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Abstract

All nations stand to benefit from addressing the problem of global warming caused by green-

house gas emissions. However, the economic impact of pollution reduction in the form of reduction

in GDP and jobs lost will be different for different countries and across different industries. In this

paper, we estimate the opportunity cost of emission reduction in terms of the loss of intended

output and, collaterally, the effect on employment that would result from a reduction in the con-

sumption of fuel for various industries of different countries by using the data constructed from the

World Input-Output Database. We conceptualize a production technology with one intended out-

put and one undesirable output (CO2 emission) produced from labor, capital, and materials (treated

as neutral input) and fuel (treated as the polluting input). The nonparametric Data Envelopment

Analysis model of by-production formulated by Murty, Russell, and Levkoff (2012) and modified

by Ray, Mukherjee, and Venkatesh (2018) is employed.
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1 Introduction

A broad consensus in the scientific community about the potentially catastrophic impact of

global warming due to unrestrained greenhouse gas emission upon plant and animal life in this

planet has forced the leadership across countries to recognize the need and urgency of an interna-

tionally coordinated policy for environmental pollution reduction. The United States, the United

Kingdom, Canada, and Japan have all promised to reduce CO2 emission. The U.S. has rejoined the

Paris Accord and has set a target of curbing CO2 emission by 50-52% by 2030 (based on 2005 lev-

els); Canada has increased its goal from 30% to 40%-45% (based on 2005 levels); Japan has raised

the reduction target from 26% to 46%-50% by 2030 (based on 2013 levels); the United Kingdom

has pledged to shrink CO2 emission by 78% by 2035 (based on 1990 levels). The U.S. President

Biden argued at the 2021 Leaders’ Summit on Climate, ‘nations that work together to invest in a

cleaner economy will reap the rewards for their citizens’ as he called upon the participating gov-

ernments to collaborate on preventing global warming through CO2 emission reduction. In fact,

all nations stand to benefit from addressing the problem of global warming caused by greenhouse

gas emissions. However, the economic impact of pollution reduction in the form of reduction in

GDP and jobs lost will be different for different countries and across different industries. While

the benefits from pollution reduction are generally recognized by all, resistance to measures penal-

izing the use of fossil fuels (mainly coal and oil) that account for the biggest share of atmospheric

pollution comes primarily from nations (and regions within nations) that face the prospect of sig-

nificant reduction in income and employment resulting from policies encouraging alternative and

renewable sources of energy.

There exists a considerable volume of literature in environmental economics and also in the

production efficiency literature specifically directed towards measuring the cost of pollution abate-

ment. However, the studies differ significantly in respect of how the cost of pollution abatement is

measured. The three main alternative measures of the cost of pollution abatement can be identified

as: (a) reported abatement cost, (b) shadow price, and (c) opportunity cost.

The reported cost is a direct measure of pollution abatement cost and expenditure (PACE)
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obtained from the EIA-767 survey of manufacturing plants conducted by the US Department of

Commerce that requests information on operation and maintenance (OM) expenditures associated

with both collection and disposal of fly ash, bottom ash, and flue gas desulfurization. The shadow

price approach uses a distance function including one or more environmental pollutants as bad

outputs alongside one or more good outputs and performs a comparative static analysis to measure

the marginal rate of transformation between the good and the bad outputs holding the distance

function constant at a given level. In non-parametric models using Data Envelopment Analysis

(DEA), the ratio of the values of the dual variables (or multipliers) at the optimal solution (with the

price of the desirable output set equal to its market price) provides the marginal cost of reducing

an undesirable output. In a parametrically specified output distance function, one uses the ratio

of the partial derivatives using the fitted model. Finally, the opportunity cost measure of pollution

abatement is the reduction in the desired output that must be accepted if the level of pollution is

to be lowered by a targeted amount holding the level of inputs unchanged. Note that this trade

off between producing the good output and reducing the bad output is meaningful only when one

compares points along the frontier of the production possibility set.

Färe, Grosskopf, and Pasurka (2003) used the EIA-767 and PACE 1996 survey data to com-

pute the opportunity cost comparing the maximum producible output with and without pollution

regulation and to compare (what they described as) the revealed cost with the survey estimates for

coal-fired power plants in 1994-95. The abatement was for SO2 and PM10. Their marginal pollu-

tion abatement cost was measured by the loss of good output (kwh of electricity). Färe, Grosskopf,

and Pasurka (2016) measured the opportunity cost of abatement of SO2 for coal-fired plants with

particular focus on the impact of pollution regulation on technical change.

Examples of using the shadow price derived from parametrically specified distance functions

can be found in Färe, Grosskopf, Lovell, and Yaiswarang (1993), Coggins and Swinton (1996),

Swinton (2002), Lee, Park, and Kim (2002), and Hailu and Veeman (2003), among others. Färe,

Grosskopf, Lovell, and Yaiswarang (1993) specified a deterministic translog output distance func-

tion for a sample of 30 pulp and paper mills. The good output was tons of paper produced while
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the bad outputs were biochemical oxygen demand (BOD), total suspended solids (TSS), partic-

ulates, and SOx. Coggins and Swinton (1996) estimated a deterministic translog output distance

function to measure the shadow price of SO2 emission allowance using 42 observations for 14

power plants in Wisconsin. Swinton (2002) used a deterministic translog output distance function

for power plants with electricity as the good output and SO2 as the bad output. Hailu and Veeman

(2001) estimated a parametric input distance function for Canadian pulp and paper industry using

plant level data with four good outputs (pulp, newsprint, other paper, and paperboard) and two bad

outputs (BOD and total TSS). Shadow prices of NOx, SOx, and total suspended particulates (TSP)

derived from non-parametric DEA models were computed by Lee, Park, and Kim (2002) for Ko-

rean power plants.1 Ray and Mukherjee (2007) used country-level data on GDP as the good output

and CO2 emission as the bad output to empirically approximate a non-parametric directional dis-

tance function and computed the shadow price of carbon emission measured in purchasing power

parity adjusted US dollars for individual countries.

As noted by Färe, Grosskopf, and Pasurka (2003) direct measures of pollution abatement costs

have the typical shortcomings of survey based estimates. Moreover, such data are much more dif-

ficult to gather. The shadow prices from DEA linear programming models are very unstable and

may not be unique. Even those obtained from partial derivatives of the parametrically estimated

distance functions are local measures and using these shadow prices to compute the cost of a dis-

crete change in the level of emission can lead to inaccurate results. By contrast, the opportunity

cost approach measuring the loss of the desired output required for a targeted reduction in the un-

desirable output provides a more reliable estimate of the cost of pollution control. Ray, Mukherjee,

and Venkatesh (2018) used a DEA formulation of the production technology incorporating the by-

production model of Murty, Russell, and Levkoff (2012) assuming ‘joint disposability’ of pollution

and the polluting input. They treated GDP as the good output, CO2 emission as the bad output and

fossil fuel as the pollution generating input and measured the implied loss of GDP as opportunity

cost of a 15% reduction in CO2 emission for individual countries along a non-parametric frontier

1Instead of projecting observations on to the frontier, the authors allowed inefficiency but held it constant while
deriving their shadow prices.
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constructed using the output directional distance function.

While using the opportunity cost measure of carbon emission reduction cost, this paper extends

the literature in several directions. First, instead of looking at an aggregate measure of lost GDP due

to CO2 emission reduction for the entire economy, we examine the loss of desirable output due to

a targeted pollution reduction for a number of major industries for different countries. This allows

us to highlight the differential cost of pollution control that is imposed upon different industries.

Side by side, we can also compare how this opportunity cost varies across countries even for the

same industry. Such information should be helpful in setting industry-specific pollution reduction

targets while trying to meet an overall pollution reduction goal for the country as a whole. At the

same time, inter-country differences can be taken account of in any global agreement on emission

reduction. Second, instead of estimating the effect of pollution reduction on employment as Färe,

Grosskopf, and Pasurka (2018),2 we estimate the effect of a particular reduction target on labor

demand by applying the opportunity cost model as Ray, Mukherjee, and Venkatesh (2018).3 The

flexibility of the reduction target enable one to compare the effect of different emission reduction

targets on labor demand.

The main contributions of the paper can be summarized as follows:

• We conceptualize the overall production technology and estimate pollution-oriented effi-

ciency score using a by-production approach through a directional distance function across

thirty-six countries and four manufacturing sectors, including basic metals, coke and refined

petroleum products, chemical products, and paper products.

• We measure the cost of emission reduction in terms of foregone revenue based on the by-

production approach through a opportunity cost model similar to RMV (2018). The cost of

emission reduction is estimated in the minimum dollar amount of good output that would

have to be sacrificed when the emission is required to be reduced by 25%.
2This effect of emission reduction on labor is measured by comparing labor demand with and without pollution

regulation through an input-oriented distance function.
3In this study, the reduction target can be exogenously assigned by researcher incorporating with different emission

reduction requirements.
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• The reduction in the value of intended output is more likely to over estimate the opportunity

cost because it does not reflect cost savings from reduction in fuel and (possibly) other inputs.

Alternatively, we calculate the cost of emission reduction in terms of foregone profit for

selected countries based on the projected input-output bundles, given the CO2 emission is to

be reduced by 25%.

• With the proposed opportunity cost model, we estimate the effect of this particular emission

reduction on employment through the proposed method.

The rest of the paper is organized as follows. Section 2 conceptualizes the production possibil-

ity set which includes the production process for both intended and undesirable outputs through the

by-production approach, defines a pollution-oriented distance function for efficiency estimation,

and provides the method for estimating the cost of emission reduction and its effect on employ-

ment. Section 3 describes the collection and construction of the dataset. Section 4 presents and

analyzes the results of pollution-oriented efficiency score, cost of emission reduction and effect of

the particular emission reduction target on employment. Section 5 offers conclusions.

2 Methodology

Consider an industry using n inputs x ∈ Rn
+ to produce m outputs y ∈ Rm

+ . A production plan

is feasible if an input vector x can produce an output vector y . The production technology of this

specific industry can be characterized by the production possibility set

T = {(x, y) : x can produce y} (1)

Assume further that the output vector includes some ’bad’ or undesirable output(s) along with

the ’good’ or intended outputs. The production technology must appropriately characterize the

production process of both the good and the bad outputs. There are several ways of modeling

bad output, specifically as: (a) a conventional input in the production process (Baumol and Oates
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(1988), Cropper and Oates (1992)),4 (b) a joint product with the good output (Färe et al. (1989)),

2005), Førsund (2009), etc.),5 or (c) an incidental by-production resulting from the use of some or

all inputs into the production process (Førsund (2009), Murty, Russel, and Levkoff (2012) (MRL),

Lozano (2015), Dapko et al. (2016), and Ray, Mukherjee, and Venkatesh (2018) (RMV).

The joint production approach captures the production technology well in industries like live-

stock and pharmaceutical, where multiple inputs could not be clearly separated as polluting or

non-polluting inputs. For manufacturing industries like non-metallic minerals and basic metals,

polluting inputs and non-polluting inputs can be separated. For example, one of the most polluting

manufacturing industries, non-metallic mineral products, includes the production of cement, lime,

ceramics, and glass. The emission of the non-metallic mineral products comes from two input

factors: 1) the calcination process for limestone, where limestone is heated and decomposed into

calcium oxide and CO2; and 2) the heating process from the use of fossil fuels for this calcination.

In the iron and steel industry, capital, labor, iron ore, and fossil fuels are utilized to produce steel.

CO2 emission is generated during the smelting process from the use of fossil fuels. In summary,

the reduction of pollution is physically tied with the reduction of polluting input in these man-

ufacturing industries. Therefore, estimating the production technology of manufacturing sectors

requires one to 1) adequately define the technology which includes the production process of both

the good and the bad outputs; 2) capture the relationship between pollution and polluting input.

MRL (2012), therefore, models the overall technology as the intersection of two sub-technologies

for producing good and bad outputs; the two sub-technologies are estimated through two separated

problems of maximizing desirable and minimizing undesirable outputs. Lozano (2015) addresses

the problem that the polluting inputs involved in both of the sub-problems of MRL (2012) are not

guaranteed to be equal and had this problem fixed by imposing restrictions. RMV (2018) propose

4The approach by Baumol and Oates (1988), and Cropper and Oates (1992), which consider the undesirable outputs
as inputs, starts from the positive relationship of desirable and undesirable outputs. However, as explained in RMV
(2018), the approach is conceptually invalid because ”First, an input exists even before the production process starts.
Second, an input is depleted in stock as production is carried out. Third, an input is subject to some processing by the
producer.”

5This method regards undesirable output as an unintended output tied with the production of desirable output. More
intended outputs are produced only if undesirable output increases, which means bad outputs are weakly disposable
with good outputs.
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to analyze the production technology through unified or decentralized by-production models, to

address the concern of different intensity vectors used by Lozano (2015) and MRL (2012). The

pollution-generating technology in RMV (2018) characterizes the exact proportional change of

polluting inputs and pollution. In this study, we employed the approach and assumption in RMV

(2018) to define the production technology.

To adequately define the production technology which includes the production process of both

the intended and undesirable outputs for manufacturing sectors, we partition the input vector x =

(x1, x2) including n-1 types of non-polluting inputs x1 ∈ Rn−1
+ and only one type of polluting

input x2. The inputs (x1, x2) are used to produce one good output y and one bad output b. The

production technology is viewed as an intersection of the production for intended output T y
BP and

pollution generating process T b
BP . Based on RMV (2018), we assume that the overall production

technology under the by-production approach satisfies:

(A1) Strong disposability of inputs: if (x1, x2; y) ∈ T y
BP , and (x′

1, x
′
2) ≥ (x1, x2) then (x′

1, x
′
2; y) ∈

T y
BP ;

(A2) Strong disposability of desirable output: if (x1, x2; y) ∈ T y
BP , and y′ ≤ y then (x1, x2; y

′) ∈

T y
BP ;

(A3) Joint disposability between pollution and polluting input: if (x2; b) ∈ T b
BP , for any 0 ≤ θ ≤

1, then (θx2, θb) ∈ T b
BP .

(A4) TBP = T y
BP ∩ T b

BP

where strong disposability assumptions of inputs and good output hold only for T y
BP . Strong

disposability assumption holds for polluting input in the production process of good output, as all

inputs could be inappropriately or inefficiently utilized for the production process of good output.

However, strong disposability does not hold for polluting input in pollution generation process, as

polluting input could not be arbitrarily increased without changing the pollution. Therefore, for the

process of pollution generation T b
BP , we assume the polluting input and the pollution are jointly
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disposable in the way that the pollution reduction must come from the same proportional reduction

of corresponding polluting input. This assumption from RMV (2018) reflects the transformation

between polluting input and pollution based on two major facts:

• The polluting input that has entered the transformation process generates a certain amount of

pollution primarily based on the carbon content and net calorific value. In other words, the

emission factors across different types of fuels determine the transformation rate between

energy and emission.

• The data of the pollution is measured mostly based on the product of emission factors of

different types of polluting inputs and the amounts of those polluting inputs.6

Additionally, the method of RMV (2018) addresses the problem of the uncoordinated amount

of polluting input between T y
BP and T b

BP in the work of MRL (2012). Therefore, we use the

by-production approach of RMV (2018) to conceptualize and estimate the technology with the

imposed relationship between the pollution and polluting input. The production possibility set

following the by-production approach and constant return to scale in the non-parametric form can

be approximated as:

T y
BP =

{
(x1, x2; y) :

N∑
j=1

λjyj ≥ y;
N∑
j=1

λjx
j
1 ≤ x1;

N∑
j=1

λjx
j
2 ≤ x2;λj ≥ 0; (j = 1, 2, . . . , N)

} (2)

T b
BP =

{
(x2; b) : 0 ≤ θ ≤ 1,

N∑
j=1

λjx
j
2 = θx2,

N∑
j=1

λjbj = θbj;λj ≥ 0; (j = 1, 2, . . . , N)

} (3)

TBP =
{
(x1, x2; y, b) : (x1, x2; y) ∈ T y

BP ∧ (x2; b) ∈ T b
BP

}
(4)

6Real-time CO2 emission monitoring has not been widely adopted among most polluting industries. The emission
data generally relies on the amount of polluting inputs and emission factors.
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We propose to characterize the overall production technology and estimate pollution-oriented

efficiency through the following directional distance function.

D⃗
(
x1, x2; y, b; g

x1 , gx2 , gy, gb
)

= {max β :
(
x1, x2 − βgx2 ; y, b− βgb

)
∈ T ;

0 ≤ β ≤ 1; gx2 = x2, g
b = b, gx1 = gy = 0}

(5)

where
(
gx1 , gx2 , gy, gb

)
is the pre-specified direction vectors. We maximize the reduction of pollu-

tion and polluting input in this directional distance function, as we focus on producing the current

amount of desirable output with the least amount of pollution. Thus, gx2 = x2, gb = b and

gx1 = gy = 0. Here, the proportional reduction of pollution and polluting input are β = 1− θ. In

this study, the model include one type of good output y in dollar amount; pollution and polluting

input are CO2 emission b and fuels f ; non-polluting inputs x1 include capital k, materials m and

labor l. As the focus is emission reduction, relaxation of the strong disposablity of labor enables

one to find the maximal emission reduction allowing variation of labor; therefore, we propose a

pollution-oriented DEA model allowing the variation of labor as following,

D⃗
(
x1, x2; y, b; g

x1 , gx2 , gy, gb
)
= max β

s.t
∑N

j λjyj ≥ y0∑N
j λjmj ≤ m0∑N
j λjkj ≤ k0∑N
j λjlj = l∗∑N
j λjfj = (1− β)f 0∑N
j λjbj = (1− β)b0

λj ≥ 0, ∀j ∈ N

(6)

where β is the proportion reduction of CO2 and fuels for a specific observation, N is the num-

ber of observations and λj are the intensity variables. The objective is to maximize the pollution
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reduction without decreasing the quantity of desirable output y0 under the proposed by-product

approach. As mentioned above, strong disposability assumptions hold for materials, capital, fuel,

and desirable output only in T y
BP . The strong disposability of polluting input does not hold for the

overall technology, as the overall technology is an intersection of both T y
BP and T b

BP . Therefore,

fuel is jointly disposable with CO2, and if the pollution is reduced by β proportionally, the amount

of fuel has to be reduced by the same proportion. The fourth constraint in (6) denotes that labor is

projected in the direction of minimizing emission reduction and is adjusted by the corresponding

intensity variables without having the observed level of labor as an upper bound. In this way, the

production frontier represents the technology where the good output is produced through the corre-

sponding inputs with the least amount of pollution, allowing variation of labor. Eventually, solving

the problem of (6) for each industry of all the countries provides the efficiency score (1− β∗) and

the corresponding input-output bundle at efficient level for ith observation is (y∗, b∗, f ∗,m∗, k∗, l∗).

Färe and Grosskopf (1998) provides a theoretical model7 for shadow pricing undesirable out-

puts in terms of loss of good output under the output-oriented distance function assuming that

the undesirable output is weakly-disposable with the desirable output. Studies measuring shadow

prices of undesirable outputs are generally through (a) reported abatement cost, (b) shadow price,

and (c) opportunity cost methods. Rather than investigating the reported abatement cost8 or ap-

plying the shadow price approach for estimating the cost of emission reduction, we apply the

opportunity cost model as proposed in RMV (2018) which measures the opportunity costs of a

targeted emission reduction in terms of the loss of good output in dollar amounts. The advantage

of this method is that it circumvents the problem of the DEA dual approach, where the opportunity

cost is usually unstable and cannot be adequately approximated for efficient observations.

As the technology of capturing and offsetting CO2 is not widely accepted, the emission re-

7There is a large amount of literature on how to conceptualize and estimate the cost of emission reduction us-
ing computable general equilibrium models (Yang et al. (1996), Ellerman and Decaux (1998), Klepper and Peterson
(2002)) and how to achieve emission reduction efficiently using policy instruments based on the theory of environmen-
tal economics (Montgomery (1972), Hahn (1984) and Stavins (1995). However, these studies are established based on
the assumption that the observed input-output bundles are always on the production frontier.

8Abatement technologies aimed at capturing and offsetting CO2 is too costly to be widely adopted. Thus, the
reported abatement cost of CO2 mitigation is not considered here.
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duction of CO2 of a specific industry relies on the reduction in the use of polluting inputs in the

short run.9 Any reduction in the intended output caused by a reduction of the polluting input is the

opportunity cost of pollution reduction in terms of desirable output. We apply the opportunity cost

model as RMV (2018) to analyze the trade-off between pollution reduction and desirable outputs

across different manufacturing sectors and different countries. The opportunity cost model is set

up to find the minimum dollar amount of good output that would have to be sacrificed if CO2

emission is to be reduced by some proportion γ̄ decided by the analyst. We propose the following

opportunity cost model,

min η

s.t
∑

j µjy
∗
j ≥ (1− η)y∗∑

j µjm
∗
j ≤ m∗∑

j µjk
∗
j ≤ k∗∑

j µjl
∗
j = l∗∗∑

j µjf
∗
j = (1− γ̄)f∗∑

j µjb
∗
j = (1− γ̄)b∗

µj ≥ 0, ∀j

(7)

The purpose of this model is to find the minimum loss of the desirable output, where pollution

must be decreased by a further 100 · γ̄%, from the efficient level of ith observation obtained from

(6). From the efficient projections obtained in (6) and (7), we compare the variation of desirable

output in dollar amount η∗y∗ vis-à-vis the change of pollution γ̄b∗ along the frontier. Then the

trade-off between good and bad outputs along the frontier as

∆y

∆G
=

η∗y∗

γ̄b∗
(8)

is the per unit opportunity cost of pollution reduction in terms of dollar amount of good output.

Additionally, The model in (7) provides the maximal desirable output (1 − η∗)y∗ and also the

9In the long run, the intended output would be less affected by the reduction of polluting inputs, if the transitioning
from coal to natural gas or other sources of cleaner energy is accepted by more and more countries.

12



corresponding variable input bundle (m∗∗, f ∗∗, l∗∗), given that the emission and the polluting input

is required to be decreased to (1 − γ̄)f ∗ and (1 − γ̄)b∗. It is important to notice that the emission

reduction affects both revenue and the production cost. Therefore, the reduction in the value of

intended output is more likely to over estimate the opportunity cost because it does not reflect cost

savings from reduction in fuel and (possibly) other inputs.10 If we assume the inputs and intended

output prices are exogenously given and the intended output is measured in value terms, denoting

the input prices as w = (wm, wF , wl), the non-parametric method presented in (6) and (7) enables

one to further estimate the cost of emission reduction in terms of change in variable profit

∆π

∆b
=

η∗y∗ − w(m∗ −m∗∗, f ∗ − f ∗∗, l∗ − l∗∗)′

γ̄b∗
(9)

We propose to measure the cost of emission reduction alternatively in terms of foregone rev-

enue and foregone variable profit, given that emissions must be further reduced by γ̄ = 25%

from the level of the pollution-oriented projection in (6) for selected countries including China,

Germany, India, Japan, Mexico and the United States.11

Berman and Bui (2001) and Morgenstern, Pizer, and Shih (2002) are two well-cited papers

proposing structural models for estimating the effect of environmental regulation on employment.

Morgenstern, Pizer, and Shih (2002) decomposed the emission reduction effect on employment

into cost, factor shift, and demand effects. Specifically, the cost effect is generally positive for

the increment on labor due to the additional abatement activities (cost); the demand effect is that

labor demand goes down because the increased production cost lowers the supply of intended

output. Färe, Grosskopf, Pasurka (2018) estimated the effect of emission reduction of SO2 using

Data Envelopment Analysis for the US power plants incorporating the concepts of cost effect and

factor shift effect. In this study, we focus on measuring the factor shift effect following the concept

proposed in Morgenstern, Pizer, and Shih (2002). The factor shift effect is the change of labor

10Especially when the abatement technology for CO2 is not widely accepted, therefore, not considered in this study,
the foregone revenue is over-estimating the cost of emission reduction based on theories of environmental economics.

11The lack of all the input quantities and input prices impedes the estimation of emission reduction cost in terms of
foregone profit for all the observations.
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due to the variation of inputs shares before and after the regulation (associate with the possible

substitution among different inputs along the frontier) . Because abatement technologies aimed

at CO2 offsetting and capturing has not been widely accepted and applied, the cost effect is not

considered. Our model could be extended to incorporate the labor change due to the reduced

demand of intended output if a panel dataset is employed.

One advantage of estimating the cost of emission reduction through the non-parametric oppor-

tunity cost model is that the efficient input-output bundles before and after achieving a particular

emission reduction target are provided in (6) and (7). Not only can we compare labor change due

to efficiency improvement in pollution generation, but we can also investigate the labor change due

to the possible substitution among different inputs along the frontier before and after achieving a

particular emission reduction target. The labor change in percentage is denoted as

l∗∗ − l

l
=

l∗∗ − l∗

l
+

l∗ − l

l
(10)

where l is observed level of employment, l∗ is the projected level of labor after the observation

has been projected onto the frontier, and l∗∗ is the labor quantity when the emission is required

to be further reduced by γ̄ proportionally along the frontier; the labor change due to imposing the

emission reduction target is decomposed to the change due to the efficiency improvement l∗−l
l

and

the change due to the factor shift effect l∗∗−l∗

l
.

3 Data

We construct industry-level data from the World Input-Output Database12, including good out-

put, intermediate input, capital stock, and employment from Socioeconomic Accounts of 2014.13

Energy consumption and CO2 emission data are from Environmental Accounts WIOD.14 The

12We would like to thank Surender Kumar at Delhi School of Economics, for offering help with the WIOD dataset.
13Desirable output, capital stocks, and intermediate inputs presented in current purchasers’ prices (in millions of

local currency) are converted to US dollar by purchasing power parity (PPP). We use the number of persons engaged
as a measure of labor.

14There is WIOD 2016 Release (http://www.wiod.org/home), and we use 2014 data which is provided by Timmer
et al. (2015) because it is the latest year for which all the inputs and outputs information is available for countries and
industries. Polluting input and pollution are measured in terajoule (TJ) of energy and tons of emission.
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dataset covers 28 EU countries and 14 other major countries in the world for 2014. To construct

a means of measuring the material input, we convert the polluting input (energy) to barrels of oil

equivalent. We use barrels of oil equivalent to obtain the cost of energy using the 2014 average

price of the Brent oil. The cost of material is separated by subtracting the cost of energy from the

total dollar amount of the intermediate input.

In this dataset, pollution from all the 19 manufacturing sectors accounts for 30.09% of the total

pollution among all the industries. We select four major manufacturing industries: basic metals,

coke and petroleum, chemicals and chemical products, and paper and paper products industry.

These four industries account in total for 54.87% of the total CO2 emission across all manufactur-

ing industries. These four are the top polluting manufacturing industries, and the emission gener-

ating processes within these sectors largely depend on the burning of fossil fuels. The non-metallic

mineral products industry generates 32% of the total emission in the manufacturing industries in

this dataset. However, it is not included in this study, since the emission generation process of this

industry involves emission from the decomposition of limestone and emission from the heating

process through fossil fuels, and data on limestone is not available. The total emissions in tons,

emission percentage across all the manufacturing industries, good outputs in dollar amount, and

the emission intensities (emission per dollar of good output) of these four polluting industries are

summarized in Table 1. The CO2 emission intensity is higher in basic metals and chemicals and

chemical products, which involve processes requiring a large amount of fuels burned for heating.

Summary statistics for the inputs and outputs of different industries across all countries of 2014

are provided in Table 2.

Heterogeneity of emission-related inputs measured in TJ is a part of the embedded variation.

As summarized by the U.S. Energy Information Administration, one million Btu of coal emits

228.6 pounds of CO2, while natural gas emits only 117 pounds. In this situation, observations

that have the best performance in pollution generation and have produced desirable outputs with

the most environmental-friendly polluting input like natural gas will be on the production frontier.

Therefore, in this study, the efficiency of an industry depends on its operational performance in
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producing intended output with the minimum required quantity of energy input and also the fuel

mixture.15 As the firm-level data is only minimally available across different industries, we apply

the industry-level data presented above to conduct the analysis for estimating the cost of emission

reduction and the impact of emission reduction on employment across basic metals, coke and

refined petroleum products, chemical products, and paper products industries through a modified

opportunity cost model using Data Envelopment Analysis.

4 Results

The technology of different industries defined according to the by-production approach is cap-

tured by the environmental-oriented DEA model in (6). Solving the problem in (6) for all the

observations sector by sector provides the estimates of the pollution-oriented efficiency scores

measured by possible minimum emission as a proportion of the observed emission, which is sum-

marized in Table 3 for selected countries, including China, Germany, India, Japan, Mexico, and

the U.S. We provide details for other countries in Appendix Table 1. In Table 3, for example, the

score of 0.71 for Germany’s paper industry means that it could have scaled down the emission to

71% of the current level. Mexico and Germany performed generally well across all of these four

industries. The production process of Mexico is pollution-oriented efficient for those four sectors.

Germany has relatively high performance scores (no lower than 0.6). The chemical products in-

dustry of India is efficient, while the paper products and basic metals industries of India did poorly

and could have reduced CO2 emission by more than 50%. Basic metals in the U.S. performed well

and only 30% of the emission could be reduced; by contrast, a large proportion of emission could

be reduced in coke and petroleum and chemical products industries of the United States. China

could have reduced about 50% of the emission for all the selected industries. Japan did poorly

for all the emission intensive industries including basic metals, chemical products and coke and

petroleum sectors. Particularly, coke and petroleum industry in Japan could have reduced more

15To separate out the effects of heterogeneous inputs on pollution-oriented performance, it is necessary to utilize a
dataset at firm-level, including the record of types and percentages of different fuels used. Hampf and Rødseth (2019)
addressed the environmental-oriented efficiency with the heterogeneity of polluting input specifically for the coal-fired
power plants in the US.
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than 70% of the CO2 emission.

The optimal solution of the problem (6) yields the input-output bundles at the efficient level.

Starting with these efficient bundles, one can determine new projected input-output bundles when

emission is required to be further reduced by γ̄ =25% by solving the problem in (7). We calculated

the opportunity cost of emission reduction in terms of the foregone revenue (in dollars per ton

of emission reduction) as (8). The result is presented in Table 4a for selected countries and in

Appendix Table 2 for more countries.

The cost of emission reduction in terms of foregone revenue varies across industries and coun-

tries. Compared to other sectors, the costs in basic metals and paper products industries are gener-

ally lower for the selected countries. For instance, one ton reduction of emission reduces the value

of the good output by $582 for the U.S. and by $1,542 for Japan in the basic metals industries, and

the comparable figures in the paper products industries are $1,042 for the U.S and $1,360 for Japan

. On the other hand, the cost is generally higher for coke and petroleum industry than other indus-

tries. For example, per ton emission reduction lowers the good output by $14,724 and $18,211 in

coke and petroleum sectors of the U.S and Japan, respectively. International comparison by sectors

shows that: China has the highest costs in both paper products and coke and petroleum industries;

India has the lowest cost in paper products, and Germany has the lowest in coke and petroleum;

Japan (the U.S.) has the highest (lowest) cost in the chemical products, and India (China) has the

highest (lowest) cost in the basic metals.

As mentioned earlier, the reduction in the value of intended output is more likely to over-

estimate the opportunity cost of emission reduction as it does not reflect cost savings from the

reduction in fuel and (possibly) other inputs. We alternatively calculate the cost of emission reduc-

tion in terms of foregone variable profit. Foregone variable profit based on the difference between

the foregone revenue and the change of variable cost is calculated using (9). The change of the

variable cost consists of the cost change in materials, labor, and fuel. The cost change in mate-

rials and fuel are straightforward to measure because materials are in dollar amount, and the cost

change in fuel could be calculated based on the Brent oil price and the quantity change in the fuel.
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In addition, we collect the labor price for the selected countries from different sources to calculate

the change in production cost.16 The opportunity cost of emission reduction in terms of foregone

variable profit (in dollars per ton of emission reduction) for selected countries is presented in Table

4b. We also provide Fig 1. for comparing the variation between foregone revenue and foregone

profit across industries for selected countries.

As expected, the opportunity cost in terms of the foregone profit is less than the cost in terms of

foregone revenue except for paper products industry. The basic metals industry has the lowest cost

of emission reduction in terms of foregone profit than other sectors (except for India). For example,

per ton emission reduction will reduce the profit by only $116 for the U.S and $216 for Japan in

the basic metals industry. The cost of emission reduction in coke and refined petroleum products

is generally higher than in other sectors. For instance, per ton of CO2 reduction reduces the profit

by $2,851 and $6,577 in coke and petroleum industry in the U.S. and Japan. The inter-country

comparison of the costs in terms of foregone variable profit among these four sectors is similar

to the one in terms of foregone revenue, except that Germany has the lowest cost of emission

reduction in the chemical products industry and the U.S has the lowest cost in the basic metals

industry. In general, promoting emission reduction policies in the basic metal industry will have

a significant effect on the emission reduction at a lower cost, since the basic metal industry is a

top-polluting industry across the selected countries, and it is also less costly to implement emission

reduction in the basic metal industry than in others. By contrast, coke and petroleum industry is

less likely to be included in a environmental policy based on its high emission-reduction cost.

A simple ratio measure like emission intensity is also widely used in other studies as another

direct measure for the trade-off between emission and intended output. We compare the cost of

emission reduction in terms of foregone revenue with the ratio of the intended output to the CO2

emission (the inverse of emission intensity) in Table 4a and Table 5. Noticeably, the measure by

this simple ratio is larger than the cost of emission reduction in terms of foregone revenue in basic

metals industry except Mexico and India, whereas it is smaller in paper products industry. The

16We use OECD annual wage dataset for OECD members; the wage data of India is from Labour Bureau of India;
for China, we employ the data from the National Bureau of Statistics of China.
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simple ratio generally can not correctly reflect the cost of emission reduction because: a) along the

production frontier the intended output is not necessarily reduced by the same proportion as the

emission, and b) mostly the simple ratio measure is not along the production frontier but within

the frontier, which does not consider any inefficiency.17

At present, more and more countries are trying to introduce a system of carbon pricing to

address the underlying problem of the negative externality. For such a policy to be effective, the

carbon price should be high enough to discourage the emission by rational producers who will

always compare the price with the opportunity cost of emission reduction measured by the loss

of revenue or profit. Our empirical finding show that the carbon prices of different markets in the

U.S. are way below the opportunity cost to alter the producer emission behavior in any significant

way. Unlike the the sharply rising carbon price of EU Emissions Trading System 62.4e per tonne,

the recent allowance price in California was $24.3 per ton and $9.3 per ton in the market of the

Regional Greenhouse Gas Initiative (RGGI) in the U.S. in September 2021. Based on our findings,

there is considerable room for California and RGGI to promote their environmental policies more

aggressively.

Reducing production or shutting down factories that are pollution inefficient is a straightfor-

ward approach to emission reduction, and therefore is a common occurrence. However, these

curtailment activities often cause people to think that promoting environmental polices leads to

unemployment. In this study, we find that the effect of achieving a particular emission reduction

target on employment is not always negative. The estimate of labor changes as in (10) is provided

in Table 6 and presented in Figure 2 for selected countries.

It is noteworthy that the overall labor changes are equal to the sum of change due to the effi-

ciency improvement l∗− l and change due to the factor shift effect l∗∗− l∗ . The factor shift effects

are negative for selected countries, except for paper products industry. In paper products industry,

labor demand at pollution-oriented efficient level is larger than the actual level except in China and

17As it is noticed that the estimate for basic metals industry of Mexico is the same, it is actually a perfect example
supporting the extreme situation. The simple ratio measure will be the same as the non-parametric measure only when
the observation is 1) environmental efficient; 2) the production frontier has a constant trade-off between the intended
output and emission locally.
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India. The factor shift effects are positive except in China. In consequence, the overall effect of

the particular emission reduction target on the employment of paper product industry is positive in

Germany (47.78%), Japan (183.73%), Mexico (89.68%), and the U.S. (268%). In coke and refined

petroleum products industry, labor changes due to the efficiency improvement are all non-negative;

the overall effect on labor is negative only in Germany (-8.78%) and Mexico (-25.14%). The labor

changes due to efficiency improvement are negative for China and Germany in the chemical prod-

ucts industry; the overall effect in the chemical products industry is positive for Japan (66.31%)

and the U.S. (116.27%). In the basic metals industries, the overall effect is negative for all the

selected countries because the factor shift effect dominates the change due to efficiency improve-

ment. In summary, the overall change of employment is negative for the selected countries in the

basic metals industry, while the overall change in labor varies across countries in coke and refined

petroleum, and chemical products industries. Labor demand increases in multiple industries of

different countries especially in paper products industry.

5 Conclusion

Studies estimating the shadow price of undesirable output along production possibility frontier

typically rely on the trade-off between the pollution reduction and the loss of desirable output.

Analysis focusing on this trade-off requires conceptualizing a production technology which in-

cludes the production process of both the good and the bad outputs. Treating pollution as a joint

product with desirable output or regarding it as an unavoidable by-product if the polluting input are

two alternative and well-founded ways. Although the appropriateness of one approach over one

the other typically depends on the context, there is a growing realization that the by-production

approach is better suited for environmental pollution analysis.

The estimates of pollution-oriented efficiency scores indicate that there is a significant poten-

tial for China, India, Japan, and the U.S. to produce the same amount of desirable outputs with

less emission by improving their environmental efficiency and concentrating more on transitioning
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from coal to natural gas or other sources of cleaner energy. We estimated the cost of emission re-

duction in terms of foregone revenue and alternatively in terms of foregone variable profit through

the by-production approach based on the fact that CO2 must come from the burning of fossil fuels.

The results show that the cost of emission reduction in the basic metals industry is generally the

lowest, and the cost is generally high in coke and refined petroleum products among the observed

countries.

Along with the opportunity cost of emission reduction, we also look at employment changes

due to the emission reduction. The results show that imposing environmental policy on basic

metals industry will reduce the overall employment level for all the selected countries, but in other

sectors, especially in paper products industry, implementing emission reduction plans may increase

the labor demand.

Finally, a remark on the levels of environmental inefficiency in the specific industries for the

individual countries measured by our empirical analysis is in order. Excessive carbon emission for

a given level of production of the intended output of any industry can result from a combination of

inefficient and wasteful use of fuel in production (which can be addressed by improving efficiency

in fuel consumption) and higher carbon content of the mix of different kinds of fuel used. To the

extent that nations can transition away from conventional fossil fuels to ‘cleaner’ and renewable

energy, environmental efficiency will also improve.
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Sectors Total Emission Total Output Emission Percentage Emission Intensity
kt) (m$) (within manufacturing) (Emission/Total Output)

Basic Metals 2614419.84 5484380.85 29.94 0.48
Chemicals and Chemical Products 1317254.50 4989441.63 15.09 0.26
Coke and Refined Petroleum Products 707646.67 4681440.07 8.10 0.15
Paper and Paper Products 152293.57 1171890.09 1.74 0.13

Table 1. Summary of Selected Polluting Manufacturing Industries

Basic Metals Obv Mean Max Min Sdv

Labor (thousand people) 35 422.99 6093.07 2.79 1125.52
Capital (in million $) 35 100275.72 1518803.38 135.89 268014.75
Materials (in million $) 35 116300.30 2273773.83 342.70 386062.41
Polluting Input (in TJ) 35 802697.78 14519441.97 8559.75 2466841.05
Desirable Output (in million $) 35 156601.61 2960988.60 869.31 502315.06
CO2 emission (in kt) 35 73697.14 1354870.67 211.60 231197.27

Table 2a. Summary Statistic: Manufacture of Basic Metals

Chemical Products Obv Mean Max Min Sdv

Labor (thousand people) 33 388.95 7597.27 5.07 1306.13
Capital (in million $) 33 100024.76 1295086.37 619.47 245410.04
Materials (in million $) 33 102250.69 1735822.71 1213.46 295205.65
Polluting Input (in TJ) 33 489333.68 8016698.07 6075.22 1393576.07
Desirable Output (in million $) 33 142274.30 2224903.65 1701.53 384000.88
CO2 emission (in kt) 33 36898.88 690717.89 333.07 117746.09

Table 2b. Summary Statistic: Manufacture of Chemicals and Chemical Products
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Coke and Refined Petroleum Products Obv Mean Max Min Sdv

Labor (thousand people) 35 62.48 929.54 1.00 170.54
Capital (in million $) 35 52468.29 554248.03 420.11 116342.18
Materials (in million $) 35 113875.68 1171700.96 264.53 229307.03
Polluting Input (in TJ) 35 369363.93 3213581.48 1950.88 684881.45
Desirable Output (in million $) 35 141436.14 1404637.59 545.28 281678.13
CO2 emission (in kt) 35 21116.81 188447.01 562.06 38680.14

Table 2c. Summary Statistic: Manufacture of Coke and Refined Petroleum Products

Paper and Paper Products Obv Mean Max Min Sdv

Labor (thousand people) 35 223.09 3765.06 2.40 654.13
Capital (in million $) 35 31303.02 286015.51 199.91 58584.72
Materials (in million $) 35 21379.34 275179.55 248.93 48438.33
Polluting Input (in TJ) 35 211623.31 1970829.10 2516.40 401024.87
Desirable Output (in million $) 35 33411.94 372025.62 394.01 68590.10
CO2emission (in kt) 35 4298.82 43601.30 60.62 8909.65

Table 2d. Summary Statistic: Manufacture of Paper and Paper Products

Efficiency Paper Products Coke and Petroleum Chemicals Basic Metals

Country C17 C19 C20 C24

CHN 0.44 0.41 0.51 0.52
DEU 0.71 1.00 0.65 0.60
IND 0.40 0.67 1.00 0.46
JPN 0.66 0.27 0.37 0.44

MEX 1.00 1.00 1.00 1.00
USA 0.66 0.35 0.47 0.70

Table 3. Environmental-Oriented Efficiency Score
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Paper Products Coke and Refined Petroleum Products Chemical Products Basic Metals

Country C17 C19 C20 C24

CHN 19416 18193 3975 559
DEU 1427 3185 5418 1317
IND 642 18091 6762 4856
JPN 1360 18211 7658 1542

MEX 1362 3911 5062 2385
USA 1045 14724 3284 582

Table 4a. Cost of Emission Reduction in terms of Foregone Revenue ($/ton)

Paper Products Coke and Refined Petroleum Products Chemical Products Basic Metals

Country C17 C19 C20 C24

CHN 3751 7357 1523 283
DEU 2114 174 629 464
IND 634 8224 1299 960
JPN 3647 6577 4808 216

MEX 4249 506 1243 719
USA 2217 2851 2448 116

Table 4b. Cost of Emission Reduction in terms of Foregone Profit ($/ton)

Paper Products Coke and Refined Petroleum Products Chemical Products Basic Metals

Country C17 C19 C20 C24

CHN 8532 7454 3221 2185
DEU 7363 5050 6641 2985
IND 5824 12045 6762 2643
JPN 6945 4886 4586 2107

MEX 12253 4199 5418 2385
USA 5977 6121 3720 2481

Table 5. Ratio of Intended output verses CO2 Emission ($/ton)
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Paper Products (l∗ − l)/l (l∗∗ − l∗)/l (l∗∗ − l)/l

CHN -0.5011 -0.1199 -0.6209
DEU 0.2696 0.2083 0.4778
IND -0.7698 0.1592 -0.6106
JPN 1.4121 0.4251 1.8373

MEX 0.0000 0.8968 0.8968
USA 2.1310 0.5489 2.6800

Table 6a. Labor Changes in Paper Products Industry (in proportion)

Coke and Refined Petroleum Products (l∗ − l)/l (l∗∗ − l∗)/l (l∗∗ − l)/l

CHN 1.1254 -0.5314 0.5941
DEU 0.0000 -0.0878 -0.0878
IND 2.1035 -0.7759 1.3276
JPN 8.6984 -2.4246 6.2738

MEX 0.0000 -0.2514 -0.2514
USA 8.4316 -1.4855 6.9461

Table 6b. Labor Changes in Coke and Refined Petroleum Products Industry (in proportion)

Chemical Products (l∗ − l)/l (l∗∗ − l∗)/l (l∗∗ − l)/l

CHN -0.4583 -0.0113 -0.4696
DEU -0.0026 -0.1810 -0.1835
IND 0.0000 -0.2500 -0.2500
JPN 1.0500 -0.3869 0.6631

MEX 0.0000 -0.2514 -0.2514
USA 1.4822 -0.3195 1.1627

Table 6c. Labor Changes in Chemical Products Industry (in proportion)

Basic Metals (l∗ − l)/l (l∗∗ − l∗)/l (l∗∗ − l)/l

CHN -0.2688 -0.1996 -0.4684
DEU 0.2546 -0.2830 -0.0284
IND -0.3786 -0.4487 -0.8273
JPN 0.7654 -1.0111 -0.2457

MEX 0.0000 -0.2500 -0.2500
USA 0.1361 -0.2453 -0.1093

Table 6d. Labor Changes in Basic Metals Industry (in proportion)
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Paper Products Coke and Refined Petroleum Products Chemical Products Basic Metals

country C17 C19 C20 C24

AUS 0.7495 0.2195 0.3172 0.4182
AUT 0.4614 0.7807 0.9369 0.6151
BEL 0.6048 1.0000 0.4999 0.5766
BRA 1.0000 0.4479 0.8659 1.0000
CAN 1.0000 0.2757 1.0000 1.0000
CHN 0.4443 0.4097 0.5078 0.5246
CZE 0.5523 1.0000 0.4126 0.4683
DEU 0.7122 1.0000 0.6501 0.5975
ESP 0.3888 0.2393 1.0000 0.8555
FIN 0.7238 0.2047 0.7070 0.4338
FRA 0.5878 0.6208 0.7777 1.0000
GBR 1.0000 0.2240 0.6272 0.3898
GRC 1.0000 1.0000 1.0000 1.0000
HUN 1.0000 0.4466 0.5187 0.5075
IDN 1.0000 1.0000 1.0000 1.0000
IND 0.3993 0.6658 1.0000 0.4596
ITA 1.0000 0.2838 0.7560 1.0000
JPN 0.6643 0.2683 0.3750 0.4413
KOR 0.7266 0.6002 1.0000 0.4387
MEX 1.0000 1.0000 1.0000 1.0000
NLD 0.5388 0.2493 0.2718 0.4875
NOR 0.6635 0.3326 0.1594 0.2765
POL 1.0000 0.5193 1.0000 1.0000
PRT 0.5965 0.2953 0.9974 1.0000
ROU 0.8411 0.3683 0.2045 0.6795
RUS 1.0000 0.4216 0.1659 1.0000
SVK 1.0000 0.3273 0.4152 0.3335
SWE 1.0000 0.4483 1.0000 0.5525
TUR 1.0000 1.0000 1.0000 0.6096
USA 0.6666 0.3528 0.4696 0.6996

Note: we summarized environmental-oriented efficiency scores for 31 countries which includes the data for all the selected
industries.

Table A1. Environmental-Oriented Efficiency Score
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Paper products Coke and Refined Petroleum products Chemical Products Basic Metals

country C17 C19 C20 C24

AUS 1609 8887 1095 398
AUT 1875 1584 5885 531
BEL 24260 5411 6405 1264
BRA 2530 18159 6709 184
CAN 2816 8903 380 1084
CHN 19416 18193 3975 559
CZE 10287 19047 4033 1310
DEU 1427 3185 5418 1317
ESP 4605 18216 6431 905
FIN 1598 12116 7844 1452
FRA 3425 5219 3739 149
GBR 1689 6406 4530 1638
GRC 11478 3065 2329 2282
HUN 25312 18153 6501 2856
IDN 11547 18113 4408 2904
IND 642 18091 6762 4856
ITA 4526 14975 6255 1174
JPN 1360 18211 7658 1542
KOR 3653 8214 6649 1249
MEX 1362 3911 5062 2385
NLD 9922 9251 7991 1144
NOR 8478 18137 6768 1559
POL 3831 6076 946 362
PRT 1828 18124 4322 21079
ROU 5144 18117 2376 1540
RUS 18674 18372 3421 105
SVK 9871 18282 9389 1084
SWE 17971 8760 4466 1661
TUR 19600 6532 15182 2085
USA 1045 14724 3284 582

Note: we summarized the costs of emission reduction for 31 countries which includes the data for all the selected industries.

Table A2. Cost of Emission Reduction in terms of Foregone Revenue ($/ton)

35




