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Abstract: This paper proposes a hybrid modelling approach for forecasting returns and 
volatilities of the stock market. The model, called ARFIMA-WLLWNN model, integrates 
the advantages of the ARFIMA model, the wavelet decomposition technique (namely, the 
discrete MODWT with Daubechies least asymmetric wavelet filter) and artificial neural 
network (namely, the LLWNN neural network). The model develops through a two-phase 
approach. In phase one, a wavelet decomposition improves the forecasting accuracy of 
the LLWNN neural network, resulting in the Wavelet Local Linear Wavelet Neural 
Network (WLLWNN) model. The Back Propagation (BP) and Particle Swarm Optimization 
(PSO) learning algorithms optimize the WLLWNN structure. In phase two, the residuals 
of an ARFIMA model of the conditional mean become the input to the WLLWNN model. 
The hybrid ARFIMA-WLLWNN model is evaluated using daily closing prices for the Dow 
Jones Industrial Average (DJIA) index over 01/01/2010 to 02/11/2020. The 
experimental results indicate that the PSO-optimized version of the hybrid ARFIMA-
WLLWNN outperforms the LLWNN, WLLWNN, ARFIMA-LLWNN, and the ARFIMA-
HYAPARCH models and provides more accurate out-of-sample forecasts over validation 
horizons of one, five and twenty-two days. 
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Research highlights 

• A wavelet decomposition improves the forecasting accuracy of the LLWNN model. 

• A hybrid method forecasts the DJIA series.  

• The hybrid model, called ARFIMA-WLLWNN, combines parametric ARFIMA 

model, Wavelet decomposition, and non-parametric LLWNN methods. 

• Applying two learning algorithms, BP and PSO, obtains optimum WLLWNN 

structure to avoid overfitting. 

• The PSO-optimized version of the hybrid ARFIMA-WLLWNN outperforms the 

LLWNN, WLLWNN, ARFIMA-LLWNN, and the ARFIMA-HYAPARCH models. 
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1. Introduction 

Forecasting the stock market is a not a trivial task. On the contrary, it is one of the most 

challenging applications in economics and finance. The stock market is a complex, 

dynamic allocative mechanism (Baumol, 1965), characterized by nonlinear and complex 

dimensionalities (Guresen et al., 2001; Lee and Chiu, 2002), high data intensity and noise 

(Chang et al., 2009), high degree of uncertainty and hidden relationships (Khan et al., 

2011; Tay and Cao, 2001). A dominant paradigm in economics and finance, the efficient 

market hypothesis (Fama, 1965) does not support stock market predictability. The 

efficient market hypothesis (EMH) associates with the ‘’random walk,’’ a term rather 

loosely used in the economics and finance literature to characterize a price series in which 

the price change in t is unaffected by the price change in t-1 and exhibits no memory 

(Mandelbrot, 1971). The random-walk model conveys the idea that for unimpeded 

information flows, stock prices immediately reflect that information. Then, tomorrow’s 

price change will reflect only tomorrow’s news and will not reflect price changes today. 

But news is by definition unpredictable and, thus, resulting price changes must be 

unpredictable and random. As a result, prices fully reflect all known information, ‘’and 

even uninformed investors buying a diversified portfolio at the tableau of prices given by 

the market will obtain a rate of return as generous as that achieved by the experts’’ 

(Malkiel, 2003, p. 59).  

In spite of the compelling theoretical appeal of the EMH and the random-walk 

paradigm, a growing interest in the last few decades surrounds the development and 

application of stock market forecasting models with daily and intra daily data. This 

interest follows along many avenues, including long-memory models, artificial-neural-

network (ANN) methods, and wavelet decomposition techniques. 
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Long memory in financial time series reflects the existence of fractional dynamics, 

i.e., persistent temporal dependencies in the data. This phenomenon, long-memory 

processes, exhibit hyperbolic decay in the autocovariance function, which is not 

absolutely summable in the time domain, and in the frequency domain by the high 

spectral density at low frequency. In contrast, short memory processes exhibit 

exponential decay of the autocovariance function, which is absolutely summable in the 

time domain, and constant spectral density in the frequency domain. Classical time-series 

models, namely ARIMA models, cannot capture the long memory phenomenon.  

Long memory in the conditional mean of stock market returns has been 

investigated extensively (see, e.g., Gil-Alana, 2006; Henry, 2002; Aye et al., 2014; Lopez-

Herrera et al., 2012; Bhardwaj and Swanson, 2006; Barkoulas and Baum, 1996; Barkoulas 

et al., 2000; Bourbonnais and Maftei, 2012) using the autoregressive fractionally 

integrated moving average ARFIMA (p, d, q) model developed by Granger and Joyeux 

(1980) and Hosking (1981). ARFIMA models provide parsimonious accounting for long-

range dependence, by the addition of a single parameter to classical ARMA models. 

Importantly, they allow the simultaneous modeling of short-term processes (by the 

combination of the p and q parameters), and long-range dependence through the d 

parameter, and as such the isolation of their respective effects. Finally, the ARFIMA 

parameters can be estimated using exact maximum likelihood, allowing the significance 

of the difference of d from 0 to be tested. As such, ARFIMA modelling can effectively detect 

the presence of long-range dependence in time series. Moreover, the estimation of d 

allows the quantification of the intensity of the long-range correlations within the series, 

as d relates to the spectral exponent β by the simple relation β = 2d. Long memory in stock 

market returns poses a serious challenge to the EMH as it implies significant 
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autocorrelations between returns that, although they are distant in time, can help predict 

future returns. Long memory in stock market returns also means that the stock market 

does not immediately respond to new information, but reacts to it in a gradual manner 

over time 

Modeling long memory in volatility has also recently attracted a great deal of 

attention from finance literature. GARCH models, used extensively in empirical analysis, 

do not account for long memory in volatility The property of long memory in the 

conditional variability of stock market returns has been investigated extensively using 

fractionally integrated (FI) GARCH models or FIGARCH (Baillie et al., 1996) and its follow-

up extensions, including fractionally Integrated Asymmetric Power ARCH (FIAPARCH) 

models (Tse, 1998), Hyperbolic GARCH (HYGARCH) models (Davidson, 2004), and 

Hyperbolic APARCH (HYAPARCH) models (Dark, 2006, 2010; Schoffer, 2003). Long 

memory in volatility occurs when the effects of volatility shocks decay slowly. The 

presence of long memory in volatility creates serious problems with the application of 

standard GARCH models, as GARCH models are either at the I(0) integration level (or 

mean-reverting) or I(1) integrated level (or non-mean-reverting).  

Long memory in return volatility (see, e.g., Bollerslev and Mikkelsen, 1996; Gurgul 

and Wojtowicz, 2006; Floros et al., 2007; Cavalcante and Assaf, 2005; Kang and Yoon, 

2007; Killic, 2004; Kasman and Torun, 2007; Jefferis and Thupayagale, 2008; McMillan 

and Thupayagale, 2008, 2009; Lin and Fei, 2013; Kang et al., 2010; Disario et al., 2008; 

Sadique and Silvapulle, 2001; Conrad, 2007) implies that financial markets do not quickly 

forget volatility shocks. The FIGARCH model allows for fractional integration and 

estimates an intermediate process between the GARCH model and the Integrated GARCH 

(IGARCH) model. The FIGARCH model derives its short-run dynamics from the 
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conventional GARCH parameters. In contrast to the GARCH model where shocks to the 

conditional variance dissipate quickly at an exponential rate, shocks in the FIGARCH 

domain exhibit hyperbolic decay. It also generalizes GARCH and the integrated GARCH 

(IGARCH) formulations, which prove unsuitable to capture this feature of the data. In fact, 

the GARCH model only accounts for short memory, while the IGARCH considers infinite 

memory, which is an unrealistic situation. By introducing a fractional differencing 

parameter d, the FIGARCH model allows long memory in the observed data for 0 < d < 1 

and accommodates both the GARCH (d = 0) and the IGARCH (d = 1) frameworks as special 

cases.  

The literature on long memory in the conditional mean (Granger and Joyeux, 1980; 

Hosking, 1981) and conditional variance (Baillie et al, 1996) have evolved independently 

of each other. Long-memory phenomena, however, often appear in both the conditional 

mean and conditional variance simultaneously. Teyssiere (1997) introduced dual long-

memory models, where the first-order conditional dependency structure employs the 

ARFIMA model, while the second-order conditional dependency structure employs the 

FIGARCH model. Teyssiere (1997) shows through Monte Carlo simulations that ignoring 

long memory in the conditional mean of a dual long memory process leads to significant 

biases in the estimation of the conditional volatility process. The joint ARFIMA-FIGARCH 

dual long-memory model incorporates two parameters jointly driving the long memory 

in returns and in volatility (see, e.g., Kang and Yoon, 2007; Kasman and Torun, 2007; 

Korkmaz et al., 2009; Kasman et al., 2009; Tan and Khan,2010; Turkyilmaz and Balibey, 

2014; Jefferis and Thupayagale, 2008 for stock market applications). In general, evidence 

of long memory in returns is mixed, and not uniform across stock markets. In contrast, 

evidence of long memory in volatility proves systematic.  
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The FIGARCH model suffers from some drawbacks, mainly because it is not 

covariance stationary and does not allow for asymmetric responses of volatility to 

positive and negative shocks. These issues motivated the development of new models, 

such as Fractionally Integrated Asymmetric Power ARCH (FIAPARCH) models (Tse, 

1998), which allows for long memory and asymmetries in volatility, the Hyperbolic 

GARCH (HYGARCH) model (Davidson, 2004), where shock also decay hyperbolically and 

allow the existence of a finite variance, and its asymmetric version, the Hyperbolic 

APARCH (HYAPARCH) model (Dark, 2006, 2010 and Schoffer, 2003). Applications of 

these models to stock markets are, however, sparse. Dual memory evidence based on 

ARFIMA-HYGARCH models is provided, among others, by Conrad (2007), Kasman et al. 

(2009) and Chikki, Peguin-Feissolle, and Terraza (2013). Long memory evidence based 

on ARFIMA-FIAPARCH models is provided, among others, by Duppati et al. (2017) while 

long memory evidence based on ARFIMA-HYAPARCH models is provided by Ojeda 

Echeverri and Castano Velez (2014). 

In the last two decades, the ability of artificial neural networks (ANNs) to forecast 

the stock market has received extensive investigation (see, e.g., Leung et al., 2000; Chen 

et al., 2003; Kim and Lee, 2004; Kara et al., 2011; Guresen et al., 2011; Moghaddam et al., 

2016;; Qiu and Song ., 2016). Artificial neural networks (ANNs) are a powerful tool in 

modern quantitative finance and have emerged as a powerful statistical modeling 

technique. Several distinguishing features of ANNs make them valuable and attractive in 

quantitative finance and forecasting, especially for nonlinear environments. ANN models 

effectively simulate and describe the dynamics of non-stationary time series due to their 

unique non-parametric, noise-tolerant and highly adaptive characteristics. First, ANNs 

have the capacity of performing complex nonlinear modeling without a priori knowledge 
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of the underlying data generating processes and relationships. ANNs can reason, learn 

and generalize in an uncertain and imprecise environment. They can derive meaning from 

complicated and imprecise data, extract patterns and detect trends that are too complex 

or too hidden to be revealed by econometric models; can emulate certain performance 

characteristics of the biological functions of the human brain, and can learn from its 

environment and adapt in an interactive manner similar to biological counterparts (Ham 

and Kostanic, 2001). Second, ANNs are universal function approximations. They can 

flexibly map nonlinear functions and can approximate any continuous function with 

arbitrary desired accuracy (Hornik,1993; Hornik et al., 1989). Third, ANNs can learn and 

generalize from experience. After learning the data presented, ANNs can often correctly 

infer the unseen part of a population, even if the sample data contain highly noisy 

information. Neural networks can capture the underlying pattern or autocorrelation 

structure within a time series, even when the underlying law governing the system is 

unknown or too complex to describe. The neural network is trained from a mass of 

historical data and tries to discover hidden dependencies to use for prediction into the 

future.  

Ever since McCulloch and Pitts (1943) pioneering work, an array of artificial neural 

network models, such as back-propagation neural network (Rumelhart, Hinton and 

Williams, 1986), radial basis function neural network (Broomhead and Lowe, 1988), 

wavelet neural network (Zhang and Benveniste, 1992; Daubechies, 1990), Kohonen 

neural network (Kohonen, 1990), and Hopfield neural network (Hopfield and Tank , 

1985), have been proposed and investigated. Among all these methods, wavelet neural 

network (WNN) has shown its advantages in regression accuracy and fault-tolerant 

ability due to the adoption of a wavelet transform. In contrast to the traditional neural 
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network, which employs common sigmoid activation functions, wavelet neural network 

(WNN) models employ nonlinear wavelet basis functions (called wavelets), which are 

localized in both the time and frequency domains (Gencay et al., 2002). In contrast to the 

standard time- series econometric models, which consider at most two (ad hoc) time 

scales, the short and long run, and rely on model parameters, the wavelet approach uses 

a model-free methodology. Unlike the Fourier transform that can only provide frequency 

information, wavelets can keep track of time and frequency information. When 

considering a Fourier transform of a signal, it is impossible to tell when a particular event 

took place. The Fourier transform loses information when it transforms the data to the 

frequency domain. Wavelet analysis, instead, allows the use of long time intervals, where 

we want more precise low-frequency information, and shorter time intervals, where we 

want high-frequency information (Reboredo and Rivera-Castro, 2014; Gülerce and Ünal, 

2016). An additional appealing feature of wavelet modeling is that, unlike Fourier 

transform and standard econometric time series models, the wavelet transform does 

not need stationarity (Burrus et al., 1998). Wavelets provide a powerful tool for the 

analysis and synthesis of data from long-memory processes. At high scales, the wavelet 

focuses on short-run phenomena. At low scales, the wavelet identifies long-run periodic 

behavior. By moving from low to high scales, the wavelet zooms in on a process behavior 

at a point in time, identifying singularities, jumps, and cusps. Alternatively, the wavelet 

can zoom out to reveal the long, smooth features of a series. 

The curse of dimensionality, i.e., the problem where the number of hidden units 

rises exponentially as the number of input dimensions increases, is the main problem of 

WNN. To solve the dimensionality problem, Wang et al, (2000) proposed a WNN 

https://link.springer.com/article/10.1186/s40854-019-0135-3#CR15
https://link.springer.com/article/10.1186/s40854-019-0135-3#CR35
https://link.springer.com/article/10.1186/s40854-019-0135-3#CR17
https://link.springer.com/article/10.1186/s40854-019-0135-3#CR7
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incorporating a local linear model (LLWNN), where local linear model replaces the 

connection weights between the hidden layer and output layer of conventional WNN.  

In this paper, we propose an innovative hybrid forecasting model that integrates 

the advantages of the wavelet decomposition (i.e., the MODWT with Daubechies least 

asymmetric wavelet filter) and the LLWNN model. The model develops through a two-

phase approach. In phase one, use of wavelet decomposition improves the forecasting 

accuracy of the LLWNN, resulting in the Wavelet Local Linear Wavelet Neural Network 

(WLLWNN) model. We apply the BP and PSO learning algorithms to optimize the 

WLLWNN structure and avoid overfitting. In phase two, the residuals from an ARFIMA 

model become inputs to the WLLWNN model. We evaluate the hybrid ARFIMA-WLLWNN 

model using daily closing prices for the Dow Jones Industrial Average (DJIA) index over 

the period from January 1, 2010 to February 11, 2020.  

The rest of the paper is laid out as follows. Section 2 provides the theoretical 

background and discusses the three main problems in the design of WLLWNN -- the 

wavelet decomposition, the learning algorithms for neural network optimization, and the 

architecture of the WLLWNN model. These problems help to determine an optimal 

WLLWNN architecture, to arrange the windows of wavelets, and to find the proper 

orthogonal and non-orthogonal wavelet basis. Section 3 outlines the hybrid ARFIMA-

WLLWNN model. Section 4 describes the data and the main results. Section 5 evaluates 

the predictive performance of the hybrid ARFIMA-WLLWNN model against the LLWNN, 

WLLWNN, ARFIMA-LLWNN and the ARFIMA-HYAPARCH models. The experimental 

results indicate that the PSO-optimized hybrid ARFIMA-WLLWNN provides more 

accurate out-of-sample forecasts over validation horizons of one, five and twenty-two 
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days using three evaluation criteria, namely MAE, MSE, and RMSE. Finally, concluding 

remarks appear in the last section. 

2. Econometric Framework and Methodology 

2.1 Wavelet theory 

The Fourier theory models a signal as a sum of sines and cosines. The Fourier transform, 

however, only provides frequency resolution and no time resolution. That is, one cannot 

identify the timing of the signal. Wavelet theory overcomes this problem.  

The wavelet technique allows the decomposition of a signal into several 

components in multiple scales. In wavelets, low and high pass filters are applied, 

extracting the low (approximations) and high (details) frequencies of the signal for the 

level of decomposition chosen, whose sum equals the original series. These constitutive 

components possess improved statistical properties compared to the original series and, 

consequently, possess improved forecasting accuracy. Applied to artificial neural network 

(ANN) models for time-series analysis and forecasting, wavelets decompose the original 

time-series signal into smoother components and then apply the most appropriate ANN 

prediction model for each component individually. In this context, the low frequency 

components contain the general trends of the series and can explain the long-term 

behavior of the series, while the high frequency components can explain the short-term 

behavior of the series. That is, wavelet analysis decomposes a given time series on a scale-

by-scale basis. Using dilation and translation operations, this technique allows a flexible 

time-frequency resolution, and can define local features of a given function in a 

parsimonious way.  
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Wavelets are orthonormal bases attained through dyadically dilating and 

translating a pair of specially constructed functions denotes by 𝜑 and 𝜓, which are named 

father and mother wavelets, respectively, given by: 

∫ 𝜑(𝑡)𝑑𝑡 = 1,  and        (1) 

∫ 𝜓(𝑡)𝑑𝑡 = 0.        (2) 

The smooth low-frequency part of the time series is defined by the father wavelet 

while the detail high-frequency components are defined by the mother wavelet. The 

obtained wavelet basis is: 

𝜑𝑗,𝑘(𝑡) = 2𝑗/2𝜑(2𝑗𝑡 − 𝑘) and      (3) 

𝜓𝑗,𝑘(𝑡) = 2𝑗/2𝜓(2𝑗𝑡 − 𝑘),       (4) 

where 𝑗 = 1, … , 𝐽 indexes the scale and 𝑘 = 1, … , 2𝑗  indexes the translation. The 

parameter 𝑗 is adopted as the dilation parameter of the wavelet’s function. This parameter 

𝑗 adjusts the support of 𝜓𝑗,𝑘(𝑡) to locally detect the features of high or low frequencies. 

The parameter 𝑘 relocates the wavelets in the temporal scale.  

The wavelet expansion includes the special localization property, where the 

coefficient of 𝜓𝑗,𝑘(𝑡) reveals information content of the function at approximate location 

𝑘2−𝑗and frequency 2−𝑗 . We can extend any series over the wavelet basis as a linear 

combination at arbitrary level 𝐽0 ∈ 𝛮 through different scales of the type: 

( ) ( ) ( )


+=
Jj k

kjkjkJ

k

kJ tdtstX ,,,, 00
 ,     (5) 

where 𝜑𝐽0,𝑘 is a scaling function with the corresponding coarse scale coefficients 𝑠𝐽0,𝑘 and 𝑑𝑗,𝑘 

are the detail coefficients given respectively by 𝑠𝐽0,𝑘 = ∫ 𝑋(𝑡)𝜑𝐽0,𝑘(𝑡)𝑑𝑡 and 𝑑𝑗,𝑘 =

∫ 𝑋(𝑡)𝜓𝑗,𝑘(𝑡)𝑑𝑡. These coefficients measure the contribution of the corresponding 

wavelet to the function. Equation (5) denotes the decomposition of 𝑋(𝑡) into orthogonal 
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components at different resolutions and constitutes the wavelet multiresolution analysis 

(MRA).  

The recursive MRA scheme,1 which is implemented by a two-channel filter bank 

(i.e., a high-pass wavelet filter {𝒉𝒍,  𝒍 = 𝟎, … , 𝑳 − 𝟏} and its associated low pass scaling 

filter {𝒈𝒍,  𝒍 = 𝟎, … , 𝑳 − 𝟏} satisfying the quadrature mirror relationship given by 𝒈𝒍 =

(−𝟏)𝒍+𝟏𝒉𝑳−𝟏−𝒍 for 𝒍 = 𝟎, … , 𝑳 − 𝟏, where 𝑳 ∈ 𝜨 is the length of the filter. Daubechies 

(1992) constructed a class of wavelet functions that form an orthonormal basis of 

piecewise constant functions of length one. The Daubechies wavelet includes many 

desirable properties. For our purposes, it possesses the smallest support for a given 

number of vanishing moments (the Daubechies compactly supported wavelet filters) and 

distinguishes between two choices; the extremal phase filters 𝑫(𝑳) and the least 

asymmetric filters 𝑳𝒂(𝑳).  

2.2 Learning Algorithms for neural network optimization 

Recently, researchers widely apply the artificial neural networks (ANNs) methodology, 

among computational intelligence systems, for estimating functions and forecasting. The 

main advantage of ANNs over other nonlinear models is that they are universal 

approximations that can approximate a large class of functions with a high degree of 

accuracy (Chen et al. 2003 and Zhang and Qi, 2005). Their performance relates to the 

parallel processing of the information from the data. In addition, no prior assumption is 

required in the building process. Instead, the network model largely depends on the 

features of the data. 

 

1 In practical applications, we invariably deal with sequences of values indexed by integers rather than 
functions defined over the entire real axis using short sequences of values referred to as wavelet filters. 
Hence, the wavelet analysis measured through a filtering perspective is then well suited to time series 
analysis. Mallat’s Multiresolution Analysis (MRA) is considered as a robust theoretical framework for 
critically sampled wavelet transformation (for more details, see Mallat 1989). 

http://www.sciencedirect.com/science/article/pii/S0957417409004850#bib14


14 

 

The training process for ANNs is generally complicated due to the high 

dimensionality. Until today, several researchers choose to adopt Back Propagation (BP) 

algorithms in the training of the ANNs. BP measures the output error, computing the 

gradient of this error and adjusting the weights of the network in the direction of 

descending gradient. Thus, a major difficulty of this algorithm is that it searches for 

optimal weights, which strongly depends on initial weights. More precisely, if these 

optimal weights are located close a local minimum; the algorithm becomes stuck at a sub-

optimal solution. Therefore, the conventional gradient search method can easily converge 

at local optima.  

Neural network researchers recommend numerous solutions to overcome the 

trapping by a local minimum and the slow convergence rate. To address this issue, we 

propose the Particle Swarm Optimization (PSO) as an evolutionary algorithm that performs 

well in various optimization problems. We use the BP and PSO algorithms to optimize the 

WLLWNN model. 

2.3 The Back Propagation (BP) algorithm  

The BP algorithm begins randomly initialized parameters. Then the algorithm measures the 

error between the output and real values and finally adjusts the weights in the direction of the 

descendent gradient. The learning rate controls the speed of the training process. For high rates, 

the ANN model will learn more quickly, but the learning process will never converge if this 

rate is too high. In contrast, for low rates, the ANN model may converge to a local minimum 

instead of the global minimum.  

The equations of the BP algorithm appear in Burton and Harley (1994) and we briefly 

describe them below. The objective function to minimize is given as follows: 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.B.%20Burton.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.G.%20Harley.QT.&newsearch=true


15 

 

𝐸 =
1

2
[𝑦𝑡 − 𝜔1,0𝜙1(𝑥) − 𝜔1,1𝑝1𝜙1(𝑥) − ⋯ 𝜔2,0𝜙2(𝑥)𝜔2,1𝑝2𝜙2(𝑥) −

               𝜔𝑙,0𝜙𝑙(𝑥)𝜔𝑙,1𝑝1𝜙𝑙(𝑥) − ⋯ 𝜔𝑙,𝑝𝑝𝑝𝜙𝑙(𝑥)],    (6) 

where 𝑦𝑡 is the desired value, 𝜙(𝑥) is the active wavelet functions, 𝜔1,0 represents the 

connection weight, p is the number of inputs (𝑖 = 1,2, . . . . 𝑝), and l is the number of the hidden 

units (𝑗 = 1,2, . . . . 𝑙). The model updates the weight from the 𝑖𝑡ℎ to the (𝑖 + 1)𝑡ℎiteration 

(i.e., from 𝜔𝑡 to 𝜔𝑡+1) as follows: 

 𝜔𝑡+1 = 𝜔𝑡 + 𝛥𝜔𝑡 = 𝜔𝑡 + (𝑟
𝜕𝐸𝑡

𝜕𝜔𝑡
),      (7) 

where 𝑟 is the learning rate adopted in the WLLWNN model. The following equations 

describe 
𝜕𝐸

𝜕𝜔
 for all weights: 

𝜕𝐸

𝜕𝜔𝑖,0
= 𝜔𝑖,0 + 𝑟. 𝑒. (

1

2
) . (𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑝

2). 𝑒𝑥𝑝( − ((𝑥1 − 𝑐𝑖)2 + 

(𝑥2 − 𝑐𝑖)2 + ⋯ + (𝑥𝑝 − 𝑐𝑖)2)), and     (8) 

for ∀𝑗 ≠ 0; 

       
𝜕𝐸

𝜕𝜔𝑖,𝑗
= 𝜔𝑖,𝑗 + 𝑟. 𝑒. (

1

2
) . (𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑛

2). 𝑒𝑥𝑝( − ((𝑥1 − 𝑐𝑖)2 + 

(𝑥2 − 𝑐𝑖)2 + ⋯ + (𝑥𝑛 − 𝑐𝑖)2)). 𝑥𝑗.         (9) 

That is, 

       
𝜕𝐸

𝜕𝜔1,0
= 𝜔1,0 + 𝑟. 𝑒. (

1

2
) . (𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑝

2). 𝑒𝑥𝑝( − ((𝑥1 − 𝑐1)2 + 

(𝑥2 − 𝑐1)2 + ⋯ + (𝑥𝑝 − 𝑐1)2)),      (10) 

       
𝜕𝐸

𝜕𝜔1,2
= 𝜔1,2 + 𝑟. 𝑒. (

1

2
) . (𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑝

2). 𝑒𝑥𝑝( − ((𝑥1 − 𝑐1)2 + 

(𝑥2 − 𝑐1)2 + ⋯ + (𝑥𝑝 − 𝑐1)2)). 𝑥2,      (11) 

     
𝜕𝐸

𝜕𝜔2,0
= 𝜔2,0 + 𝑟. 𝑒. (

1

2
) . (𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑝

2). 𝑒𝑥𝑝( − ((𝑥1 − 𝑐2)2 + 

(𝑥2 − 𝑐2)2 + ⋯ + (𝑥𝑝 − 𝑐2)2)),      (12) 

    
𝜕𝐸

𝜕𝜔2,1
= 𝜔2.1 + 𝑟. 𝑒. (

1

2
) . (𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑝

2). 𝑒𝑥𝑝( − ((𝑥1 − 𝑐2)2 + 
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(𝑥2 − 𝑐2)2 + ⋯ + (𝑥𝑝 − 𝑐2)2)). 𝑥1,      (13) 

where 𝑒 is the error between output values �̑� and real values y (𝑒 = �̑� − 𝑦) and the other 

weights are also updated in the same way. 

2.4 The Particle Swarm Optimization (PSO) algorithm 

Eberhart and Kennedy (1995) developed the PSO as an optimization technique. Compared to 

other learning algorithms, the PSO clearly exhibited its efficiency. The PSO algorithm is 

established through simulation of bird flocking in two-dimensional space. Each agent’s position 

is denoted by a point in the 𝑋𝑌 plain and the velocity is represented by 𝑣𝑥 and 𝑣𝑦. The position 

and velocity information determines the agent position’s adjustment. The Bird flocking 

optimizes the objective function. Each agent knows its best value so far (𝑝𝑏𝑒𝑠𝑡) and its 𝑋𝑌 

position. In addition, each agent knows the group’s best value so far (𝑔𝑏𝑒𝑠𝑡) among (𝑝𝑏𝑒𝑠𝑡). 

In sum, each agent tries to adjust its position using the following information.  

(a) The distance between current position and 𝑝𝑏𝑒𝑠𝑡.  

(b) The distance between the current position and 𝑔𝑏𝑒𝑠𝑡.  

We can update each agent’s velocity by the following equation:  

𝑣𝑖
𝑝+1

= 𝑤𝑣𝑖
𝑝

+ 𝑐1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑝𝑏𝑒𝑠𝑡1 − 𝑠𝑖
𝑝

) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑠𝑖
𝑝

), (14) 

where 𝑣𝑖
𝑝

 is the velocity of agent 𝑖 at iteration 𝑝, 𝑤 is the weight function, 𝑐1 and 𝑐2 are 

weighting factors i.e., acceleration coefficients controlling the influence of a particle’s 

historical best location and the swarm’s historical best location on its next velocity, 

respectively. 𝑠𝑖
𝑝

 is the current position of agent 𝑖 at iteration 𝑝, 𝑝𝑏𝑒𝑠𝑡𝑖  is the 𝑝𝑏𝑒𝑠𝑡 of agent 

𝑖 and 𝑔𝑏𝑒𝑠𝑡 is the 𝑔𝑏𝑒𝑠𝑡 of the group, and 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two separately generated 

random numbers in the uniform range [0,1].  

The first part of equation (14), i.e., 𝑐1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑝𝑏𝑒𝑠𝑡1 − 𝑠𝑖
𝑝

), is called the 

cognitive component, i.e., represents the cognitive perception of the particle, while the 
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second part of equation (14), i.e., 𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑠𝑖
𝑝

), is called the social 

component, i.e., emulates the social interaction among particles. In other words,, the 

cognitive component is for self-cognition and the social component is for social learning. 

The velocity, which progressively approaches 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡, can be computed 

using the above equation. The actual position, which characterizes the searching point in 

the solution space, can be updated using the following equation:  

𝑠𝑖
𝑝+1

= 𝑠𝑝 + 𝑣𝑖
𝑝+1

        (15) 

The first term of equation (14) denote the previous velocity of the agent. The velocity of the 

agent is updated through the second and third terms.  

The general steps, which describe the optimization of the LLWNN using the PSO 

algorithm, can be summarized as follows. 

Step 1. The initial condition is generated for each agent:  

The initial searching points of location (𝑠𝑖
0) and velocity (𝑣𝑖

0) of each agent 

are habitually generated randomly within the allowable range. Note that the 

dimension of search space contains all the parameters of the LLWNN. The 

current searching point is set to𝑝𝑏𝑒𝑠𝑡 for each agent. The best-

evaluated value of 𝑝𝑏𝑒𝑠𝑡 is set to 𝑔𝑏𝑒𝑠𝑡 and the agent number with the 

best value is stored.  

Step 2. The searching points are evaluated for each agent:  

The value of the objective function is calculated for each agent. If this 

calculated value improves in comparison with the current 𝑝𝑏𝑒𝑠𝑡 of the 

agent, the 𝑝𝑏𝑒𝑠𝑡 value is replaced by the current value. If the best value 

of 𝑝𝑏𝑒𝑠𝑡 is better than the current𝑔𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡 is replaced by the best 

value and the agent number corresponding to the best value is stored.  
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Step 3. Modification of each searching point:  

Using equations (14) and (15), the actual searching point of each agent 

is updated.  

Step 4. Verification of the exit condition:  

If the number of the current iteration reaches the number of the 

predetermined maximum iteration, then exit. If else; go to step 2. 

Contrary to the BP, the PSO algorithm avoids the convergence to a local minimum, 

since it does not depend on gradient information (Abbass et al. 2001). The PSO produces 

the best set of weights (particle position), where numerous particles are moving to get 

the best solution and the total number of weights characterize the dimension of the search 

space. The optimization finishes when the personal best solution of each particle and the 

global best of the entire swarm are attended.  

2.5 The Wavelet Local Linear Wavelet Neural Network (WLLWNN) model (Phase One) 

In this section, we outline the Wavelet Local Linear Wavelet Neural Network (WLLWNN) 

model, a novel neural network-based wavelet decomposition. The model involves two-

steps. First, the historical stock market data are decomposed into wavelet domain constitutive 

sub-series using Wavelet transform and, second, the decomposed time, are shaped through the 

Local Linear Wavelet Neural Network (LLWNN) model to produce the set of input variables 

and form the WLLWNN forecasting model Since stock market data exhibit a richer structure 

and signal-processing features, the Wavelet Transform is an appropriate tools to bring out the 

hidden patterns in the series. Equation (5) represents the decomposition of 𝑋(𝑡) into orthogonal 

components at different resolutions and constitutes the so-called wavelet multiresolution 

analysis (MRA). The flow-chart structure of the WLLWNN model appears in Figure.1. 

According to wavelet transformation theory, wavelets (used as an activation function) in 
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the following form are a family of functions, generated from one single function 𝜓(𝑥) by the 

operation of dilation and translation 𝜓(𝑥).  

𝜓(𝑥) = {𝜓𝑖 = |𝑎𝑖|−1/2𝜓 (
𝑥−𝑏𝑖

𝑎𝑖
) ;  𝑎𝑖 , 𝑏𝑖 ∈ 𝑅𝑛, 𝑖 ∈ 𝑧},   (16) 

𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛), 

𝑎𝑖 = (𝑎𝑖1, 𝑎𝑖2, … 𝑎𝑖𝑛), and 

𝑏𝑖 = (𝑏𝑖1, 𝑏𝑖2, … 𝑏𝑖𝑛). 

𝜓(𝑥), which is localized in both time and scale space, is called a mother wavelet and the 

parameters 𝑎𝑖 and 𝑏𝑖 are the scale and translation parameters, respectively.  

Instead of the straightforward weight 𝑤𝑖 (piecewise constant model), a linear model 

𝜐𝑖 = 𝑤𝑖0 + 𝑤𝑖1𝑥1 + ⋯ + 𝑤𝑖𝑛𝑥𝑛 is introduced. The activities of the linear models 𝜐𝑖 

(𝑖 = 1,2, … 𝑛) are determined by the associated locally active wavelet functions 𝜓𝑖(𝑥) 

(𝑖 = 1,2, … 𝑛). Thus, 𝜐𝑖 is only locally significant. Non-linear wavelet basis functions (named 

wavelets) are localized in both time and scale space. Here 𝑚 = 𝑛 and output (𝑌) of the proposed 

model is calculated as follows:  

𝑌 = ∑ (𝑤𝑖0 +𝑀
𝑖=1 𝑤𝑖1𝑥1+. . . . . 𝑤𝑖𝑛𝑥𝑛)𝜓𝑖(𝑥).     (17) 

The mother wavelet is  

𝜓(𝑥) =
−𝑥2

2
𝑒

−𝑥2

𝜎2  and        (18) 

𝜓(𝑥) = 𝑒−(
𝑥−𝑐

𝜎
)

2

,         (19) 

where  

𝑥 = √𝑑1
2 + 𝑑2

2+. . . . . . 𝑑𝑛
2.       (20) 

2.6 Dual long-memory models 

Long-memory models describe strong correlations or dependences across time-series data. This 

phenomenon is often referred to as "long-memory" or "long-range dependence". It refers to 
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persistent correlation between distant observations in a time series. Dual long-memory models 

refer to long memory in the first and second moments of a time series. Long-memory models 

complement the well-known and widely applied stationary and invertible autoregressive and 

moving average (ARMA) models, whose autocovariances not only sum up but also decay 

exponentially. Such models are often referred to as "short-memory" models, because negligible 

correlation exists across distant time intervals. These models, however, often combine with the 

most basic long-memory models since together they offer the ability to describe both short- and 

long-memory features in many time series. This holds for the models discussed in this section. 

In this sub-section, we summarize four dual long-memory models that have received 

attention in the literature and emphasize some of their salient features: the ARFIMA-

FIGARCH model, the ARFIMA-HYGARCH model, the ARFIMA-FIAPRCH model, and the 

ARFIMA-HYAPARCH model. Long-memory intervenes in the mean equation through the 

parameter 𝑑𝑚 and in the variance equation through the parameter 𝑑𝑣. 

2.6.1 The ARFIMA model 

The ARFIMA(𝑝, 𝑑, 𝑞) model was developed by Granger and Joyeux (1980) and Hosking 

(1981). The model captures the fractionally integrated process I(d) in the conditional 

mean. The ARFIMA(𝑝, 𝑑, 𝑞) for the time series 𝑟𝑡 is defined as follows: 

𝜽 (𝑳) (𝟏 − 𝑳)𝒅𝒎 (𝒓𝒕 − 𝝁)    = 𝝓 (𝑳) 𝜺𝒕, 𝜺𝒕 | 𝜳𝒕−𝟏 ~ 𝑫 (𝟎, 𝒉𝒕), (21) 

where 𝑟𝑡 is the stock market return series, 𝜇 is the mean of the series, 𝑑𝑚 is a fractional 

integration parameter of 𝑟𝑡 , 𝜃(𝐿) = 1 − 𝜃1𝐿 − ⋯ − 𝜃𝑝𝐿𝑝 and 𝜙(𝐿) = 1 + 𝜙1𝐿 + ⋯ + 𝜙𝑞𝐿𝑞 

are the AR and MA polynomials in the lag operator, respectively, of orders 𝑝 and 𝑞 (with 

all roots lying outside the unit circle), L denotes the lag operator, 𝜀𝑡 is a white noise 

disturbance, and  (1 − 𝐿)𝑑𝑚  stands for the fractional integration lag operator. The AR and 

MA polynomials constitute the short-memory parameters and affect only the short-run 
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dynamics of the process, whilst the fractional integration parameter 𝑑𝑚 detects the long-

memory behavior of the process. Following Hosking (1981), various can emerge. If 

−0.5 < 𝑑𝑚 < 0, then the process is anti-persistent, i.e., it exhibits negative dependence. 

memory. If 0 < 𝑑𝑚 < 0.5, then the process is a stationary long-memory process and 

possesses shocks that disappear hyperbolically. If 0.5 ≤ 𝑑𝑚 < 1, then the process is non-

stationary, but mean-reverting, with finite impulse response weights. When 𝑑𝑚 = 0, the 

process reduces to the standard ARMA and when 𝑑𝑚 = 1, the process becomes ARIMA 

and implies infinite persistence of the mean to a shock in the returns. 𝛹𝑡−1 stands for the 

information set available at time 𝑡 − 1 whereas 𝜀𝑡 follows the conditional distribution 𝐷. 

2.6.2 The FIGARCH model 

The FIGARCH(𝑷, 𝒅, 𝑸)-model, developed by Baillie et al. (1996), models the fractionally 

integrated process I(d) in the conditional variance of a GARCH (P, Q) process. Formally, 

the FIGARCH (𝑷, 𝒅, 𝑸) for the time series 𝒉𝒕 is defined as follows: 

𝒉𝒕 = 𝝎 + {𝟏 − (𝟏 − 𝜷(𝑳))
−𝟏

𝝕(𝑳)(𝟏 − 𝑳)𝒅𝒗} 𝜺𝒕
𝟐, (22) 

where ℎ𝑡 is the conditional variance of 𝑟𝑡 , 𝜔 is the mean of the process, 𝑑𝑣 is the fractional 

integration parameter of ℎ𝑡, and 𝛽(𝐿) and 𝜛(𝐿) are lag polynomials of orders 𝑃 and 𝑄, 

respectively, and 𝜀𝑡 is a mean-zero serially uncorrelated process. The FIGARCH model 

nests both the GARCH model (Bollerslev, 1986) for 𝑑𝑣 = 0, and the IGARCH model (Engle 

and Bollerslev, 1986) for 𝑑𝑣 = 1. In the first case, shocks to the conditional variance decay 

at an exponential rate while in the second, shocks persist forever and, thus, affect 

forecasts at all horizons. If 0 < 𝑑𝑣 < 1, then the effect of a shock decreases at a hyperbolic 

rate The lag polynomials 𝛽(𝐿) and 𝜛(𝐿) account for the short-term dynamics of volatility, 

while the fractional integration parameter 𝑑𝑣 captures the long- term dynamics of 

volatility. Note that FIGARCH-type processes, although strictly stationary and ergodic for 
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0 < 𝑑𝑣 < 1, are not covariance stationary. Furthermore, the interpretation of the long-

memory parameter 𝑑𝑣 is difficult in the FIGARCH set up. Davidson (2004) shows that long 

memory increases when 𝑑𝑣 approaches zero. This contrasts with the conventional 

interpretation where long memory increases when 𝑑𝑣 increases See Davidson (2004) for 

additional details. 

2.6.3 The HYGARCH model 

The hyperbolic GARCH (HYGARCH) was introduced by Davidson (2004) and shows that the 

HYGARCH model generalizes the FIGARCH model to cope with the deficiencies inherent to 

the FIGARCH model. The model is covariance stationary, similar to the GARCH model, and 

exhibits hyperbolic rate of decay similar to the FIGARCH model. The HYGARCH model has 

the following representation:  

ℎ𝑡 = 𝜔 + {1 − (1 − 𝛽(𝐿))
−1

𝜛(𝐿)[1 + 𝛼((1 − 𝐿)𝑑𝑣 − 1)]} 𝜀𝑡
2,  (23) 

where 𝛼 is the amplitude parameter. The HYGARCH model nests the FIGARCH process for 

𝛼 = 1 and the stable GARCH process for 𝛼 = 0. The process is stationary if < 𝛼 < 1 and 

nonstionary if 𝛼 > 1. Long memory intervenes in equation (23) through the parameter 

𝑑𝑣. Davidson (2004) notes that for 𝛼 = 0, 𝑑𝑣 is unidentified, which poses a well-known 

problem in constructing hypothesis tests. When 𝑑𝑣 = 1, the parameter 𝛼 reduces to an 

autoregressive root reproducing geometric memory and, hence, the model becomes 

either a stable GARCH model for 𝛼 < 1 or IGARCH for 𝛼 = 1. Thus, testing the restriction 

𝑑𝑣 = 1 allows discrimination between geometric and hyperbolic memory dynamics.  

2.6.4 The FIAPARCH model 

The. FIGARCH and HYGARCH models successfully deal with volatility clustering and long 

memory in stock market returns. They fail to consider, however, asymmetry in returns 

volatility. The “leverage effect” (Black,1976) is an important stylized fact of stock return 
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volatility and corresponds to negative correlations between past returns and future 

volatility. The FIAPARCH model, developed by Tse (1998) as an extension of the 

asymmetric power ARCH model (Ding, Granger, and Engle, 1993), models asymmetric 

responses of volatility to positive and negative shocks along with volatility persistence 

behavior. The FIAPARCH model expresses the conditional variance as a power 

transformation of the standard deviation as follows: 

𝒉𝒕

𝜹

𝟐 = 𝝎 + {𝟏 − (𝟏 − 𝜷(𝑳))
−𝟏

𝝕(𝑳)(𝟏 − 𝑳)𝒅𝒗} (|𝜺𝒕| − 𝜸𝜺𝒕)𝜹, (24) 

where −1 < 𝛾 < 1 and 𝛿 > 0. To accommodate asymmetry in long memory of the 

conditional variance, the term 𝜀𝑡
2 of the FIGARCH model in equation (22) is replaced by 

the term (|𝜀𝑡| − 𝛾𝜀𝑡)𝛿  in equation (24). The parameter 𝛿 is the power term that plays the 

role of a Box-Cox transformation of the conditional standard deviation ℎ𝑡

1

2 , while 𝛾 denotes 

the asymmetry parameter accounting for the leverage effect. When 𝛾 > 0, negative shocks 

give rise to higher volatility than positive shocks. The reverse applies if 𝛾 < 0. The 

magnitude of the shocks is captured by the term (|𝜀𝑡| − 𝛾𝜀𝑡). 

The use of the power term 𝛿 endeavors to avert the Gaussianity assumption. In 

fact, if the data are assumed to follow a conditional normal density, then the first two 

moments, (i.e., the mean and the variance) completely typify the distribution of returns. 

This justifies the common use of a squared term 𝛿 = 2 and, hence, a measure of the 

variance to characterize the volatility structure. Since asymmetry and heavy tails both 

characterize financial asset returns, however, the hypothesis of normality appears 

unrealistic and higher-order moments such as skewness and kurtosis are required to 

specify the true underlying distribution. As such, considering the variance as a measure 

of the volatility process (i.e., setting 𝛿 = 2) can adversely affect the estimation results and 



24 

 

the forecasting performance of the model. To deal with this issue, Ding, Granger, and Engle 

(1993) suggest estimating the volatility measure in the form of a power transformation 

through allowing an optimal power term 𝛿 to be endogenized and freely determined by 

the data. Note that the FIAPARCH process reduces to the FIGARCH process when 𝛾 = 0 

and 𝛿 = 2. 

2.6.5 The HYAPARCH model 

The FIGARCH and FIAPARCH models of Baillie et al (1996) and Tse (1998) are not 

covariance stationary and, thus, do not permit statements about the autocovariance 

function due to infinite conditional second moments (Niguez, 2002). The HYGARCH model 

of Davidson (2004) is covariance stationary, but both the FIGARCH and HYGARCH models 

fail to allow for asymmetries. The hyperbolic APARCH (HYAPARCH) model proposed by 

Schoffer (2003) and Dark (2006) addresses some of the limitations of the previous long-

memory ARCH models, as it is covariance stationary, accounts for long memory and 

volatility asymmetries, and releases the unit-amplitude restriction to account for both 

volatility persistence and covariance stationarity 

The HYAPARCH model reproduces the main characteristics of returns of financial 

time series such as volatility clustering, leptokurtosis, asymmetry, and long memory and 

estimates the power of the heteroskedastic equation from the data. For this reason, the 

HYAPARCH model is generally preferred over the previously discussed models.  

The HYAPARCH model has the following representation: 

𝒉𝒕

𝜹

𝟐 = 𝝎 + {𝟏 − (𝟏 − 𝜷(𝑳))
−𝟏

𝝕(𝑳)[𝟏 + 𝜶((𝟏 − 𝑳)𝒅𝒗 − 𝟏)](𝟏 − 𝑳)𝒅𝒗} (|𝜺𝒕| − 𝜸𝜺𝒕)𝜹 (25) 

where 𝛿 > 0 is the power term in the volatility process, −1 < 𝜸 < 1 is the asymmetry 

parameter, and 𝜛(𝐿) and 𝛽(𝐿) are the ARCH and GARCH polynomials, respectively. Under 
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the condition α < 1 and further restrictions on the remaining parameters of the model, the 

resulting stochastic process is weakly stationary (Schoffer, 2003).  

The HYAPARCH model reduces to the HYGARCH model for 𝜸 = 𝟎 and 𝜹 = 𝟐 and to 

the FIAPARCH model for 𝜶 = 𝟏. In sum, the HYAPARCH process couples the flexibility of 

a varying exponent with the asymmetry coefficient, thus, capturing asymmetric volatility 

structure and letting the data determine the power of the heteroscedastic equation. 

Moreover, it is covariance stationary and enhances the long-memory aspect of the 

conditional volatility via the fractional differencing parameter 𝒅𝒗. 

3. The Hybrid ARFIMA-WLLWNN Model (Phase Two) 

Our hybrid methodology combines the ARFIMA model and the proposed WLLWNN 

model. The ARFIMA model offers greater flexibility in modeling simultaneous short- and 

long-term dependence of a time series. In addition, the choice of WLLWNN in our hybrid 

model is motivated by the wavelet decomposition and its local linear modeling ability. Consider 

time series to include two components. The first component is a parametric form with unknown 

parameters, where a parametric method seems appropriate for such processes. The second 

component relates to the residuals; which usually presents no specific process. Hence, it is 

difficult to determine the appropriate model to deal with this part of the time series. For this 

reason, a non-parametric model seems appropriate for modelling the residuals. This choice is 

motivated by the fact that non-parametric models can reduce modelling bias by imposing no 

specific model structure, other than certain smoothness assumptions and, thus, non-parametric 

models are particularly useful when we little information exists or when we want flexibility in 

the underling model. The flow-chart structure of the Hybrid ARFIMA-WLLWNN model 

appears in Figure.2. 
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Our methodology consists of two steps. The first step models the conditional mean 

of the DJIA returns using an ARFIMA model. Residuals are important, however, in 

forecasting time series, since they may contain some information that improves 

forecasting performance. Thus, the second step treats the residuals from the first step as 

a novel wavelet local linear wavelet neural network (WLLWNN) model. 

Hence, the return series can be written as: 

𝑟𝑡 = 
𝑡

+ 𝑡         (26) 

where 𝜇𝑡 denotes the conditional mean of the time series, and t  is the residual series. 

The first step uses the ARFIMA model to reproduce the conditional mean (equation 21).  

The second step uses the residuals from the parametric model as a proxy for the 

corresponding volatility and models them using the WLLWNN model.  

Let t  denote the residuals at time 𝑡 from the ARFIMA model, then  

𝜀𝑡 = 𝑟𝑡 − �̂�𝑡 ,         (27) 

were �̂�𝑡 is the forecast value from equation (21). Thus, the first stage generates the 

forecast values and the residuals of the semi-parametric modelling..  

The second stage models the residuals using the WLLWNN with 𝑛input nodes. The 

WLLWNN for the residuals is as follows: 

 𝜀𝑡 = 𝑓(𝜀𝑡−1, 𝜀𝑡−2, … , 𝜀𝑡−𝑛),        (28) 

where each it−  is decomposed using the Wavelet Transform (equation 5) and 𝑓 is a non-linear, 

non-parametric function determined by the neural network with the reference to the current 

state of the data during the training of the neural network. The output layer of the network 

(equation 17) gives the forecasting results. 

�̂�𝑡 = ̂
𝑡

+ ̂𝑡.         (29) 
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Hence, this global prediction represents the result of forecasting both the conditional mean and 

the conditional variance of the time series.  

4. Data and Empirical Results 

4.1 Preliminary analysis of the data 

The data consist of daily observations on the closing prices 𝑃𝑡 of the Dow Jones Industrial 

Average (DJIA) from 01/01/2010 to 02/11/2020. After excluding non-trading days, the 

series includes 2544 observations. The data come from the Federal Reserve Economic 

Data (FRED) of the Federal Reserve Bank of St. Louis 

(http://research.stlouisfed.org/fred2/). We obtain daily returns by logarithmic 

differences, i.e., 𝑟𝑡 = Δ𝐿𝑜𝑔𝑃𝑡 for t = 1,… N, where 𝑟𝑡 is the return for day t, 𝑃𝑡 is the closing 

price of the index for the same day, and N is the sample size. Figure 3 plots the returns on 

the DJIA index. Visual inspection of the returns suggests that while the mean of the returns 

is almost zero, certain periods exist that show higher volatility and are riskier than other 

periods. In particular, while the sample period is untouched by financial crises, one can 

connect the volatility to changes in the Federal Reserve’s monetary policy. Volatility 

clustering of the returns can easily be seen in Figure 3. Large price changes (i.e., returns 

with large absolute values) tend to be followed by large price changes, and periods of 

tranquility alternate with periods of high volatility. This indicates the presence of ARCH 

effects in the series.  

Table 1 provides summary statistics for the daily DJIA returns from 01/01/2010 

to 02/11/2020. The series exhibits significant deviations from the normal distribution, as 

indicated by the kurtosis and skewness statistics. The distribution of returns is negatively 

skewed, which implies that large negative returns tend to occur more often than large 

positive returns (Franses and van Dijk, 2000). This reflects the fact that the downturns of 

http://research.stlouisfed.org/fred2/
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the stock market are much steeper than the recoveries, indicating that investors tend to 

react more strongly to negative news than to positive news. The distribution of the 

returns is leptokurtic (fat-tailed) relative to the normal distribution. In other words, the 

shape of the return distribution is more peaked than the normal, implying that small 

changes are less frequent than in a normal distribution, and extreme events (large price 

movements) are more likely to occur. The ‘fat-tail’ problem has important financial 

implications, especially because it leads to a gross underestimation of risk, since the 

probability of observing extreme values is higher for fat-tail distributions compared to 

normal distributions.  

Test of normality, autocorrelation, and unit root are provided in Table 2. The 

Jarque-Bera test rejects, as expected, the hypothesis of normality. The Ljung-Box statistics 

with up to 20 lags provide evidence of a positive and significant autocorrelation, which 

does not support the weak form of the EMH. Applied to the absolute returns and the 

squared returns with up to 20 lags, the Ljung-Box statistics are 1637.9 and 1202.3, 

respectively, which is highly significant. This, in turn, is evidence of volatility clustering in 

the returns. Although not reported, the autocorrelations in the absolute returns are 

generally higher than the autocorrelation in the squared returns. This illustrates what has 

become known as the ‘Taylor property’ (Taylor, 1986). That is, when calculating the 

autocorrelations for the series |yt|δ| for various values of δ, one almost invariably finds 

that the autocorrelations are largest for δ = 1. 

The augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests reject the 

hypothesis that the returns are I(1) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

test fails to reject the hypothesis of I(0). We report unit-root and stationarity results for 

the “intercept only” case. The results for the “no intercept and no trend case” and 



29 

 

“intercept and trend case” do not qualitatively differ. The tests to discriminate between 

I(0) and I(1) behavior exhibit low power under certain types of alternatives such as non-

linearities and long memory.  

Tables 3 and 4 test the long-memory property of the returns and the absolute 

returns. In general, most of the volatility estimation models in the financial markets 

depend on two proxy variables: (1) the squared returns and (2) the absolute returns. We 

choose to model volatility based on the absolute returns, which proves more robust 

against nonnormality (Davidian and Carroll, 1987) and produce better volatility forecasts 

relative to squared returns (Ding, Granger, and Engle, 1993). Theoretically, Forsberg and 

Ghysels (2007) show that absolute returns are more persistent and better in predicting 

future volatility than squared returns. Table 3 provides preliminary evidence of long 

memory in the conditional variance of the returns, as proxied by the absolute returns of 

the DJIA series We use the GPH (Geweke and Porter-Hudak, 1983) and local Whittle (LW) 

(Robinson, 1995) semi-parametric techniques and the parametric ARFIMA (1, d, 0) 

approach. For the GPH and LW tests, we need to choose a bandwidth m, balancing a high 

variance caused by staying too close to the origin and using too little information and a 

bias induced by the contamination of the estimation through the short-memory 

component of the process. As data-driven bandwidth selection methods do not work well 

in practice (Andrews and Guggenberger , 2003), we apply four different bandwidths 

𝑚 = 𝑁0.5, 𝑚 = 𝑁0.6, 𝑚 = 𝑁07, and 𝑚 = 𝑁0.8, where 𝑁 is the sample size. The results of 

the GPH and LW tests do not prove sensitive to the choice of the bandwidth. For that 

reason, we only report the findings for 𝑚 = 𝑁07. The three different estimates of the long 

memory of the conditional variance are close to one another and less than 0.5, implying 

https://www.sciencedirect.com/topics/economics-econometrics-and-finance/nonlinearity
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/nonlinearity
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that the absolute returns series is stationary, mean reverting, and long-memory 

processes. 

In comparison, the evidence of long-memory in the conditional mean is weaker, as 

shown in Table 4. Although the estimates of the long memory of the returns are markedly 

small, especially the GPH and LW estimates, they significantly differ from zero. Generally 

speaking, the parameter estimates support the idea that dual long memory processes 

exist in the DJIA returns. The short-memory estimates of the ARFIMA(1, d, 1) model of the 

returns are AR(1) = 0.6031*** and MA(1)=-0.4682***, while the short-memory 

component of the ARFIMA (1, d, 0) of the absolute returns is AR(1) = 0.2583***, where *** 

means rejection of the null hypothesis at 0.01 significance level.  

4.2 Results from dual long-memory models 

Table 5 reports the estimated parameters of long memory dynamics in the returns and 

volatility for the ARFIMA-FIGARCH (Baillie et al. 1996), ARFIMA-FIAPARCH (Tse ,1998), 

ARFIMA-HYGARCH (Davidson 2004), and ARFIMA-HYAPARCH (Dark, 2006) models. The 

models are estimated by the Quasi-Maximum Likelihood (QML) procedure as 

implemented in Ox. In view of fat-tail characteristics in the data, the Student t, rather than 

the normal, distribution is assumed for the disturbances, as suggested by Bollerslev 

(1987). For the specification of the Student t log-likelihood see Davidson (2004). For a 

detailed description of the estimation procedure, see Baillie, Bollerslev, and Mikkelsen 

(1996). We used the Schwarz and the Hannan-Quinn Information criteria to identify the 

truncation orders of the short-memory polynomials of the ARFIMA model and the ARCH 

and GARCH polynomials of the conditional variance. The residuals from the ARFIMA 

model are used to estimate the long-memory behavior in the conditional variance. The 

models possess the distinctive feature that they simultaneously estimate the long memory 
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in both returns and volatilities. They keep the analytical elegance of the ARMA-GARCH type 

models while enhancing their dynamics. Thus, the dual specification is more than a simple 

juxtaposition of two long-memory processes. The joint estimation of the two 

components of the model proves crucial for estimation and forecasting issues. 

Several findings emerge from Table 5. The results indicate strong evidence of long 

memory both in the conditional mean and the conditional variance. The long-memory 

parameter 𝑑𝑚 of the conditional mean is greater than 0 and less than 0.5, in the range 

0.1635 ≤  𝑑𝑚 ≤ 0.1916. The long-memory parameter 𝑑𝑚 statistically differs from zero and 

one at the 1-percent level. This means that the DJIA returns are neither a unit-root process 

nor a stationary process with only short memory. Rather, they are stationary and mean 

returning process exhibiting long memory.  

The long-memory parameter 𝑑𝑣 of the conditional variance is greater than 0 and 

less than 0.5, in the range 0.4758 ≤  𝑑𝑚 ≤ 0.4873. This means that the effect of shocks to 

the conditional volatility display a hyperbolic rate of decay as opposed to the conventional 

exponential decay inherent to the stable GARCH process or the infinite persistence 

pattern distinguishing the IGARCH model. Moreover, the long-memory parameter 𝑑𝑣 

significantly differs both from zero and one at the 1-percent level, rejecting the validity of 

both the stable GARCH and the integrated GARCH (IGARCH) specifications. The long 

memory in the conditional mean implies that stock prices follow a predictable behavior 

that is inconsistent with the weak form of the EMH. In finance, the weak form EMH asserts 

that information quickly and efficiently incorporates into asset prices at any point in time, 

so that past price information cannot be used to predict future price movements. The 

evidence of long memory in volatility, however, shows that uncertainty or risk 

importantly helps to determine the behavior of daily stock market data.  
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As commonly found in the literature, the presence of long memory is stronger in 

the returns volatility than in the returns, indicating that shocks to volatility in the DJIA 

index persist longer than shocks to returns. In Table 5, the AR(1) and MA(1) effects are 

represented by the coefficients 𝜃1 and 𝜑1, while the ARCH(1) and GARCH(1) effects are 

represented by the coefficients 𝛽1 and 𝜛1. 

Post-estimation diagnostic statistics provide no evidence of significant residual 

problems. The Ljung-Box 𝑄(20) and 𝑄2(20) tests find no significant correlations in the 

conditional mean and volatility equations. Table 5 also reports the Brock-Dechert-

Scheinkma (BDS) statistic (Brock et al., 1996), which tests the null hypothesis that the 

remaining residuals are independent and identically distributed (i.i.d.). Rejection of the 

i.i.d. hypothesis implies that some remaining structure exists in the time series, which 

could include a hidden nonlinearity, hidden nonstationarity, or other type of structure 

missed by the fit of the model. The test shows no evidence of low dimensional chaotic or 

nonlinear stochastic processes in the residuals. The parameter 𝜐, representing the 

number of degrees of freedom, measures the degree of fat-tails of the density of the 

residuals. In all four models, the estimate is approximately 5, which is low, indicating 

fatter tails of the density.  

The estimate of the asymmetry parameter 𝛾 in the ARIMA-FIAPARCH as well as in 

the ARFIMA-HYAPARCH is negative and significantly differs from zero at the 1-percent 

level. This means volatility shocks are not symmetric, but that positive shocks cause 

higher volatility than negative shocks. In other words, the negative sign on �̂� suggests that 

“good news,” i.e., an unanticipated increase in the stock market, is more destabilizing than 

“bad news,” i.e., an unanticipated stock market decline. The estimate of the power 
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parameter 𝛿 in the ARIMA-FIAPARCH and ARFIMA-HYAPARCH models is positive and not 

significantly different from 2.  

The estimate of the parameter 𝛼 in the ARFIMA-HYGARCH and ARFIMA-

HYAPARCH models is significantly different from zero, leading to the rejection of the 

stable GARCH model, and from one, leading to the rejection of the ARFIMA-FIGARCH 

model. Importantly, however, the value of the 𝛼 parameter estimate exceeds one. This 

suggests that the driving process of the DJIA returns is not covariance stationary.  

The empirical results highlight an important difference, i.e., the volatility shocks 

are not symmetric. Of the four models, this suggests that we discard the ARFIMA-FIGARCH 

and ARFIMA-HYGARCH models. Comparing the two remaining models, the ARFIMA-

FIAPARCH and ARFIMA-HYAPARCH models, we observe that the latter has a slight edge 

in terms of loglikelihood and AIC. For this reason, in the forecasting analysis that follows, 

we use the ARFIMA-HYAPARCH model. 

4.3 Results for the WLLWNN model 

In this subsection, residuals from the ARFIMA modeling are the input of the novel 

WLLWNN model to estimate the conditional variance. To avoid the possibility of coupling 

among different inputs and to accelerate convergence, we normalize all inputs within a 

range of [0, 1] using the following formula before applying it to the network. This method 

is the most commonly used data smoothing method. That is, 𝑛𝑜𝑟𝑚 =
𝑜𝑟𝑖𝑔−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
, where 

𝑛𝑜𝑟𝑚 is the normalized value of the residuals, 𝑜𝑟𝑖𝑔 is the original value, 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are 

the minimum and maximum values of the corresponding residuals.  

These normalized data are then decomposed using the MODWT with Daubechies 

least asymmetric (𝐿𝑎) wavelet filter of length 𝐿 = 8 (𝐿𝑎(8)). This wavelet filter is 

frequently adopted in the financial literature and provides the best performance for the 
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wavelet time-series decomposition. Our MODWT decomposition goes up to level 𝐽 = 14 

that is specified by 𝐽 ≤ 𝑙𝑜𝑔2 [
𝑁

𝐿−1
+ 1] i.e., where 𝑁 represent the length of the given time 

series and 𝐿 denote the length of the filter (Percival and Walden, 2000; Gencay et al., 

2002). The time series is decomposed into 14 details (𝐷𝑡(1), … 𝐷𝑡(14)). The optimization 

of LLWNN is conducted as follows. 

First, the data are divided into three successive parts as follows: (a) a sample of 

300 observations to initialize the network training, (b) a training set of 2200 observations, 

and (c) a test set of 44 observations. The forecasting experiment is performed over the 

test set using an iterative forecasting scheme and the models are tested for three-time 

horizons; 1 day, 5 days, and 22 days.  

Second, to find the best neural network architecture, at the beginning the 

parameters are randomly initialized. Then, using two different algorithms, the Back-

Propagation algorithm (BP) and the Particle Swarm Optimization algorithm (PSO), these 

parameters are optimized to minimize the error between the output values and the real 

values during the training of the network. Table 5 and Table 6 provide the summary of 

information related to the network architecture. Table 5 defines the BP algorithm 

architecture and Table 6 states the parameters adopted for running the PSO.  

5. Predictive Performance of the WLLWNN Model 

This section evaluates the estimated models in a multi-step-ahead forecasting task. Since 

forecasting is basically an out-of-sample problem, we prefer to apply out-of-sample criteria. 

Accordingly, three different periods (1 day, 5 days, 22 days) were selected to ensure the quality 

and robustness of modeling and forecasting results. To evaluate the forecasting accuracy, we 

apply three evaluation criteria, namely the Mean Absolute Error (MAE), the Mean Squared 

Error (MSE), and the Root Mean Squared Error (RMSE), given respectively by: 
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𝑀𝐴𝐸 =
1

𝑁−𝑡1
∑ |(𝑟𝑡+ℎ − �̂�𝑡,𝑡+ℎ)|𝑁

𝑡=𝑡1
,      (30) 

𝑀𝑆𝐸 =
1

𝑁−𝑡1
∑ (𝑟𝑡+ℎ − �̂�𝑡,𝑡+ℎ)

2𝑁
𝑡=𝑡1

, and     (31) 

𝑅𝑀𝑆𝐸 = (
1

𝑁−𝑡1
∑ (𝑟𝑡+ℎ − �̂�𝑡,𝑡+ℎ)

2𝑁
𝑡=𝑡1

)
1/2

,     (32) 

where 𝑁 is the number of observations, 𝑁 − 𝑡1 is the number of observations for predictive 

performance, 𝑟𝑡+ℎ is the return series through period 𝑡 + ℎ, and �̂�𝑡,𝑡+ℎ is the predictive log-

return series of the predictive horizon ℎ at time 𝑡. 

We evaluate the predictive performance of the hybrid ARFIMA-WLLWNN against 

the individual LLWNN model, the hybrid ARFIMA-LLWNN model, the WLLWNN model, 

and the parametric ARFIMA-HYAPARCH model. In the ANN models, we apply two 

different learning algorithms (BP and PSO) for the training of the networks. Moreover, we 

adopted three horizons: 1-day, 5-days, and 22- days ahead forecasting, using the MAE, 

MSE, and RMSE out of sample criteria. Table 8 reports the forecast evaluation results. 

The individual LLWNN based PSO algorithm outperforms the individual LLWNN 

based BP algorithm. In addition, the individual WLLWNN based PSO algorithm 

outperforms the individual WLLWNN based BP algorithm. These results prove the 

superiority of the PSO algorithm for training the neural network model. This result occurs 

because in the case of the BP algorithms weights are updated in the direction of the 

negative gradient. Hence, the network training with BP algorithms present some 

drawbacks such as slow convergence to a local minimum. In the case of training with PSO 

algorithm, however, weights are characterized by particles position. The hybrid ARFIMA-

LLWNN model outperforms the individual LLWNN model, hence, the individual LLWNN 

model is unable to detect, to model, and to predict the features existing in the DJIA returns. 

That is, when it is compared with the hybrid model, this last one provides prediction that 
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is more accurate. Consequently, this network needs an external filter to better estimate 

the data, since the adoption of the ARFIMA model in the first step enhances the results of 

forecasting. The ARFIMA-HYAPARCH model outperforms the hybrid ARFIMA-LLWNN 

model in terms of prediction accuracy. This occurs because the ARFIMA-HYAPARCH 

model considers the long-memory in both the conditional mean and the conditional 

variance, making this model a robust tool that can deal with the features of the DJIA index. 

This is explained by the ability of the HYAPARCH in modelling the long-memory behavior 

in the conditional variance. This also proves the importance of considering the long-

memory behavior to enhance forecasting accuracy. 

Besides, the novel WLLWNN overcomes the limitation of the LLWNN that is related 

to the inability of the network to detect and model the periodic long-memory behavior in 

the data, since it shows its effectiveness when we compare it with the ARFIMA-

HYAPARCH and ARFIMA-LLWNN models. Hence, the proposed hybrid ARFIMA-WLLWNN 

is a robust tool that can deal with the features of the DJIA index and provide the best 

forecasting results. 

In summary, the ARFIMA-WLLWNN model outperforms all other computing 

techniques. In fact, this model uses the strength of three techniques at the same time. First, 

the ARFIMA model that allows detecting and estimating the long memory in the 

conditional mean. Second, the wavelet decomposition, which can produce a good local 

representation of the series and, hence, is a good tool to bring out the hidden patterns in 

the DJIA index. Finally, with the capacity of the LLWNN model as a nonlinear, 

nonparametric mode, and its particularity in using a wavelet activation function and local 

linearity, this network can capture more subtle and hidden features of the data.  
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Figures 5, 6, 7, 8, 9, 10, 11, and 12 confirm that the predictions of the ARFIMA-

WLLWNN model based PSO algorithm for the 5-day and 22-day horizons are very close to 

the real values. That is, these figures confirm the forecasting results in Table 8, which 

indicate that the ARFIMA-WLLWNN model prediction errors are the smallest for all 

evaluation criteria. Note that we do not report the forecast graphs for one day, since only 

one observation is involved. 

6. Conclusions 

In this paper, we develop a relatively novel neural network model, called Wavelet Local Linear 

Wavelet Neural Network (WLLWNN). This novel network exhibits a higher generalization 

performance than the LLWNN. On the other hand, when we deal with neural networks, it is 

important to choose an appropriate algorithm for training. We present a comparison of the BP 

and PSO learning algorithms. The BP algorithm updates weights in the direction of the negative 

gradient. ANNs training with the BP algorithm presents certain drawbacks such as slow 

convergence that can be trapped in the local minimum. Weights in the PSO algorithm, however, 

are represented by particles position. The particles velocity and position are updated to search 

for the personal best and global best values. This avoids convergence to a local minimum. 

Our experimental results show the superiority of the PSO algorithm. We find that the 

effectiveness of the novel WLLWNN model is further enhanced by coupling it with the 

ARFIMA model. The experimental results indicate that the PSO-optimized version of the 

hybrid ARFIMA-WLLWNN outperforms the LLWNN, WLLWNN, ARFIMA-LLWNN, and the 

ARFIMA-HYAPARCH models and provides more accurate out-of-sample forecasts over 

validation horizons of one, five and twenty-two days. 
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Table 1. Descriptive statistics of the DJIA returns 

Mean St. Dev. Minimum Maximum Skewness Kurtosis 

0.0004 0.0088 -0.0571 0.0486 -0.4783 7.0063 

Notes: The number of observations is 2544. The sample is 01/01/2010 to 02/11/2020. The data are from 
the Federal Reserve Bank of St. Louis. Federal Reserve Economic Data 

 

Table 2. Tests of normality, autocorrelation and unit root 

Jarque-Bera Q (20) ADF PP KPSS 

1798.416*** 41.130*** -52.5713*** -53.0383*** 0.0241*** 

Notes: Rejection of the null hypothesis is displayed by *, **, and *** for 10 percent, 5 percent, and 1 percent 
significance level. ADF is the augmented Dickey Fuller statistic, PP is the Phillips Perron statistic, KPSS is 
the Kwiatkowski Phillips Schmidt Shin statistic. The Jarque-Bera statistic is chi-squared distributed with 
two degrees of freedom. 𝑄(20) is the Ljung-Box statistic for serial correlation in the returns for order 20. 
 

Table 3. Long-memory tests in the conditional variance 

GPH LW ARFIMA (1, d, 0) 

0.3297*** 0.3625*** 0.395*** 

Notes: GPH is the Geweke-Porter-Hudak estimator; LW is the local Whittle estimator; the bandwidth is 
𝑚 = 𝑁07. Rejection of the null hypothesis is displayed by *, **, and *** for 10 percent, 5 percent, and 1 
percent significance level. 

 

Table 4. Long-memory tests in the conditional mean 

GPH LW ARFIMA (1, d, 1) 

0.0264*** 0.0125*** 0.1757*** 

Notes: GPH is the Geweke-Porter-Hudak estimator; LW is the local Whittle estimator; the bandwidth is 𝑁07. 
Rejection of the null hypothesis is displayed by *, **, and *** for 10 percent, 5 percent, and 1 percent 
significance level. 
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Table 5. Estimation of dual memory models 

 
ARFIMA-
FIGARCH 

ARFIMA-
FIAPARCH 

ARFIMA-
HYGARH 

ARFIMA-
HYAPARCH 

(𝑝, 𝑑𝑚, 𝑞) 
(𝑃, 𝑑𝑣, 𝑄) 

(1, 𝑑𝑚, 1) 
(1, 𝑑𝑣, 1) 

(1, 𝑑𝑚, 1) 
(1, 𝑑𝑣, 1) 

(0, 𝑑𝑚, 1) 
(1, 𝑑𝑣, 1) 

(0, 𝑑𝑚, 1) 
(1, 𝑑𝑣, 1) 

𝜇 
0.0001 

(6.0891)*** 
0.0000 

(7.3562)*** 
0.0000 

(5.9851)*** 
0.0000 

(6.2351)*** 

𝑑𝑚 
0.1635 

(3.9982)*** 
0.1786 

(4.2381)*** 
0.1842 

(4.2843)*** 
0.1916 

(4.3647) *** 

𝜃1 
-0.4885 

(-4.6742)*** 
-0.4234 

(-2.1733)** 
- - 

𝜑1 
0.5258 

(1.6854)* 
0.5026 

(2.2611)** 
 

0.4736 
(2.2743)** 

𝜔 
0.0000 

(0.1763) 
0.0000 

(0.1837) 
       0.0000 
     (0.1793) 

          0.0000 
       (0.1814) 

𝑑𝑣 
 

0.4873 
(4.8983)*** 

0.4987 
(4.4361)***            

0.4875 
    (3.9987)*** 

0.4758 
      (4.1857)*** 

Log(𝛼) - - 
0.2354 

(3.8869)*** 
0.238 

(4.615)*** 

𝛾 - 
-0.4172 

(-5.6738)***- 
- 

-0.4428 
(-5.8396)*** 

𝛿 - 
1.9743 

(16.6758)*** 
- 

2.0581 
(16.7866)*** 

𝛽1 
0.5134 

(4.3268)*** 
0.4854 

(4.4710)*** 
0.4786 

(4.7874)*** 
0.4765 

(4.983)*** 

𝜛1 
0.3421 

(3.7855)*** 
0.3192 

(3.9562)*** 
0.2988 

(3.9586)*** 
0.3129 

(4.0135)*** 

𝜐 
5.2114 

(9.4771)*** 
5.1556 

(9.3484)*** 
5.5885 

(9.6744)*** 
5.6349 

(9.8753)*** 

Skw 
0.4316 

(3.4748)*** 
0.4662 

(2.0435)* 
0.4541 

(3.4786)*** 
0.4395 

(1.9862)* 
Ex. Kurt 

 
2.7342 

(22.345)*** 
2.6672 

(24.674)*** 
2.6527 

(24.673)*** 
2.6281 

(23.729)*** 
Q(20) 23.7440 23.1452 22.5548 22.5342 

Q2(20) 14.5242 14.5677 14.3437 14.2366 
BDS(5) 3.6586 3.5519 3.5332 5.2530 
Log(L) 8886.6754 8889.7783 8892.8324 8896.7665 

AIC -6.9869 -6.9925 -6.9783 -6.9781 
Notes: The values in parenthesis are the t-Student. �̂� is the degree of freedom of the Student’s t distribution. 
Skw is Skewness. Ex. Kurt is Excess of Kurtosis. Q(20) is the Ljung-Box statistic for serial correlation in the 
standardized residuals for order 20. Q2(20) is the Ljung-Box statistic for serial correlation in the squared 
standardized residuals for order 20. Log(L) is the value of the maximized Student t log -likelihood, AIC is 
the Akaike information criteria    ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels 
respectively. 
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Table 6. LLWNN based BP algorithm architecture 

 

Number of hidden layers  10 
Learning rate  0.5 
Layer conversion function Wavelet Function 
Algorithm Back Propagation (BP) Algorithm 

 

Table 7. LLWNN based PSO algorithm architecture 

 

Number of populations  20 
Number of generations 200 

21, CC  1.05 

Maximum velocity 1 
Minimum velocity 0.3 
Number of hidden layers 10 
Learning rate 0.5 
Layer Activation function Wavelet Function 
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Table 8. Out of Sample Forecasts Results 

Model Criterion  𝒉 = 𝟏 𝒉 = 𝟓 𝒉 = 𝟐𝟐 

LLWNN (BP 
Algorithm) 

MAE 
MSE 
RMSE 

0.0088 
7.723 × 10−5 

0.0096 

0.0159 
5.0622 × 10−4 

0.0228 

0.0101 
1.6654 × 10−4 

0.0127 
LLWNN (PSO 
Algorithm) 

MAE 
MSE 
RMSE 

0.0084 
1.0343 × 10−4 

0.0104 

0.0145 
2.6355 × 10−4 

0.0166 

0.0132 
2.8935 × 10−4 

0.0171 
ARFIMA-
LLWNN (BP 
algorithm) 

MAE 
MSE 
RMSE 

0.0041 
3.1976 × 10−5 

0.0058 

0.0084 
1.2487 × 10−4 

0.0122 

0.0095 
1.2539 × 10−4 

0.0118 
ARFIMA-
LLWNN (PSO 
algorithm) 

MAE 
MSE 
RMSE 

0.0019 
3.5129 × 10−6 

0.0019 

0.0054 
2.2690 × 10−5 

0.0045 

0.0073 
3.9264 × 10−5 

0.0063 
WLLWNN (BP 
Algorithm) 

MAE 
MSE 
RMSE 

4.6978 × 10−6 
2.2316 × 10−11 
4.7239 × 10−6 

4.0551 × 10−6 
1.7424 × 10−11 
4.1749 × 10−6 

4.5983 × 10−6  
2.6346 × 10−11 
5.1349 × 10−6 

WLLWNN (PSO 
Algorithm) 

MAE 
MSE 
RMSE 

3.7001 × 10−8 
1.7781 × 10−15 
4.2170 × 10−8 

1.6286 × 10−7 
3.3395 × 10−14 
1.8274 × 10−7 

2.7986 × 10−7 
9.8627 × 10−14 
3.1405 × 10−7 

ARFIMA-
WLLWNN (BP 
Algorithm) 

MAE 
MSE 
RMSE 

2.0409 × 10−6 
4.3281 × 10−12 
2.0804 × 10−6 

2.7731 × 10−6 
8.0457 × 10−12 
2.8365 × 10−6 

6.4121 × 10−7 
4.2383 × 10−13 
6.5102 × 10−7 

ARFIMA-
WLLWNN (PSO 
Algorithm) 

MAE 
MSE 
RMSE 

4.7726 × 10−9 
3.6761 × 10−17 
6.0631 × 10−9 

3.1504 × 10−8 
1.8611 × 10−15 
4.3140 × 10−8 

2.9496 × 10−8 
1.4299 × 10−15 
3.7813 × 10−8 

ARFIMA-
HYAPARCH 

MAE 
MSE 
RMSE 

5.2316 × 10−7 
3.2458 × 10−16 
1.8000 × 10−8 

4.8637 × 10−6 
2.9452 × 10−14 
1.7160 × 10−7 

3.2478 × 10−8 
2.9773 × 10−15 
5.4600 × 10−8 
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Figure 1. Schematic representation of the WLLWNN model 

 

 



50 

 

 

 

Figure 2. Schematic representation of ARFIMA-WLLWNN vs ARFIMA-HYAPARCH 
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Figure 3: Returns of the DJIA from 01/01/2010 to 02/11/2020 
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(a) 

 

(b) 

Figure 4: Forecasting the DJIA returns using LLWNN based BP Algorithm.  

Forecasting horizon (a) h=22-day and (b) h=5-day. 
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(a) 

 

(b) 

Figure 5: Forecasting the RDJIA using LLWNN based PSO Algorithm.  

Forecasting horizon (a) h=22-day and (b) h=5-day. 
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(a) 

 

(b) 

Figure 6: Forecasting using the ARFIMA-LLWNN based BP Algorithm.  

Forecasting horizon (a) h=22-day and (b) h=5-day. 
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(a) 

 

(b) 

Figure 7: Forecasting using ARFIMA-LLWNN based PSO Algorithm.  

Forecasting horizon (a) h=22-day and (b) h=5-day. 
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(a) 

 

(b) 

Figure 8. Forecasting RDJIA using the WLLWNN based BP Algorithm.  

Forecasting horizon (a) h=22-day and (b) h=5-day. 
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(a) 

 

(b) 

Figure 9 Forecasting the RDJIA using WLLWNN based PSO Algorithm.  

Forecasting horizon (a) h=22-day and (b) h=5-day. 
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(a) 

 

(b) 

Figure 10. Forecasting RDJIA using the ARFIMA-WLLWNN based BP Algorithm; Forecasting 

horizon (a) h=22-day and (b) h=5-day. 
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(a) 

 

(b) 

Figure 11. Forecasting RDJIA using the ARFIMA-WLLWNN based PSO Algorithm; 

Forecasting horizon (a) h=22-day and (b) h=5-day. 

 




