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1. Introduction 

In neoclassical production economics the objective of a competitive firm acting as a price-taker 

in both product and input markets is to maximize profit by selecting an optimal input-output 

bundle that is also technically feasible. In fact, profit maximization by firms and utility 

maximization by consumers together ensure Pareto efficient allocation of resources in the model 

of a perfectly competitive economy. It is important, therefore, to examine if, and to what extent, 

a firm has failed to attain the maximum profit possible given the vectors of input and output 

prices and also the technology it has access to. When the output bundle is treated as a 

predetermined target, minimizing cost is a natural objective to pursue and cost efficiency is an 

appropriate criterion for the evaluation of the productive performance of a firm. In fact, in an 

overwhelming majority of empirical research the main focus is on measurement and 

decomposition of cost efficiency both in the short and in the long run. However, in the textbook 

analysis of producer’s behavior a firm selects both inputs and output(s) simultaneously in order 

to maximize profit subject to the constraint that the chosen input-output bundle must be feasible. 

If the actual input-output bundle of a firm is in the interior of the production possibility set, it is 

technically inefficient and there is room to scale up the output without changing the input or to 

scale down the input without changing the output (or to increase output while reducing input 

simultaneously). In any one of these cases, the profit will increase. Such increase in profit is 

ascribed to eliminating technical inefficiency. But while all points on the frontier are technically 

efficient, they do not yield equal profit and the profit maximizing input-output bundle depends 

on the input and output prices. The difference between the maximum profit and what the firm 

earns at a different technically efficient point is the unrealized profit due to allocative 

inefficiency. However, given that there are alternative ways to project an inefficient input-output 
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bundle on to the frontier, there are corresponding alternative measures of technical and 

(associated) allocative efficiencies.  

Farrell (1957) offered a multiplicative decomposition of the overall efficiency (now described as 

the cost efficiency) of a firm into two distinct components - one representing its technical 

efficiency and the other its price efficiency (more popularly known as allocative efficiency). 

Usually, the radial input or output-orientation is chosen for projecting an inefficient point on to 

the frontier and the corresponding Shephard distance function is used to measure technical 

efficiency. However, the directional distance function introduced by Chambers, Chung, and Färe 

(CCF) (1996) allows the analyst to select any preferred direction for measuring technical 

efficiency. 

By comparison, there are far fewer analytical models for measuring and decomposing profit 

efficiency. Two among the few notable papers in this area are Banker and Maindiratta (BM) 

(1988) and (CCF) (1998). A more recent paper by Färe, He, Li, and Zelenyuk (FHLZ) (2019) 

provides a unifying framework for alternative radial (Farrell-type) measures of profit efficiency. 

Except for BM (1988), all other papers provide an additive rather than a multiplicative 

decomposition of profit (in) efficiency. But, in some cases the technical efficiency component 

depends upon prices and/or the allocative efficiency may not lie between 0 and 1.  

In this paper, we use the directional distance function as the principal analytical tool to measure 

technical efficiency. We also include McFadden’s gauge function which leads to a multiplicative 

decomposition of profit efficiency where the technical efficiency factor is price independent and 

both technical and allocative efficiencies lie between 0 and 1. In every such case, the direction of 

projection of an inefficient unit on to the frontier is exogenously determined. Here we build upon 

a model of overall technical inefficiency from Ray (2007) further developed in Aparicio, Pastor, 

and Ray (APR) (2013) to show how the direction of projection is endogenously determined by 

optimization of the objective function. This direction can be used to measure the technical 

efficiency component of profit efficiency in a multiplicative decomposition. Like FHLZ (2019) 

we also consider only Farrell-type or radial variation in input and/or output vectors to measure 

technical efficiency. 

The rest of the paper is organized as follows. Section 2 defines the production possibility set and 

the general assumptions about the technology. Section 3 states the profit maximization problem 
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and identifies technical and allocative inefficiencies as two different sources of profit 

inefficiency. Section 4, in its different subsections, describes alternative measures of technical 

efficiency that correspond to different directions chosen for the directional distance function of 

Chambers, Chung, and Färe (CCF) (1998) along with McFadden’s gauge function and an 

endogenous DDF based on Ray (2007). Section 5 considers the technically efficient profit that 

would be attained at these different efficient projections and multiplicative decomposition of 

profit efficiency using the different technically efficient profits to measure technical (profit) 

efficiency. Section 6 briefly describes the non-parametric (DEA) measures of profit efficiency 

and its components. Section 7 provides a simple empirical application using a small hypothetical 

data set from FHLZ (2019). Section 8 is the conclusion. 

 

 

2. The Production Technology 

Consider an industry producing m outputs using n inputs. Denote output bundles by vectors 𝑦 ∈

𝑅  and input bundles by 𝑥 ∈ 𝑅 . An input-output combination 𝑥, 𝑦  is feasible if the output y 

can be produced from the input x. The production technology faced by the firms in the industry 

can be defined by the production possibility or technology set  

𝑇 𝑥, 𝑦 : 𝑦 can be produced from 𝑥 .                  (1) 

In parametric models, the set T is typically defined by the production function 

𝑦 𝑓 𝑥 ; 𝑦 ∈ 𝑅 , 𝑥 ∈ 𝑅                                          (2) 

in the single output case, and by the transformation function 

𝐹 𝑥, 𝑦 𝛼;  𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅                                    (3) 

in the multiple output case. 

The corresponding technology sets are 

𝑇 𝑥, 𝑦 : 𝑦 𝑓 𝑥 ; 𝑥 ∈ 𝑅 ; y ∈ 𝑅                      (4) 

and   
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𝑇 𝑥, 𝑦 : 𝐹 𝑥, 𝑦 0; 𝑥 ∈ 𝑅 ;y ∈ 𝑅                  (5) 

It is assumed that the production set is closed, bounded, and weakly monotonic in both inputs 

and outputs. Weak monotonicity implies 

0, 𝑖 1,2, . . . , 𝑛                (6a) in the single output case, and                         

0, 𝑖 1,2, . . . , 𝑛 ;          0, 𝑗 1, 2, . . . , 𝑚   (6b) in the multiple output case. 

Speaking more generally, weak monotonicity implies that if 𝑥 , 𝑦 ∈ 𝑇 and 𝑥 𝑥 , then 

𝑥 , 𝑦 ∈ 𝑇. Similarly, if 𝑦 𝑦 , then 𝑥 , 𝑦 ∈ 𝑇. Weak monotonicity is also described as 

free disposability of inputs and outputs. 

3. Profit Maximization and Profit Efficiency 

Now suppose that the competitive market prices for outputs and inputs are p and w, respectively. 

A firm’s profit maximization problem then becomes 

𝑚𝑎𝑥 𝜋 𝑝′𝑦 𝑤 ′𝑥 

𝑠. 𝑡. 𝑥, 𝑦 ∈ 𝑇.                                   (7) 

For a firm producing output 𝑦  from input 𝑥  and facing the market prices 𝑝, 𝑤  the actual 

profit is 

𝜋 𝑝′𝑦 𝑤 ′𝑥 .                             (8) 

Because the observed input-output bundle is feasible by default, 𝜋 𝜋∗. Further, assume that 

both 𝜋∗and 𝜋 are non-negative.1 Thus, 0 𝜋 𝜋∗. 

There are two potential sources of deviation of actual profit 𝜋  from the maximum profit 𝜋∗. 

First, the actual input-output bundle 𝑥 , 𝑦  may be technically inefficient lying in the interior 

of the production possibility set. In that case, projecting it on to the frontier will imply either 

reducing inputs without lowering output (thereby lowering the cost with revenue held constant), 

or increasing outputs without increasing input (leading to increased revenue with cost 

                                                            
1 We assume that with free exit long-run profit will not be negative. 
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unchanged), or some combination of both. In any of these cases, the profit will increase. Any 

such potential increase in profit can be ascribed to technical (in)efficiency. 

Projecting an inefficient input-output bundle on to the frontier may not exhaust the potential for 

increasing profit, however. Even though all input-output bundles located on the frontier are 

technically efficient, they do not yield equal profit. There may be room for further increases in 

profit by moving to a different point on the frontier by changing the mix of inputs and/or outputs. 

Any potential increase in profit achievable through change of the mix of inputs and outputs 

relates to allocative (in)efficiency of the firm. 

While there is no ambiguity about the actual profit 𝜋 𝑝 𝑦 𝑤 𝑥  or the optimal profit 𝜋∗

𝑝′𝑦∗ 𝑤 ′𝑥∗, profit efficiency has been measured in the literature either by the ratio of the actual 

over the maximum profit or by their difference. Moreover, a decomposition of either the ratio of 

or the difference between the two into technical and allocative efficiencies depends on the choice 

of the direction of projection of any technically inefficient input-output bundle on to the frontier. 

4. Alternative Measures of Technical Efficiency 

4.1 Shephard Output and Input Distance Functions 

Shephard (1953, 1970) defined the output-oriented distance function measured at an input-output 

bundle (x, y) as 

                      𝐷 𝑥, 𝑦 𝑚𝑖𝑛 𝜇 : 𝑥, 𝑦 ∈ 𝑇.                                        (9) 

This is also the radial output efficiency defined by Farrell (1957) 

                   𝜏 𝑥, 𝑦 ∗ ; 𝜑∗ 𝑚𝑎𝑥 𝜑 : 𝑥, 𝜑𝑦 ∈ 𝑇.                           (10) 

Analogously, the input-oriented distance function is 

                     𝐷 𝑥, 𝑦 𝑚𝑎𝑥 𝛿 : 𝑥, 𝑦 ∈ 𝑇.                                         (11) 

The input-oriented distance function is the inverse of the radial input efficiency of Farrell (1957) 

                 𝜏 𝑥, 𝑦 𝜃∗ 𝑚𝑖𝑛 𝜃 : 𝜃𝑥, 𝑦 ∈ 𝑇.                                    (12)     
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Any input-output bundle 𝑥 , 𝑦  which is technically inefficient can be projected on to the 

efficient frontier either by proportionally scaling down the input bundle 𝑥  by the factor 𝜃   

or by proportionally scaling up the output bundle 𝑦  by the factor 𝜑 . Note that in these two 

radial projections either inputs or outputs are scaled proportionally. 

4.2 McFadden’s Gauge Function 

McFadden (1968), on the other hand, proposed the gauge function where one measures the equi-

proportional scaling of both the input and the output vector in the same direction. For this, he 

first defined the negative image of the production possibility set in the netput space as 

                  𝑇 𝑥, 𝑦 : 𝑥, 𝑦 ∈ 𝑇                                                     (13) 

The gauge function is  

 𝐻 𝑥, 𝑦 𝛾∗ 𝑚𝑖𝑛 𝛾 : 𝑥, 𝑦 ∈ 𝑇  

⇔ 𝑚𝑖𝑛 𝛾 : 𝑥, 𝑦 ∈ 𝑇.                                                            (14) 

Hence, for any technically inefficient input bundle 𝑥 , 𝑦  located in the interior of T,  𝛾∗ 1 

and the gauge function projection will scale both 𝑥  and 𝑦  upwards by the factor *
*

1
1


                   

till it reaches the frontier.   

While the radial input- or output-oriented projections continue to be the popular benchmarks for 

comparison for any inefficient input-output bundle that lies in the interior of the production 

possibility set, the direction of projection can be chosen quite arbitrarily and need not even be 

restricted to proportional scaling of the input or the output bundle. 

An interesting point to note is that an input-output bundle that is efficient in both the input- and 

output-orientation may be found to be inefficient based on McFadden’s gauge function. This 

happens when the ray through the origin intersects the production frontier twice – once at the 

observed input-output bundle and the second time at a point further towards the northeast. This 

possibility is shown below in Figure 1. 
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Figure 1 Gauge Function for a Technically Efficient Point 

4.3 Directional Distance Function 

Chambers, Chung, and Färe (CCF) (1996) introduced an efficiency measure (based on the 

benefit function of Luenberger (1992) that projects any observed input-output bundle on to the 

frontier in any arbitrarily chosen direction 𝑔 , 𝑔  and defined the directional distance function 

(DDF) as: 

      𝐷 𝑥 , 𝑦 ; 𝑔 , 𝑔 𝛽∗ 𝑚𝑎𝑥 𝛽 : 𝑥 , 𝑦 𝛽 𝑔 , 𝑔 ∈ 𝑇 

⇔ 𝑚𝑎𝑥 𝛽 : 𝑥 𝛽𝑔 , 𝑦 𝛽𝑔 ∈ 𝑇.                                                (15) 

It is obvious that for 𝑔 0, 𝑔 𝑦 , 𝛽 𝜑 1 and 𝑔 𝑥 , 𝑔 0  leads to 𝛽 1 .                

A popular direction chosen in empirical applications is  𝑔 𝑥 , 𝑔 𝑦 , The DDF then 

becomes 

           𝐷 𝑥 , 𝑦 ; 𝑥 , 𝑦 𝑚𝑎𝑥 𝛽 : 1 𝛽 𝑥 , 1 𝛽 𝑦 ∈ 𝑇.     (16) 

Clearly, for McFadden’s gauge function, 𝑔 𝑥 , 𝑔 𝑦  and  

         𝐷 𝑥 , 𝑦 ; 𝑥 , 𝑦 𝑚𝑎𝑥 𝛽 : 1 𝛽 𝑥 , 1 𝛽 𝑦 ∈ 𝑇.          (17) 
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Figure 2 Alternative Technically Efficient Projections on to the Frontier 

In Figure 2, point A represents the input-output bundle 𝑥 , 𝑦 , the curve 𝑦 𝑓 𝑥  is the 
production frontier and 𝑦 𝑔 𝑥  is its negative image in the 𝑥, 𝑦  quadrant. The point B 
vertically above A is the output-oriented efficient projection 𝑥 , 𝑦∗ 𝑥 , 𝜑∗𝑦 . Thus, 

                                 𝐷 𝑥 , 𝑦 ∗.                                    (18) 

Point C is the input-oriented efficient projection 𝑥∗, 𝑦 𝜃∗𝑥 , 𝑦  and the input-oriented 
distance function is  

                                𝐷 𝑥 , 𝑦 ∗ ,
.                 (19) 

Point D in the northwest quadrant represents the netput 𝑥 , 𝑦  and the point E on the 
production frontier 𝑦 𝑓 𝑥  is the efficient projection of 𝑥 , 𝑦  in the direction 𝑔
𝑥 , 𝑔 𝑦 . The corresponding DDF is 

                   𝐷 𝑥 , 𝑦 ; 𝑔 𝑥 , 𝑔 𝑦 𝛽              (20) 

Finally, the point G on the curve 𝑦 𝑓 𝑥  is the radial outward projection of the observed input-
output bundle at point A. Corresponding to point G, point H is the projection of the netput bundle 

D on to the curve 𝑦 𝑔 𝑥  leading to the efficient input-output bundle 𝑥 , 𝑦 𝑥 , 𝑦  

and the gauge function is 

                             𝐻 𝑥 , 𝑦 𝛾 .                                  (21) 

Points C, E, B, and G are all located on the frontier of the production possibility set and are, 
therefore, technically efficient. However, as shown in Figure 3, each one of them leads to a 
different level of profit and in most cases, none of them yields the maximum profit. However, 
each one of them leads to a higher profit than 𝜋 𝑝𝑦 𝑤𝑥 . For points C, E, and B it is 
obvious because in all of these cases either cost is lower (as at C) or revenue is higher (as at B) or 
both (as at E). At the gauge function projection G, both input and output are bigger than at A and 
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one may wonder if the cost may increase more than revenue leading to a lower profit than 𝜋 . 
But, because 𝑥 , 𝑦 𝜎 𝑥 , 𝑦  and 𝜎 1 profit at point G is 𝜎𝜋 𝜋  so long as 𝜋 0.  

 

Figure 1 Profit Functions Based on Alternative Technically Efficient Projections 

4.4 Endogenous Directional Distance Function 

A somewhat different version of the directional distance function in (16) is implied by the 

overall (in)efficiency measure in Ray (2007): 

                     𝑚𝑎𝑥 𝜂 𝜑 𝜃: 𝜃𝑥 , 𝜑𝑦 ∈ 𝑇.                                     (22) 

Subsequently, Aparicio, Pastor, and Ray (APR) (2012) set up (21) as  

                  𝑚𝑎𝑥 𝛽 𝛽 : 1 𝛽 𝑥 , 1 𝛽 𝑦 ∈ 𝑇.                  (23) 

It is clear that under the added constraints 𝛽 𝛽 , 𝜑 1 𝛽; 𝜃 1 𝛽  the problems in (22) 

and (23) reduce to the DDF in (16). However, without these restrictions there is considerable 

flexibility in choosing the direction of projection on to the frontier. 

Consider, for simplicity, the 1-input 1-output case with the production function 𝑦 𝑓 𝑥 . The 

problem in (22), then becomes 

                        𝑚𝑎𝑥 𝜂 𝜑 𝜃: 𝜑𝑦 𝑓 𝜃𝑥 .                                   (24) 
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For a given input-output pair 𝑥 , 𝑦  the constraint 𝜑𝑦 𝑓 𝜃𝑥 ⇔ 𝜑 ≡ 𝑔 𝜃  

Because the efficient projection will be on the frontier, the constraint will be binding and can be 

treated as an equation. The Lagrangian for the constrained optimization problem is 

                            𝐿 𝜑 𝜃 𝜆 𝑔 𝜃 𝜑                                    (25) 

The first order conditions for a maximum are 

𝜕𝐿
𝜕𝜑

1 𝜆 0; 

𝜕𝐿
𝜕𝜃

1 𝜆𝑔′ 0; 

𝑔 𝜃 𝜑 0;                                 (26) 

Thus, at the optimal pair of 𝜃, 𝜑  𝑔 𝜃 1 and the tangent to the curve 𝜑 𝑔 𝜃   is 

parallel to the 45°-line.      

One potential problem is that at the optimal solution of (22), 𝜑∗ may be less than 1, in which 

case, for some price vectors 𝑝, 𝑤 , one may find  

                𝜑∗𝑝𝑦 𝜃∗𝑤𝑥 𝜑∗ 𝑝𝑦 𝑤𝑥 𝜑∗ 𝜃∗ 𝑤𝑥 𝑝𝑦 𝑤𝑥 .  

This would imply that the optimal profit at the technically efficient point is less than the actual 

profit at an inefficient point. An intuitive explanation of this strange result is quite simple. When 

1 𝜑∗ 𝜃∗, both output and input are scaled down. But if the relative price of input  is quite 

low, reduction in cost cannot make up for the loss of revenue as the firm is projected on to the 

technically efficient point. As a result, improving its technical efficiency by moving it to the 

frontier lowers profit. Such a paradoxical result can be eliminated by imposing the additional 

restriction 𝜑 1 in (22).2 If the lower bound on 𝜑 proves to be a nonbinding constraint, the 

solution based on (26) remains optimal. Otherwise, one needs to set 𝜑 1 and the optimal value 

                                                            
2 This amounts to explicitly imposing non-negativity restriction on .y  But if  exceeds 1, x in (22) can still be 

negative. 
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of 𝜃 is 𝑔 𝜑  at 𝜑 1. In such cases, 𝜂 1 𝜃 and maximizing 𝜂 is the same as minimizing 

𝜃 so that the optimal endogenous direction is simply the input-oriented projection. 

Derivation of the endogenous optimal direction for projection in (22) is explained below in 

Figures 4a-4b. Point A in Figure 4a represents the observed input-output bundle. Points 

B 𝜃∗𝑥 , 𝑦  and C 𝑥 , 𝜑∗𝑦  are its standard input- and output-oriented projections on to the 

frontier shown by the curve 𝑦 𝑓 𝑥 .  

Unlike in Figure 4a, where the two axes measure the input and output quantities x and y, in 
Figure 4b, the axes measure the scale of the input and output treating 𝑥  and 𝑦  as their 
respective units of measurement. Thus, at the actual input-output bundle 𝑥 , 𝑦 , 𝜃 𝜑 1. In 
this panel, the production frontier is redrawn as  

                           𝜑𝑦 𝑓 𝜃𝑥 ⇔ 𝜑 𝑔 𝜃|𝑥 , 𝑦 .               (27) 

Now consider the equal (in)efficiency lines 𝜂 𝜑 𝜃 ⇔ 𝜑 𝜂 𝜃 parallel to the 45°-line. 
Each point on a particular line has the same overall (in)efficiency as point Q (i.e., the observed 
input-output pair). The intercept of the line measures the inefficiency 𝜂 𝜑 𝜃  of Q. Point R 
is where one of these lines is tangent to the line 𝜑 𝑔 𝜃 . Thus the optimal solution to the 
problem in (27) is 𝜃 𝜃 , 𝜑 𝜑  in Figure 4b. The corresponding point in Figure 4a in the x-
y plane is 𝑥 , 𝑦 𝜃 𝑥 , 𝜑 𝑦  shown by the point D on the curve 𝑦 𝑓 𝑥 . The profit at 
this endogenous directional projection is the intercept of the iso-profit line  

                       𝜋 𝑝𝑦 𝑤𝑥 𝑝𝜑 𝑦 𝑤𝜃 𝑥                (28) 
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Figure 2a Endogenous Direction of Projection 
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Figure 4b Finding the optimal direction of projection 
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Figure 3a Optimal Endogenous Projection 

 

Figure 5b Profit at Optimal Endogenous Projection (D) 
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Figures 5a-5b illustrate the case where the profit at the technically efficient input bundle is lower 
than the actual profit at the inefficient input-output bundle. 

In Figure 5a, point A 𝜃 𝜑 1  corresponds to the actual input-output bundle 𝑥 , 𝑦  and B 
is its optimal projection based on the LP problem in (23). Note that B is towards the southwest of 
A signifying reduction in both input and output (scale). The corresponding technically efficient 
input-output bundle 𝑥 𝜃 𝑥 , 𝑦 𝜑 𝑦  is shown by point D in Figure 5b. 

The slope of the parallel iso-profit lines through A and D corresponds to the relative price of the 

input . Because the profit line through A is higher than the one through D, the lower bound  

𝜑 1 will become binding and the optimal direction of projection will be input-oriented leading 
to point B.  

4.5 An Example of the Optimal Endogenous Direction of Projection 

Consider a simple example. Suppose that 

                           𝑓 𝑥 2√𝑥 ; 𝑥 9, 𝑦 4 .                (29)    

Then, the production function in Figure 4b would be  

                          4𝜑 6√𝜃 ⇒ 𝜑 √𝜃.                              (30)                

 The problem in (22) then is 

                                  𝑚𝑎𝑥 𝜂 𝜑 𝜃 

𝑠. 𝑡. 𝜑 √𝜃 𝑔 𝜃                                       (31) 

Using the first order conditions for a maximum we get 

                    
√

1 ⇒ 𝜃 0.5625 

𝜑 𝑔 𝜃
3
2

√𝜃
9
8

1.125 

𝜂 𝜑 𝜃 1.125 0.5625 0.5625               (32) 

The corresponding technically efficient input-output bundle is 

                        𝑥 𝜃 𝑥 5.0625; 𝑦 𝜑 𝑦 4.5 .                (33) 

It should be noted in this context that the optimal solution of the problem in (23) will not 
necessarily lead to 𝜃 1. Suppose that in the example (29), the actual input-output bundle was 

𝑥 4, 𝑦 1 . In that case, 𝜑 𝑔 𝜃  would be 𝜑 4√𝜃 and setting 1 would lead to 

𝜃 4 and 𝜑 8. In this case, the technically efficient projection would be 𝑥 16, 𝑦
8 . Hence, the direction of projection is not always towards the northwest of the observed input-
output bundle. 
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Two other papers which also consider endogenous directions for a DDF are Färe, Grosskopf, and 

Whittaker (FGW) (2013) and Zofio, Pastor, and Aparicio (ZPA) (2013). FGW (2013) consider 

an output-oriented DDF (under CRS) for a two-output case and end up with a model similar to 

APR (2013) except that in their model 𝑔 0 (the null vector) and their output direction is 𝑔 , 

the 45°-line modified endogenously by the ratio of the output-specific expansion factors. ZPA 

(2013), on the other hand, start with the profit-maximizing input-output bundle 𝑥∗, 𝑦∗  as the 

benchmark for projection on to the frontier. If the observed input-output bundle is already on the 

frontier but is not the profit-maximizing bundle, they interpret any profit inefficiency as 

allocative. That is consistent with either the multiplicative or the additive decomposition where 

there is no technical inefficiency. However, if 𝑥 , 𝑦  is an interior point, they argue that any 

profit inefficiency is technical inefficiency. A problem with this interpretation is that such 

technical efficiency cannot be measured solely from input-output data without information on 

input and output prices. By contrast, all of the other measures of technical efficiency – input 

oriented, output oriented, DDF, McFadden’s gauge function, or the overall efficiency – can be 

measured from input-output data alone. 

5. Technically Efficient Profit 

The firm’s profit at the different technically efficient projections of the inefficient input-output 
bundle can be measured as: 

                  𝜋 𝑝𝑦 𝜃∗𝑤𝑥   at the input-oriented projection;          (34) 

                 𝜋 𝜑∗𝑝𝑦 𝑤𝑥   at the output-oriented projection;         (35) 

     𝜋 1 𝛽∗ 𝑝𝑦 1 𝛽∗ 𝑤𝑥  
𝑝𝑦 𝑤𝑥 𝛽∗ 𝑝𝑦 𝑤𝑥                                         (36) 

  at the DDF projection, and 

                𝜋 ∗ 𝑝𝑦 𝑤𝑥 𝛼𝜋  at the gauge function projection. (37) 

5.1 Additive and Multiplicative Decomposition of Profit Efficiency  

Any shortfall of the actual profit from the maximum implies inefficiency in the form of 
unrealized profit. We have seen that inefficiency arises both when the selected input-output 
bundle lies in the interior (rather than the frontier) of the production possibility set and when a 
suboptimal point on the frontier is chosen. Thus, an appropriate additive decomposition of the 
unrealized profit of a firm is 

                       𝛥 𝜋∗ 𝜋 𝜋∗ 𝜋 𝜋 𝜋                         (38) 
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The difference between the technically efficient profit 𝜋  measured by any one of the 
expressions in (28) or (34) through (37) and the actual profit 𝜋  is a measure of the lost profit 
that can be ascribed to technical inefficiency. But as noted above, while the alternative 
technically efficient bundles depend only upon the production function 𝑦 𝑓 𝑥  or the 
transformation function 𝐹 𝑥, 𝑦 0 and the observed input-output bundle 𝑥 , 𝑦  the profit-
maximizing input-output bundle 𝑥∗, 𝑦∗  will depend also upon the applicable input-output 
prices. The difference between the maximum profit 𝜋∗and any chosen technically efficient profit 
𝜋  is due to allocative inefficiency.  

A major limitation of the difference 𝛥 as a measure of profit efficiency is that it ignores the scale 
of operation of the firm. Thus, a firm with 𝜋 2, 𝜋∗ 5 resulting in 𝛥 3 is regarded as more 
efficient than another firm with 𝜋 100, 𝜋∗ 104 and 𝛥 4. 

Farrell (1957) offered a multiplicative decomposition of cost or economic efficiency into two 
distinct factors as 

                               
∗ ∗

                                            (39) 

where 

                                𝐶∗ 𝑚𝑖𝑛 𝑤 ′ 𝑥: 𝑥, 𝑦 ∈ 𝑇                           (40) 

and 

                               𝐶 𝜃∗𝑤 ′𝑥 𝜃∗𝐶                                                (41) 

where    

                                𝜃∗ 𝑚𝑖𝑛 𝜃 : 𝜃𝑥 , 𝑦 ∈ 𝑇.                          (42) 

Thus, the two constituent factors of cost efficiency (CE) are 

         Technical Efficiency 𝑇𝐸 𝜃∗                                  (43) and 

         Allocative Efficiency  𝐴𝐸
∗
                                     (44) 

It may be noted that cost efficiency CE and its components technical efficiency (TE) and 
allocative efficiency (AE) all lie between 0 and 1. 

In a comparable way, one can define and decompose 

       Profit Efficiency:     𝑃𝐸 ∗ ∗                      (45) 

In (45) above the first factor on the right corresponds to technical efficiency and the other is 
allocative efficiency. 

BM (1988) used 𝜋 from (37) for 𝜋  in (45) to get 
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                            𝑃𝐸 ∗

∗

∗ ∗ 𝑇𝐸 . 𝐴𝐸        (46) 

While both components of 𝑃𝐸  in (46) above will lie between 0 and 1, the technical efficiency 
component 𝑇𝐸  is price dependent and unlike Farrell’s input-oriented technical efficiency does 
not depend on the production frontier alone. 

FHLZ (2019) define a Farrell output-oriented profit efficiency as 

𝑃𝐸 𝑚𝑎𝑥 𝜑 

𝑠. 𝑡. 𝜑𝑝𝑦 𝑤𝑥 𝑝𝑦 𝑤𝑥 
𝑥, 𝑦 ∈ 𝑇                                       (47) 

But 𝜑𝑝𝑦 𝑤𝑥 𝑝𝑦 𝑤𝑥; 𝑥, 𝑦 ∈ 𝑇 ⇒ 𝜑𝑝𝑦 𝑤𝑥 𝜋∗. Hence, at the optimum 

            𝜑𝑝𝑦 𝜋∗ 𝑤𝑥  

⇒ 𝜑
𝜋∗ 𝑝𝑦 𝑤𝑥 𝑝𝑦

𝑝𝑦
 

⇒ 𝜑 1
∗

; 𝑅 𝑝𝑦                       (48) 

On the other hand, if one uses the ratio of actual profit over maximum profit and uses 𝜋  from 

(38) to measure 𝜋 , one gets  

                    𝑃𝐸 ∗ ∗

∗

∗ ∗ 𝑇𝐸 . 𝐴𝐸                (49) 

If one defines the actual ‘return on outlay’ as 𝜌 , in the factorization in (49), technical 

efficiency becomes 

                           𝑇𝐸 ∗                                        (50) 

Note that so long as 𝜋 0, 𝜌 1 and 0 𝑇𝐸 1. It should be noted, however, that for any 

𝑥 , 𝑦 , 𝜌  depends on the prices. 

In an analogous way, 𝑇𝐸  in (46) can be expressed as 

                          𝑇𝐸 ∗ ∗.                        (51) 

CCF (1998) proposed a measure of what they describe as Nerlovian efficiency based on a 
directional distance function as 

                         𝑁𝐸
∗

                         (52) 

They provide an additive decomposition of Nerlovian efficiency as 
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𝑤𝑔 𝑝𝑔

 

𝑇𝐸 𝐴𝐸                (53) 

Using the direction 𝑔 𝑥 , 𝑔 𝑦 , and 𝜋 𝜋  from (39), one gets 

𝑁𝐸
𝑝𝑦∗ 𝑤𝑥∗ 𝑝𝑦 𝑤𝑥

𝑝𝑦 𝑤𝑥
; 

𝑇𝐸 𝛽∗ 𝐷 𝑥 , 𝑦 ; 𝑔 𝑥 , 𝑔 𝑦 ; 
𝐴𝐸 𝑁𝐸 𝑇𝐸                                                    (54) 

In this additive decomposition, 𝑇𝐸  is independent of prices but 𝐴𝐸  may exceed 1. Also, the 
interpretation of the sum of the actual revenue and cost as a measure of the size of the firm is not 
intuitively obvious. 

Alternatively, in a geometric decomposition of profit efficiency  

𝑃𝐸
𝜋
𝜋

𝜋
𝜋∗  

𝑝𝑦 𝑤𝑥
𝑝𝑦 𝑤𝑥 𝛽∗ 𝑝𝑦 𝑤𝑥

𝑝𝑦 𝑤𝑥 𝛽∗ 𝑝𝑦 𝑤𝑥
𝑝𝑦∗ 𝑤𝑥∗  

𝑇𝐸 . 𝐴𝐸                                                                          (55) 

Here 

𝑇𝐸
𝑝𝑦 𝑤𝑥

𝑝𝑦 𝑤𝑥 𝛽∗ 𝑝𝑦 𝑤𝑥
 

𝜌 1
1 𝛽∗ 𝜌 1 𝛽∗  

∗                                                                  (56) 

Again, 𝛽∗ 0, 𝜌 1 ensure that 0 𝑇𝐸 1. However, the technical efficiency component in 
this decomposition is not independent of prices. 

If we use McFadden’s gauge function for technical efficiency, the corresponding multiplicative 
decomposition of profit efficiency will be 

             0 0
* *

g

g

PE
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𝑝𝑦 𝑤𝑥

1
𝛾 ∗ 𝑝𝑦 𝑤𝑥

1
𝛾 ∗ 𝑝𝑦 𝑤𝑥

𝑝𝑦∗ 𝑤𝑥∗  

                     𝛾∗ 𝑝𝑦 𝑤𝑥
𝛾∗ 𝑝𝑦∗ 𝑤𝑥∗  

                     𝑇𝐸 . 𝐴𝐸       (57) 

It may be noted that in (57) the technical efficiency factor is independent of prices and also that 
both factors lie between 0 and 1. 

As noted before, in all of the decompositions of profit efficiency considered above, the direction 
of technically efficient projection of any inefficient input-output bundle is preassigned by the 
analyst. If, instead, one uses the optimization model of Ray (2007) and uses 𝜋  from (27) for 𝜋  
one gets 

                      𝑃𝐸 ∗  

                            ∗ ∗  

                                𝑇𝐸 . 𝐴𝐸                                         (58) 

The technical efficiency factor can be rewritten as 

                    𝑇𝐸  

                                                                           (59) 

As argued before, if 𝜑 1, 𝜋 𝜋 , 0 𝑇𝐸 1 so long as 𝜋 0 so that 𝜌 1. 
Otherwise, 𝜋 𝜋  and 𝑇𝐸 𝑇𝐸 ⇒ 𝐴𝐸 𝐴𝐸 .  

6. Nonparametric Approximation of the Technology 

Consider the input-output data set D= 𝑥 , 𝑦 ; 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 , 𝑗 1,2, . . . , 𝑁  for N firms in 
an industry. Based on the assumptions of convexity and closedness of the production possibility set and 
free disposability of inputs and outputs, a nonparametric approximation of the technology is the free 
disposal convex hull of the data set: 

                  𝑆 𝑥, 𝑦 : 𝑥 ∑ 𝑥 ; 𝑦 ∑ 𝑦 ; ∑ 𝜆 1; 𝜆 0; 𝑗 1,2, . . . , 𝑁   (60) 

For any observed input-output bundle 𝑥 , 𝑦 ∈ D facing output and input prices 𝑝 , 𝑤 , the actual 
𝜑∗ 𝑚𝑎𝑥 𝜙 profit is 𝜋 𝑝 𝑦 𝑤 𝑥  and maximum profit is 

    𝜋∗ 𝑝 , 𝑤 𝑚𝑎𝑥 𝑝 𝑦 𝑤 𝑥 
     𝑠. 𝑡. 𝑥, 𝑦 ∈ 𝑆                                                        (61) 

For the variety of technical efficiencies and the corresponding technically efficient profit (for any firm k 
in the sample) one needs to solve the relevant optimization problem from below: 
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Output-oriented Efficiency 

    𝜑∗ 𝑚𝑎𝑥 𝜑 
    𝑠. 𝑡. 𝑥 , 𝜑𝑦 ∈ 𝑆                                                 (62) 

Input-oriented Efficiency 

    𝜃∗ 𝑚𝑖𝑛 𝜃 
𝑠. 𝑡. 𝜃𝑥 , 𝑦 ∈ 𝑆                                                   (63) 

Directional Distance Function 

    𝛽∗ 𝑚𝑎𝑥 𝛽 
𝑠. 𝑡. 1 𝛽 𝑥 , 1 𝛽 𝑦 ∈ 𝑆                            (64) 

McFadden’s Gauge Function 

     𝛾∗ 𝑚𝑖𝑛 𝛾 

𝑠. 𝑡. 𝑥 , 𝑦 ∈ 𝑆                                                 (65) 

Endogenous Directional Distance Function 

  𝜂∗ 𝜑∗ 𝜃∗ 𝑚𝑎𝑥 𝜑 𝜃 
𝑠. 𝑡. 𝜑 1; 𝜃𝑥 , 𝜑𝑦 ∈ 𝑆                                     (66) 

Once the LP problems in (61) - (66) are solved using the input-output data from D, profit efficiency and 
the technical and allocative efficiency components can be measured for individual firms. 

6. An Empirical Example 

We use a hypothetical 2-input 2-output data set for nine firms generated by FHLZ (2019; page 192) 

reproduced in Table 1 below. It should be pointed out that, at their input and output vectors of price and 

quantity, three firms (#5, #8, and #9) would earn negative profit (𝜋 0) while another firm (#7) would 

earn zero profit. Thus, profit efficiency measured by the ratio of actual and maximum profit would be 

meaningless for these firms. We can, however, obtain the various measures of technical efficiency based 

on the alternative directional distance functions (as described above) for all nine observations based upon 

their input and output quantity data. We can also get meaningful measures of Nerlovian efficiency and its 

decomposition as in CCF (1998) even when the actual profit is zero or negative. 

Table 1: Raw Data               

Measurement  Notation 

Firm 

1  2  3  4  5  6  7  8  9 

Output 1  y1  486  200  400  300  200  440  421.88  450  0 

Output 2  y2  486  600  400  450  400  480  421.88  500  235 

Input 1  x1  9  8  9  9  10  7  7.5  4  3 

Input 2  x2  9  10  10  9  15  10  7.5  20  5 

Output Price 1  p1  1  1  1  1  1  1  1  1  1 
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Output Price 2  p2  1  1  1  1  1  1  1  1  1 

Input Price 1  w1  27  27  27  27  27  27  56.25  56.25  56.25 

Input Price 2  w2  27  27  27  27  27  27  56.25  56.25  56.25 

Actual Revenue  R_0  972  800  800  750  600  920  843.76  950  235 

Actual Cost  C_0  486  486  513  486  675  459  843.75  1350  450 

             
The different technical efficiency measures based only upon the input-output data and derived using 

alternative directional distance functions are reported in Table 2. Firms #1, #2, #6, #7, and #8 are found to 

be technically efficient in every orientation. Their input-, output-, and gauge efficiencies are all equal to 1. 

Accordingly, the DDF and the overall (in)efficiencies are 0. Firm #9 presents an interesting case, where 

the input- and output-oriented efficiencies are 1 and correspondingly the DDF equals 0 implying that 

there is no potential for increasing output and reducing input simultaneously. However, the value of the 

McFadden gauge function is 0.4 implying that both the output and the input vectors can be scaled up by a 

factor of 2.5. According to the endogenous DDF, the output vector should be optimally scaled up by a 

factor of 2.468 while the input vector scaled up by a factor of 2.4. This is quite close to the value implied 

by the gauge function. Note that the endogenous DDF for firm #9 shows 𝜂∗ 𝜑∗ 1 1 𝜃∗

0.068 implying an overall efficiency of 0.932. The remaining three firms – #3, #4, and #5 – are 

technically inefficient by all measures. Firm #5 has significantly lower efficiency than firms #3 and #4. 

Firm #4 performs better than #3 by every measure of technical efficiency. 

Table 2: Technical Efficiency             

Measurement  Notation 

Firm 

1  2  3  4  5  6  7  8  9 

Input‐oriented  τ_x  1  1  0.789  0.877  0.54  1  1  1  1 

Output‐oriented  τ_y  1  1  0.823  0.871  0.706  1  1  1  1 

Directional Distance  β*  0  0  0.124  0.072  0.31  0  0  0  0 

McFadden's Gauge  1/γ*  1  1  0.823  0.838  0.706  1  1  1  0.4 

Endogenous 
Directional Distance 

η*  0  0  0.249  0.153  0.67  0  0  0  0.068 

Φ*  1  1  1.067  1.101  1.405  1  1  1  2.468 

Θ*  1  1  0.818  0.948  0.736  1  1  1  2.4 

1‐η*  1  1  0.751  0.847  0.33  1  1  1  0.932 

 

Table 3 shows the actual and maximum profit along with the profits at the different directional projections 

of the input-output bundles on to the frontier. As noted before, the actual profit 𝜋   is negative for firms 

#5, #8, and #9 and zero for firm #7. By comparison, the maximum profit 𝜋∗  is zero for firms #7, #8, 

and #9 and equals 486 for all other firms. Given that firms #1, #2, #6, #7, and #8 are found to be 

technically efficient by every criterion, their technically efficient profits 𝜋  are equal to their actual 

profits (even when for some of them these are negative). For firm #9, 𝜋 is even more negative than 𝜋 . 
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For firms #3 and #4, profit at the output-oriented projection 𝜋  is higher than at other technically 

efficient projections while for firm #5 profit at the endogenous projection 𝜋  is the highest among all 

technically efficient projections. Also, for firm #5, except for McFadden’s gauge projection3, profit is 

positive at all technically efficient projections even though the actual profit 𝜋  is negative. 

Table 3: Profit Table            

Measurement  Notation 

Firm 

1  2  3  4  5  6  7  8  9 

Actual Profit  π_0  486  314  287  264  ‐75  461  0  ‐400  ‐215 

Maximum 
Profit  π*  486  486  486  486  486  486  0  0  0 

Input‐oriented 
Profit  π_x  486  314  395.01  323.69  235.19  461  0  ‐400  ‐215 

Output‐
oriented Profit  π_y  486  314  459  375.13  175.15  461  0  ‐400  ‐215 

DDF Profit  π_d  486  314  450.19  353.2  320.43  461  0  ‐400  ‐215 

McFadden's 
Gauge Profit  π_g  486  314  348.71  315.05  ‐106.3  461  0  ‐400  ‐537.5 

Endogenous 
Directional 
Distance Profit  π_r  486  314  433.92  364.96  235.19  461  0  ‐400  ‐215 

Profit Efficiency  PE  1  0.646  0.591  0.543  N/A  0.949  N/A  N/A  N/A 

 

Tables 4 and 5 show the (profit-based) technical and allocative efficiency components from a 

multiplicative decomposition of profit efficiency under alternative directional projections. The technical 

efficiency measures from Table 4 are uniformly lower than the price-independent measures shown in 

Table 2 except in the case of McFadden’s gauge function. 

As noted before, profit efficiency of a firm measured by the ratio of its actual profit 𝜋  to the maximum 

profit 𝜋∗ 𝜋 𝑝, 𝑤  is meaningful only when the actual profit is positive. In fact, 4 out of the 9 firms in 

this example show zero or negative profit and we cannot get sensible profit-oriented technical and 

allocative efficiency measures for them. But measurement and an additive decomposition of the 

Nerlovian efficiency is always possible because the difference 𝜋∗ 𝜋  is always non-negative (even 

when the actual profit is negative) and the denominator 𝑝𝑦 𝑤𝑥  is strictly positive.  

Table 4: Profit ‐ Oriented Technical Efficiency       

Measurement  Notation 

Firm 

1  2  3  4  5  6  7  8  9 

Input‐oriented  TE_x  1  1  0.727  0.816  N/A  1  1  1  1 

                                                            
3 The gauge function simply expands the input and output vectors radially. Hence, if the actual profit is negative, so 
is the profit at the technically efficient projection. 
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Output‐oriented  TE_y  1  1  0.625  0.704  N/A  1  1  1  1 

Directional Distance  TE_n  1  1  0.638  0.747  N/A  1  1  1  1 

McFadden's Gauge  TE_g  1  1  0.823  0.838  0.706  1  1  1  0.4 

Endogenous Directional 
Distance  TE_r  1  1  0.661  0.723  N/A  1  1  1  1 

            
Table 5: Profit ‐Oriented Allocative Efficiency        

Measurement  Notation 

Firm 

1  2  3  4  5  6  7  8  9 

Input‐oriented  AE_x  1  0.646  0.813  0.666  N/A  0.949  1  N/A  N/A 

Output‐oriented  AE_y  1  0.646  0.944  0.772  N/A  0.949  1  N/A  N/A 

Directional Distance  AE_n  1  0.646  0.926  0.727  N/A  0.949  1  N/A  N/A 

McFadden's Gauge  AE_g  1  0.646  0.718  0.648  N/A  0.949  1  N/A  N/A 

Endogenous Directional 
Distance  AE_r  1  0.646  0.893  0.751  N/A  0.949  1  N/A  N/A 

 

Table 6 shows the Nerlovian efficiency (NE) and its additive technical (TE) and allocative (AE) 

components for all nine firms in the example. One needs to remember that a higher value of NE implies a 

bigger shortfall from the maximum achievable profit and hence a lower efficiency of the unit. As 

explained in CCF (1998), the technical efficiency is the same as the DDF and corresponds to what we 

have reported as β* in Table 2. In this table, it is to be interpreted as unachieved profit as a proportion of 

the sum of the revenue and the cost of a firm. For example, firm #5 has an actual profit of -75. This 

implies a shortfall of 561 from the maximum profit of 486. This is 44% of the sum of its revenue (600) 

and cost (675). The DDF implies that it could increase outputs and at the same time reduce inputs by 31% 

thereby increasing profit by 395.35. The remaining 165.75 is ascribed to allocative inefficiency. 

Table 6 Nerlovian Efficiency            

Measurement  Notation 

Firm 

1  2  3  4  5  6  7  8  9 

Nerlovian Efficiency  NE  0  0.134  0.152  0.18  0.44  0.018  0  0.174  0.314 

DDF TE  TE_n  0  0  0.124  0.072  0.31  0  0  0  0 

DDF AE  AE_n  0  0.134  0.027  0.107  0.13  0.018  0  0.174  0.314 

 

7. Conclusion 

The directional distance function allows considerable flexibility in choosing the direction for projecting 

an inefficient input-output bundle on to the production frontier. However, the analyst must choose a 

preferred direction irrespective of the data. By contrast, the overall efficiency measure of Ray (2007) 

yields an optimal direction of projection endogenously. Even though the maximum profit that can be 
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earned at any given pair of input and output price vectors is unique, the different technically efficient 

projections lead to different amounts of (technically efficient) profit. Also, profit efficiency can be 

measured either as a ratio or as difference between the actual and the maximum profit of a firm. 

Ideally, a ratio measure is preferable because it yields a measure of efficiency that lies between 0 and 1 so 

long as the actual profit is positive. However, in a multiplicative decomposition when the technical 

efficiency factor is measured by the ratio of the actual profit over the technically efficient profit, it is price 

dependent except in the case of the McFadden gauge function. One limitation of the gauge function, 

however, is that as we have shown, in some cases it might find a point already on the frontier to be 

technically inefficient. At the same time, an advantage of the Nerlovian efficiency measure is that it will 

always be positive. Also, the technical efficiency component will be independent of prices. However, in 

extreme cases, it may exceed 1. Also, using the sum of revenue and cost for normalization is not quite 

intuitively appealing. 
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