining the VAR model of

annual housing returns and the growth rate of housing volumes.

This study provides a more comprehensive analysis of the transmission of real housing return

shocks across all 50 U.S. states and the District of Columbia, applying the Lasso, Ridge, and Elastic

Net methods of parameter estimation and selection. We also consider the four regions (Midwest,

Northeast, South, and West) that Antonakakis et al. (2019) examined for comparison purposes,

although we consider real housing returns and Antonakakis et al. (2019) examine nominal housing

returns and the growth rate of housing volumes.
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3 Empirical Methodology

3.1 Lasso, Ridge & Elastic Vector Autoregressions

Sims (1980) introduced one of the most popular and still widely used multivariate time series models

in applied econometrics, namely the vector autoregressive (VAR) model. This framework can not

only forecast the future of multiple time series in a dynamic way, but also comes with a sophisticated

toolbox, including impulse response analysis and forecast error variance decomposition. The toolbox

provides further information about the spillovers of shocks. Mathematically, a VAR(p) with a lag

length of p can be formulated as follows:

yt = β0 +

p∑
i=1

βiyt−i + ut ut ∼ N(0,Σ) (1)

where yt, t = 1, ..., T − p, is an k × 1 dimensional vector of the endogenous variables, β0 is an

k × 1 dimensional vector of all intercepts, and βi represents the k × k dimensional VAR coefficient

matrix of the ith lag. The k × 1 dimensional error vector, ut, t = 1, ..., T − p, is multivariate

normally distributed with means equal to zero and a variance-covariance matrix equals to Σ. Σ

is a diagonal matrix as var(ui) = σ2
i , i = 1, ..., k and cov(ui,uj) = 0, i, j = 1, ..., k and i 6= j.

Those characteristics allow to estimate the VAR model equation-by-equation often by the ordinary

leasts squares method. This is good news as we are estimating the U.S. real estate return dynamics

of all states, meaning that k = 51 and, hence, a joint estimation with a lag length of one1 would

mean that k + k2p = 2, 652 parameters needs to be estimated, however, we only have T = 418

observations (2, 652 >> 418), which would mean that this model cannot be estimated. Using the

equation-by-equation estimation procedure makes this feasible as it just estimates, k + 1 = 52

parameters (52 < 418). Additionally, as we deal with this high-dimensional network, we employ

different regularization methods to shrink and select parameters and compare the results with the

standard equation-by-equation VAR model.

1The Bayesian information criterion suggests to use a lag length of one.
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Hereby, the elastic net (Zou and Hastie, 2005) can be seen as the generalization of the OLS,

Ridge, and Lasso (Tibshirani, 1996) estimation method which shrinks and selects parameters. The

elastic net can be outlined for each variable j, j = 1, ..., k, as follows:

argmin
β



MSE︷ ︸︸ ︷T−1||yjt − βj0 −
p∑
i=1

k∑
j=1

βjiyjt−i||2

+λ

Pα︷ ︸︸ ︷(1− α) ||βj0 +

p∑
i=1

k∑
j=1

βij ||2︸ ︷︷ ︸
Ridge Penalty

+α ||βj0 +

p∑
i=1

k∑
j=1

βij ||1︸ ︷︷ ︸
Lasso Penalty





where the first part represents a loss function, which is in our case the mean squared error

(MSE), and the second part is the elastic net penalty (Pα), which equals a weighted average of

the Ridge penalty and the Lasso penalty. Whereas Lasso uses an `1-norm penalty to achieve a

sparse solution, Ridge uses an `2-norm penalty. This means that the Lasso penalty term proves

more effective than the Ridge penalty term if parameters lie between 0 and |1|whereas the Ridge

penalty proves stronger than the Lasso penalty for parameters > |1|. As VAR coefficients usually

lie in the range between 0 and |1|, the Lasso regression will shrink parameters more strongly than

in the Ridge regression. In general, the `p-norm is defined by: ||β||p = (
∑p

i=1

∑k
j=1 |βij|p)1/p.

The penalty parameters λ and α for each federal state j, j = 1, ..., k are chosen based on 10-fold

cross validation. The cross validation method is often used in machine learning and selects penalty

parameters that improve a model’s forecasting performance.

Besides estimating the full elastic net regression model, we also estimate restricted submodels,

namely OLS (λ = 0), Ridge (α = 0), and Lasso (α = 1).

To the best of our knowledge and besides Demirer et al. (2018) who employed a Lasso-VAR model

to estimate the connectedness measures of daily bank stock return volatilities, this is the first paper
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that uses regularization methods to shrink and select VAR parameters to compute connectedness

measures.

3.2 Connectedness Measures

The starting point for the connectedness approach of Diebold and Yilmaz (2012) transforms the

VAR(p) in (1) into its vector moving average representation using the Wold theorem: yt =∑∞
j=0 θjut−i where θ0 = Ik and θj = β1θj−1 + ...+ βpθj−p.

In next step, the Generalized Forecast Error Variance Decomposition (GFEVD)2 of Koop et al.

(1996) and Pesaran and Shin (1998) - which is invariant to the ordering of the variables in the

VAR. The GFEVD (φ̃gij(H)) can be interpreted as variable j’s contribution to variable i’s H-step

ahead forecast error variance. It is also called the pairwise directional connectedness and can be

mathematically formulated by,

φgij(H) =
σ−1
ii

∑H−1
t=1 (ι′iθΣιj)

2∑k
j=1

∑H−1
t=1 (ιiθΣθ′ιi)

φ̃gij(H) =
φgij(H)∑k
j=1 φ

g
ij(H)

,

where
∑k

j=1 φ̃
g
ij(H) = 1,

∑k
i,j=1 φ̃

g
ij,t(H) = k and ιj is a zero vector with unity on the jth position.

Based upon the bilateral pairwise directional connectedness, aggregated connectedness measures

2As to the best of our knowledge, no economic theory exists that explains and justifies the variable ordering in
case of real estate return dynamics, we have chosen the GFEVD instead of its orthorgonalized counterpart. Hereby,
we follow the study of Wiesen et al. (2018) which emphasize that without a proper economic theory the GFEVD
should be the model of choice.
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are derived that provide an overview of the network spillover dynamics:

TOj =
k∑

i=1,i 6=j

φ̃gij(H) (2)

FROMj =
k∑

j=1,i 6=j

φ̃gij(H) (3)

NETj =TOj − FROMj (4)

TCI =k−1

k∑
j=1

TOj ≡ k−1

k∑
j=1

FROMj. (5)

NPDCij =φ̃ij(H)− φ̃ji(H). (6)

Equation (2) represents the aggregated impact a shock in variable j exerts on all other variables,

which is defined as the total directional connectedness to others. Furthermore, Equation (3) for-

mulates the aggregated influence all other variables exert on variable j, which is the so-called total

directional connectedness from others. Subtracting the impact variable j exerts on others by the in-

fluence others exert on variable j generates the net total directional connectedness (4). This metric

reveals whether a variable is a net transmitter or a net receiver of shocks. If NETj > 0 (NETj < 0),

the effect of a shock in variable j on all others is larger (smaller) than vice versa. Thus, variable j

is considered as a net transmitter (receiver) of shocks. Finally, the total connectedness index (TCI)

(5), which measures the average effect state exerts on all other states or the average effect of all

other states on a given state, is often considered as the systemwide connectedness and, hence, the

market risk. A large (small) TCI means that the average propagation of a shock in one variable to

all others is high (low) and, thus, the market risk is high (low). Finally, equation (6), which is the

net pairwise directional connectedness (NPDCij), exhibits whether variable i drives or driven by

variable j. A positive (negative) NPDCij implies that variable j is dominates (is dominated by)

variable i.
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4 Dataset

The seasonally adjusted monthly nominal house price data for the 50 states and the District of

Columbia come from the Freddie Mac, with the indices based on an ever expanding database

of loans purchased by either Freddie Mac or Fannie Mae. The data are available for download

from: http://www.freddiemac.com/research/indices/house-price-index.page. We generate

corresponding real values by deflating the nominal house price indexes with the seasonally adjusted

consumer price index (CPI) that come from the FRED database of the Federal Reserve Bank of

St. Louis. The data cover the period from January, 1976 through November, 2019. We work with

the annual growth rates of real house prices. That is, we examine an approximation to real housing

returns.3

5 Empirical results

We employ a rolling-window estimation with a 120-month (10-year) window and a 10-month forecast

horizon, with repeated 10-fold cross validation in each window. When reporting findings, we use the

Net Effect method calculations, unless the exhibit clearly shows the reporting of all four methods

(see Figure 1).

5.1 State-Specific Connectedness Results

We begin by examining total connectedness or the average effect a state exerts on all other states

(equivalently, the average effect of all other states on a given state). The risk in the housing market,

as measured by total connectedness, steadily increased since 1995, reaching its high in 2007 and

remained at that level until it slowly began decreasing from 2015 onwards (see Figure 1). The

three methods that penalized parameter estimates using the Lasso, Ridge, and Net Elastic methods

of penalization trended generally together, not differing by too much. The standard OLS results,

3Complete details of the unit root tests are available upon request from the authors.
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however, produced higher total connectedness than the Lasso, Ridge, and Net Elastic methods

during the beginning of the sample period through 2007. Then, dynamic total connectedness did

not differ much across the four models for the high volatility period followed by the Great Recession

and Financial Crisis of 2007-2009.4

[Insert Figure 1 around here]

Figure 2 provides an overview of the total U.S. housing market spillover. That is, for each state,

we calculate the total directional connectedness to other states minus total directional connectedness

from other states. Thus, a positive (negative) number means that the shocks from the state in

question exert a larger (smaller) effect on all other sates than the effect of all other states’ shocks on

this state. Further, Figure 2 uses lighter colors for more of a transmitter of shocks to other states

and darker colors for more of a receiver of shocks from other states.

We can see that the main transmitters of shocks include Arkansas (AR), Colorado (CO), Ohio

(OH), and Washington (WA) whereas the main receiver of shocks include Hawaii (HI), New York

(NY), North Carolina (NC), West Virginia (WV), and Maine (ME). Even though this map provides

a good overview of the spillovers, it will be interesting to see how the spillovers behave on a regional

level, which we show below.

[Insert Figure 2 around here]

To see whether a state, on average, significantly transmits or receives shocks, we calculated

t-tests for each state and determined the 99% confidence interval (see Figure 3). Figure 3 shows

4Heightened connection during the global financial crisis suggests that the housing market across the US states
and regions despite its heterogeneities, comove strongly during periods of slowdown in the market. We investigated
this issue further, by estimating estimating a Bayesian dynamic factor model (DFM) to deduce the importance of the
common component in the house price movements relative to state-specific shocks as in Del Negro and Otrok (2007).
Once we recovered this national component from our year-on-year growth rate of real house prices, and computed
the correlation with the total connectedness measures derived from the four models, we found negative correlation in
all the cases in a statistically significant manner. Complete details of these results are available upon request from
the authors. It must be noted that, similar to our finding, Ngene et al. (2017) found support for the hypothesis that
herding effects at the state-level US housing returns are more prominent during the recession periods.
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that the VAR approach based on the OLS and Ridge regressions sometimes differ significantly

from the VAR approach based on the Lasso and Elastic Net regressions. We can see this for SD,

HI, and NE. This outcome occurs because the OLS does not penalize the parameter estimates at

all and the Ridge regression squared parameters are penalized parameter estimates by a squared

factor. We know that the parameters in a VAR model usually vary between zero and one. Hence,

the penalization of the Ridge regression does not exert much of a penalty unless the parameter

estimate is close to one. The Lasso regression, however, penalizes parameters between zero and

one more severely as the absolute value and not its squared value is penalized. The fact that the

Elastic Net based VAR model closely approximates the Lasso based VAR results indicates that the

Elastic Net parameter gives the Lasso penalization term more weight than the Ridge regression

parameter. Thus, the results of the Elastic Net approach should provide the most reliable findings

as the estimation process allows in every step to decide whether the Elastic Net should weight the

results of the Lasso or the Ridge regression more. This illustrates that the Lasso regression should

be preferred over Ridge regression in applied time series econometrics that use the VAR model or

other time-series modeling techniques, where the parameter estimates should lie between zero and

one. This theoretical consideration is supported by the data as the Ridge regression results differ

the most from all others and is a valuable information for researchers and practitioners.5

[Insert Figure 3 around here]

5.2 Regional-Specific Connectedness Results

We aggregate the state spillovers to the regional level to get an overview of the interdependen-

cies across regions Figure 4 illustrates the dynamic total connectedness for each region without

considering the interregional spillovers. The findings suggest that the Northeastern and Southern

regions appear highly connected throughout the period of analysis whereas the Midwestern and

5Hence, from here onwards we will disregard the Ridge regression results and mainly focus on the findings of the
Elastic Net model. Empirical results of the other models are available upon request.
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Western regions appear less interconnected and, hence, exhibit a lower housing market risk. This

has important implications for portfolios and risk management as the risk of MBSs and CDOs can

be reduced by investing more into Western and Midwestern regional mortgages as the markets are

not as highly synchronized as the markets in the Northeastern and Southern regions. Notably, the

subprime market crisis of 2006 that led to the Great Recession and Financial Crisis 2008-2009.

It appears that the subprime market crisis started in the Northeastern and Southern regions and

fueled over time the risk in the Midwestern region. Moreover, for the Western region, the sharp

increase could indicate that its risk was mainly caused by the contagion effect of the other three

regions. Further, the Western region lived through another increase in market risk in 2012, which

could mark the further deterioration of the U.S. housing market via defaulted loans. Finally, after

2015, all regions start decreasing together until the end of the sample period, whereby the level of

risk concerning the Midwestern and Western regions still substantially exceeds the pre-crisis period.

[Insert Figure 4 around here]

In addition to intraregional connectedness, the spillovers across regions are also of major in-

terest. Figure 5 illustrates interregional dynamic total connectedness, which shows a substantial

increase in 2008 due to the U.S. subprime market crisis. This sudden increase in the U.S. housing

interrelatedness shows the contagious effect the crisis had nationwide.

[Insert Figure 5 around here]

Table 1 reports the average connectedness measures on a regional level – Northeast, Midwest,

South, and West. We find that the Northeastern region is the main receiver of shocks whereas the

South is the main transmitter of shocks followed by the Western and Midwestern regions.

[Insert Table 1 around here]
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The OLS, Lasso, and Elastic Net results confirm that the South is the net pairwise transmitter

to all others followed by the West and Midwestern region living the Northeastern region as the sole

receiver of all net pairwise spillover shocks. This behavior is visualized in Figure 6.

[Insert Figure 6 around here]

5.3 Northeastern, Southern, Midwestern, and Western Regional Spillovers

Finally, to complete the picture, we isolate each region and identify the spillover effects within

each region by itself. Figures 7, 8, 9 and 10 show the spillovers from the Northeastern, Southern,

Midwestern, and Western regions, respectively, on a state-by-state basis. In the Northeast region,

New Hampshire (NH) is the largest net transmitter of shocks whereas New York (NY) is the largest

net receiver of housing price shocks. Comparing our findings to all states (Figure 1) and regional

(Figure 6) spillover effects, we note that New York State is the one constant as a net receiver of

spillover effects from all states and all regions.

In the Southern region, Arkansas (AR) is the largest transmitter of shocks whereas North Car-

olina (NC) and West Virginia (WV) are the largest receivers of shocks. Comparing our findings

to all states (Figure 1) and regional (Figure 6) spillover effects, we note that Arkansas is the one

constant as a net transmitter of spillover effects from all states and all regions, although when we

consider all states Arkansas trails behind Ohio as a net transmitter.

In the Midwestern region, Ohio (OH) is the largest transmitter of shocks whereas Iowa (IA) and

Minnesota (MN) are the largest receivers of shocks. Comparing our findings to all states (Figure

1) and regional (Figure 6) spillover effects, we note that Ohio is a net transmitter of spillover

effects from all states but a net receiver from the South and the West and a net transmitter to the

Northeast when we consider the regions.

In the Western region, Colorado (CO) and Washington (WA) are the largest transmitters of

shocks whereas Oregon (OR) is the largest receiver of shocks. Comparing our findings to all states
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(Figure 1) and regional (Figure 6) spillover effects, we note that Colorado and Washington are net

transmitters of spillover effects and Oregon is a net receiver of spillover effects from all states and

all regions. In this case, however, the net transmitter status of Colorado and Washington and the

net receiver status of Oregon strengthen when we examine the isolated region of the West.

[Insert Figure 7, 8, 9 and 10 around here]

In sum, returning to Figure 2 and the description of the largest senders and receives of shocks for

all 50 states and the District of Columbia simultaneously, we see a large overlap with the regional

findings.

6 Conclusions

We examine the connectedness between real housing return shocks across the 50 U.S. states and the

District of Columbia as well as four regions (Midwest, Northeast, South, and West) using a VAR

modeling approach that selects parameter estimates using Lasso, Ridge, and Elastic Net methods.

Total connectedness steadily increased since 1995, peaking in 2007 and remained at that level

until 2005 when it slowly began decreasing. The Lasso, Ridge, and Net Elastic methods of penal-

ization trended generally together, not differing by too much. The standard OLS results, however,

produced higher total connectedness than the other three methods during the beginning of the

sample period through 2007. Then, dynamic total connectedness did not differ much across the

four models for the high volatility period followed by the Great Recession and Financial Crisis of

2007-2009.

On a state basis, the main transmitters of shocks include Arkansas, Colorado, Ohio, and Wash-

ington whereas the main receiver of shocks include Hawaii, New York, North Carolina, West Vir-

ginia, and Maine.

At the regional level, we find that the South is a net transmitter of real housing return shocks

to the other three regions, whereas the Northeast is a net receiver of those shocks. The West is
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a net receiver of shocks from the South and a net transmitter of shocks to the Midwest and the

Northeast. Finally, the Midwest is a net transmitter of shocks to the Northeast and a net receiver

of shocks from the South and the West.

From the perspective of policy decisions, policymakers need to monitor the behavior of housing

market movements in states like Arkansas, Colorado, Ohio, and Washington, and the South region

closely, as these markets serve as transmitters of shocks. At the same time, these markets also

provide investment opportunities for housing market investors. In this regard, note that with

overall market connectedness being high during periods of crises, diversification opportunities for

investors across regional markets diminish.

Future research could examine the national and regional factors that drive connectedness.

Clearly, this information will help policymakers to design sector-specific policies.6

6Preliminary analysis using national-level variables indicate that measures of economic (Jurado et al., 2015) and
real estate uncertainties Nguyen Thanh et al. (2018) are more important in driving connectedness than macroeco-
nomic variables such as output growth, inflation, and interest rates. These results are available upon request from
the authors.
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Table 1: Aggregated Regional Connectedness Table

Northeast South Midwest West FROM

Northeast 62.4 12.2 12.3 13.1 37.6
South 7.3 72.5 9.9 10.3 27.5
Midwest 6.9 11.6 70.5 11.0 29.5
West 6.7 11.1 10.6 71.6 28.4

TO 20.9 34.9 32.7 34.4 122.9
Net Spillovers -16.7 7.5 3.2 6.0 TCI
Net Pairwise Transmission 0 3 1 2 41.0
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Figure 1: Dynamic Total Connectedness

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.

Figure 2: Net Total Directional Connectedness Map

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.
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Figure 3: Average Net Total Directional Connectedness

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.
The means and their corresponding 95% confidence intervals are shown.
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Figure 4: Intraregional Dynamic Total Connectedness

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.

Figure 5: Interregional Dynamic Total Connectedness

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.
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Figure 6: Regional Dynamic Total Connectedness

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.
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Figure 7: Northeastern Net Total Dynamic Connectedness (I)

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.
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Figure 8: Southern Net Total Dynamic Connectedness (II)

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.

Figure 9: Midwestern Net Total Dynamic Connectedness (III)

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.
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Figure 10: Western Net Total Dynamic Connectedness (IV)

Notes: Results are based on all 120 month rolling-window models with a 10 step-ahead forecast horizon.
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