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Abstract

In this paper, we introduce a method of generating bootstrap samples with unknown patterns of cross

sectional/spatial dependence which we call the spatial dependent wild bootstrap. This method is a spatial

counterpart to the wild dependent bootstrap of Shao (2010) and generates data by multiplying a vector

of independently and identically distributed external variables by the eigendecomposition of a bootstrap

kernel. We prove the validity of our method for studentized and unstudentized statistics under a linear array

representation of the data. Simulation experiments document the potential for improved inference with

our approach. We illustrate our method in a firm-level regression application investigating the relationship

between firms’ sales growth and the import activity in their local markets using unique firm-level and imports

data for Canada.
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1 Introduction

Economic data is often characterized by dependence and heterogeneity and accounting for these features is

important when performing statistical inference. This paper presents a bootstrap method that is robust to spatial

(cross sectional) dependence and heterogeneity of unknown forms in the context of a linear regression model.

Spatially dependent observations often need to be indexed in more than one dimension and are not naturally

ordered nor regularly spaced. This makes the application of the bootstrap potentially challenging. For instance,

the spatial block bootstrap (see e.g. Lahiri and Zhu (2006), and Nordman, Lahiri and Fridley (2007)) requires

a careful partition of the data into blocks which may not be feasible in many applications.

Our approach in this paper is based on a variation of the wild bootstrap and does not require resampling

blocks of observations. We propose a residual-based wild bootstrap using a regression model, where the external

random variables used to perturb the residuals are cross sectionally dependent. Covariances between pairs

of external random variables are equal to a kernel weight that depends on a distance measure. Shao (2010)

proposed this method for the time series case with distances equal to time gaps, calling it a “dependent wild

bootstrap.” The theory for the spatial context is not trivial; however, it is as easy to apply as in the time series

case, requiring only (potentially imperfect) measures of distances between all pairs of observations.

The economics involved in applications with spatial data often suggests “economic distance” measures

which can be used to model spatial dependence which decays with distance. We exploit the availability of such

distance measures to generate bootstrap observations with cross sectional dependence. Distance measures can

vary depending on the application and multiple metrics are also easily allowed in our setup. This allows our

method to apply to panel data settings. For instance, our example application in Section 7 illustrates using our

method with firm-level data where correlations across firms arise from both overlap in their local markets and

similarity in their technologies.

We prove the first order asymptotic validity of our “spatial dependent wild bootstrap” under a set of reg-

ularity assumptions that are similar to those used in the spatial HAC literature (Conley (1999), Kelejian and

Prucha (2007), Kim and Sun (2011)). In particular, we assume that the score vector for each observation i is

a linear transformation of a possibly infinite number of common i.i.d. random innovations. Modelling spatial

dependence as a linear process is quite common in the spatial econometrics literature (see e.g. Kelejian and

Prucha (2007), Kim and Sun (2011, 2013) and Robinson (2011)). It avoids having to index observations in

a Euclidean space, as required with mixing conditions, and a special case of this model is the popular spatial

autoregressive (SAR) process. Compared to Shao (2010), who assumes a stationary mixing time series, our as-

sumptions allow for heterogenous spatial dependence in dimensions higher than one, but we rule out nonlinear

forms of dependence.

We generate spatially dependent external random variables using the eigendecomposition of the bootstrap

1



kernel matrix. This matrix contains weights given by a kernel function evaluated at the distance measure and

is equal to the bootstrap covariance matrix of the n×1 vector of external random variables. Hence, it must be

positive semi-definite, and a sufficient condition is that we choose a bootstrap kernel function whose Fourier

transform is weakly positive. A similar assumption is imposed by Shao (2010) in the one-dimensional time

series context. We discuss a class of kernels that satisfy this condition when spatial dependence is of dimension

higher than one and the distance is Euclidean. We also propose a modification for cases where the bootstrap

kernel matrix is not positive semi-definite. Our bootstrap method contains several existing methods as special

cases. One is the regular wild bootstrap. The other is the cluster wild bootstrap, popularized by Cameron et al.

(2008) and studied by Djogbenou et al. (2019).

We provide a theoretical justification for bootstrap hypothesis tests based on studentized statistics requiring

the use of a spatial HAC estimator for the original and the bootstrap test statistics. We allow for kernels used

to construct test statistics to be different than those used for generating the bootstrap data. This is important

since the bootstrap kernel function needs to be positive semi-definite, but one may want to use other kernels

to construct test statistics. We also allow for the use of restricted residuals when computing bootstrap critical

values for hypothesis tests. The use of restricted rather than unrestricted residuals often results in better size

control.

The structure of the paper is as follows. In Section 2 we describe the setup and review the spatial HAC

literature. In Section 3 we introduce the spatial dependent wild bootstrap and prove the consistency of the

bootstrap distribution under a set of regularity assumptions that rely on a linear array representation for the

score vector. The results of this section can be used to justify the construction of bootstrap percentile intervals,

which do not require studentization. In Section 4 we discuss hypothesis testing based on studentized test

statistics. Section 5 discusses an extension of our method to nonlinear models. Section 6 illustrates the finite

sample performance of the method in comparison to alternative asymptotic-based methods. In Section 7, we

illustrate our method in a firm-level regression investigating the relationship between a firm’s sales growth and

the import activity in its local market, where two metrics characterize residuals’ dependence. An appendix

contains mathematical derivations.

2 Linear regression with spatial or space-time dependence

We consider the following linear regression model

yi = x′iβ +ui, i= 1, . . . ,n,
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where the (p×1) vector of regressors, xi, and error term ui, might be spatially or space-time dependent. The

OLS estimator of β is

β̂ =

(
n

∑
i=1

xix
′
i

)−1
n

∑
i=1

xiyi.

Under some regularity conditions, we know that

(
Q−1JnQ−1

)−1/2√
n

(
β̂ −β

)
d−→ N (0, Ip) , (1)

where Q= p limn→∞ n−1
∑

n
i=1 xix

′
i is a positive definite matrix and

Jn =Var

(
n−1/2

n

∑
i=1

xiui

)
≡ 1

n

n

∑
i, j=1

E
(
ViV

′
j

)
, where Vi ≡ xiui.

We assume throughout that Jn is nonsingular uniformly in n. According to (1), the asymptotic covariance

matrix of β̂ is Cn = Q−1JnQ−1, which we need to estimate for inference on β . A consistent estimator of Q is

Q̂n =
1

n

n

∑
i=1

xix
′
i.

Estimating Jn in the presence of spatial (cross sectional) or space-time correlation is more challenging as all

pairs of observations could potentially be correlated.

The literature on spatial HAC inference confronts this problem by using auxiliary data on distances to

model covariances between observations and to construct a nonparametric estimator for Jn, see Conley (1999).

The basic idea is that measurements of a distance between observations can serve to characterize covariance

structures in a manner analogous to time lags in a time series setting. Observations that are deemed close are

modelled as potentially highly dependent, but those far enough away are approximately independent.

The spatial HAC literature has considered estimators of the form:

Ĵn =
1

n

n

∑
i=1

n

∑
j=1

K

(
di j

dn

)
V̂iV̂

′
j , (2)

where V̂i = xiûi and K (·) is a real-valued kernel function with K(0) = 1. The distance between i and j is

denoted di j and dn is a scale parameter (bandwidth). We require di j ≥ 0, dii = 0, di j = d ji, but not the triangular

inequality di j ≤ dik + dk j. This approach can be viewed as an extension of smoothed periodogram spectral

density estimators that have long been used in the time series literature, e.g. Bartlett (1955) where distances

are analogous to time lags. It can be viewed as a generalization of what are commonly called cluster or group

dependence estimators, see e.g. Liang and Zeger (1986) and Moulton (1986), where observations are taken to

be correlated within a known set of groups or clusters but independent across groups/clusters. These cluster

estimators are a special case of spatial HAC with a discrete distance metric reflecting group membership and a

uniform kernel K.
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Distances need not be based upon physical locations; they can be much more general measures of ‘economic

distance’ as in Conley (1999). For example, Conley and Ligon (2002) use an economic distance measure based

on the transportation cost between countries in the context of a cross-country growth regression. Other examples

include economic distances based on the similarity of input and output structures as considered by Chen and

Conley (2001) and Conley and Dupor (2003). In many applications, distances can be based on attributes, e.g.

input shares for firms. In these cases, observations’ locations can be indexed by a vector of attributes si ∈ Rτ ,

and the distance between two units, i and j, may correspond to the Euclidean distance between si and s j. Our

method will be applicable with non-Euclidean metrics as well, possibly with a modification (see Section 3.3).

The existing spatial HAC literature also allows for the presence of measurement error in di j (see e.g. Conley

(1999), Conley and Molinari (2007), Kelejian and Prucha (2007) and Kim and Sun (2011)), i.e. Ĵn is based on

d̃i j rather than on the “true” measures di j, where d̃i j is such that

d̃i j = di j+ξ i j,

where ξ i j is a measurement error. We will follow this literature and also allow for measurement errors in d̃i j

when applying the dependent wild bootstrap. Regularity conditions on ξ i j will be discussed in Section 3.2.

Our method is readily applicable to a panel data setting where distances between observations are in part a

function of the observations lead/lag in time. When distances between pairs of observations are derived from

locations, e.g. si and s j, time can be viewed as just another element of these location vectors with K defined

to be a product kernel with one time series and one spatial component as in Conley (1999) (see also Kim and

Sun, 2013). In general, distance can depend on any fixed number of metrics, see e.g. Kelejian and Prucha

(2007) who suggest a HAC estimator with M metrics based on K
(
min1≤m≤M

{
di j,m/dn

})
, where di j,m denotes

the mth distance measure between i and j. For ease of exposition, we present our theory using a single distance

measure.

3 Bootstrap inference

3.1 The bootstrap method

The bootstrap data generating process is described as follows. Let

y∗i = x′iβ̂ +u∗i , i= 1, . . . ,n, (3)

and generate

u∗i = ûi ·η i, (4)

where ûi = yi− x′iβ̂ and η i is an external random variable chosen by the researcher.
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In this section, we rely on the unrestricted estimator β̂ to generate the bootstrap observations on the de-

pendent variable and discuss bootstrap consistency results that do not impose any constraint on β . We will

discuss hypothesis testing in the next section, where β̂ can be a restricted OLS estimator which imposes the

null hypothesis under consideration. This is a key advantage of our method since the bootstrap literature has

shown that imposing the null on the bootstrap DGP can result in large size improvements. See e.g. Davidson

and MacKinnon (1999) and Djogbenou, MacKinnon and Nielsen (2019).

The choice of η i is crucial. The regular wild bootstrap generates η i in an i.i.d. fashion such that E∗ (η i) = 0

and Var∗ (η i) = 1 for all i. This implies that the bootstrap errors u∗i are independently distributed, conditional on

the data, with mean zero and variance û2
i . Hence, the wild bootstrap preserves heteroskedasticity but destroys

cross sectional (or space-time) dependence.

Our goal in this paper is to generalize the regular wild bootstrap method so as to preserve cross sectional

or space-time dependence and heterogeneity with a general form. As usual, we require that E∗ (η i) = 0 and

Var∗ (η i) = 1 for all i. However, we do not generate η i independently across i. Instead, given a potentially mis-

measured distance d̃i j between observations, we generate {η i : i= 1, . . . ,n} such that their covariance structure

is given by

Cov∗
(
η i,η j

)
= K∗

(
d̃i j

d∗n

)
for all (i, j) , (5)

where K∗ (·) denotes a real valued kernel function and d∗n is a bandwidth parameter. The choice of K∗ and d∗n

is discussed below, where formal assumptions on these quantities will be introduced. We will also provide an

algorithm on how to generate η i such as to verify (5). Before we do so, let us provide some intuition for why

this bootstrap method can be robust to cross sectional dependence. Let

β̂
∗
=

(
n

∑
i=1

xix
′
i

)−1
n

∑
i=1

xiy
∗
i

denote the bootstrap OLS estimator. Using the bootstrap data generating process above, we can easily show

that the bootstrap covariance matrix of
√

n

(
β̂
∗− β̂

)
is

Var∗
(√

n

(
β̂
∗− β̂

))
= Q̂−1

n Ĵboot,nQ̂−1
n ,

where

Ĵboot,n=Var∗

(
1√
n

n

∑
i=1

xiu
∗
i

)
=

1

n

n

∑
i, j=1

xiCov∗
(
u∗i ,u

∗
j

)
x′j=

1

n

n

∑
i, j=1

xiûix
′
jû jCov∗

(
η i,η j

)
=

1

n

n

∑
i, j=1

K∗
(

d̃i j

d∗n

)
V̂iV̂

′
j ,

given that Cov∗
(
η i,η j

)
= K∗

(
d̃i j

d∗n

)
by (5). This shows that the spatial dependent wild bootstrap algorithm

induces a bootstrap covariance matrix Ĵboot,n which is just an example of a spatial HAC covariance estimator,

where the kernel function is K∗ and the bandwidth parameter is d∗n . Given the link to the spatial HAC covariance
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matrix estimator, we can expect this bootstrap method to be valid under conditions similar to those used in the

spatial HAC literature.

Next, we describe our requirements on the bootstrap spatial kernel function K∗. To do so, we introduce

the notion of “pseudo-neigbhors”. Given the bandwidth parameter d∗n , an observation j is defined as a pseudo-

neighbor of i if its measured distance to i is less than d∗n . More specifically, let

B∗i,n =
{

j : d̃i j ≤ d∗n
}
, `∗i,n =

n

∑
j=1

1
{

j ∈B∗i,n
}

and `∗n =
1

n

n

∑
i=1

`∗i,n. (6)

Then, B∗i,n is the set of pseudo-neighbors that unit i has based on d∗n , `∗i,n is the size of B∗i,n and `∗n is its average.

Note that B∗i,n is a random set due to measurement error in d̃i j, implying that both `∗i,n and `∗n are random

sequences.

The following condition specifies the requirements on the spatial kernel K∗.

Assumption 1 (i) The kernel function K∗ : R→ [−1,1] satisfies K∗ (0) = 1, and K∗ (z) = K∗ (−z) for all z ∈

R. (ii) 1
E`∗n

supi E

(
∑ j/∈B∗i,n

∣∣∣K∗( d̃i j

d∗n

)∣∣∣) = O(1) and 1
E`∗n

supi ∑ j/∈B∗i,n

∣∣∣K∗( d̃i j

d∗n

)∣∣∣ = OP (1) ; (iii) The matrix

K∗n =
[
K∗
(
d̃i j/d

∗
n

)]n
i, j=1

is symmetric and positive semi-definite for all n, almost surely.

Part (i) is a standard assumption in the HAC literature which is satisfied by standard kernels such as the

rectangular, Bartlett, Parzen and Quadratic Spectral (QS) kernels. Parts (ii) and (iii) are new to our context.

Assumption 1 (ii) is automatically satisfied by truncated kernels for which K∗ (z) = 0 for |z| ≥ 1, regardless

of the distance used. It allows for kernels that do not truncate provided the tails of K∗ decay sufficiently

fast. Providing more primitive conditions for general distances is difficult, but we can do so for the Euclidean

distance. For instance, with locations indexed on the line (such as a time series) and assuming away the presence

of measurement error in distances, this condition is satisfied if
∫

∞

−∞
|K∗ (u)|du < ∞. Standard kernels used in

time series analysis satisfy this condition, including the QS kernel and the exponential (Gaussian) kernel. Shao

(2010) excludes these kernels by assuming a truncated kernel. Similarly, if we map locations into a two-

dimensional lattice, a sufficient condition for part (ii) is that
∫

∞

−∞

∫
∞

−∞

∣∣∣K∗(√x2+ y2

)∣∣∣dxdy<∞ or equivalently∫ 1
0 r |K∗ (r)|dr < ∞, a condition that is satisfied by the Gaussian kernel.

Part (iii) is a high level condition that requires the matrix of weights K∗n =
[
K∗
(
d̃i j/d∗n

)]n
i, j=1

to be sym-

metric and positive semi-definite. The reason why we impose this condition is that K∗n is the bootstrap variance

matrix of η = (η1, . . . ,ηn)
′
and therefore needs to satisfy these conditions. When distances correspond to

Euclidean distances between points in Rτ , a sufficient condition is that the kernel K∗ be positive definite.

Bochner’s Theorem provides a necessary and sufficient condition for a kernel K∗ to be positive definite in

Rτ : the Fourier transform of the kernel function K∗ is weakly positive. For example, with locations indexed on

the line,
∫

∞

−∞
K∗ (u)e−iurdu≥ 0 for all r ∈R. This well-known condition is met by a number of kernel functions
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such as the Bartlett kernel or the Parzen kernel. Shao (2010) imposes this condition, see his equation (2), when

studying the properties of the dependent wild bootstrap for the one-dimensional dependent context. In higher

dimensions, an analogous condition applies; K∗ (x) is positive definite if it is of the form:

K∗ (x) = Γ

(
τ

2

)∫ ∞

0

(
2

rx

)(τ−2)/2

J(τ−2)/2 (rx)dF (r) , x≥ 0, (7)

where F is a probability distribution function on [0,∞) and J(τ−2)/2 (·) is a Bessel function of order (τ−2)/2.

This characterization follows from simplifying the integrals in the Fourier transform via polar coordinates to

exploit the radial symmetry of K∗ (x). Discussions of positive definite kernels can be found in, e.g., Conley

(1999), Chen and Conley (2001), Gneiting (2002), or Kelejian and Prucha (2007), see Yaglom (1987) for a

textbook characterization of this class of functions.

The set of positive definite kernels depends on the dimension τ and it shrinks as τ grows, implying that a

kernel which is positive definite in τ dimensions will be positive definite in any smaller number of dimensions.

An example of this class of kernel functions from Kelejian and Prucha (2007) is:

K∗v (x) =

{
(1− x)v ,

0,
0≤ x≤ 1

x> 1
(8)

where v≥ (τ+1)/2. This is similar to the sharp (or steep) origin kernel in Phillips, Sun and Jin (2007).

The set of kernels that are positive definite in any dimensional Euclidean space (τ = ∞) can be represented

as:

K∗ (x) =
∫

∞

0
exp(−x2r2)dF (r) , x≥ 0. (9)

An example kernel in this class is

K∗ (x) = exp(−x2), (10)

which is a Gaussian kernel (see e.g. Stein (1999), p.44). Choosing a kernel that is positive definite in any

dimensional Euclidean space avoids the need to know the dimension τ . When distances are non-Euclidean, we

do not know if there is a class of kernels guaranteed to be positive definite; we discuss one strategy to overcome

this issue in Section 3.3.

A recent paper by Kojevnikov (2021) also considers a modification of the dependent wild bootstrap kernel

function that satisfies Assumption 1(iii) in the context of a network dependent model. His weighting function

depends on the topology of the network and requires a structure of locations, which we do not require.

Under Assumption 1, K∗n is symmetric and positive semi-definite, which implies that there exists Φn such

that

K∗n =ΦnΛnΦ
′
n,
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where Λn is a diagonal matrix with the nonnegative eigenvalues ofK∗n and the columns of Φn are the associated

orthonormal eigenvectors (Φ′nΦn = In). We can write

Φn = [φ 1, ...,φ n] with φ k =

 φ 1k
...

φ nk

 and Λn =


λ 1 0 · · · 0

0 λ 2
. . .

...
...

. . .
. . . 0

0 · · · 0 λ n

 with λ i ≥ 0 for all i.

Thus, we can generate η i as follows. Letting Ln =ΦnΛ
1/2
n , we set

η
n×1

=

 η1
...

ηn

= Ln · v, v∼ i.i.d.(0, In) , (11)

where η i is the ith element of η . This algorithm implies that E∗ (η) = 0 and Var∗ (η) = LnL′n =K∗n.

An attractive feature of our bootstrap method is that it contains several existing methods as special cases.

The simplest example is the wild bootstrap with K∗n = In and Ln = In.

A more complex example is the cluster wild bootstrap proposed by Cameron, Gelbach and Miller (2008).

This method is very popular in applied work and its theoretical properties have been recently studied by Djog-

benou, Nielsen and MacKinnon (2019). The usual way of describing the cluster wild bootstrap is as follows.

Suppose we can partition the sample of n observations into G groups of observations, so that the n× 1 vector

û can be partitioned as û= (û1, . . . , ûG)
′
, where for each g, ûg =

(
û1g, . . . , ûng,g

)′
, and n= ∑

G
g=1 ng. The cluster

wild bootstrap generates residuals as follows:

û∗jg = û jg · εg,

where εg is a common shock to all observations in cluster g.

One way to map this setup to ours is to order the observations by cluster. The weighting matrix K∗n has

typical element given by K∗n (l,m) = 1(l and m belong to same cluster), that is the (l,m) element is 1 if the two

observations belong to the same cluster and 0 otherwise. This results in a block diagonal K∗n with matrices of

ones of dimensions ng×ng along the diagonal. In other words,

K∗n =


K∗1,n 0 0

0 K∗2,n
. . . 0

0 0 K∗G,n

 ,
where K∗g,n = ιng

ι ′ng
, with ιng

= (1, . . . ,1)′ for each g = 1, . . . ,G. The eigendecomposition of K∗n is equal to

LnL′n, where Ln is a block diagonal matrix with Lg,n on the main diagonal and Lg,n is an ng×ng matrix whose

first column is a vector of ones and the remaining columns are zero. Thus, setting η = Ln ·v where v∼iid (0, In)

is equivalent to generating an n×1 vector of shocks partitioned as η = (η ′1, . . . ,η
′
G)
′
, where for each g cluster,

ηg = (εg, . . . ,εg)
′
contains the same shock εg.
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3.2 Bootstrap distribution consistency

In this section, we examine the properties of our bootstrap procedure. To establish the asymptotics, we as-

sume that the p× 1 vector of scores Vi has a linear array representation. In particular, we make the following

assumption.

Assumption 2

(i) For a= 1, . . . , p,

V
(a)
i =

∞

∑
l=1

r
(a)
il

el, (12)

where V
(a)
i is the a-th component of Vi, el is a random innovation, and r

(a)
il

is a nonstochastic weight.

(ii) el ∼iid (0,1) and there exists a constant M < ∞ such that E
(
e4

l

)
<M.

(iii) For each l, ∑
∞
i=1

∣∣∣r(a)il

∣∣∣<M, and for each i, ∑
∞
l=1

∣∣∣r(a)il

∣∣∣<M, for all a= 1, . . . , p.

Assumption 2 is sufficient for proving that a central limit theorem applies to the scaled average of the

scores, i.e. that J
−1/2
n n−1/2

∑
n
i=1Vi

d−→ N (0, Ip). A linear transformation of i.i.d. random variables is often

employed in the literature to characterize spatial (or spatiotemporal) processes. See, for example, Kelejian and

Prucha (2007), Kim and Sun (2011, 2013), Robinson (2011), Robinson and Thawornkaiwong (2012), Lee and

Robinson (2016) and Hidalgo and Schafgans (2017). In particular, our linear array model in (12) is the same

as in Robinson (2011) (see also Hidalgo and Schafgans (2017) for a panel extension of this model), with the

difference that we impose the linear array representation directly on the score vector rather than assuming that

the error term ui is a linear array.

As in the time series context, an alternative to a linear array representation would be to assume some

mixing-type conditions in the cross sectional dimension, as e.g. in Conley (1999). This is also the approach

of Shao (2010), who considers the one-dimensional (time series) case. Although mixing assumptions have the

advantage of allowing for nonlinear forms of dependence, this type of conditions are harder to deal with in the

cross sectional context than in the time series context and in particular more difficult to apply without directly

indexing observations in Euclidean space as in Conley (1999). The linear array representation is general enough

to cover most spatial models used in economics, including in particular the class of spatial autoregressive (SAR)

models as a special case.1 Because the coefficients r
(a)
il

are a function of i, we allow for heterogeneity in the

second and higher order moments of {Vi}.
1Distance construction can be problematic for some SAR specifications. While SAR models are linear processes they do not

necessarily have a covariance structure that can be characterized by a set of distances. In particular, simple graph distances in some

SAR models will not fully characterize the implied covariance structure, see Martellosio (2012). We leave the characterization of SAR

models for which an array of distances can be constructed for future work.

9



A key requirement for bootstrap validity is that the asymptotic bootstrap variance of
√

n

(
β̂
∗− β̂

)
replicates

the asymptotic variance of
√

n

(
β̂ −β

)
. This entails showing the consistency of the bootstrap variance Ĵboot,n

towards Jn. For this result, we need to impose further restrictions on the cross sectional dependence of {Vi}.

Define

K∗q = lim
z→0

1−K∗ (z)

|z|q for q ∈ [0,∞)

and let q∗0 = max
{

q : K∗q < ∞
}

be the Parzen characteristic exponent of K∗ (z) . For instance, q∗0 = 1 for the

Bartlett and Kelejian and Prucha (2007) kernels and q∗0 = 2 for the QS, Parzen, and Gaussian kernels. Larger

values of q∗0 imply smoother kernel functions at 0 and a smaller asymptotic bias for the HAC estimator, ce-

teris paribus (see Andrews (1991) for the time series HAC estimator and Kim and Sun (2011) for its spatial

analogue).

As in the HAC literature, the asymptotic bias of the bootstrap variance estimator depends on the decaying

rate of spatial dependence as a function of the distance metric and q∗0. Our next assumption follows Kim and

Sun (2011, 2013) and is used to control this bias.

Assumption 3 There exists a constant Cq∗0
< ∞ such that 1

n ∑
n
i=1 ∑

n
j=1 ||E

(
ViV

′
j

)
||dq∗0

i j < Cq∗0
, for all n, where

‖·‖ denotes the Euclidean norm of a matrix.

Assumption 3 requires the degree of cross sectional dependence between Vi and Vj to decrease as a function

of the “true” distance di j (and the degree of smoothness of the kernel function at zero as dictated by q∗0). In

the time series context, this assumption is implied by a standard smoothness condition on the spectral density

function of {Vt} evaluated at zero: ∑
+∞

j=−∞
||E
(

VtV
′

t+ j

)
|| | j|q

∗
0 < ∞ (see Andrews, 1991, eq. (3.4)).

Our next assumption imposes conditions on the measurement error ξ i j that imply that the presence of

measurement error in d̃i j does not change this absolute summability condition.

Assumption 4 (i)
{

ξ i j

}
are independent of {el} and {xi}; (ii)

∣∣ξ i j

∣∣≤ cξ for all i, j = 1, ...,n.

Assumption 4 assumes that measurement errors are bounded, which is standard in the spatial HAC literature,

see e.g. Conley (1999) and Keleijan and Prucha (2007). The independence assumption implies that
{

ξ i j

}
is

independent of {Vi}, greatly simplifying the proof.

Our next assumption controls the number of pseudo-neighbors that a given observation i is allowed to have

and corresponds to Assumption 5 in Kim and Sun (2011). In particular, we require that each observation i has

at most cE`∗n pseudo-neighbors, where c is an arbitrary (large) constant and E`∗n is the expected average number

of pseudo-neighbors.

Assumption 5 For all i, `∗i,n ≤ cE`∗n, a.s., for some constant c> 0.
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Assumption 5 rules out the possibility that most observations are concentrated around some locations and

not others. Note that in the time series context with regularly spaced observations `∗i,n ≤ 2d∗n (with equality

for all i ∈ [d∗n ,n−d∗n +1] if d∗n is an integer) and E`∗n > d∗n , and this implies that `∗i,n ≤ 2E`∗n for all i. Thus,

Assumption 5 is automatically satisfied in this case. We can also see that E`∗n and d∗n are related to each other

and both parameters can be thought of as bandwidth parameters. This is true more generally, with E`∗n clearly

increasing with d∗n . More specifically, as discussed by Kim and Sun (2011, p. 354), for locations on a regular

lattice, it is natural to assume that E`∗n is proportional to d∗τn , where τ is the dimension of the space. When

τ = 1, this implies that E`∗n is proportional to d∗n , as discussed above, whereas for τ = 2 we obtain E`∗n = αd∗2n

for some constant α. Since E`∗n (and d∗n) plays the role of the bandwidth parameter in the usual time series HAC

literature, we will let E`∗n→ ∞ as n→ ∞ but at a slower rate than n when deriving our results. This is because

we will show that (as usual) a larger E`∗n (and hence a larger d∗n) reduces the asymptotic bias but increases the

variance of the bootstrap variance estimator at the rate O(E`∗n/n) .

The final assumption imposes regularity conditions on the regressors. Note that Assumption 1 implies that

a similar moment condition holds for the scores Vi, i.e. E ‖Vi‖4 ≤M.

Assumption 6 (i) There exists a constant M < ∞ such that E ‖xi‖4 ≤ M; (ii) n−1
∑

n
i=1 xix

′
i

P−→ Q, a positive

definite matrix.

Theorem 3.1 Suppose Assumptions 1-6 hold. If d∗n ,E`∗n→∞ such that E`∗n/n
1/2 = o(1) and E∗ |vi|4 ≤M, then

we have

sup
x∈Rp

∣∣∣P∗(√n

(
β̂
∗− β̂

)
≤ x

)
−P

(√
n

(
β̂ −β

)
≤ x

)∣∣∣= op (1)

as n→ ∞.

Theorem 3.1 states the consistency of the bootstrap distribution of
√

n

(
β̂
∗− β̂

)
. The proof of Theorem

3.1 is in the Appendix. It follows by showing that Ĵboot,n− Jn→P 0 and(
Q−1JnQ−1

)−1/2√
n

(
β̂
∗− β̂

)
→d∗ N (0, Ip) ,

in probability, see the Appendix for the definition of→d∗ in probability.

The rate condition on the bandwidth parameter E`∗n/
√

n→ 0 is stronger than the rate E`∗n/n→ 0 used for

showing the consistency of the (spatial HAC) variance estimator Ĵboot,n (analogously Theorem 1 of Kim and

Sun (2011) and the proof of Lemma A.2). The stronger rate condition on E`∗n is used to prove that a bootstrap

central limit theorem holds for the scaled average of the bootstrap scores, n−1/2
∑

n
i=1V ∗i ≡ n−1/2

∑
n
i=1Viη i.

For the one-dimensional context, Shao (2010) proves the validity of the dependent wild bootstrap for smooth

functions of sample means of stationary mixing time series data that are possibly irregularly spaced in time. His

rate condition on the bandwidth parameter (which is given by `∗n rather than E`∗n since there is no measurement
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error) is more stringent than ours, requiring that `∗n/n
1/3 → 0 as n→ ∞. He also assumes that the external

random variables η i are `∗n-dependent, an assumption we do not make. As he remarks after his Theorem 3.1,

this assumption makes the proof of the bootstrap central limit theorem easier as he relies on a blocking argument

that exploits the `∗n-dependence of the process η i. Our method of proof is different from his. In particular, we

use the eigendecomposition ofK∗n to write η i =∑
n
k=1

(√
λ kφ ik

)
vk, where λ k and φ k are the kth eigenvalue and

eigenvector of K∗n, and vk ∼ i.i.d.(0,1) independently of the original sample. It follows that n−1/2
∑

n
i=1V ∗i can

be written as n−1/2
∑

n
k=1 ωkvk, where conditionally on the original sample, ωk =

√
λ kV

′φ k is a known function

and vk ∼ i.i.d.(0,1). Hence, we apply Lyapunov’s CLT for independent heterogeneous arrays and rely on the

rate condition E`∗n/n
1/2→ 0 as n→ ∞ to verify the Lyapunov’s condition. Note that despite the (conditional)

independence of the array ωkvk, the conditional bootstrap variance of n−1/2
∑

n
i=1V ∗i is still robust to spatial

dependence. Indeed, we can show that this variance is equal to

n−1
n

∑
k=1

ω
2
k =V ′

(
n−1

n

∑
k=1

λ kφ kφ
′
k

)
V = n−1V ′ΦnΛnΦ

′
nV = n−1V ′K∗nV = n−1

n

∑
i, j=1

K∗
(

d̃i j

d∗n

)
ViV

′
j = Jboot,n,

a spatial HAC variance estimator. Although this estimator is infeasible as it is based on Vi = xiui, we show

in Lemma A.2 (ii) that the difference between this estimator and its feasible version Ĵboot,n is asymptotically

negligible under our assumptions.

We now provide an algorithm to compute valid bootstrap percentile intervals.

Algorithm: Bootstrap percentile intervals

(i) Compute

β̂ =

(
n

∑
i=1

xix
′
i

)−1
n

∑
i=1

xiyi, ûi = yi− x′iβ̂ , and V̂i = xiûi, i= 1, . . . ,n.

(ii) For a given bandwidth choice d∗n (to be discussed later), compute the matrix K∗n =
[
K∗
(
d̃i j/d∗n

)]n
i, j=1

and

its eigendecomposition K∗n = ΦnΛnΦ′n, where Λn is a diagonal matrix with the nonnegative eigenvalues

of K∗n and the columns of Φn are the associated orthonormal eigenvectors. Let Ln =ΦnΛ
1/2
n .

(iii) Generate an n× 1 vector v ∼ (0, In). We recommend using a sequence of standard normal variables, but

other distributions like independent Rademacher random variables (+1 or −1 with equal probability)

could be used. Then generate a sequence of random variables {η i : i= 1, . . . ,n} by multiplying this

vector ν by Ln:

η = Lnv.

(iv) Let

y∗i = x′iβ̃ +u∗i , where u∗i = ũiη i,
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and compute the bootstrap OLS estimator

β̂
∗
=

(
n

∑
i=1

xix
′
i

)−1
n

∑
i=1

xiy
∗
i .

(v) Repeat steps (iii)-(iv) B times. Symmetric (1−α) confidence intervals can be obtained as:[
β̂ − q̂1−α , β̂ + q̂1−α

]
,

where q̂1−α is the (1−α) quantile of the distribution of

∣∣∣β̂ ∗− β̂

∣∣∣. If preferred, equal-tailed intervals can

be obtained as: [
β̂ − p̂1−α/2, β̂ − p̂α/2

]
,

where p̂α/2 and p̂1−α/2 are, respectively, the α/2 and 1−α/2 quantiles of the distribution of
(

β̂
∗− β̂

)
.

3.3 Extension to bootstrap kernels that are not positive semi-definite

The asymptotic validity of the spatial dependent wild bootstrap described in the previous section depends cru-

cially on the positive semi-definiteness and symmetry properties of K∗n (cf. Assumption 1(iii)). These assump-

tions guarantee that the bootstrap covariance matrix of the external random vector η is non-negative definite,

thus ensuring that the bootstrap measure is a valid measure. Although the symmetry property of the distance

metric (which we assume for d̃i j) implies the symmetry of K∗n, the assumption that K∗n is positive semi-definite

can fail when d̃i j is non-Euclidean. In this case, choosing K∗ as a non-negative definite function (as e.g., letting

K∗ be the Gaussian kernel) does not guarantee the non-negative definiteness of K∗n.

In this section, we provide an alternative bootstrap method that does not require K∗n to be positive semi-

definite2. The idea is to transformK∗n into a positive semi-definite matrixM∗n and choose η such that E∗ (ηη ′)=

M∗n. For example, if we assume that V̂ ′K∗nV̂ is positive definite, we could choose:

M∗n =K∗nV̂
(
V̂ ′K∗nV̂

)−1
V̂ ′K∗n.

Note that this matrix has rank equal to the rank of V̂ , which is p. The next theorem implies the validity of

percentile confidence intervals constructed using the previous algorithm by defining Ln =ΦnΛ
1/2
n , where Λn is

a diagonal matrix with the eigenvalues of M∗n on the diagonal and Φn is the matrix of associated eigenvectors.

In addition, in this case, the external variables must be generated from the standard normal distribution.

Theorem 3.2 Suppose the assumptions of Theorem 3.1 hold but K∗n is not necessarily positive semi-definite.

Suppose V̂ ′K∗nV̂ is positive definite and defineM∗n =K∗nV̂
(
V̂ ′K∗nV̂

)−1
V̂ ′K∗n. If v∼ N (0, In) ,

sup
x∈Rp

∣∣∣P∗(√n

(
β̂
∗− β̂

)
≤ x

)
−P

(√
n

(
β̂ −β

)
≤ x

)∣∣∣= op (1)

as n→ ∞ and d∗n → ∞ such that E`∗n/n→ 0.

2We thank Andrès Santos for this suggestion.
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This result proves the consistency of the bootstrap distribution of
√

n

(
β̂
∗− β̂

)
, thus justifying the con-

struction of bootstrap percentile intervals for β even when K∗n is not positive semi-definite.

Remark 1 Assuming that V̂ ′K∗nV̂ is positive definite is weaker than assuming that K∗n is positive definite. In

practice, it is possible to ensure that V̂ ′K∗nV̂ is a positive definite matrix by replacing its negative eigenvalues

by ε > 0, a small positive constant, as suggested by Politis (2011) (see also McMurry and Politis, 2010). Since

under our remaining assumptions, n−1V̂ ′K∗nV̂ converges in probability to Jn, and Jn is assumed to be positive

definite uniformly in n, this regularization is asymptotically negligible.

The Gaussianity assumption on v is crucial for proving Theorem 3.2, as we explain here. For simplicity,

assume that p = 1, i.e. that V̂i = xiûi is a scalar. Then, n−1V̂ ′K∗nV̂ is a scalar and K∗nV̂ is n×1, which implies

that the rank ofM∗n is 1. This implies that

η = Lnv=
√

λ 1φ 1v1,

where λ 1 is the only non-zero eigenvalue of M∗n and φ 1 is its corresponding eigenvector. It follows that η i =
√

λ 1φ i1v1, for all i= 1, . . . ,n. Since u∗i = ûiη i, we have that

u∗i = ûiη i = (
√

λ 1φ i1ûi)v1,

implying that the bootstrap scores V ∗i ≡ xiu
∗
i = (V̂i

√
λ 1φ i1)v1 are all proportional to v1. The implication is that

n−1/2
∑

n
i=1V ∗i does not satisfy a bootstrap central limit theorem. To obtain a Gaussian distribution, we need to

generate v1 as N (0,1). Under this condition, conditionally on the original sample,

n−1/2
n

∑
i=1

V ∗i = (n
−1/2V̂ ′

√
λ 1φ 1)v1 ∼ N

(
0,n−1V̂ ′M∗nV̂

)
,

where by construction,

n−1V̂ ′M∗nV̂ = n−1V̂ ′K∗nV̂ ≡ Ĵboot,n.

Thus, conditionally on the data,

√
n

(
β̂
∗− β̂

)
= Q̂−1

n

1√
n

n

∑
i=1

V ∗i ∼ N
(
0, Q̂−1

n Ĵboot,nQ̂−1
n

)
.

Theorem 3.2 follows because Q̂−1
n Ĵboot,nQ̂−1

n −Cn = op (1), where Cn = Q−1JnQ−1 (apply Lemma A.2, noting

that it does not require the positive definiteness assumption on K∗n).

When p > 1, the same argument applies except that the rank of M∗n is now p > 1, implying that we can

write

n−1/2
n

∑
i=1

V ∗i =
p

∑
k=1

(n−1/2V̂ ′
√

λ kφ k)vk,

in which case the joint Gaussianity of (v1, . . . ,vp) determines the Gaussianity of the scaled average of the

bootstrap scores.

14



4 Hypothesis testing

The previous results justify the construction of bootstrap percentile confidence intervals. These are based on

the bootstrap quantiles of the unstudentized statistic
√

n

(
β̂
∗− β̂

)
. In this section, we consider bootstrap tests

based on studentized statistics. Specifically, we consider testing

H0 : Rβ = r0 vs H1 : Rβ 6= r0, (13)

where R is a r× p matrix with r ≤ p and r0 is a r×1 vector.

For testing (13), we employ the Wald statistic given by

Wn =
√

n

(
Rβ̂ − r0

)′ [
RQ̂−1

n ĴnQ̂−1
n R′

]−1√
n

(
Rβ̂ − r0

)
, (14)

a special case of which is the squared t statistic when r = 1. The Wald test statistic requires the use of a spatial

HAC estimator given by Ĵn. Our assumption is that this estimator is of the usual form

Ĵn =
1

n

n

∑
i=1

n

∑
j=1

K

(
d̃i j

dn

)
V̂iV̂

′
j ,

where K (·) and dn correspond to a spatial kernel function and a bandwidth parameter that are possibly different

from the bootstrap kernel function K∗ (·) and the bootstrap bandwidth parameter d∗n .

For bootstrap testing, using restricted residuals is often preferable as this reduces the size distortions. In

this case, the bootstrap data generating process can be described as follows. Let β̃ denote the restricted OLS

estimator of β obtained under H0. We generate bootstrap data as y∗i = x′iβ̃ + u∗i , where u∗i = ũiη i, with ũi =

yi− x′iβ̃ and η i generated as before. In what follows, we denote by β̈ either β̃ or β̂ , depending on whether we

use the restricted or the unrestricted residuals.

The bootstrap Wald statistic is then defined as

W ∗
n =
√

n

(
Rβ̂
∗−Rβ̈

)′ [
RQ̂−1

n Ĵ∗n Q̂−1
n R′

]−1√
n

(
Rβ̂
∗−Rβ̈

)
where

Ĵ∗n =
1

n

n

∑
i=1

n

∑
j=1

K

(
d̃i j

dn

)
V̂ ∗i V̂ ∗′j ,

with V̂ ∗i = xiû
∗
i , û∗i = y∗i − x′iβ̂

∗
, and β̂

∗
the unrestricted OLS estimator from regressing y∗i on xi.

Similarly to the Wald test statistic, the bootstrap Wald statistic also requires the choice of a spatial kernel and

a bandwidth parameter. Our approach in this paper is to use the same kernel and bandwidth for studentizing

the two Wald test statistics. Hence, our approach is similar to the naive bootstrap approach considered by

Gonçalves and Vogelsang (2011).
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To establish the asymptotic validity of the bootstrap Wald test, we need to impose conditions on K and dn.

In order to do so, we define another set of pseudo-neighbors of i using the bandwidth dn:

Bi,n =
{

j : d̃i j ≤ dn

}
, `i,n =

n

∑
j=1

1{ j ∈Bi,n} and `n =
1

n

n

∑
i=1

`i,n,

and make the following assumption.

Assumption 7 (i) K : R → [−1,1] satisfies K (0) = 1, and K (z) = K (−z) for all z ∈ R.

(ii) 1
E`n

supi E

(
∑ j/∈Bi,n

K

(
d̃i j

dn

))
= O(1) , 1

E`n
supi ∑ j/∈Bi,n

K

(
d̃i j

dn

)
= OP (1) . (iii) There exists a constant

Cq0
<∞ such that 1

n ∑
n
i=1 ∑

n
j=1 ||E

(
ViV

′
j

)
||dq0

i j <Cq0
, for all n, where q0 denotes the Parzen characteristic

exponent of K (z) . (iv) For all i, `i,n ≤ cE`n, a.s., for some constant c> 0.

Assumption 7 imposes conditions on K and dn which are similar to those imposed on K∗ and d∗n by Assump-

tion 1 (i) and (ii), and Assumptions 3 and 5. The main difference is that we do not require the kernel function

K to be positive definite. If necessary, we can ensure that RQ̂−1
n ĴnQ̂−1

n R′ (and its bootstrap analogue) is positive

definite by replacing its negative eigenvalues by ε > 0, a small positive constant, as discussed in Remark 1.

Theorem 4.1 Suppose Assumptions 1-7 hold. If E∗ |vi|4 <M and dn,E`n→∞ and d∗n ,E`
∗
n→∞ as n→∞ such

that E`n/n= o(1) and E`∗n/n
1/2 = o(1), then, under H0, as n→ ∞,

sup
x∈R
|P∗ (W ∗

n ≤ x)−P(Wn ≤ x)|= oP (1) .

Assumption 7 (along with our remaining assumptions) is used to show the consistency of Ĵ∗n for Ĵboot,n =

Var∗
(
n−1/2

∑
n
i=1 xiu

∗
i

)
. See Lemma A.4. Since Ĵboot,n converges to Jn, this implies that Ĵ∗n is consistent for Jn,

which together with Theorem 3.1 imply the result.

Theorem 4.1 shows that the bootstrap Wald test W ∗
n mimics the null distribution of Wn when the null is

true, irrespective of whether we use the restricted or unrestricted approach. This is sufficient to claim the

first order asymptotic validity of the bootstrap critical values under the null hypothesis. When the null is not

true, the bootstrap distribution of the bootstrap Wald test based on the unrestricted residuals still converges to

the null limiting distribution of Wn. This result follows because (i) the bootstrap distribution of
√

n

(
β̂
∗− β̂

)
converges to a normal distribution with mean zero and variance-covariance equal to Cn = Q−1JnQ−1, and (ii)

Ĵ∗n is consistent for Jn, independently of the true value of β underlying the DGP. For the restricted approach, we

can show that the same is true when the true value of β is equal to β 0+δ/
√

n. Hence, the restricted bootstrap

Wald test mimics the null limiting distribution of Wn under a set of local alternatives. This ensures that the

bootstrap Wald test achieves the same local power as the test based on asymptotic critical values.

Next, we provide a description of the steps involved in testing H0 : Rβ = r0 using our bootstrap method.
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Algorithm: spatial dependent wild bootstrap for testing H0 : Rβ = r0

(i) Compute

β̂ =

(
n

∑
i=1

xix
′
i

)−1
n

∑
i=1

xiyi, ûi = yi− x′iβ̂ , and V̂i = xiûi, i= 1, . . . ,n.

(ii) Compute Wn =
√

n

(
Rβ̂ − r0

)′ [
RQ̂−1

n ĴnQ̂−1
n R′

]−1√
n

(
Rβ̂ − r0

)
, where

Q̂n =
1

n

n

∑
i=1

xix
′
i and Ĵn =

1

n

n

∑
i=1

n

∑
j=1

K

(
d̃i j

dn

)
V̂iV̂

′
j ,

for a given kernel K, a bandwidth dn, and a set of distances
{

d̃i j

}
. Section 6 provides a method for

choosing dn.

(iii) Compute the matrix K∗n =
[
K∗
(
d̃i j/d∗n

)]n
i, j=1

and its eigendecomposition K∗n = ΦnΛnΦ′n, where Λn is

a diagonal matrix with the nonnegative eigenvalues of K∗n and the columns of Φn are the associated

orthonormal eigenvectors. Let Ln =ΦnΛ
1/2
n .

(iv) Generate an n×1 vector v∼ (0, In). We recommend using a sequence of standard normal random variables,

but another distribution could be used. Then generate a sequence of random variables {η i : i= 1, . . . ,n}

by multiplying this vector ν by Ln :

η = Lnv.

(v) Compute the restricted OLS estimator

β̃ = β̂ −
(

n

∑
i=1

xix
′
i

)−1

R′

[
R

(
n

∑
i=1

xix
′
i

)
R′

]−1(
Rβ̂ − r0

)
and the restricted residuals ũi = yi− x′iβ̃ , i= 1, . . . ,n. Let

y∗i = x′iβ̃ +u∗i , where u∗i = ũiη i.

(vi) Compute W ∗
n =
√

n

(
Rβ̂
∗− r0

)′ [
RQ̂−1

n Ĵ∗n Q̂−1
n R′

]−1√
n

(
Rβ̂
∗− r0

)
using

β̂
∗
=

(
n

∑
i=1

xix
′
i

)−1
n

∑
i=1

xiy
∗
i ,

bootstrap scores V̂ ∗i = xiû
∗
i , and

Ĵ∗n =
1

n

n

∑
i=1

n

∑
j=1

K

(
d̃i j

dn

)
V̂ ∗i V̂ ∗′j .
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(vii) Repeat steps (iv)-(vi) B times and compute the bootstrap p-value as:

p̂n =
1

B

B

∑
b=1

1
(
W
∗(b)

n >Wn

)
,

where W
∗(b)

n is the bootstrap Wald statistic in replication b and 1(·) is the indicator function. Reject the

null hypothesis if p̂n is less than the chosen significance level of the test.

Finally, we note that the spatial dependent wild bootstrap based on the modified non-negative kernel M∗n
discussed in Section 3.3 is not asymptotically valid when applied to studentized test statistics. In particular,

suppose we consider testing H0 : β = β 0 in a simple location model yi = β +ui by relying on a t-test

tn =

√
n

(
β̂ −β 0

)
se

(
β̂

) ,

where β̂ = ȳ= n−1
∑

n
i=1 yi and se

(
β̂

)
is the square root of

Ĵn =
1

n

n

∑
i, j=1

K

(
d̃i j

dn

)
(yi− ȳ)(yi− ȳ)≡ 1

n

n

∑
i, j=1

K

(
d̃i j

dn

)
V̂iV̂j,

with V̂i = ûi ≡ yi− β̂ . Now, consider the spatial dependent bootstrap based on the modified kernelM∗n. Specifi-

cally, let y∗i = β̂ +u∗i , with u∗i = ûiη i, and η = Lnv, where v∼ N (0, In) and Ln =ΦnΛn, as described in Section

3.3. The bootstrap analog of tn is

t∗n =

√
n

(
β̂
∗− β̂

)
se

(
β̂
∗) ,

where se

(
β̂
∗)

is the square root of

Ĵ∗n =
1

n

n

∑
i, j=1

K

(
d̃i j

dn

)
(y∗i − ȳ∗)(y∗i − ȳ∗)≡ 1

n

n

∑
i, j=1

K

(
d̃i j

dn

)
V̂ ∗i V̂ ∗j ,

with V̂ ∗i = û∗i ≡ y∗i − β̂
∗
. We can show that V̂ ∗i = u∗i − ū∗ = v1 (zi− z̄), where we let zi ≡ ûi

√
λ 1φ i1. With this

notation, we can write

t∗n ≡
√

n

(
β̂
∗− β̂

)
√

Ĵ∗n

=
v1√

v2
1

Zn = a1Zn,

where a1 =
v1√

v2
1

is a discrete (Rademacher) random variable given by

a1 =

{
1 with prob. 1/2

−1 with prob. 1/2,

depending on the sign of v1, and Zn =
(

1
n ∑

n
i, j=1 K

(
d̃i j

dn

)
(zi− z̄)(z j− z̄)

)−1/2
n−1/2

∑
n
i=1 zi is a function of the

original sample. Thus, conditionally on the data, t∗n has a discrete distribution function given by

F̂n (x)≡ P∗ (t∗n ≤ x) = P∗ (a1Zn ≤ x) =
1

2
1(Zn ≤ x)+

1

2
1(−Zn ≤ x) .
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Since F̂n (x) is discrete, we cannot expect it to converge to Φ(x), the limiting distribution function of tn. Al-

though the consistency of the bootstrap distribution is not necessary for the validity of a bootstrap p-value (as

recently emphasized by Cavaliere and Georgiev, 2020), we can also show that the bootstrap p-value induced by

this modified procedure has a discrete distribution and hence it cannot be uniformly distributed, as n→ ∞.

5 Extension to nonlinear models

In this section, we describe an extension of the score wild bootstrap of Kline and Santos (2012a) to the spatial

context. This method is a fast resampling method which can be used for inference in nonlinear models estimated

by asymptotically linear estimators such as the QMLE or the GMM estimator. The main idea of the score wild

bootstrap is to perturb the score vector evaluated at the estimated parameter of interest by an external random

variable η i with mean zero and variance one. Kline and Santos (2012a) assume that η i is i.i.d., as in the regular

wild bootstrap. Instead, here we allow for spatial dependence of unknown form in the score contributions

and generate η i such that Cov∗
(
η i,η j

)
= K∗

(
d̃i j

d∗n

)
. For brevity, we only provide a description of the method,

omitting the proof of asymptotic validity3.

Let {Zi : i= 1, . . . ,n} denote a sample of observations on a random vector Z ∈RdZ and let θ ∈Θ⊆Rp. For

the linear model considered previously, Zi = (yi,x
′
i)
′
, but this decomposition does not need to hold in general.

The parameter of interest is denoted by θ 0 and we assume that its estimator θ̂ admits the following asymptotic

linear expansion:
√

n
(
θ̂ −θ 0

)
= An (θ 0)

1√
n

n

∑
i=1

Vi (θ 0)+oP (1) ,

where An (θ) is a p× ` matrix and Vi (θ)≡V (Zi,θ) is an `×1 vector, where `≥ p. If

An (θ 0)
P−→ A0 and

1√
n

n

∑
i=1

Vi (θ 0)
d−→ N (0,J0) ,

it follows that
√

n
(
θ̂ −θ 0

) d−→ N (0,C0) ,

where C0 ≡ A0J0A′0.

Two examples of θ̂ that fit into this framework are the QMLE and the GMM estimator. For QMLE,

θ̂ = argmin
θ∈Θ

1

n

n

∑
i=1

q(Zi,θ) ,

where q(·,θ) is a quasi-log-likelihood real valued function. Assuming that q is twice differentiable in θ , we

can write
√

n
(
θ̂ −θ 0

)
=−H−1

n (θ 0)
1√
n

n

∑
i=1

Vi (θ 0)+op (1) ,

3This could be established under conditions similar to those used by Kim and Sun (2011) (who studied the spatial GMM estimator)

by applying the bootstrap uniform law of large numbers and the bootstrap central limit theorems derived in Gonçalves and White (2004).

Providing primitive conditions on the data such that a linear array representation holds for the score vector is difficult and case-specific.
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where

Hn (θ) =
1

n

n

∑
i=1

∂ 2q(Zi,θ)

∂θ∂θ
′ ,

is the p× p Hessian matrix and Vi (θ 0) =
∂q(Zi,θ 0)

∂θ
is the p×1 score vector for observation i. Thus, we have that

An (θ 0) =−H−1
n (θ 0) and Vi (θ 0) =

∂q(Zi,θ 0)

∂θ
.

A special case is the OLS estimator considered previously, where Vi (θ 0) =−2xiui and Hn (θ) = 2n−1
∑

n
i=1 xix

′
i.

For GMM estimators, assume that

E [g(Zi,θ 0)] = 0,

where g : Z×Θ−→ R` contains the ` moment conditions with `≥ p. The GMM estimator of θ 0 is defined as

θ̂ = argmin
θ∈Θ

(
1

n

n

∑
i=1

g(Zi,θ)

)′
Wn

(
1

n

n

∑
i=1

g(Zi,θ)

)
,

where Wn is a random positive definite symmetric matrix which converges in probability to W > 0. Assuming

g is differentiable in θ , we define the Jacobian matrix of the moment conditions as

Gn (θ) =
1

n

n

∑
i=1

∂g(Zi,θ)

∂θ
′ .

Under standard regularity conditions that allow for spatially dependent observations (see e.g. Kim and Sun

(2011)),
√

n
(
θ̂ −θ 0

)
=−

(
Gn (θ 0)

′
WnGn (θ 0)

)−1
Gn (θ 0)

′
Wn

1√
n

n

∑
i=1

gi (θ 0)+op (1) ,

implying that

An (θ 0) =−
(
Gn (θ 0)

′
WnGn (θ 0)

)−1
Gn (θ 0)

′
Wn, and Vi (θ 0) = gi (θ 0) .

Following Kline and Santos (2012a), we can approximate the distribution of
√

n
(
θ̂ −θ 0

)
by relying on the

bootstrap distribution of

ν
∗
n = An

(
θ̂
) 1√

n

n

∑
i=1

V ∗i ,

where V ∗i =Vi

(
θ̂
)

η i and η i are such that Cov∗
(
η i,η j

)
= K∗

(
d̃i j

d∗n

)
.

This method contains the spatial dependent wild bootstrap for linear regressions as a special case. In

particular, note that for the linear model,

An

(
θ̂
)
=

(
n−1

n

∑
i=1

xix
′
i

)−1

= Q̂−1
n , and V ∗i =Vi

(
θ̂
)

η i = xiûiη i ≡ xiu
∗
i ,

where u∗i = ûiη i. Since y∗i = x′iβ̂ +u∗i , this implies that

ν
∗
n = Q̂−1

n

1√
n

n

∑
i=1

xiu
∗
i = Q̂−1

n

1√
n

n

∑
i=1

xi

(
y∗i − x′iβ̂

)
=
√

n

(
β̂
∗− β̂

)
,
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which shows that ν∗n is equal to
√

n

(
β̂
∗− β̂

)
, as we considered before.

For GMM, the spatial score bootstrap simulates the critical values of

ν
∗
n =−

(
Gn

(
θ̂
)′

WnGn

(
θ̂
))−1

Gn

(
θ̂
)′

Wn

1√
n

n

∑
i=1

gi

(
θ̂
)

η i,

in order to approximate the distribution of
√

n
(
θ̂ −θ 0

)
. Since ν∗n does not depend on any bootstrap GMM

estimator θ̂
∗
, this is a fast resampling method that does not require any optimization in the bootstrap world.

6 Monte Carlo Simulations

In this section, we consider a simulation experiment to document the properties of our proposed approach. Our

design follows Lee and Robinson (2016) and Sun and Kim (2015). The data is generated as:

yi = α+βxi+ui

where α = 0 and β = 1. The observations lie within a square of dimension
√

n×
√

n where n is the sample

size. The locations si = (si1 ,si2) are drawn uniformly within that square once and for all for each design, i.e.

we let si1 ∼U [0,
√

n] independently of si2 ∼U [0,
√

n]. The distance between observations at locations si and s j

is Euclidean:

di j =

√
(si1− s j1)

2+(si2− s j2)
2.

Regressor and errors have the same dependence structure. Each of zi = (xi,ui)
′

and z j are drawn from a

standard normal N (0, I2) distribution but with correlation θ
di j between them. The parameter θ controls the

degree of dependence among observations with a higher value of θ leading to observations that are more highly

correlated. In our experiments, we consider values of θ between 0 and .9 in increments of .1. We report results

for three sample sizes: n= 25, 100, and 400 as a function of θ with 10,000 replications.

We consider rejection rates of the null hypothesis of β = 1 against a two-sided alternative at the 5% level

using the t statistic:

tn =

√
n

(
β̂ −1

)
se

(
β̂

) ,

where se

(
β̂

)
is the square root of the (2,2) element of Q̂−1

n ĴnQ̂−1
n with

Ĵn =
1

n

n

∑
i=1

n

∑
j=1

K

(
d̃i j

dn

)
V̂iV̂

′
j ,

using the Gaussian kernel, the data-based choice of dn discussed below, and d̃i j = di j is the Euclidean distance

between the locations si and s j. We will later consider the presence of measurement error in locations and the

misspecification of the distance measure.
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The choice of bandwidth is clearly important. Our suggested approach is to compute an estimate of C(d
(k)
0 ),

the spatial analog of the autocovariance function of the residuals for a set of potential bandwidths {d(k)0 , k =

1, . . . ,M }, arranged in increasing order of magnitude. We estimate C(d
(k)
0 ) nonparametrically using a local

average estimator Ĉ(d
(k)
0 ), following Conley and Dupor (2001) and Conley and Topa (2002). We view Ĉ(d

(k)
0 ) as

a test statistic for the null hypothesis of spatial independence at distance d
(k)
0 , and construct an acceptance region

via a bootstrap simulation imposing this null, based on bootstrap datasets with i.i.d. draws from the empirical

distribution of residuals. The bootstrap analog of Ĉ(d
(k)
0 ) is then constructed for each spatially independent

bootstrap sample, with their distribution providing a reference distribution for the null of spatial independence.

We identify the first distance in the ordered set {d(k)0 ,k = 1, . . . ,M} for which the bootstrap test does not reject

independence and select the bandwidth as the previous value of that distance.

The next algorithm details the steps involved.

Algorithm: Bandwidth selection

(i) Compute

β̂ =

(
n

∑
i=1

xix
′
i

)−1
n

∑
i=1

xiyi, ûi = yi− x′iβ̂ , and V̂i = xiûi, i= 1, . . . ,n.

(ii) Choose a set of potential bandwidths d0 =
(

d
(1)
0 , ...,d

(M)
0

)′
, ordered in increasing magnitude, and tolerance

level ε. For each k = 1, . . . ,M, compute Ĉ(d
(k)
0 ), the covariance between residuals at distance d

(k)
0 , via a

uniform kernel regression with tolerance of ε :

Ĉ(d
(k)
0 ) =

1

∑i, j 1(|d̃i j−d
(k)
0 )|< ε)

∑
i, j

1(|d̃i j−d
(k)
0 )|< ε)ûiû

′
j.

(iii) Generate data using an i.i.d. bootstrap from the empirical distribution of residuals ûi for each location si.

For each k = 1, . . . ,M, compute the bootstrap analog of Ĉ(d
(k)
0 ),

Ĉ∗(d
(k)
0 ) =

1

∑i, j 1(|d̃i j−d
(k)
0 )|< ε)

∑
i, j

1(|d̃i j−d
(k)
0 )|< ε)û∗i û∗′j .

(iv) Repeat step (iii) B times and obtain a bootstrap confidence interval for C

(
d
(k)
0

)
using the 2.5% and 97.5%

quantiles of Ĉ∗(d
(k)
0 ).

(v) We search for the first element of d0 for which Ĉ

(
d
(k)
0

)
is within these bands and set the bandwidth as the

previous element of d0.

We implement this algorithm as follows. We set d
(k)
0 = ck×n1/6, for ck between .5 and 4 in increments of

.5, which gives M = 8. From Kim and Sun (2011), the chosen rate of expansion is optimal in the MSE-sense
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when locations lie in a two-dimensional space using the Gaussian kernel. We also set the tolerance level ε as

.1×n
1
6 . These values were arrived at with some experimentation.

We compare the test statistic to 3 different critical values. The first one is the critical value from the standard

normal distribution. The second critical value is obtained from the i.i.d. bootstrap which approximates the fixed-

b asymptotic distribution in Bester et al. (2016) that assumes that the bandwidth dn is a fixed proportion of the

sample size. As in the time series context (see e.g. Kiefer and Vogelsang (2005)), the fixed-b asymptotic

distribution in the spatial context is nuisance parameter free, but is highly nonstandard. In contrast to the time

series case, it is a complicated functional of Brownian sheets and it depends on the sampling region. Thus, for

practical purposes, it is hard to implement the fixed-b asymptotic critical values without resorting to the i.i.d.

bootstrap. Finally, the last critical value is obtained using our spatial dependent wild bootstrap (SDWB) using

the restricted residuals to obtain the bootstrap draws. We implement it using the same Gaussian kernel and

bandwidth used to compute the t statistic in the sample. We use independent standard normal random variables

as external draws and B = 399 bootstrap samples. The use of the Gaussian kernel with Euclidean distance

ensures that the matrix K∗n is positive semi-definite.

Figure 1 reports the rejection rates for the three sets of critical values under the null hypothesis of β = 1.

The first thing to note from Figure 1 is that, as expected, size distortions increase with higher dependence

(higher value of θ). Second, the use of asymptotic normal critical values leads to sizable size distortions for

small values of n. For example, for n= 25, the rejection rate for θ = .5 is 25.1% instead of 5%. This is reduced

to 13.7% for n = 400. The i.i.d. bootstrap critical values perform much better and reduce the size distortions

considerably. Again, for θ = .5, the rejection rate is 12.7% for n = 25 and 7.8% for n = 400. Finally, the

spatial dependent wild bootstrap gives rejection rates closer to the nominal level, 10.9% for n = 25 and 6.5%

for n= 400.

Figures 2 to 5 explore measurement error in locations as in Lee and Robinson (2016). Hence, location i

becomes:

s̃i =
(

si1 +ζ
1
i ,si2 +ζ

2
i

)
where ζ i =

(
ζ

1
i ,ζ

2
i

)′
is independently drawn from N (0,ζ I2) with ζ = 2 (Figure 2), ζ = 4 (Figure 3) or ζ = 10

(Figure 4). In other words, the data is generated as above with the correct locations si and using the Euclidean

distance in the data-generating process. However, when implementing all test procedures, we use the incorrect

random distance d̃i j =
√
(s̃i1− s̃ j1)

2+(s̃i2− s̃ j2)
2

arising from the mismeasured locations.

Comparing Figures 1 and 2, measurement error in locations worsens all methods. For n = 25, the i.i.d.

bootstrap performs best, but our SDWB dominates it for n= 100 and 400 though the difference is much smaller

than when the correct locations are used. Making measurement error larger reinforces these findings as shown

in Figures 3 and 4. If measurement error is large enough, distances convey no information and are discarded.
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The results with asymptotic theory converge towards the White heteroskedasticity-robust standard errors, and

our method deteriorates analogously. The i.i.d. bootstrap is obviously more robust since it relies less on the

existence of a distance measure (it still relies on it in the construction of the statistic). Nonetheless, our SDWB

performs better for larger sample size and stronger dependence.

Finally, Figure 5 considers the case where the wrong distance measure is used, This experiment generates

data as before by drawing locations uniformly in a square of dimension
√

n×
√

n, but the distance between

observations is the maximum distance:

di j =max
[∣∣si1− s j1

∣∣ , ∣∣si2− s j2

∣∣] .
We suppose that the researcher believes that he is in the same context as for Figure 1 and uses the Euclidean

distance between observations. This is a different type of misspecification than what was considered in Figures

2-4. Here, the locations are correctly observed, but the wrong metric between them is used. Because the

Euclidean distance and Gaussian kernel are used in sample, the resultingK∗n matrix is still positive semi-definite.

When comparing Figures 1 and 5, we see that the misspecification worsens results for all methods, but

the effect is quite small, much less than a N (0,2) measurement error in locations. For example, with θ = .5,

our bootstrap has a rejection rate of 11.8% for n = 25, 8.4% with n = 100 and 6.6% for n = 400 compared to

10.9%, 8.0, and 6.5% with no measurement error and 20.0%, 18.7%, and 7.9% with N (0,2)measurement error

in locations.

We conclude from these experiments that the spatial dependent wild bootstrap removes a large fraction of

the size distortions associated with the use of the normal asymptotic critical values. Its superiority is especially

pronounced with stronger spatial dependence (larger values of θ ). Moreover, it outperforms the i.i.d. bootstrap

except for cases with large misspecification combined with either small sample size or weak dependence.

7 Empirical Example

In this section we present an example application to illustrate our method. This application’s goal is to under-

stand how firms are affected by import behavior in their local markets. An extensive empirical literature has

examined the role of import competition in the reallocation of manufacturing within and across industries, e.g.

Bernard et al. (2006), Autor et al. (2014), Acemoglu et al. (2016). Recent work in this literature such as Utar

(2017) and Sandoval (2020), has been concerned with the distinct effects of imports depending on their loca-

tion in the supply chain. This motivates an empirical investigation of the impact of different types of imports

upon firm outcomes. We examine a regression that provides stylized facts about the correlations between firms’

growth and the level of importing activity in their local markets, distinguishing between three types of imports.

These three categories are: final goods imports which may reflect competition facing domestic producers in
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the local market, intermediate goods imports which could reflect, e.g. the scale of operation by competitors or

the supply of inputs in the market, and capital goods imports which may reflect varying access to technology

and/or competitors’ scale of operation.

We use Canadian firm-level data from the National Accounts Longitudinal Microdata File (NALMF), con-

structed by Statistics Canada, for the years 2003 and 2007. The NALMF contains all incorporated firms in

Canada, and is mainly used to track GDP and employment of firms, and their locations. We use data from

2003 and 2007 and link wholesaler import data from Statistics Canada to the NALMF.4 This provides data on

firm-level imports that include their value, country of origin and product at the level of a ten-digit Harmonized

System code. These import-linked data allow us to study how the import activity of Canadian wholesalers in

intermediate, final, and capital good markets affect manufacturing firms’ outcomes.5

Specifically, we examine the relationship between manufacturing firms’ sales growth and the level of expo-

sure to import activity in their local markets. We estimate that relation using a cross-section of firms and the

following specification:

Sales Growthi = α+θXFinal
i + γX Intermediate

i +δX
Capital
i +Z′iψ+ ε i. (15)

where i corresponds to a manufacturing firm. The dependent variable, Sales Growthi, corresponds to the growth

rate of real sales between 2003 and 2007. The local market of firm i is taken to be its Economic Region (ECR)

among the 72 ECRs defined by Statistics Canada.6 Importing activity variables X are defined at the ECR level

and reflect 2003 activity. We define the parameter vector as β = (α,θ ,γ,δ ,ψ ′)′ .

XFinal
i is computed as a ratio. Its numerator is the value of all imports by wholesalers of final goods within

firm i′s ECR. Its denominator is the total value of all imports and domestic sales of manufacturing firms in firm

i′s ECR. The import measures X Intermediate
i and X

Capital
i are defined analogously. See Sandoval (2020) for an

extensive discussion of the merits of these particular measures of import activity.

Our conditioning information in Zi includes 2003 data on firm age, the logarithm of real sales, and measures

of capital and skill intensity. Following Bernard et al. (2006) we measure capital intensity as the natural log

of a capital/labor ratio using the book value of tangible assets divided by firm’s total payroll, and measure skill

intensity as the ratio of the total payroll to the payments to production workers. We focus on a cross-section of

manufacturing firms with more than 20 workers in 2003, yielding a sample of 6120 firms. Approximately 88%

of Canadian manufacturing workers in 2003 worked in these sample firms.

We anticipate that spatial dependence will be present in this cross section of firms due to two main factors.

4See Sandoval (2020) for a detailed description of these linked data.
5We classify imports according to their end-use as intermediate, final or capital goods using the correspondence tables between the

HS and Broad Economic Categories (BEC) classification.
6Approximately 96% of the firms in our sample have single locations; for the remaining firms, we take a firm’s location as the

location of its designated headquarters.
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Firms that are close in terms of travel time will have relevant local markets that overlap. When firms’ local

markets overlap they will tend to face correlated shocks, e.g. labor supply shocks. We use physical distance

between firms as our measure of the overlap between firms’ local markets. Correlated unobservables could

also easily arise due to similarities in firms’ technology making them vulnerable to a common set of shocks or

changes to their technology. We represent firms’ technology via two characteristics that we use to generate a

’technology distance’: their capital to labor ratio and the fraction of total payroll going to production workers.

We combine our two distance measures to implement the spatial dependent wild bootstrap. For physical

distance, we use the coordinates of the centroids of the ECR in which firms are located as firm coordinates and

use straight line distance as our measure of firms’ physical distance.7 Each firm’s technology is summarized by a

two-dimensional vector containing its capital/labor ratio and ratio of total payroll to production worker payroll,

both in 2003. Technology distance is calculated as the Euclidean distance between firms’ two-dimensional

technology characteristics vectors.

We add both distance measures after scaling them so neither dominates. The combined distance for firms i

and j , d̃i j, is constructed by adding a scaled multiple of their technology distance to their physical distance:

d̃i j = physical distance+ scale× (technology distance).

The technology scale factor is constructed so that the median of the scaled technology distance is equal to the

median physical distance (560 km). Thus for two firms with identical measured technology, our combined

distance d̃i j is equal to physical distance, providing at least some sense of units.

We use the same kernel and bandwidth for the spatial dependent wild bootstrap procedure and spatial HAC:

K∗(d̃i j/dn) = K(d̃i j/dn) = exp(−(d̃i j/dn)
2), where dn = d∗n .

We present results in Table 1 using a methodology for choosing dn similar to that described in Section 6.

Specifically, we obtain Ĉ(d
(k)
0 ) for a range of values for d

(k)
0 . Figure 6 gives these estimates for an assortment

of distances, along with upper and lower ends of a 90% acceptance region for spatial independence. Ĉ(d
(k))
0 )

is normalized in Figure 6 by dividing by the sample variance of residuals. Although spatial covariances can be

small relative to the variance of residuals, it is important to note that there can be a very large number of firms at

the smaller distances from each other so their covariances’ sum can still be substantial relative to their variance.

Pointwise hypothesis tests for spatial independence can be done by simply comparing the covariance estimates

(circles) to the acceptance region (between dashes). 8 Estimated autocovariances are generally decreasing and

7Centroids are calculated from Statistics Canada maps of 2016 ECR boundaries.
8It is important to remember that these acceptance regions are for the null hypothesis of independence rather than zero correlation.

Rejections can occur due to differences in the sampling distribution under dependence vs independence, even if the covariance at the

given distance were zero. We anticipate that with spatial dependence rejections at smaller distances will occur largely due to nonzero

autocovariances. At larger distances we anticipate some (correct) rejections even though true covariance is zero at that distance due to

the sampling variability being larger under dependence than independence.
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Table 1: Inference for regression (14) predicting the growth of sales between 2003 and 2007

Half width of 95% confidence intervals

β̂ OLS White
Cluster

ECR

Clustered

Wild

Bootstrap

ECR

Cluster

Industry

Clustered

Wild

Bootstrap

Industry

Spatial

HAC

Spatial

Wild

Boot-

strap

Import Pen. Intermediate 4.342 1.666 1.799 1.833 2.048 1.696 1.746 1.838 2.074

Import Pen. Final -3.033 1.584 1.454 2.164 1.465 1.344 2.063 1.557 1.695

Import Pen. Capital -0.130 1.307 1.027 1.271 1.119 1.199 1.061 1.013 1.021

Log real sales 0.013 0.017 0.016 0.014 0.010 0.031 0.019 0.021 0.023

Age -0.003 0.004 0.004 0.003 0.003 0.004 0.004 0.004 0.005

Capital intensity 0.028 0.021 0.030 0.032 0.034 0.037 0.028 0.028 0.031

Skill intensity (100s) 0.004 0.051 0.023 0.023 0.012 0.025 0.011 0.023 0.013

Constant -0.265 0.191 0.197 0.192 0.200 0.455 0.266 0.280 0.311

Notes: the import penetration variables are computed at the ECR-level and for the year 2003. The reminder of the regressors refer to firm-level data

for the year 2003. For the Wild bootstrap we compute a symmetric t-percentile confidence interval using 2,000 Bootstrap repetitions.

independence is rejected until about 500-700 units and then ’borderline rejected’ until about 1100 units. This

motivated our choice of a bandwidth of 560 for our reported estimates; the implied weight K is greater than .14

for only 25% of the pairs of firms. We obtained qualitatively very similar results with bandwidth choices up to

1120; at this bandwidth K is greater than .14 for 53% of firm pairs and K is greater than .61 for 25% of pairs.

We also include in Table 1 confidence intervals using different methods for computing standard errors and

critical values. Specifically, we compute asymptotic theory-based intervals that rely on different standard errors:

classical OLS, heteroskedasticity consistent (labelled White), clustered at the ECR-level, clustered at the 3-digit

industry-level, and spatial HAC. We also include three bootstrap-based intervals: cluster wild bootstrap at the

ECR level, cluster wild bootstrap at the industry level and our spatial dependent wild bootstrap using the same

kernel and bandwidth as in the spatial HAC.9

The results presented in Table 1 have several key features. The relative sizes of confidence intervals across

methods differ across elements of β . For example, for the first element of β , the coefficient on intermediate

goods imports, our spatial wild bootstrap CIs are the widest but for the coefficient for final goods imports, Cls

using clustering on ECR are largest.

There is evidence of substantial dependence as a function of physical distance, but its impact on inference

again varies across elements of β . This can be seen by comparing e.g. White CIs with ECR cluster for the

capital imports coefficient where the length of CIs differ by 24%, but for the intermediate goods coefficient,

these CIs are nearly the same length. There is also some evidence of correlations due to similar technology,

which are partly reflected in CIs under Clustered by Industry. CIs using Industry clusters are sometimes larger

and sometimes smaller than White CIs across the three coefficients of interest. Both the spatial HAC and spatial

9We do not compare to blocking/clustering methods allowing for general dependence structures as in Bester, Conley, and Hansen

(2012) or Ibragimov and Mueller (2010) due to the difficulties in defining appropriate blocks/clusters when dependence is characterized

by multiple metrics.
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dependent wild bootstrap attempt to allow for both types of correlation.

Finally, there is evidence that using the spatial dependent wild bootstrap matters relative to a spatial HAC

estimator using the same kernel. Across all parameters the difference in length of the CIs is typically about 10%

to 20%, possibly reflecting the greater robustness of the bootstrap intervals to finite sample deviations from the

normal distribution.

8 Conclusion

This paper has proposed a method for generating bootstrap data under spatial and space-time dependence of

unknown form. It is implemented by multiplying a vector of external variables by the eigendecomposition of

a bootstrap kernel. The wild bootstrap and wild cluster bootstrap are special cases of this approach and do

not require the decomposition of a full n× n matrix, but our method can also be used to generate data with

dependence patterns for which no alternative method exists. Simulation experiments suggest that there are

gains from generating bootstrap samples that replicate the spatial patterns in the data.

Results by Zhang and Shao (2013) show that the Gaussian dependent bootstrap is second order correct for

the Gaussian location model under fixed-b asymptotics. Extending these results to the regression model with

non-Gaussian errors and spatial dependence is an open but challenging topic for future research (see Kline and

Santos (2012b) for results for the standard wild bootstrap in the i.i.d. context).

Another interesting extension of our results would be to investigate the properties of the spatial dependent

wild bootstrap when locations are randomly selected from a given population rather then being fixed, as we

have assumed here. This setup has been recently considered by Müller and Watson (2021), who propose a new

estimator of the spatial long run variance using a fixed number of principal components obtained from a “worst-

case” benchmark parametric model for the covariance structure of the error term in a location model. A critical

value is then constructed using this benchmark model under the additional assumption of Gaussianity so as to

ensure that the size of the resulting test is asymptotically correct. Contrary to our setup, Müller and Watson

(2021) assume locations to be randomly selected from a density g and show that allowing for a nonuniform

density has implications for the conventional fixed-b limiting distributions. The choice of sampling design

may also impact bootstrap validity (see e.g. Lahiri and Zhu (2006) for results on the spatial block bootstrap).

Interestingly, Shao (2010) shows that the wild dependent bootstrap is asymptotically valid when the sampling

design is stochastic with a potentially nonuniform spatial density g. It would be interesting to extend these

results to our context, where spatial dependence is not restricted to be indexed on the line.
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A Appendix

As usual in the bootstrap literature, we use P∗ to denote the bootstrap probability measure, conditional on the

original sample (defined on a given probability space (Ω,F ,P)). For any bootstrap statistic T ∗n , we write T ∗n =

oP∗ (1), in prob-P, or T ∗n →P∗ 0, in prob-P, when for any δ > 0, P∗ (|T ∗n |> δ ) = oP (1). We write T ∗n =OP∗ (1),

in prob-P, when for all δ > 0 there exists Mδ < ∞ such that limn→∞ P [P∗ (|T ∗n |>Mδ )> δ ] = 0. By Markov’s

inequality, this follows if E∗ |T ∗n |
q = OP (1) for some q > 0. Finally, we write T ∗n →d∗ D, in probability, if

conditional on a sample with probability that converges to one, T ∗n weakly converges to the distribution D under

P∗, i.e. E∗ ( f (T ∗n ))→P E ( f (D)) for all bounded and uniformly continuous functions f .

A.1 Auxiliary lemmas

Define

Jboot,n =Var∗

(
1√
n

n

∑
i=1

Viη i

)

and note that Jboot,n differs from Ĵboot,n=Var∗
(

1√
n

∑
n
i=1 V̂iη i

)
by replacing V̂i with Vi. Recall that d̃i j = di j+ξ i j,

where di j is deterministic, and ξ i j is a measurement error which is independent of {el} and {xi} . Let Ψn ={
ξ i j, i, j = 1, ...,n

}
.

Lemma A.1 Under Assumptions 1(i) and (ii), we have

1

n2

n

∑
i=1

n

∑
j=1

E

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣= O

(
E`∗n

n

)
as E`∗n,d

∗
n → ∞ such that E`∗n/n→ 0.

Proof of Lemma A.1. Note that

1

n2

n

∑
i=1

n

∑
j=1

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣= 1

n2

n

∑
i=1

n

∑
j∈B∗i,n

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣+ 1

n2

n

∑
i=1

n

∑
j/∈B∗i,n

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣ ,
where B∗i,n is a random set containing the neighbors of i using d̃i j. Thus, we have that

1

n2

n

∑
i=1

E
n

∑
j=1

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣= 1

n2

n

∑
i=1

E

 n

∑
j∈B∗i,n

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣
+ 1

n2

n

∑
i=1

E

 n

∑
j/∈B∗i,n

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣
 ,

If K∗ truncates, the second term is automatically zero, whereas the first term can be bounded by n−2E ∑
n
i=1 ∑

n
j∈B∗i,n 1=

n−1E
(
n−1

∑
n
i=1 `

∗
i,n

)
= n−1E`∗n. When K∗ does not truncate, then we use Assumption 1(ii) to bound the second

term. Specifically, we obtain that

1

n2

n

∑
i=1

E
n

∑
j/∈B∗i,n

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣≤ E`∗n
n

 1

E`∗n
sup

i

E
n

∑
j/∈B∗i,n

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣
= O

(
E`∗n

n

)
.
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The following lemma establishes the consistency of Jboot,n and Ĵboot,n towards Jn. This is a key result for

proving the asymptotic validity of the bootstrap distribution of
√

n

(
β̂
∗− β̂

)
and the corresponding Wald test

W ∗
n .

Lemma A.2 Suppose that the conditions of Theorem 3.1 hold. Then (i) Jboot,n−Jn→P 0 and (ii) Ĵboot,n−Jn→P

0.

Our next result is an auxiliary result used to prove Theorem 3.1.

Lemma A.3 Suppose Assumptions 1 and 2 hold. Then, for any pair (i, j), conditionally on Ψn =
{

ξ i j

}
,

n

∑
i=1

n

∑
j=1

∣∣E (ViV
′
j |Ψn

)
φ ikφ jk

∣∣≤M,

uniformly in k= 1, . . . ,n, where φ ik is the ith element of φ k=(φ 1k, . . . ,φ nk)
′
, the kth eigenvector of K∗n=

(
K∗
(

d̃i j

d∗n

))
i, j=1,...,n

,

and where the constant M is independent of Ψn.

Proof of Lemma A.2. Part (i) Since Jboot,n− Jn→P 0 if and only if α ′Jboot,nα−α ′Jnα →P 0 for any p×1

vector α , we consider the case that Jboot,n and Jn are scalars without loss of generality. Write

Jboot,n− Jn =
1

n

n

∑
i=1

n

∑
j=1

K∗
(

d̃i j

d∗n

)
[ViVj−E (ViVj)]+

1

n

n

∑
i=1

n

∑
j=1

(
K∗
(

d̃i j

d∗n

)
−1

)
E (ViVj)≡ b1+b2.

For b1, note that by the law of iterated expectations and the independence between {Vi} and Ψn ≡
{

ξ i j

}
,

E (b1) =
1

n

n

∑
i=1

n

∑
j=1

E

[
K∗
(

d̃i j

d∗n

)
E (ViVj−E (ViVj) |Ψn)

]
=

1

n

n

∑
i=1

n

∑
j=1

E

[
K∗
(

d̃i j

d∗n

)
(E (ViVj|Ψn)−E (ViVj))

]
= 0

where E (ViVj|Ψn) = E (ViVj) given Assumption 4 (i). Hence, it suffices to prove that Var (b1) = o(1). We have

Var (b1) =Var

(
1

n

n

∑
i=1

n

∑
j=1

K∗
(

d̃i j

d∗n

)
[ViVj−E (ViVj)]

)

=
1

n2

n

∑
i1=1

n

∑
j1=1

n

∑
i2=1

n

∑
j2=1

E

[
K∗
(

d̃i1 j1

d∗n

)
K∗
(

d̃i2 j2

d∗n

)]
[E (Vi1Vj1Vi2Vj2)−E (Vi1Vj1)E (Vi2Vj2)] , (16)

using again the law of iterated expectations and the independence assumption between {Vi} and Ψn. Adding

and subtracting appropriately in (16), we can bound Var (b1) by

Var (b1)≤ b11+b12+b13, where

b11 =
1

n2

n

∑
i1=1

n

∑
j1=1

n

∑
i2=1

n

∑
j2=1

∣∣E (Vi1Vj1Vi2Vj2)−E (Vi1Vj1)E (Vi2Vj2)−E (Vi1Vi2)E (Vj1Vj2)−E (Vi1Vj2)E (Vj1Vi2)
∣∣
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and

b12 =
1

n2

n

∑
i1=1

n

∑
j1=1

n

∑
i2=1

n

∑
j2=1

E

[
K∗
(

d̃i1 j1

d∗n

)
K∗
(

d̃i2 j2

d∗n

)]∣∣E (Vi1Vi2)E (Vj1Vj2)
∣∣

b13 =
1

n2

n

∑
i1=1

n

∑
j1=1

n

∑
i2=1

n

∑
j2=1

E

[
K∗
(

d̃i1 j1

d∗n

)
K∗
(

d̃i2 j2

d∗n

)]∣∣E (Vi1Vj2)E (Vj1Vi2)
∣∣ .

We can show that b12 and b13 are both of order O

(
E`∗n

n

)
, whereas b11 = O

(
1
n

)
. Thus, Var (b1) = o(1) under

our assumptions provided
E`∗n

n
= o(1). Next, we focus on the term b12 (the argument for b13 is the same and the

proof that b11 = O
(

1
n

)
follows by an argument similar to the one used to show that C1 = O(1) in the proof of

Theorem 3.1, so we omit the details here). We can write

b12 ≤ 1

n2

n

∑
i1=1

n

∑
j1=1

E

∣∣∣∣K∗( d̃i1 j1

d∗n

)∣∣∣∣ n

∑
i2=1

|E (Vi1Vi2)|
n

∑
j2=1

∣∣E (Vj1Vj2)
∣∣

≤ 1

n2

n

∑
i1=1

n

∑
j1=1

E

∣∣∣∣K∗( d̃i1 j1

d∗n

)∣∣∣∣
(

sup
c

n

∑
i2=1

|E (VcVi2)|
)

︸ ︷︷ ︸
≤∆

(
sup

c

n

∑
j2=1

∣∣E (VcVj2)
∣∣)

︸ ︷︷ ︸
≤∆

≤ ∆
2 1

n2

n

∑
i1=1

n

∑
j1=1

E

∣∣∣∣K∗( d̃i1 j1

d∗n

)∣∣∣∣= O

(
E`∗n

n

)
= o(1) ,

if
E`∗n

n
→ 0 by Lemma A.1. Note that we have used the fact that supi ∑

n
j=1

∣∣E (ViVj)
∣∣≤ ∆ under Assumption 2.

For b2, note that

|b2| ≤
1

(d∗n)
q∗0

1

n

n

∑
i=1

n

∑
j=1

∥∥E (ViVj)
∥∥ d̃

q∗0
i j

(
K∗q∗0 +o(1)

)
= OP

(
1

(d∗n)
q∗0

)
as d∗n → ∞,

because

P

(
1

n

n

∑
i=1

n

∑
j=1

∥∥E (ViVj)
∥∥ d̃

q∗0
i j > ∆

)
≤ 1

∆

1

n

n

∑
i=1

n

∑
j=1

∥∥E (ViVj)
∥∥E

(
d̃

q∗0
i j

)
→ 0 as ∆→ ∞

given Assumption 4. Hence, b2 = oP (1) , completing the proof of part (i).

For part (ii), given (i) it suffices to show that Ĵboot,n−Jboot,n = oP (1). Since xiûi = xi

[
ui+ xi

(
β − β̂

)]
, we

can write

Ĵboot,n−Jboot,n=
1

n

n

∑
i=1

n

∑
j=1

K∗
(

d̃i j

d∗n

)
xix j (ûiû j−uiu j)=

1

n

n

∑
i=1

n

∑
j=1

K∗
(

d̃i j

d∗n

)
xix j

[
xix j

(
β − β̂

)2

+2x jui

(
β − β̂

)]
≡ c1+c2.

Because β̂ −β = OP

(
n−1/2

)
,

c1 = OP (1)

(
1

n2

n

∑
i=1

n

∑
j=1

K∗
(

d̃i j

d∗n

)
x2

i x2
j

)
= OP

(
E`∗n

n

)
,

because by Markov’s inequality

P

(∣∣∣∣∣ 1

n2

n

∑
i=1

n

∑
j=1

K∗
(

d̃i j

d∗n

)
x2

i x2
j

∣∣∣∣∣> ∆

)
≤ 1

n2

n

∑
i=1

n

∑
j=1

E

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣E (x2
i x2

j

)︸ ︷︷ ︸
≤M

≤ M

∆

1

n2

n

∑
i=1

n

∑
j=1

E

∣∣∣∣K∗( d̃i j

d∗n

)∣∣∣∣=O

(
E`∗n

n

)
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under Lemma A.1. For c2,

c2 =
2

n

n

∑
i=1

n

∑
j=1

K∗
(

d̃i j

d∗n

)
xiuix

2
j

(
β − β̂

)
= OP (1)

(
1

n
√

n

n

∑
j=1

x2
j

n

∑
i=1

K∗
(

d̃i j

d∗n

)
xiui

)
.

We have

|c2| ≤ OP (1)
1

n

n

∑
j=1

x2
j

∣∣∣∣∣ 1√
n

n

∑
i=1

K∗
(

d̃i j

d∗n

)
xiui
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≤ OP (1)

(
1

n
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x4
j
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,

because
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1
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∑
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∣∣∣∣∣ 1√
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i=1
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(

d̃i j
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xiui
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> ∆

≤ 1

∆
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∆

1

n2
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i1=1

E

∣∣∣∣K∗( d̃i1 j
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|E [VcVi2 ]|︸ ︷︷ ︸
≤M

= O

(
E`∗n

n

)
,

by Lemma A.1. Therefore, Ĵboot,n−Jboot,n = oP (1) under the rate condition on E`∗n, which concludes the proof.

Proof of Lemma A.3. The proof uses the weak dependence of Vi and the fact that ∑
n
i=1 φ

2
ik = 1 for any

realization of K∗n. Let’s rearrange the sequence of {φ ik, i= 1, ...,n} as
{

φ
(a)
k
,a= 1, ...,n

}
for each k in a way

that

∣∣∣φ (a)k

∣∣∣ is the a-th largest component among {|φ ik| , i= 1, ...,n} . That is,

∣∣∣φ (1)k

∣∣∣≥ ∣∣∣φ (2)k

∣∣∣≥ ...≥ ∣∣∣φ (n)k

∣∣∣ . Using

this, conditionally on Ψn, we can rewrite

n

∑
i=1

n

∑
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∥∥E
(
ViV

′
j

)
φ ikφ jk
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n
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∥∥∥= n
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∥∥∥∥E
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)(
φ
(a)
k

)2
∥∥∥∥︸ ︷︷ ︸

(1): diagonal part

+2
n−1

∑
a=1

n

∑
b=a+1

∥∥∥E
(
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)
φ
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φ
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∥∥∥︸ ︷︷ ︸
(2)

,

where we have used the independence of {Vi} and Ψn.

It follows that

(1) =
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∑
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∥∥E
(
VaV ′a
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= 1. Similarly,
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where the second inequality is due to

∣∣∣φ (a)k

∣∣∣≥ ∣∣∣φ (b)k

∣∣∣ with a< b. Then,
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assuming that the term in parenthesis is bounded. This last condition is slightly stronger than the usual weak

dependence 1
n ∑

n
i=1 ∑

n
j=1

∥∥∥E

(
ViV

′
j

)∥∥∥< ∞, but it holds under Assumption 2.
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A.2 Proof of main results in the paper

Proof of Theorem 3.1. Let Cn = Q−1JnQ−1 and define its square root matrix as C
1/2
n = Q−1J

1/2
n , where J

1/2
n is

such that J
1/2
n

(
J

1/2
n

)′
= Jn and it exists by assumption. It follows that C

−1/2
n = J

−1/2
n Q and
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√
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)
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∑
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∑
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i = J

−1/2
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i +oP∗ (1) ,

since under Assumption 6 (ii), Q̂n→P Q. Thus, it suffices to show that

J
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1√
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∑
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xiu
∗
i →d∗ N (0, Ip) , in prob-P, (17)

to conclude that

C
−1/2
n

√
n

(
β̂
∗− β̂

)
→d∗ N (0, Ip) , in prob-P. (18)

Given that C
−1/2
n

√
n

(
β̂ −β

)
→d N (0, Ip) under our assumptions, (18) implies the result by Polya’s Theorem

and the continuity of the normal distribution. Using the definition of u∗i , (17) follows if

1√
n

n

∑
i=1

xi (ûi−ui)η i→p∗ 0, in prob-P, and (19)

J
−1/2
n

1√
n

n

∑
i=1

xiuiη i→d∗ N (0, Ip) , in prob-P, (20)

as n→ ∞. For (19), we note that

1√
n

n

∑
i=1

xi (ûi−ui)η i =
1

n

n

∑
i=1

xix
′
iη i︸ ︷︷ ︸

=a1

√
n

(
β − β̂

)
︸ ︷︷ ︸

=OP(1)

,

so it suffices to show that a1 = oP∗ (1) in prob-P. By Markov’s inequality, this follows if E∗ |a1|2 = oP (1) .

Routine calculations show that

E∗ |a1|2 =
1

n2

n

∑
i=1

n

∑
j=1

tr
(
xix
′
ix jx

′
j

)
E∗
(
η iη j

)
=

1

n2

n

∑
i=1

n

∑
j=1

∣∣tr(xix
′
ix jx

′
j

)∣∣K∗( d̃i j

d∗n

)
= OP

(
E`∗n

n

)
→ 0, (21)

as
E`∗n

n
→ 0, given Lemma A.1.

Next, we prove (20). Given Assumption 1, K∗n is symmetric and positive semi-definite, which implies that

K∗n = ΦnΛnΦ′n, where Λn is a diagonal matrix with the nonnegative eigenvalues of K∗n and the columns of Φn

are the associated orthonormal eigenvectors. Then, Ln can be written as

Ln =ΦnΛ
1/2
n =

[
λ

1/2
1 φ 1, ...,λ

1/2
n φ n

]
,

implying that

η =ΦnΛ
1/2
n v=

[
λ

1/2
1 φ 1, ...,λ

1/2
n φ n

]
v,
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where v∼ i.i.d.(0, In). Given that Vi = xiui is p×1, let

V ′
p×n

=
[

V1 . . . Vn

]
.

It follows that

J
−1/2
n

1√
n

n

∑
i=1

xiuiη i = J
−1/2
n

1√
n

n

∑
i=1

Viη i = J
−1/2
n

1√
n

V ′η =
1√
n

n

∑
k=1

(
J
−1/2
n λ

1/2
k

V ′φ k

)
vk =

1√
n

n

∑
k=1

Z∗k ,

where by definition,

Z∗k = J
−1/2
n

(
λ

1/2
k

V ′φ k

)
vk.

Note that
(

λ
1/2
k

J
−1/2
n V ′φ k

)
is a p×1 vector of constants conditional on the data and that vk ∼i.i.d.(0,1) ,which

implies that Z∗k is an independent heterogeneous array. We will show that n−1/2
∑

n
k=1 Z∗k →d∗ N (0, Ip), in prob-P,

by applying Lyapunov’s CLT (see e.g. Proposition 2.27 of van der Vaart (1998)). First, note that conditionally

on the data, E∗
(
Z∗k
)
= 0 and

Var∗

(
1√
n

n

∑
k=1

Z∗k

)
=

1

n

n

∑
k=1

λ kJ
−1/2
n V ′φ kφ

′
kV

(
J
−1/2
n

)
= J
−1/2
n V ′

(
1

n

n

∑
k=1

λ kφ kφ
′
k

)
V

(
J
−1/2
n

)′
= J
−1/2
n J∗0n

(
J
−1/2
n

)′
,

where

Jboot,n =Var∗

(
1√
n

n

∑
i=1

Viη i

)
=Var∗

(
1√
n

n

∑
k=1

(
V ′λ

1/2
k

φ k

)
vk

)
=V ′

(
1

n

n

∑
k=1

λ kφ kφ
′
k

)
V.

By Lemma A.2, Jboot,n− Jn→P 0, which then implies that

Var∗

(
1√
n

n

∑
k=1

Z∗k

)
→P Ip.

Hence, it remains to check Lyapunov’s condition, which requires that for some υ > 0,

1

n1+υ/2

n

∑
k=1

E∗ ‖Z∗k‖
2+υ →P 0. (22)

Note that

1

n1+υ/2

n

∑
k=1

E∗ ‖Z∗k‖
2+υ =

1

n1+υ/2

n

∑
k=1

E∗
∥∥∥J
−1/2
n

(
λ

1/2
k

V ′φ k

)
vk

∥∥∥2+υ

≤
∥∥∥J
−1/2
n

∥∥∥2+υ 1

n1+υ/2

(
sup

a

λ
1+υ/2
a

)
n

∑
k=1

E∗

∥∥∥∥∥ n

∑
i=1

Viφ ikvk

∥∥∥∥∥
2+υ

=
∥∥∥J
−1/2
n

∥∥∥2+υ 1

nυ/2

(
max

a
λ

1+υ/2
a

) 1

n

n

∑
k=1

(
p

∑
m=1

n

∑
i=1

n

∑
j=1

V
(m)
i V

(m)
j φ ikφ jk

)1+υ/2

E∗ |vk|2+υ . (23)

We will show that the Lyapunov condition holds for υ = 2 by showing that

1

n

(
max

a
λ

2
a

)
= oP (1) , (24)

1

n

n

∑
k=1

(
p

∑
m=1

n

∑
i=1

n

∑
j=1

V
(m)
i V

(m)
j φ ikφ jk

)2

= OP (1) , (25)
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and noting that E∗ |vk|4 <M by assumption. To prove (24), since K∗nφ a = λ aφ a, for a= 1, . . . ,n, we have that

for each i= 1, . . . ,n, and a= 1, . . . ,n,

n

∑
j=1

K∗
(

d̃i j

d∗n

)
φ ja = λ aφ ia.

Let i= ia such that
∣∣φ iaa

∣∣=maxi |φ ia| . Then, for a= 1, ...,n, it follows that

λ a

∣∣φ iaa

∣∣≤ n

∑
j=1

∣∣∣∣K∗( d̃ia j

d∗n

)∣∣∣∣ ∣∣φ ja

∣∣⇐⇒ λ a ≤
n

∑
j=1

∣∣∣∣K∗( d̃ia j

d∗n

)∣∣∣∣
∣∣φ ja

∣∣∣∣φ iaa

∣∣ ≤ n

∑
j=1

∣∣∣∣K∗( d̃ia j

d∗n

)∣∣∣∣ .
Thus, we can obtain an upper bound for {λ a} as follows:

sup
a

λ a ≤ sup
a

n

∑
j=1

∣∣∣∣K∗( d̃a j

d∗n

)∣∣∣∣ .
Assumptions 1 and 5 imply

sup
a

n

∑
j=1

∣∣∣∣K∗( d̃a j

d∗n

)∣∣∣∣≤ sup
a

∑
j∈B∗a,n

1︸ ︷︷ ︸
=supa `

∗
a,n<cE`∗n

+ sup
a

∑
j/∈B∗a,n

∣∣∣∣K∗( d̃ia j

d∗n

)∣∣∣∣ ,

and since λ a ≥ 0 for a= 1, ...,n,

1

n
sup

a

λ
2
a ≤ 1

n
sup

a

(
n

∑
j=1

∣∣∣∣K∗( d̃a j

d∗n

)∣∣∣∣
)2

≤ 1

n

cE`∗n+ sup
a

∑
j/∈B∗a,n

∣∣∣∣K∗( d̃ia j

d∗n

)∣∣∣∣
2

≤ 2
(cE`∗n)

2

n
+2

(E`∗n)
2

n

 1

E`∗n
sup

a
∑

j/∈B∗a,n

∣∣∣∣K∗( d̃ia j

d∗n

)∣∣∣∣
2

≤ OP

((
E`∗n
n1/2

)2
)
= oP (1)

given Assumption 1(ii) and the fact that we let
E`∗n
n1/2 = o(1).

Next we prove (25). We will focus on the special case where p= 1 for simplicity, and show that

1

n

n

∑
k=1

E

(
n

∑
i=1

n

∑
j=1

Viφ ikVjφ jk

)2

= E

1

n

n

∑
k=1

E

( n

∑
i=1

Viφ ik

)4

|Ψn

= O(1) ,

which suffices to prove (25) given Markov’s inequality. In particular, we will argue conditionally on Ψn and

show that the average of the conditional expectation is bounded by a constant. This is enough to prove that the

unconditional expectation of the average is bounded. Letting Ṽik =Viφ ik, we have that

1

n

n

∑
k=1

E

∣∣∣∣∣ n

∑
i=1

Ṽik

∣∣∣∣∣
4

|Ψn

= 1

n

n

∑
k=1

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

n

∑
i4=1

E
(
Ṽi1kṼi2kṼi3kṼi4k|Ψn

)
≡C1+C2+C3+C4,
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where, adding and subtracting appropriately,

C1 =
1

n

n

∑
k=1

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

n

∑
i4=1

{
E
(
Ṽi1kṼi2kṼi3kṼi4k|Ψn

)
−E

(
Ṽi1kṼi2k|Ψn

)
E
(
Ṽi3kṼi4k|Ψn

)
−E
(
Ṽi1kṼi3k|Ψn

)
E
(
Ṽi2kṼi4k|Ψn

)
−E

(
Ṽi1kṼi4k|Ψn

)
E
(
Ṽi2kṼi3k|Ψn

) }

C2 =
1

n

n

∑
k=1

{
n

∑
i1=1

n

∑
i2=1

E
(
Ṽi1kṼi2k|Ψn

)}{ n

∑
i3=1

n

∑
i4=1

E
(
Ṽi3kṼi4k|Ψn

)}

C3 =
1

n

n

∑
k=1

{
n

∑
i1=1

n

∑
i3=1

E
(
Ṽi1kṼi3k|Ψn

)}{ n

∑
i2=1

n

∑
i4=1

E
(
Ṽi2kṼi4k|Ψn

)}

C4 =
1

n

n

∑
k=1

{
n

∑
i1=1

n

∑
i4=1

E
(
Ṽi1kṼi4k|Ψn

)}{ n

∑
i2=1

n

∑
i3=1

E
(
Ṽi2kṼi3k|Ψn

)}
.

We will now show that each of the terms C1 through C4 is bounded by a constant given our assumptions. Recall

that Ṽik ≡ Viφ ik, where Vi = ∑
∞
`=1 ri`e` given the linear array representation of Vi (Assumption 2). We will rely

on this assumption as well as on the orthonormality of the eigenvectors φ k = (φ ik : i= 1, . . . ,n) to prove the

desired results. Write

Ṽik =Viφ ik =
∞

∑
l=1

(rilφ ik)el =
∞

∑
l=1

r̃il,kel, where r̃il,k = rilφ ik.

Using the fact that el are i.i.d.(0,1), it follows that

E
(
Ṽi1kṼi2kṼi3kṼi4k|Ψn

)
=

∞

∑
l1=1

∞

∑
l2=1

∞

∑
l3=1

∞

∑
l4=1

r̃i1l1,kr̃i2l2,kr̃i3l3,kr̃i4l4,kE (el1el2el3el4)

=
∞

∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,kE
(
e4

l

)
+

∞

∑
l1=1

r̃i1l1,kr̃i2l1,k

∞

∑
l2=1,l1 6=l2

r̃i3l2,kr̃i4l2,k

+
∞

∑
l1=1

r̃i1l1,kr̃i3l1,k

∞

∑
l2=1,l1 6=l2

r̃i2l2,kr̃i4l2,k+
∞

∑
l1=1

r̃i1l1,kr̃i4l1,k

∞

∑
l2=1,l1 6=l2

r̃i2l2,kr̃i3l2,k

≡ d1+d2+d3+d4.

Now, notice that for a given pair (i, j) , e.g. (i1, i2), we have that

E
(
Ṽi1kṼi2k|Ψn

)
=E

[(
∞

∑
l1=1

r̃i1l1,kel1

)(
∞

∑
l2=1

r̃i2l2,kel2

)∣∣∣∣∣Ψn

]
=

∞

∑
l1=1

∞

∑
l2=1

r̃i1l1,kr̃i2l2,k E (el1el2)︸ ︷︷ ︸
=0 if l1 6=l2 and 1 if l1=l2

=
∞

∑
l1=1

r̃i1l1,kr̃i2l1,k.

This implies that

E
(
Ṽi1kṼi2k|Ψn

)
E
(
Ṽi3kṼi4k|Ψn

)
=

(
∞

∑
l1=1

r̃i1l1,kr̃i2l1,k

) ∞

∑
l2=1,l2 6=l1

r̃i3l2,kr̃i4l2,k+ r̃i3l1,kr̃i4l1,k︸ ︷︷ ︸
when l1=l2


=

(
∞

∑
l1=1

r̃i1l1,kr̃i2l1,k

)(
∞

∑
l2=1,l2 6=l1

r̃i3l2,kr̃i4l2,k

)
+

(
∞

∑
l1=1

r̃i1l1,kr̃i2l1,kr̃i3l1,kr̃i4l1,k

)
Hence,

d2 ≡
(

∞

∑
l1=1

r̃i1l1,kr̃i2l1,k

)(
∞

∑
l2=1,l2 6=l1

r̃i3l2,kr̃i4l2,k

)
= E

(
Ṽi1kṼi2k|Ψn

)
E
(
Ṽi3kṼi4k|Ψn

)
−

∞

∑
l1=1

r̃i1l1,kr̃i2l1,kr̃i3l1,kr̃i4l1,k.
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Similarly,

d3 ≡
(

∞

∑
l1=1

r̃i1l1,kr̃i3l1,k

)(
∞

∑
l2=1,l2 6=l1

r̃i2l2,kr̃i4l2,k

)
= E

(
Ṽi1kṼi3k|Ψn

)
E
(
Ṽi2kṼi4k|Ψn

)
−

∞

∑
l1=1

r̃i1l1,kr̃i2l1,kr̃i3l1,kr̃i4l1,k

and

d4 ≡
(

∞

∑
l1=1

r̃i1l1,kr̃i2l1,k

)(
∞

∑
l2=1,l2 6=l1

r̃i3l2,kr̃i4l2,k

)
= E

(
Ṽi1kṼi4k|Ψn

)
E
(
Ṽi2kṼi3k|Ψn

)
−

∞

∑
l1=1

r̃i1l1,kr̃i2l1,kr̃i3l1,kr̃i4l1,k.

Putting everything together yields

E
(
Ṽi1kṼi2kṼi3kṼi4k|Ψn

)
−E

(
Ṽi1kṼi2k|Ψn

)
E
(
Ṽi3kṼi4k|Ψn

)
−E

(
Ṽi1kṼi3k|Ψn

)
E
(
Ṽi2kṼi4k|Ψn

)
−E

(
Ṽi1kṼi4k|Ψn

)
E
(
Ṽi2kṼi3k|Ψn

)
=

∞

∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,kE
(
e4

l

)
−3

∞

∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,k =
∞

∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,k

(
E
(
e4

l

)
−3
)︸ ︷︷ ︸

=κ4

,

which then implies that

C1 = κ4

1

n

n

∑
k=1

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

n

∑
i4=1

∞

∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,k.

To bound this term, note that κ4 < ∆ under our assumptions and therefore

C1 ≤ ∆
1

n

n

∑
k=1

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

n

∑
i4=1

∞

∑
l=1

|r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,k|

= ∆
1

n

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

n

∑
i4=1

∞

∑
l=1

|ri1lri2lri3lri4l|
n

∑
k=1

∣∣φ i1kφ i2kφ i3kφ i4k

∣∣
≤ ∆

1

n

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

n

∑
i4=1

∞

∑
l=1

|ri1lri2lri3lri4l|
(

n

∑
k=1

(
φ i1kφ i2k

)2

)1/2(
n

∑
k=1

(
φ i3kφ i4k

)2

)1/2

≤ ∆
1

n

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

n

∑
i4=1

∞

∑
l=1

|ri1lri2lri3lri4l|
(

n

∑
k=1

φ
4
i1k

)1/4(
n

∑
k=1

φ
4
i2k

)1/4(
n

∑
k=1

φ
4
i3k

)1/4(
n

∑
k=1

φ
4
i4k

)1/4

≤ ∆
1

n

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

n

∑
i4=1

∞

∑
l=1

|ri1lri2lri3lri4l|
[

sup
i

(
n

∑
k=1

φ
4
ik

)]

We know that Φn is such that Φ′nΦn =ΦnΦ′n = In, which implies that for each i, ∑
n
k=1 φ

2
ik = 1.Write

n

∑
k=1

φ
4
ik =

n

∑
k=1

φ
2
ikφ

2
ik.

Because ∑
n
k=1 φ

2
ik = 1 for each i, it must be the case that sup1≤k≤n

∣∣φ 2
ik

∣∣≤ 1. Thus

n

∑
k=1

φ
4
ik =

n

∑
k=1

φ
2
ikφ

2
ik ≤

n

∑
k=1

∣∣φ 2
ik

∣∣sup
k

∣∣φ 2
ik

∣∣≤ n

∑
k=1

∣∣φ 2
ik

∣∣= 1,
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implying that

C1 ≤ ∆
1

n

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

n

∑
i4=1

∞

∑
l=1

|ri1lri2lri3lri4l|= ∆
1

n

n

∑
i1=1

∞

∑
l=1

|ri1l|
(

n

∑
i2=1

|ri2l|
)(

n

∑
i3=1

|ri3l|
)(

n

∑
i4=1

|ri4l|
)

≤ ∆
1

n

n

∑
i1=1

∞

∑
l=1

|ri1l|
(

∞

∑
i2=1

|ri2l|
)

︸ ︷︷ ︸
≤M by Assumption 2

(
∞

∑
i3=1

|ri3l|
)(

∞

∑
i4=1

|ri4l|
)
≤ ∆M3 1

n

n

∑
i1=1

∞

∑
l=1

|ri1l|︸ ︷︷ ︸
≤M

≤Const.

To show that C2,C3,C4 are also bounded by some constant that does not depend on Ψn, we apply Lemma A.3.

To prove Theorem 4.1, we rely on the following lemma.

Lemma A.4 Suppose Assumptions 1-7 hold. If E∗ |vi|4 <M and dn,E`n→ ∞ and d∗n ,E`
∗
n→ ∞ as n→ ∞ such

that E`n/n= o(1) and E`∗n/n1/2 = o(1), then (i) Ĵ∗n − Ĵboot,n→P∗ 0, in prob-P when unrestricted residuals are

used, and (ii) Ĵ∗n − Ĵboot,n→P∗ 0, in prob-P, when restricted residuals are used, and H0 is true.

Proof of Lemma A.4. We focus on the proof of (i) since (ii) follows by similar arguments because β̃ −β

is
√

n-convergent under H0. Without loss of generality, we take p= 1. Let
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∗
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,

where u∗i = ûiη i. It follows that
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∑
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∑
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i x2
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(
β̂ − β̂

∗)2

, and A4 = Ĵn− J∗n .

First, note that A4 = oP (1) by Lemma A.2. Next, we show that A2 and A3 are oP∗ (1), in probability. For these

terms, we can use the fact that
√

n

(
β̂ − β̂

∗)
= OP∗ (1) . Starting with A3, we can write
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]
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︸ ︷︷ ︸
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by Lemma A.1. Thus, by Markov’s inequality, A31 = OP

(
E`n

n

)
= oP (1) . For A2,

A2 =

[
1√
n

1

n
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∑
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×
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(
β̂ − β̂

∗)︸ ︷︷ ︸
=OP∗ (1)

,

since we can show that the term in square brackets is oP∗ (1). To see this, note that

A21 =
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∑
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∑
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∑
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2
j ≡ A

(1)
21 +A
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21 .

Starting with A
(1)
21 , note that∣∣∣A(1)21
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︸ ︷︷ ︸
=e1=OP∗ (E`n/n) in prob.

1/2

,

where e1 =OP∗ (E`n/n) in probability. For this result, it suffices to show that E

(
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=O(E`n/n). But
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implying that

E
(
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1
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as shown in Lemma A.1. Therefore, A

(1)
21 = OP∗ (E`n/n) = oP∗ (1), in probability. A similar argument im-

plies that A
(2)
21 = OP∗

(√
E`n

n

)
= oP∗ (1), in probability. Thus, to end the proof, we show that A1 = oP∗ (1) in

probability. We can write
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∑
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where A12 =−(J∗n − J∗0n) = oP (1) , as shown in the proof of Lemma A.2. Thus, it suffices to show that A11 and

A13 are oP∗ (1), in probability.

We can decompose A11 as A11 = A
(1)
11 +A

(2)
11 , where∣∣∣A(1)11
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︸ ︷︷ ︸
=e1=oP∗ (1) in prob

1/2

.

where E (E∗ (e1)) = o(1), as shown before. Thus, A
(1)
11 = OP∗

(
E`n

n

)
in prob-P. Using arguments similar to

those used before, we can show that A
(2)
11 = oP∗ (1), in probability, concluding the proof that A11 = oP∗ (1), in

prob-P. Finally, we show that A13 = oP∗ (1) .We have
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For A
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13 , we prove that Var∗
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Let Lik denote the (i,k)-th element of Ln such that K∗n = LnL′n. In particular, letting Ln =ΦnΛ
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Similarly, it follows that

E∗
(
η i1

η j1
η i2

η j2

)
=

n

∑
k1=1

n

∑
k2=1

n

∑
k3=1

n

∑
k4=1

Li1k1
L j1k2

Li2k3
L j2k4

E∗ (vk1
vk2

vk3
vk4
)

=
n

∑
k=1

Li1kL j1kLi2kL j2k

(
E∗
(
v4

k

)
−3
)

+
n

∑
k1=1

Li1k1
L j1k1

n

∑
k3=1

Li2k3
L j2k3

+
n

∑
k1=1

Li1k1
Li2k1

n

∑
k2=1

L j1k2
L j2k2

+
n

∑
k1=1

Li1k1
L j2k1

n

∑
k2=1

L j1k2
Li2k2

=
n

∑
k=1

Li1kL j1kLi2kL j2k

(
E∗
(
v4

k

)
−3
)

+K∗
(

d̃i1 j1

d∗n

)
K∗
(

d̃i2 j2

d∗n

)
+K∗

(
d̃i1i2

d∗n

)
K∗
(

d̃ j1 j2

d∗n

)
+K∗

(
d̃i1 j2

d∗n

)
K∗
(

d̃ j1i2

d∗n

)
.

Thus,

E∗
(
η i1

η j1
η i2

η j2

)
−K∗

(
d̃i1 j1

d∗n

)
K∗
(

d̃i2 j2

d∗n

)
=

n

∑
k=1

Li1kL j1kLi2kL j2k

(
E∗
(
v4

k

)
−3
)

+K∗
(

d̃i1i2

d∗n

)
K∗
(

d̃ j1 j2

d∗n

)
+K∗

(
d̃i1 j2

d∗n

)
K∗
(

d̃ j1i2

d∗n

)
.

Given this decomposition, it follows that
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by using an argument similar to the one used to study the term C1 in the proof of Theorem 3.1. Also, recall that
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For B
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≤M by Lemma A.3
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(
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∑
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E
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(
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.

Using the same procedure, we can show that B
(3)
11 = B

(4)
11 =O(E`∗n/n) . Hence, B11 =O(E`∗n/

√
n) = o(1) given

that E`∗n/
√

n = o(1). Since we can also show that the terms B12 and B13 are o(1) by a similar argument, this

concludes the proof that A
(1)
13 = oP∗ (1) in prob-P.

For A
(2)
13 , the second term in (26), note that

E

(
A
(2)
13

)
≤ 1
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n

∑
j=1

∣∣E (ViVj)
∣∣(1−K∗

(
d̃i j

d∗n

))
= o(1) ,

as d∗n grows, as proved in the proof of Lemma A.2 (see term b2 in particular). Hence, it is sufficient to show
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(
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= o(1) .We have
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n

n

∑
i=1

n

∑
j=1

K

(
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(
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)
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(
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)(
K∗
(
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)]
× [E (Vi1Vj1Vi2Vj2)−E (Vi1Vj1)E (Vi2Vj2)]

≤ 1

n2

n
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i1=1

n

∑
j1=1

n

∑
i2=1

n

∑
j2=1

E

∣∣∣∣K( d̃i1 j1

dn

)
K

(
d̃i2 j2

dn

)∣∣∣∣ ∣∣E (Vi1Vj1Vi2Vj2)−E (Vi1Vj1)E (Vi2Vj2)
∣∣= o(1) ,

as showed above. Therefore, A
(2)
13 = oP (1) , completing the proof.

Proof of Theorem 3.2. The proof is in the text.

Proof of Theorem 4.1. It follows from Theorem 3.1 and Lemma A.4.
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Figure 1. Rejection rate with no measurement error

N(0,1) critical values
iid bootstrap (Bester et al.)
Spatial Dependent Wild Bootstrap (SDWB)
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Figure 2. Rejection rate with N(0,2) error in locations

N(0,1) critical values
iid bootstrap (Bester et al.)
Spatial Dependent Wild Bootstrap (SDWB)
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Figure 3. Rejection rate with N(0,4) error in locations

N(0,1) critical values
iid bootstrap (Bester et al.)
Spatial Dependent Wild Bootstrap (SDWB)
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Figure 4. Rejection rate with N(0,10) error in locations

N(0,1) critical values
iid bootstrap (Bester et al.)
Spatial Dependent Wild Bootstrap (SDWB)
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Figure 5. Rejection rate, max distance in DGP, Euclidean in sample
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Figure 6. Circles are local average estimates of spatial covariances and dashed lines represent edges of a 90%
acceptance region for the null hypothesis of spatial independence. Uniform kernel with tolerance δ = 57 for
smallest distance and δ = 113 for all others. Covariances are normalized by dividing by sample variance of
residuals.
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