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Abstract

We investigate the properties of a systematic bias that arises in the synthetic

control estimator in panel data settings with finite pre-treatment periods, offering

intuition and guidance to practitioners. The bias comes from matching to idiosyn-

cratic error terms (noise) in the treated unit and the donor units’ pre-treatment

outcome values. This in turn leads to a biased counterfactual for the post-treatment

periods. We use Monte Carlo simulations to evaluate the determinants of the bias

in terms of error term variance, sample characteristics and DGP complexity, pro-

viding guidance as to which situations are likely to yield more bias. We also offer a

procedure to reduce the bias using a direct computational bias-correction procedure

based on re-sampling from a pilot model that can reduce the bias in empirically fea-

sible implementations. As a final potential solution, we compare the performance

of our corrections to that of an Interactive Fixed Effects model. An empirical ap-

plication focused on trade liberalization indicates that the magnitude of the bias

may be economically meaningful in a real world setting.

Keywords: Synthetic Control, Over-fitting

JEL Codes: C23; C52
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1 Introduction

The synthetic control method (Abadie and Gardeazabal, 2003; Abadie et al., 2010) is a data-driven

approach used to construct a counterfactual for a treatment unit from a pool of candidate untreated

donor units. In large part due to the rhetorical power of its visual evidence—a synthetically-weighted

time-series that often closely matches the treated unit’s time series—the method has become a staple

for economists and policy analysts conducting comparative case studies. The logic used to justify

synthetic controls is simple and compelling: if the synthetic control group outcomes match those of

the treated unit across the entire pre-intervention period, it should project a valid counterfactual

for the treated unit into the post-intervention period.

We use Monte Carlo simulations to investigate a specific way the synthetic control method can

systematically fail to project a valid counterfactual in social science applications. In a typical panel

data generating process (DGP), the estimator systematically “matches on noise” at the expense of

matching on structural parameters, and as a consequence projects a distorted counterfactual into the

post-treatment periods. This bias is a form of “over-fitting” to pre-period observed outcomes that,

combined with mean reversion in error terms in the post-period, leads to a systematic distortion

in the post-period counterfactual estimate2. This bias occurs even when the synthetic control and

treatment group outcomes are well matched in the pre-treatment period. The problem depends

on the location of the treated unit among the control units. It is most severe when the treated

unit’s unobserved structural parameters (e.g. intercept and trend) are away from the center of the

distribution of the donor units’ parameters.

Prior studies have examined bias in the synthetic control estimator arising from matching on

error terms. Abadie et al. (2015) brings up the point that synthetic controls does not do well when

there are a small number of pre-periods, using the rationale that the estimator may end up matching

on error. Our paper, building off insights developed in Smith (2013) in a less flexible and less realistic

data generating environment, develops that intuition for practitioners and demonstrates the bias as

a function of a larger set of determinants. Beyond those works, Ferman and Pinto (2021) is the study

most closely related to our own, and provides an analytical proof of the existence of an asymptotic

bias due to matching on error terms. Several other papers (reviewed in in Section 2.2) have explored

alternative concerns with synthetic control models and developed alternative estimators. However,

the focus of these works is on proving the existence of an asymptotic bias in various theoretical data
2 Here we think of over-fitting as when synthetic control weights are estimated not using information from the true

factor loadings but also from noise. In many contexts the effect of noise is symmetric around the true parameter
and therefore over-fitting only inflates the variance of the estimator but does not increase bias. One of the points
we make in our paper is that this does not always hold with synthetic controls in finite-sample conditions. We
discuss this in section 3.1.
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environments. Our focus is on exploring the bias in ways that we hope will inform practice.

Using Monte Carlo methods, our primary goals in this work are to characterize the nature and

determinants of bias, to provide intuition and guidance to practitioners regarding the bias, and

to propose corrections for addressing the problem. We investigate the determinants of the bias in

finite sample settings similar to those commonly found in social science applications. Of particular

relevance to practitioners, we show how empirical analogs of unobserved parameters (such as level

and trend differences) can reveal potential risks in a researcher’s specific application. In addition,

the correction procedure we propose is feasibly implementable in real-world applications, and points

towards future potential approaches for bias correction.

We first provide background on the synthetic control estimator itself and its implementation in

social science research. We then illustrate the bias in a graphical example, and provide mathematical

intuition as to how the bias is generated. Next, we use a series of Monte Carlo simulations to evaluate

how various DGP parameters affect the magnitude of the bias. We show how, within the context of

our simulations and assumed DGP, the bias varies with: (i) the degree to which the treated unit’s

unobserved structural parameters are in the tails of the sample distribution; (ii) the variance of

the error term; (iii) the number of donor units; (iv) the pre-treatment period length; and (v) the

complexity of the DGP (measured in our simulations by the polynomial order of group-specific time

trends).

We then propose an intuitive correction procedure for practitioners to employ in robustness tests

or informal model checking procedures. Using a parametric bootstrap, we estimate the magnitude

of bias, given estimates of the functional form of the DGP and observable features of the data. We

then subtract this estimated bias from the main estimate. This methods performs reasonably well

at reducing bias, but at a cost of increased variance3.

We also compare the performance of our corrections to that of an Interactive Fixed Effects

model. This approach performs well in our simulations and does not appear to be subject to the

same “matching on noise” bias that affects synthetic control methods.

Finally, we investigate the bias in a real-world application. We conduct a partial re-analysis

of a recent empirical paper (Billmeier and Nannicini (2013)) which uses synthetic control methods

to estimate the macroeconomic effects of free trade agreements at the national level. Using the

dates of free trade agreements and data from the world bank on 17 countries, we estimate both

baseline synthetic control models that match on all pre-period Y values, and models employing our

alternative, corrected estimates. We find that the bias corrections are often large enough to be

economically meaningful, can change qualitative interpretation, and can even lead to estimates of
3 In the simulations we consider the increased variance typically dominates the lowered bias, leading to higher mean

squared error (MSE).
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differing sign.

In summary, in this paper we analyze a particular form of bias in the synthetic control estimator,

one we believe is not yet appreciated by applied researchers. The bias arises whenever the treated

unit’s unobserved parameters are away from the middle of the distribution of control unit parameters,

and there is idiosyncratic noise in the DGP. Our Monte Carlo simulations of the determinants of bias

can provide guidance on when synthetic controls are more or less likely to generate biased estimates.

Additionally, our correction procedures can provide alternative specifications and robustness checks

when synthetic controls estimates are central to an empirical analysis.

2 Synthetic Controls: Background, Estimation and Graphical

Representation

Synthetic control techniques were developed primarily as a tool for quantitative comparative case

studies that exploit panel variation (e.g. state and year) to estimate the impacts of an external event

(e.g. policy changes) that affected a single “treatment unit” (Abadie and Gardeazabal, 2003; Abadie

et al., 2010, 2015). The synthetic control method compares the outcome of interest for the unit

affected by the intervention or policy to an algorithmically-determined weighted average of donor

(control) units that were not affected. In this way it reduces researcher degrees of freedom over choice

of control groups and allows the data itself to determine appropriate matches. As with matching

methods in general, the approach works when the treated unit, absent the intervention, would have

evolved in a similar way to the (weighted) mean of the matched units, in this case synthetic control

group. This means that selecting the correct weights for the control units is of central importance.

2.1 Estimation

The estimation of treatment effects using synthetic control methods involves three steps. First, a

weight (wi) is chosen for each control unit i, numbered from 1...G. These weights are derived from

an optimization procedure that minimizes the mean squared distance between a weighted average of

control group variables (X) and their corresponding values in the treated unit. Second, these weights

are applied to control group observations to create a “synthetic control unit” with period-specific

weighted average outcomes defined as YS,t =
G∑
1
wi∗Yit (where G is the number of control units). The

“fit” of the model is generally assessed either informally and visually by the ability of the synthetic

control outcome time-series to match that of the treatment unit in the pre-treatment periods, or

by the magnitude of the real mean squared prediction error over the pre-period. Conditional on
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an adequate pre-treatment fit, the treatment effect is then calculated as the difference between

the treated unit and the synthetic control unit in the post-treatment periods. Finally, inference

is typically performed through a permutation-based procedure. These steps are outlined in detail

below.

2.1.1 Model of Unit Level Time-Series

Abadie et al (2010) propose the following model for outcome Y in period t to justify the use of

synthetic controls.

Y N
it = θtZi + λtµi + ϵit (1)

Y N
it is the value of outcome Yit absent any treatment. θt is a vector of time-varying coefficients

on observed variables Zi, which are constant across time within a unit (i). µi are the unobserved

(and time-invariant) factor loadings for unit i, and the vector λt contains period-specific common

factors.

Next, let the value of Yit conditional on having been exposed to the treatment be defined as:

Yi=treated,t = Y N
it + δtDit (2)

Where Dit is an indicator equal to one if unit i has been exposed to the treatment in time t,

and zero otherwise, and δ estimates the effect of the policy or treatment. We observe a balanced

panel of data with G control units and a single treatment unit, Yi=treated,t
4, each observed for T

periods. There are T0 pre-treatment periods, and in period T0+1 the treated unit is exposed to the

treatment and immediately experiences the (potentially period-specific) treatment effect.

2.1.2 Choosing Weights

At the core of the synthetic control method is an algorithm that chooses a set of weights for the

control units. These weights are chosen to make the weighted average of control group variables X

match their treated-unit counterparts as closely as possible. A critical step in this process is for the

researcher to choose the predictor variables (X) for the synthetic control machinery to match on.

Predictors are generally linear combinations of pre-period covariates and outcomes, and it is typical

to choose outcomes in different parts of the pre-treatment period in order to capture secular time

trends driven by unobservable factors.
4 It is possible to run this procedure for more than one treated unit. One approach is to take averages of observables

to combine all treated units into a single unit (e.g.Kreif et al., 2016).

4



Let W be a (G x 1) vector of non-negative weights wi that sum to one. If the data has the factor

structure in equation (1) above, Abadie et al (2010) show that any optimal weight w∗
i satisfies:

G∑
i=1

w∗
i Yi,1 = Yi=treated,1, ...,

G∑
i=1

w∗
i Yi,T0

= Yi=treated,T0
, and

G∑
i=1

w∗
iZi = Zi=treated

Further, if the number of pre-periods is large relative to the scale of the errors, then for t > T0

the following is an unbiased estimate of δt:

δ̂t = Yi=treated,t −
G∑
i=1

w∗
i Yi,t (3)

Here Yi=treated,t indicates the outcome for the treated unit in time period t. Control unit weights

W are selected such that the average distance between the resulting synthetic control and the treated

unit for each predictor is minimized. An optimization procedure selects weights that minimize the

following function:

(Xi=treated −X0W )′V (Xi=treated −X0W ) (4)

Where Xi=treated is a (K x 1) vector of predictors (chosen from Z and Yt≤T 0) for the treatment

unit, X0 is a (K x G) matrix of the predictors for the control units, and V is a (K x K) diagonal

matrix with the diagonal elements representing the importance of each predictor. W is a (G x 1)

vector of time-invariant, non-negative weights to be estimated for each control unit and constrained

to sum to one. In this way, the weights are chosen to make the distance in the X variables between the

treated and synthetic control units small. This is done in the expectation that reducing the distance

between Xi=treated and Xs (the synthetically weighted average, computed as Xs =
G∑
i=1

w∗
i ∗Xi) will

lead to a counterfactual Ys that is also appropriate for Yi=treated in the post-treatment period. As

Abadie et al. (2015) show, this result holds as T0 goes to infinity, and there is a potential for bias in

the presence of finite pre-periods. However, our work is the first the characterize the dynamics and

determinants of this bias, and relate these features to mismatches on unobserved factor loadings.

2.1.3 Inference

The typical inference procedure for synthetic control estimation involves a permutation test based

on the null hypothesis of no effect. The procedure uses the donor unit pool as a set of “placebo”

treatment states and estimates a “placebo treatment effect” for each control unit by assigning that

unit as the placebo-treatment group and the original treatment year as the placebo treatment year.

The distribution of placebo estimates then acts as an estimate of the sampling distribution of the

estimator under the null hypothesis of no effect. A p-value can then be computed, based on the

rank of the magnitude of the actual estimated treatment effect relative to the distribution of placebo
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estimates. Abadie et al. (2010) recommend selecting only those placebo estimates which have a good

pre-treatment period fit.

2.2 The Development of Synthetic Control Methods

In a series of foundational papers, Abadie and Gardeazabal (2003) Abadie et al. (2010) and Abadie

et al. (2015) introduced social scientists to the synthetic control method. The method was first

proposed in Abadie and Gardeazabal (2003) where it was applied to study the effects of political

conflict in the Basque region on economic development. Abadie et al. (2010), which focused on the

effects of a California anti-smoking measure on cigarette sales, further developed the econometric

grounding and introduced the permutation-based inference procedure described above. Following

these papers, there has been a growth of interest in using the method on a range of topics in economics

and other social sciences as well as a series of methodological improvements for implementation and

theoretical advances on the underlying theory.

2.2.1 Recent Empirical Work Using Synthetic Control Methods

Synthetic controls have most commonly been employed to evaluate state or region-level policy

changes affecting aggregate production, health and labor market outcomes. Courtemanche and

Zapata (2014) evaluate self-reported health outcomes after the implementation of universal health

care in Massachusetts; Bohn et al. (2014) study the immigrant labor market using the 2006 Legal

Arizona Workers Act in Arizona; Eren and Ozbeklik (2016) study the passage of right-to-work laws

in Idaho and Oklahoma and their effect on union membership, FDI and manufacturing employment;

and Jones and Marinescu (2018) investigate the labor market impacts of universal cash income from

the Alaska Permanent Fund. Recently, researchers have expanded the domain of analyses to include

the effects of a broader range of policies and outcomes, such as the impact of educational reforms on

preschool (Fitzpatrick, 2008) and college (Klasik, 2013) performance, as well as criminal justice is-

sues ranging from prostitution (Cunningham and Shah, 2017) to gun control (Donohue et al., 2019).

A number of papers have alternatively used synthetic controls to study country-level events such

as the effect of natural disasters (Cavallo et al., 2013), resource discovery (Smith, 2015), political

systems (Nannicini and Ricciuti, 2010) and monetary policy on economic growth (Lee, 2010). Other

analyses examine alternative group level units, such as universities (Hinrichs, 2014), financial firms

(Acemoglu et al., 2016), grocery stores (Kiesel and Villas-Boas, 2013), neighborhoods (Gautier et al.,

2009), and even physician specialty classifications (Chen et al. 2018).
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2.2.2 Bias in Synthetic Control Methods

Abadie et al. (2010) proved the consistency of the synthetic control estimator given a long pre-

intervention period, by showing that a bounding function for bias asymptotically approaches zero

as the pre-intervention length T0 grows. Their bounding function bounds their term R1t, which

indirectly comes from biases in the weighted synthetic control factor loadings (see appendix B of

Abadie et al. (2010) for a full definition of R1t).

Ferman and Pinto (2021) show that the bound on this bias does not go to zero if the pre-period

fit is imperfect. This may especially be the case when the number of donor units G is fixed, and

small compared to T0
5. The framework in Ferman and Pinto (2021) involves a fixed number of donor

units, and considers asymptotics as the number of pre-treatment periods grows, T0 → ∞.

For the model in (1) and (2) without covariates, the bias in the synthetic control estimator will

come from biased estimates of the factor loadings of the treatment unit. We distinguish between

our potentially biased estimated weights ŵi, and wtgt
i : the target weight which correctly recovers

the treated unit’s factor loadings. Then the formula for bias is in post-period t is: λt ·Eϵ[µtreated −
G∑
i=1

(µi · ŵi)]. The expectation is taken over the error terms (ϵ), a random variable which determines

ŵi. µi is the vector of unobserved factor loadings for that donor unit. Bias in period t occurs when

the ŵi weights fail to recover the factor loadings of the treated unit. This formula for the bias is

found in Ferman and Pinto (2021), and also applies in our paper.

Similar to our paper, the bias in Ferman and Pinto (2021) is based on the synthetic control

algorithm trying to match in part on model errors. In Ferman and Pinto (2021), in a DGP with

non-trending unobserved random factors, the bias can be corrected by demeaning the pre-treatment

average of the outcome for each unit. In other important papers, Ferman and Pinto show that

that visual displays of inference by placebo can be misleading (Ferman and Pinto, 2017), and that

in applications with few pre-periods there is substantial room for specification hunting and cherry

picking of results (Ferman et al. (2020)). Another paper that discusses bias in synthetic controls

is Kaul et al. (2022) which shows that bias arises when matching on all pre-intervention periods.

The formulation of bias in our paper is different than in Kaul et al. (2022). In that paper, the

weights can neglect matching on important (observable) covariates. In our paper, we are concerned

about weights mis-matching on the unobservable factor loadings. The approach we take in this

paper is focused on using Monte Carlo simulations to provide intuition about the sources of bias to

practitioners, and is complementary to these existing papers.

In contrast with earlier work, in this paper we think of the bias as conditional on the locations
5 Ferman and Pinto (2021) is an updated version of Ferman and Pinto (2016), and was developed concurrently with

this paper.
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of the factor loadings µi. In the models we consider, the factors λt are fixed polynomial series, and

so are not random. Below we show the case for when the dimensonality of the factors loadings is

one (D = 0). In this case, µi is simply a group specific intercept.

Bias = λt · Eϵ[µi=treated −
G∑
i=1

(µi · ŵi)|µi=treated] (5)

We show results for the bias in equation 5 in our illustrative model of section 3.1, and in Online

Appendix A. Most of the Monte Carlo results in this paper additionally treats the factor loadings

µi as random, and conditions on the rank of the factor loadings for the treated unit. When there is

more than one factor, we condition on the rank of the sum of the factor loadings across the D + 1

dimensions of unobserved factor loadings:

Bias = λt · Eϵ[µi=treated −
G∑
i=1

(µi · ŵi)|Rank(

D∑
d=0

µd,i=treated) = r] (6)

The bias we describe in this paper is a conditional bias. We show that the bias depends on the

location of the treated unit among the control units. What we exactly condition on varies across

simulation specification but is often either the intercept (when D = 0) or the sum of the intercept and

trend (when D = 1). We consider the ϵi,t as random, and the rank of µi=treated in the distribution

of µi as fixed. That is, our bias is conditional on the location of the treated group’s µ within the

distribution of donor units: holding the relative location of the treated unit fixed.

Although we conceptualize the bias as depending on the relative locations of the factor loadings,

in our simulations we additionally model the µi as randomly distributed, and choose the treatment

group as the group with appropriately ranked µi. That is, our simulations condition on the rank-

location of the factor loadings. In this way we measure the average bias across a range of possible

realizations of the µi. In Appendix E, we re-run a simulation with fixed factor loadings, where the

only randomness comes from the model errors ϵ. This exercise gives results very similar to our main

simulations.

If we were to additionally consider random assignment across units to "treated unit" status, then

the conditional biases could average out to zero. However, in any given application the location of

the treated unit among the donor units is fixed. We believe that this conditional bias should be

an important consideration in applied work. This is particularly true for case-study approaches for

which the synthetic control estimator was developed. In these applications the research is focused

on a particular, already realized “treated” unit.

We use Monte Carlo simulations to provide a direct examination of finite sample (fixed T0) bias

in synthetic control estimates. In order to explore the applicability of these findings, we investigate
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a number of dimensions of our simulations. We consider settings with: (1) a fixed (and moderate

or small) pre-treatment-period T0; (2) more donor units G than T0; and (3) allowing the synthetic

control unit to provide a perfect pre-treatment fit (and in fact requiring a reasonably good fit). We

contribute to this setting by documenting a bias that applies to mismatching trending variables.

Our focus on settings with relatively few pre-intervention time periods has particular relevance

for empirical policy analyses. Short pre-periods are common in real-world applications. For example:

Chen et al. (2018), uses T0 = 3 pre-period years before the implementation of a medicare fee bump

under the ACA. Gurantz (2020) employs synthetic controls to evaluate the impact of free community

college in Oregon with T0 = 4 pre-period years. Larramona and Sanso-Navarro (2016) use T0 = 3

pre-period years total. Other studies use longer pre-periods but with relatively long post periods. For

example, Hu et al. (2018) use T0 = 12 pre-period quarters. Pinotti (2015) uses T0 = 10 pre-period

years to predict outcomes over 40 post-period years. Smith (2015) and Billmeier and Nannicini

(2013) both perform case studies separately for a number of individual countries, several of which

have five or fewer pre-treatment years. Our simulations offer substantive guidance with regard to

T0. For example, we show how, within the context of our assumed DGP, bias decreases as the length

of the pre-period increases.

We offer similar guidelines to practitioners on the the importance of donor group size, and

perhaps more importantly on the importance of where the treated unit is in the distribution of

potential matches. For example, Sun et al. (2019) use seventeen donor cities when looking at the

impact of environmental credit regulations on firms in a single treated city, substantially smaller

than the 30 or so control states used in most applications. Our work suggests that this situation

with relatively few donor units is not as much of a concern for bias related to matching on noise,

and that a greater concern might be warranted if pre-treatment rank of Yi=treated is in the tails of

the distribution of the donor Yi’s.

2.2.3 Extensions and Refinements to Synthetic Control Methods

A number of papers relax assumptions in the original synthetic control algorithm. For example,

Doudchenko and Imbens (2016) propose a method that allows synthetic weights to be negative and

to not sum to 1, while Kreif et al. (2016) propose a version allowing for multiple treated units.

Other papers contextualize synthetic control within a broader framework of matching and difference

estimators, including Xu (2017), which frames synthetic control in a fixed-effects framework, and

Athey and Imbens (2017), which places the synthetic control estimator within the broader potential

outcomes framework and treatment-effects estimation literature.
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Ben-Michael et al. (2021) propose an “augmented” synthetic control estimator that is viable

in settings where a good pre-treatment fit is infeasible. They combine a direct modeling of the

relationship (using a ridge regression) between the pre-treatment variables and the post-treatment

outcome, with synthetic control matching. Arkhangelsky et al. (2021) propose a “synthetic difference-

in-differences” estimator that is a generalization of both traditional synthetic control models and

also a generalization of panel fixed-effects difference in difference models. Their estimator has a

double-robust property with potentially reduced bias compared to the traditional synthetic control

model. They prove consistency of their estimator as both G → ∞ and T → ∞, and in simulations

show improvements over traditional synthetic control model with G and T as small as 50.

Closer to our own work, a few papers have attempted to evaluate specification issues directly

using simulations similar in spirit to those employed here. Particularly focused on concerns about

matching on noise, Peri and Yasenov (2019) show that choosing small sub samples of potential donor

groups can cause inflated type 1 error rates due to measurement error in the outcome variable.

However, unlike Peri and Yasenov (2019), our documented bias applies even in cases where there

are a relatively large number of control groups, demonstrating that matching on noise continues to

be problematic even when large donor pools are available for matching

In terms of specifications, our baseline estimates follow the potentially problematic but widely-

used specification of matching on all pre-period outcome values, as discussed Kaul et al. (2022). That

work argues both theoretically and through a replication analysis that matching on all pre-period

outcome variable values guarantees that weights of 0 are assigned to all non pre-period outcome

variables, thus forcing the fit to rely entirely on the pre-intervention outcome time series. However,

this restricts the ability of underlying structural factors to predict changes in the time-series path

and for their influence to be replaced by noise in the outcome measurement. While Kaul et al.

(2022) argue there is potential for bias from such a specification, it remains common in practice,

and so appropriate as a benchmark for our purposes. Importantly, the bias we describe persists

whether we control for all pre-period outcomes or only some periods. Furthermore, while Kaul et al.

(2022) demonstrate empirical instances of bias, their focus is on specification and choice of matching

variables, not the nature or mechanics of the bias that we highlight here.

2.3 Graphical Demonstration and Data Simulation

Much like regression discontinuity and event study analyses, synthetic control methods derive rhetor-

ical power from the elegance and (seeming) transparency of their graphical presentation. In order

to bridge the background discussion above with the simulation-based results to come, we generate

and analyze one realization of our simulation model and display the results.
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We generate time-series data from a random-intercepts and random-slopes DGP:

Yit = µ0,i + µ1,i ∗ t+ δ ∗ Treatedit + ϵit (7)

We draw intercepts µ0 ∼ N(0, 1) and trends µ1 ∼ N(0, 0.25) independently for each of 30 donor

units and one treatment unit. There are 10 time periods (T = 10), 5 of which are pre-period (T0 = 5).

ϵit is drawn independently for all observations from a N(0, 0.2) distribution. The “treatment unit”

has the 8th ranked intercept and the 26th ranked trend from the realized sample of 31 values of µ0.

and µ1. For this and all further simulations, we set the treatment effect to zero (δ = 0).6

The raw data from a single realization of the DGP described above are presented as a panel

of unit-level time-series graphs in Figure 1a. The thick blue line represents the treated unit. The

gray lines represent the 30 donor units from which the procedure generates a synthetically-weighted

counterfactual estimate. We then fit a synthetic control model to the data, matching on all pre-

period outcome values, and shade the donor units accordingly, with their thickness varying according

to the weight they are assigned by the algorithm (including light gray lines for zero weight). The

blue line is squarely within the distribution of both potential and realized donor units for the entirety

of the pre-period, and gently, but noisily, trends upwards with no apparent or programmed break in

the trend or level when the placebo “treatment” occurs in period 6.
6 These variance, group number and time period parameters are the baseline values used throughout Section 3. From

Section 4 on, our baseline model is similar to Eq. 7 but we increase the trend function complexity and set T0 = 10
in order to allow for higher dimensional trend functions to reveal their shape over the pre-period.
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Figure 1: Graphical Demonstration of Bias.

Data are from one realization of the baseline DGP. The top panel depicts the raw time-series by group. The middle
panel depicts synthetic control fit. The bottom panel provides placebo-based inference with grey lines denoting
estimates from remaining “control” groups, and red lines from simulated “treatment” groups with the same rank of
the unobserved parameters (µ0,i and µ1,i).
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We then calculate YS,t and graph it in a dashed black line in panel (b), repeating the treatment

group blue line from panel (a). The synthetic control estimate is perfectly matched in the pre-

period and then diverges from the synthetic control group in the post period, despite the lack of

any true treatment effect in the DGP. The distance between the treated unit and control group

increases nearly linearly over the post-period. Taken at face value, the estimate would suggest a

positive treatment effect that increases in magnitude over the post-period. But as will be shown, the

divergence between the treated unit and the synthetic control is driven by an underlying mismatch

between the structural trends of the treated unit and the synthetic control.

We then contextualize the magnitude of the implied treatment effect in the bottom panel (c)

using the standard inference strategy and a second, simulation based approach. Panel 1c preserves

the data from panels (a) and (b) but graphs the difference between the treatment and synthetic

control groups instead of the levels of both groups separately (blue line). The gray lines are the

“placebo” estimates proposed in Abadie et al (2010), which are the synthetic control estimates for

the 30 donor units in the top panel. These trace out an approximation of a “sampling distribution”

of synthetic control estimates when the null effect of 0 is assumed to be true, treatment is assumed

to be exchangeable and the estimate is unbiased. The first two conditions hold by construction, but,

as we show in red in panel (c), the third condition does not.

The thin red lines in panel (c) represent results from 20 additional simulation runs with the same

DGP settings and the treated unit again chosen to be the one with the 8th ranked µ0 and 26th

ranked µ1 in a sample of 30 control units from this DGP. These “alternative treatment” estimates

are not centered on zero. The mean of 500 similarly-constructed alternative treatment simulation

runs is traced out by the dashed thick red line, which begins the post-period at 0 but then increases

linearly over the post-period. The slope of the dashed red line can be interpreted as a (somewhat

noisy) estimate of the average degree to which the synthetic control estimator systematically under-

estimates the underlying trend of the treatment group when the treatment group happens to have

the 26th (of 31) ranked trend and 8th ranked intercept from this DGP. A simple interpretation of

these results is that about half of the treatment effect seen in Figure 1 is due to bias and half due

to sampling and fit variation (and none due to any real treatment effect).

3 Noise Induced Bias

What is going wrong in the example of Figure 1 above? We illustrate below that the bias arises from

asymmetrically matching on errors when the "true value" (before errors) of the closest control units

on one side of the treated group are nearer than on the other side of the treated unit. This is likely
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to occur when the treated unit is far from the mass of control units. Both noise and asymmetry

are key determinants of the problem. In terms of noise, the match in the pre-period (t ≤ t0) of

YS,t to Yi=treated,t, is based in part on matching noise in the treatment and control units’ outcome

variables (that is, matching to ϵi,t). This induces a systematic deviation between µi=treated and the

“synthetic µ”, defined as µS =
G∑
i=1

ŵi · µi, which is the underlying trend component of YS . And this

in turn leads to the realized bias in the post-treatment periods when, by construction, ϵ averages 0

in the post period.

As discussed in Section 2, the synthetic control algorithm is designed to match on X between the

treatment group’s values (Xi=treated) and the synthetically weighted average Xs. When X includes

both predictor variables Z and pre-treatment values of the outcome, matching on the outcomes can

help to capture µi. By matching on levels and secular trends in the outcome in addition to known

determinants, the model implicitly matches on the unobserved determinants that drive those trends.

A good match on both Z and Yi,t (for t ≤ T0), can then be hopefully interpreted as evidence that

µi=treated = µS (Abadie et al., 2010). This is how the synthetic control weights allow researchers to

control for a rich unobserved factor structure.

The problem arises when the pre-treatment outcomes embody not only the unobserved factor

loadings, but also idiosyncratic noise, ϵit. In this setting matching on both the noise and the true

parameter is a type of over-fitting that (unlike typical cases of over-fitting) generates not only

estimation variability but also bias. In the commonly modeled empirical settings we explore, the

algorithm will regularly match in part on this idiosyncratic variation in the process of optimizing

model fit in the pre-period. This process of matching to noise induces a systematic relationship

between the error terms in the donor unit observations and the synthetic weights assigned to those

units. Mean reversion in the post-period ensures that the synthetic control group then projects a

distorted counterfactual to the treatment group into the post-period.

The magnitude of the bias depends on several factors and we investigate these in turn in our

Monte Carlo simulations in Section 4. In this section, we first provide intuition into the nature

of the bias using a stylized thought-experiment that demonstrates the fundamental role of noise in

the matching process. We then use simulation techniques to demonstrate how the bias depends on

the variance of idiosyncratic error terms and the location of the treated unit’s unobserved factor

loadings among the distribution of the control unit factor loadings. Finally, we connect the bias to

the magnitude of the difference between µi=treated and µS .
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3.1 Illustrative Example

We consider a simple, stylized case-study to provide mathematical intuition for understanding the

bias. Let the factors λt be a single constant λt = 1, for all t. This implies that the unobserved factor

loadings µi are i-level fixed effects and Eq. 1 reduces to:

Yit = µi + δ ∗ Treatedit + ϵit (8)

In this subsection, we consider a setting where there is exactly one pre-treatment time period,

and there are exactly two “donor” units, whose true factor loadings µi are on either side of the

treated unit, and with small enough error realizations that their observed pre-treatment Yi,t=1 are

also on the same side of the treated unit as µi.

The weights produced by matching the pre-treatment observation Yi=treated,t=1 will be based on

how close the treated unit is to each of the two donor units. The ideal “target” weights depend on

the true locations of the factor loadings:

wtgt
0 =

µ1 − µtreated

µ1 − µ0

wtgt
1 =

µtreated − µ0

µ1 − µ0

The estimated SC weights depend on the realized locations in period 1. In the formulas below

the model errors ϵ refer to first period errors only.

ŵ0 =
µ1 − µtreated + ϵ1 − ϵtreated

µ1 − µ0 + ϵ1 − ϵ0

ŵ1 =
µtreated − µ0 + ϵtreated − ϵ0

µ1 − µ0 + ϵ1 − ϵ0

We consider the factor loadings (µ0, µ1, µtreated) as fixed, and we condition on these when we

compute the bias. We consider the model errors (ϵ’s) to be random. The bias in the estimated

treatment effect will depend on the bias in the estimated synthetic control weights:

Bias = E[(wtgt
0 − ŵ0) · µ0 + (wtgt

1 − ŵ1) · µ1]

with the expectation taken over the distribution of the first period model errors.

For a given realization, if ϵi=1,t=1 is positive then donor unit 1 will be farther away from the

treated unit, and so will get less weight than it should. This will give a downward error to the

synthetic counterfactual, and an upward error to the estimated treatment effect. We might then
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think that in expectation this would balance out between donor units above and below the treated

unit, leading to no bias. However, this is not necessarily the case. This is because the impact of an

error term ϵ on the error in the SC weight depends on the distance between the treated unit and the

donor unit. For example, if among the donor units, unit 0 is closer to the treated unit than is unit

1, this will lead to an under-weighting of unit 1, a downward-biased counterfactual for the treated

unit, and thus an upward-biased estimated treatment effect.

To illustrate this phenomenon, we use numeric integration to calculate the bias for a setting

where µi=0 = 0, µi=1 = 1. In this calculation these are fixed. We place the treated unit in between,

considering fixed values µi=treated ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, and assume its observed value

has no error. We model the errors for the control units as randomly drawn from a truncated normal

ϵ ∼ N(0, σ2), truncating the distribution of ϵ symmetrically at ±min(µtreated, 1 − µtreated) so that

no draw of errors can change the rank ordering of observed values (ensuring that yi=0 < yi=treated <

yi=1). We then calculate the bias in the estimated treatment effect. This bias comes from mistakes

in the weights assigned to the control units, such mistakes arise from noise in the measured outcomes

of those control units.

For this setting, the bias can be expressed as:

Bias = E(
µtreated · (ϵ1 − ϵ0) + ϵ0)

1 + ϵ1 − ϵ0
) (9)

with the expectation taken over the distribution of the first period model errors, ϵ1 and ϵ0. The

derivation of this formula and further details are provided in Online Appendix A. Appendix A also

justifies a key diagnostic of the bias used throughout the paper, the Synthetic Control Average Error

(SCAE: see section 3.2.2), which reduces to the the bias formula presented in Eq. 9.

Results are presented in Figure 2. This shows that unless the treated unit is exactly mid-way

between the donor units (µi=treated = 0.5), there is a systematic bias. When the treated unit is closer

to µi=1, then µi=1 will on average get too much weight, and the counterfactual ŷi=treated,t=1 will

be too high. This counterfactual being too high would in turn lead to a negative bias for estimated

treatment effect in a subsequent period. The reverse holds when the treated unit is closer to µi=0.

The amount of bias is increasing in the magnitude of noise, and in the distance from the treated unit

away from the middle of the range. These results are echoed below in our richer synthetic control

simulations in Section 3.2.

What would cause an asymmetric distribution of donor units around the treated unit? This will

result from an asymmetric distribution of the density of µi around the treated unit. So, for a typical

symmetric and unimodal distribution (such as Gaussian) this will happen whenever the treated unit

is not located at the mode. More generally, if the distribution of µi is such that the density decreases
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Figure 2: Computational Demonstration of Mathematical Intuition

This figure shows the bias for the estimated treatment effect, as a function of noise of the donor units, and of the
true location of the treated unit. There are two donor units whose intercepts are: (µ0 = 0, µ1 = 1). The location of
the treated unit is given by µi=treated (measured without error). The error distribution for donor units is truncated
Normal, truncated so that no epsilon could change the rank ordering of observed values. See Section 3.1 text for more
details.
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towards the boundary, and if the treated unit is not in the center of the distribution, then there will

be more density of donor units on the side toward the center, and less density on the other side.

This will mean that on average the donor units are closer on the side toward the center, which will

result in a systematic bias in estimated treatment effects away from zero.

To summarize, the bias comes from a combination of three factors. First, it depends on (1)

whether there is a difference in how close (on average) donor units are on one side of the treated

unit versus the other. This interacts with (2) the importance of distance on the impact of “how noise

in donor units influences their weights and thus the counterfactual.” Finally, in many reasonable

settings we expect that (3) the treated unit being further from the center of the distribution leads

to an asymmetric density of donor units, and thus a difference in expected distance above versus

below the treated unit. The combination of these factors is illustrated in the impact of the rank of

the treated unit on bias, in our simulations in sections 3.2.2 and 3.2.3 below.

The thought experiment extends to additional pre-periods and alternative choices of matching

variables. Consider the case where there are T0 > 1 pre-treatment periods of data, and we are trying

to match on pre-treatment average Y. In this case the same problem will apply, only based on ϵ̄t

averaged over t ≤ T0. Because of the averaging over the error term over the pre-periods, the bias

should be decreasing as T0 gets bigger and thus the variance of ϵ̄t gets smaller. In the next section we

demonstrate the implications of this thought experiment empirically, showing that both the variance

of ϵ and the number of pre-periods, as well as the location of µi=treated in the distribution of µi,

affect the magnitude of bias.

3.2 Simulation Evidence of Noise-Induced Bias

In this section we use Monte Carlo simulations to empirically explore the bias described above in a

panel data setting. We show results from 3 sets of Monte Carlo simulations and demonstrate the

bias visually using simple figures graphing bias across various specifications of the model parameters

and hyper-parameters. We first show that the bias in a basic random-intercepts DGP (Eq. 7) exists

only when there is a positive variance on the period-specific error term (noise). We then demonstrate

that the biased matches generated by the synthetic control algorithm persist into DGPs with trends,

where the method again partly matches on noise and fails to accurately match on the unobserved

components of the DGP. We show that in both cases the bias can be explained by the mismatch

between µi=treated. and µS .

All three simulations share the same basic structure. In each of a series of realizations of simulated

data from Eq. 7, we use synthetic controls to estimate a treatment effect on the simulated data,

matching on all pre-period values of Y. We generate the factor loadings as independent draws from
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µi ∼ N(0, I), and then assign the treated unit to be the unit at a fixed rank of the distribution

of µ0,i + µ1,i. We then assign ϵit ∼iid N(0, σ2
ϵ ), and generate observed data according to Eq. 7.

The true treatment effect in the DGP is set to 0, and the average estimated treatment effect across

Monte Carlo realizations is our estimate of the bias. We design the simulation (and all simulations

performed in this paper) so that the treatment group is always within the convex hull of the donor

group distribution by rejecting simulation runs where the treated unit’s outcome variable is the

largest or smallest value among all control units within any particular pre-intervention period. We

do this because we are not interested in cases where the treated unit is an outlier with no possible

pre-treatment match, which then trivially produces poor estimates.

3.2.1 Noise and Bias

We first empirically demonstrate the relationship between the bias and variance of the error term

using the DGP used to generate Figure 1 and described by Eq. 7, with 30 donor units and 10

periods. We then run the entire Monte Carlo simulation for 4 different values of σϵ and compute

the period-specific average estimated treatment effect across realizations.

As discussed in section 2.2.2. the bias we demonstrate comes from the synthetic control algorithm

trying to match in part on model errors, and because of this, failing to perfectly recover wtgt
i . We

measure this bias conditional on the sum of the factor loadings (For this DGP that is the sum of µ0,i

and µ1,i). As discussed above, for this DGP we have G = 30 donor units and D = 1 factor loadings.

We choose as the treatment group the unit with the 70th percentile value of the sum of µ0,i and

µ1,i (over all i) from the realized distribution in the simulated data7. This generates an asymmetry

in the distribution of µ around the treatment group8. This choice of treated unit is illustrative; an al-

ternative region of µ would produce a different magnitude of bias, but that bias would stem from the

same cause of matching on noise even as the sign and magnitude of the bias change. The specific for-

mula of the bias in post period t is now: Bias = λt ·Eϵ[µtreated−
30∑
i=1

(µi · ŵi)|Rank(
1∑

d=0

µd,i=treated) =

0.7].

Figure 3 graphs the bias in our simulations by period. The solid line averages from simulations

where σϵ is set to 0 (removing idiosyncratic errors from the DGP). The dashed lines represent

variances of 0.2, 0.5 and 2, respectively.
7 This is a compromise mode of treatment assignment that balances competing interests. Enforcing that the treatment

unit contain the 70th percentile on every value of µd would ensure better comparability of treatment groups across
realizations, but would generate a highly selected sample of potential realizations and treatment groups. Instead,
under our treatment assignment rule, in any given data realization some group will indeed be assigned “treated”
status. That group effectively represents units with relatively positively influencing unobserved characteristics.

8 Averaging our simulation results over all ranks of µ would average out the bias. In that sense, unconditional on
any particular group being designated the treatment group, the estimator is in fact unbiased. However, conditional
on the treatment group having a particular location, the estimator is biased unless the unit is in the center of the
realized donor unit distributions of µ.
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Figure 3: Mean bias estimates by period across Var(ϵ) (σ).

This figure shows the average bias in our Monte Carlo simulations across different pre-periods. To select the treatment
group we take the sum of the intercept and slope coefficients for each group and choose the treated group to be the
one at the 70th percentile of that distribution. We specify the synthetic control estimator to match on all pre-period
values of Y. The DGP includes a linear time trend, 10 pre-periods, and 30 donor groups. Results are averaged over
3000 Monte Carlo replications.

There is no bias when σϵ is set to zero. The synthetic control group matches only on the structural

components of the underlying DGP, and so produces an unbiased counterfactual. Increasing the

variance of ϵit a relatively small amount (0.2) generates bias: a mismatch between the synthetic

control and treatment group trends leads to a bias that increases over time in the post-period. This

comes despite a very small loss of precision in the pre-period fit. Increasing the variance further

increases the bias. The higher variances also produce a slight average trend in in the pre-period,

despite the fact that we are matching on all pre-treatment periods of the outcome variable. This

occurs because in some cases no perfect match is available. This is distinct from the phenomenon

we focus on in this paper, which is that a bias occurs even when there is a perfect pre-treatment

match. This issue is discussed and illustrated further in Appendix Figure A3, where we show

that the (mean-0) trend over pre-periods disappears while the bias persists when you focus on the

realizations that produced low real mean square prediction error (RMSPE). We interpret this as a

warning to practitioners that choosing a matching specification based purely on pre-period fit does

not guarantee a good counterfactual projected into the post-period.
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In this paper, we conceptualize the bias as depending on the relative locations of the factor

loadings µi, and as coming from the randomness of the model errors ϵ. In this and subsequent

simulations we additionally model the µi as randomly distributed, and condition on the rank of the

treated unit. In this way we measure the average bias across a range of possible realizations of the

µi, conditioning on the rank-location of the factor loadings. In Appendix E, we re-run a simulation

in which the factor loadings are fixed across simulation replications. In that simulation the only

randomness comes from the model errors ϵ. That exercise gives results very similar to our main

simulations presented in Figure 3.

3.2.2 Intercept Rank and SCAE

To illustrate the mechanism of matching on noise and how it relates to the treated unit’s location in

the distribution of unobserved parameters, we next use simulations to show that synthetic control

weights selectively load onto units with systematically non-zero average error terms over the pre-

periods (conditional on our assumed GDP). Here we employ the simplified DGP from Eq. 7 where

the unit-specific intercepts are the only factor loadings, are random, and are drawn from a N(0,1)

distribution. We then compute the mean bias as a function of the rank of µ0. The changing density

of donor groups around the treatment unit (with more density on one side than the other) at the

edges of the outcome distribution (high or low ranks of µ0) implies that the influence of error terms

on the matching should be largest towards the tails of the distribution of µ and smaller towards the

center, with no influence at the center where the density is balanced on both sides.

To clarify the relationship between bias and matching on noise, we define the Synthetic Control

Average Error (SCAE) as 1
T0

T0∑
t=1

G∑
i=1

ŵi ·ϵit, the synthetically-weighted mean error term averaged over

the donor units for the entire pre-period9. In usual empirical practice, this cannot be calculated

since ϵit are by definition unobserved, but in our simulations we know each ϵit. Since these errors are

on average mean 0 in the post-period by construction (they are not included as matching variables),

an SCAE ̸= 0 in the pre-period will generate bias in the post period.

In our illustrative example of section 3.1.1, the exact formula for the SCAE can be worked out,

and is derived in Online Appendix section A. For that setting, the SCAE is the same as the formula

(9) for the bias of the synthetic control estimator. This underscores the usefulness of the SCAE to

understanding the mean bias.

We plot the average (across realizations) SCAE, as well as the mean bias, by treated unit rank
9 The SCAE is related to the term for bias in Abadie et al. (2010). In Appendix B of that paper, the bias is based

on the expected value of their term R1t. That term is the synthetic control weighted average of the unit-specific
predicted pre-treatment model error, with predictions coming from a regression of the pre-treatment model errors
on the unobservable factors.
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of µ0 in Figure 4a. The solid red line plots the mean bias for each rank of the treated unit intercept

µ0,i=treated and for each rank the bias is estimated across 3000 Monte Carlo runs. The dashed

black line overlays a graph of mean SCAE on top of the mean bias graph across the rank of µ0.

Here we are only conditioning on the intercept as shown in the formula for the bias: Bias =

Eϵ[µtreated −
30∑
i=1

(µi · ŵi)|rank(µ0,i=treated) = r]

The two curves follow a similar pattern. When the treated unit’s rank is in the middle of the

distribution of µ0, the density of control units is symmetric around the treated unit, and there is

little to no bias when the treated unit’s rank is near the median. However, the bias increases in

magnitude for ranks closer to the extremes as the asymmetry of control units around the treated

unit increases. The figure suggests that the bias in the synthetic control estimates can be explained

by the algorithm matching on a string of realized error terms at the expense of the unobserved

structural features of the DGP. The resulting effect on the difference between Yi=treated and YS is

shifted from a match on errors in the pre-period to a bias in the post-period and explains a large

fraction of the deviation of the synthetic control treatment effect estimate from 0. We speculate

that the bias that is not accounted for by SCAE is driven by the fact that model errors in the

pre-treatment values for the treated unit leads to distorted weights on the donor units, as discussed

above in section 3.1.

Figure 4b further clarifies the role of matching on error terms in causing bias. Here we plot the

mean SCAE and bias by period for the simulations where the treated unit intercept rank is 29th

out of 31. The matching algorithm tends to select control units with positive errors during the

pre-period, distorting the counterfactual. Synthetic control average error then reverts to roughly

mean zero in the post-period, transferring the pre-period SCAE into post-period bias. The small

pre-period bias is driven by realizations with poor fit in the pre-period, and much like in Appendix

Figure A.1, the pre-period bias disappears when we restrict our analysis to matches with relatively

low MSE in the pre-period.

One possible concern is that the results we report here are dependent on the choice of distribution

of µ0. The specific shape of the bias across treatment rank does depend on the distribution from

which unit-level intercepts are drawn. However the presence of bias exists for alternative distributions

of µ0. We show this in Figure A1, which replicates the bias results in Figure 4a, additionally

including simulations that draw µ0 from two other distributions (a uniform (0,1) distribution and

a χ2(1) distribution). While the exact shape of the bias function across rank of µ0 depends on the

distribution of µ0’s, the presence of bias persists across all three distributions we examine.
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Figure 4: Bias and Synthetic Control Average Error (SCAE)

The top panel graphs mean bias and SCAE by treatment group rank of µ0,i. The bottom panel graphs mean bias
and SCAE across periods, choosing µ0,i to be rank 29th (of 30) in each simulation. Results are averaged over 3000
Monte Carlo simulations of the baseline DGP with no time trend (random intercepts only).

3.2.3 Trend Rank and Synthetic Trends

We next return to including unit-specific linear trends, to show how those impact the results of

our Monte Carlo Simulations (as in Figure 1). The presence of unit-level trends in our simulations

induces a second source of bias relative to the intercept-only DGP above - there can be a mismatch

on levels, as in Figure 4a, and there can be a mismatch on trends if µ1,S doesn’t match µ1,i=treated.

To focus on the bias arising from mismatched trends, for this exercise we fix µ0,i=treated at the

median of the realized donor pool.

Figure 5 is similar to Figure 4, but here the red line plots the average bias across treated
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unit trend (µ1,i=treated) rank. In this case the formula for the bias is: Bias = λt · Eϵ[µtreated −
30∑
i=1

(µi · ŵi)|rank(µ1,i=treated) = r]). Again, there is little to no bias in the middle of the trend rank

distribution, but lower ranked trend ranks are biased downwards and vice-versa. In this case, the

bias is generated not as a level-mismatch (as above), but as a trend-mismatch with an increasing

bias across the post-period, as we saw in Figure 1.

To demonstrate that this bias is the result of a mismatch between the treated unit’s trend and the

trend in the synthetic control group, for each Monte Carlo run we also calculate the “synthetic trend”

µ1,S =
G∑
i=1

wi ∗ µ1,i. We then subtract µ1,S from µ1,i=treated to find the “trend bias”, the mismatch

between the true trend of the treatment group and the true trend of the synthetic control group.

Mirroring Figure 4, the black line in Figure 5 graphs the synthetic trend bias (µ1,i=treated − µ1,S).

When the treated unit trend rank is relatively low, the synthetic trend tends to be too high (the

trend bias is negative), and vice-versa.

The mismatch on trends is itself a result of the algorithm matching on noise instead of structural

parameters. Figure 5b shows the mean SCAE by period for the case where the treated unit trend

rank is 29th. The matching algorithm in this case selects control units where the errors happen to

trend upwards, and again mean errors revert to roughly zero in the post-treatment period. This

type of bias becomes more severe (in level terms) longer into the post-treatment period, as the

mismatched trends diverge further over time.

The previous figures demonstrate that a key determinant of bias, in the context of our simulations,

is the degree to which the treated unit is in the tails of the distribution of the control units. In

practice, the treated unit’s structural parameters are unobserved, making our findings more difficult

to implement; a policy analyst cannot directly assess whether this is likely to be a problem. She

can, however, examine whether the observed realizations of the treated unit outcome variable are in

the middle of the distribution of the control units, or whether they are toward the tails. If they are

not in the middle, then there should be concern about bias from matching to noise.
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Figure 5: Bias and Synthetic Linear Trend (D=1)

The top panel graphs mean bias and synthetic trend mismatch by rank of the treatment group. Rank is determined
by the relative position of a group across the sum of each group’s value of their intercept and trend (µ0,i + µ1,i for
each i). The bottom panel graphs mean bias and synthetic trend across periods, choosing the treated group to be
ranked 29th (of 30) in each simulation. Results are averaged over 3000 Monte Carlo simulations of the baseline DGP
with linear time trends.

4 Determinants of Magnitude of Bias

The preceding section generates two key insights regarding the data generating process and bias.

First, the bias we describe is driven by matching to the error terms. The matching on noise comes

at the expense of matching the structural features. In many settings such “over-fitting” does not

cause bias. However, our example shows that in synthetic control estimation it can cause bias. This

happens in finite samples when the donor units are not uniformly distributed around the treated
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unit. The second insight is that the rank of unobserved parameters for the treatment unit relative to

the distribution of control units affects the average bias. These two features - noise and asymmetry

- are key determinants of the problem.

In this section we use Monte Carlo simulations to examine the impacts of additional features

of the sample and DGP on the magnitude of the bias: DGP polynomial order (D), the number of

potential donor units (G), and the number of pre-treatment time periods (T0).

Up to this point we have restricted the DGP to include only random intercepts and/or unit-

specific linear trends. In this section we extend this to consider higher-order polynomial trend

functions. For a polynomial time trend function of degree D, we generate Y according to the DGP:

Yit =

D∑
d=0

λd,t ∗ µd,i + δ ∗ Treatedit + ϵit (10)

with λd,t = td. Then µ := (µ0,i, µ1,i, ..., µD,i) is a vector interpreted as including (intercept,

linear trend slope, ... , coefficient on D’th degree polynomial).

The choice of polynomial trends is motivated by the fact that most empirical settings using

synthetic control have relatively smooth but non-linear pre-period outcome time-series. This is

explicitly shown and discussed in Abadie et al. (2010) as one of the main benefits of synthetic controls

in their application. Figure 1 in their paper graphs the highly non-linear trends in cigarette sales

and the authors note how poorly these polynomial trends are captured by the consumption patterns

of the rest of the United States: smoking follows a quadratic trend, increasing through the mid

1970s and then begins to decline. The synthetic control group is then shown to successfully capture

these dynamics. Empirical work following Abadie et al. (2010) has likewise built off this insight and

employed synthetic controls in cases where there are non-linear trends. We use polynomial-based

time trends to generate such non-linear trends in our simulations, as higher order polynomials can

flexibly mimic smooth trends across time. We note that our results are based on this modeling

assumption, and this may limit the external validity of those results. Another limitation readers

should note is that because in Eq. (10) what we condition on varies across simulation specifications,

it is not clear that our bias is always comparable between simulations.

One computational complication with such polynomial trends is that the higher-order terms may

dominate in the later periods and lead to extreme outcome values. To address this, we generate λt

through a D-degree orthogonal polynomial transformation of the time period variable10. Addition-

ally, we now set T0 = 10 so that there is an adequately long pre-period for higher-order DGPs to

reveal their underlying trends.
10 We use the “orthpoly” command in Stata, defining the orthogonal polynomial transformations over the full time

period.
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For all simulations that follow, we draw each component of µd,i from an independent standard

normal distribution N(0, 1), and ϵit is drawn from N(0, 0.2) unless otherwise specified (such as when

we vary the error variance in Figure 6). We choose the treated unit by calculating the sum of µd,i for

each unit individually and then selecting the unit with the 70th percentile of
∑D

d=0 µd,i as treated.

We choose the 70th percentile so that the treated unit is some distance away from the center of the

control unit distribution, but the algorithm is still typically able to find reasonable pre-treatment

matches.

4.1 Noise (σϵ)
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Figure 6: Bias by Noise

This figure shows bias estimates across variance of ϵ and by the trend polynomial degree (D). To select the treatment
group we take the sum of the intercept and slope coefficients for each group and choose the treated group to be the
one at the 70th percentile of that distribution. We specify the synthetic control estimator to match on all pre-period
values of Y. The DGP includes 10 pre-periods and 30 donor groups. Results are averaged over 3000 Monte Carlo
replications of the baseline DGP with varying D and σ.

Figure 3 showed simulation results when the DGP had an underlying linear trend (D = 1). In this

section we expand the scope of the exercise and consider DGPs from Eq. 10 with D=1, 2 and 3

(linear, quadratic, and cubic trends). We graph the average bias in the final post-period (5 periods

after treatment) across 4 variance levels of σϵ (0, .5, 2, 5) separately for each degree polynomial.
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Specifically: Bias = λt · Eϵ[µi=treated −
30∑
i=1

(µi · ŵi)|Rank(
D∑

d=0

µd,i=treated) = 0.7]; where the exact

value of D changes across simulations.

The results are shown in Figure 6. Bias increases with σϵ, though the marginal impact of

additional variance diminishes at higher values. In addition, the bias increases in D (the degree of

the highest polynomial trend term). These are basic themes of the subsequent exercises as well;

increases in D and σϵ, tend to increase bias11.

While our primary concern in this paper is bias, the factors that influence bias can also impact the

statistical uncertainty of the estimates. We also examine the sampling variability for the synthetic

control estimates, and report these results in Figure A2. The top panel of Figure A2 replicates

Figure 6, reporting on the standard deviation of estimates in the final post-period. Results are

as expected: increasing the variance of the error term increases sampling variability, as does the

increasing the dimensionality of the unobserved parameters.

4.2 Size of Donor Pool (G)

One candidate approach to mitigate the bias given the assumed DGP is to increase the number of

potential matches, that is, the number of donor units, G. This might increase the chance of matching

on a structurally similar set of units and decrease the likelihood of matching on noise.
11 Note that there is a non-zero bias even with zero error terms for the higher-order DGPs. This occurs because for

more complex DGPs, in some cases there is no perfect match available. This is again similar to the issue discussed
in Appendix A3.
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Figure 7: Bias and Size of Donor Pool

This figure shows mean bias estimates across number of pre-periods (T0) and the trend polynomial degree (D). To
select the treatment group we take the sum of the intercept and slope coefficients for each group and choose the
treated group to be the one at the 70th percentile of that distribution. We specify synthetic controls to match on all
pre-period values of Y. The DGP includes 10 pre-periods and a varying number of donor groups. Results are averaged
over 3000 Monte Carlo replications of the baseline DGP with varying D and σ.

This turns out to be less effective at reducing bias than we had expected. Figure 7 graphs mean

bias across the number of donor units, separately by D. While increasing the number of groups can

reduce bias when there are very few units, in general the gains beyond 10 or so units are modest if

they exist at all. Higher dimensionality of D dwarfs the impact of increased donor pool size.

We again provide estimates of sampling variability across the number of control units in the

middle panel of Appendix Figure A2. As would be expected, increasing the number of control units

decreases the sampling variability of the estimates. However, this effect is relatively modest, and

the dimensionality of unobserved parameters again largely dominates the number of control units in

terms of affecting estimate variability.

4.3 Pre-Period Length (T0)

We next consider the role of the number of pre-treatment periods, T0. Figure 8 graphs mean bias

in the final-post period against the number of pre-periods. In the Monte Carlo simulation, the bias

decreases as the length of the pre-period panel increases for all values of D. This result reflects the
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fact that with longer matching periods the importance of the trend parameters increases relative

to idiosyncratic error terms, so that matching on outcomes yields a better match to the underlying

trend function. When (in terms of pre-period length) the gains are realized depends on the the

dimensionality of the DGP (D). The relative bias relative reduction going from 10 to 25 periods

with a cubic DGP (D=3) is smaller, percentage-wise, than going from 4 to 6 periods with a linear

DGP (D=1).

As above, we also provide estimates of sampling variability in the Appendix Figure A2. Following

Figure 8, we graph the standard deviation of estimates across the number of pre-periods for each

values of dimensionality D in the bottom panel of Appendix Figure A2. Increasing the number of

pre-periods leads to lower sampling variability, but only after sufficient pre-periods to identify the

polynomial, which depends on D.
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Figure 8: Bias by Pre-Period Length

This figures shows mean bias estimates across number of control units (G) and trend (D). We specify synthetic controls
to match on all pre-period values of Y. The DGP includes different time trends, varying numbers of pre-periods, and
30 donor groups. Results are averaged over 3000 Monte Carlo replications.

5 Bias Reduction Strategy

The bias that we identify in our Monte Carlo simulations is the result of a type of “over-fitting”

of the weights to match the model errors (noise). The bias is stable conditional on the particular
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location of the treated unit in the joint distribution of unobserved parameters. Given assumptions

about the underlying DGP, researchers can estimate this location and perform a simulation-based

approach to estimating the bias.

Using a parametric bootstrap, we simulate the magnitude of bias that results from matching

on noise given the observable features of the data, including the relative location of the treatment

group parameters in the joint distribution of donor unit parameters. We then subtract this estimated

bias from the main estimate. This approach involves: estimating the underlying structural model;

simulating realizations of the synthetic control estimate when the treatment group is chosen to

be similar to the one in the original data relative to the realized sample; and then averaging the

treatment effect estimate across many simulation runs to estimate the bias in the original analysis12.

In this section we lay out the procedure for the proposed correction and demonstrate an em-

pirically feasible implementation that reduces bias relative to matching on all pre-period values of

Y.

5.1 Procedure for Proposed Bias Correction

The correction procedure is as follows:

1. We assume the the DGP comes from the polynomial family of functions. This requires choosing

or estimating the polynomial order (D). To estimate D̂, we estimate a series of random-

intercepts and random-slopes models on the underlying panel from polynomial degree 0 to 4.

We then use the Bayesian information criteria (BIC) as a model selection procedure, choosing

the polynomial order with lowest BIC13.

2. After D̂ is chosen, estimate the mean and standard deviation of each unobserved factor loading

µd (we assume that each is generated from a normal distribution, though other distributions

are theoretically viable) using a GMM mixed-effects model.14 The same model is used to

estimate σ̂, the standard deviation of the error term.

3. Generate artificial data for the control units by randomly drawing from the assumed DGP,

using the estimated hyper-parameter values and setting G, T0 and T as in the sample.
12 Frölich (2004), Huber et al. (2013), and Busso et al. (2014), establish the potential role of empirical Monte Carlo

simulations in helping inform estimator choice for researchers. A major take away from these papers is that the
assumed DGP needs to match the applied data environment in order for the simulations to be useful. Recently
Advani et al. (2019) evaluate Monte Calro approaches for choosing among alternative potential estimators. They
conclude that this method can perform poorly at identifying the bias of estimators. Our setting differs from that
studied in Advani et al. (2019) because our bias (driven by selecting on noise) is a type of "mechanical bias", rather
than being driven by covariate imbalance or other finite-sample violations of a selection on observables assumption.
As our simulations below show, the bias-correction approach we use is able to measure and correct for this bias.

13 A researcher might well choose other model selection techniques.
14 We use Stata’s xtmixed command with the outcome as the dependent variable and D-degree orthogonal polynomial

transformations of the period variable as independent variables.
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4. Create a simulated treatment unit. Using the actual (non-simulated) data, estimate each unit’s

µ parameter values with a linear regression conditional on the chosen D̂:

Yit =

D̂∑
d=0

λd,t ∗ µd,i + ηit (11)

Then assign the treated unit the values of µ with the corresponding rank from the simulated

parameters generated in step #2. Then generate treated unit outcomes according to EQ. 11,

drawing ηit ∼ N(0, σ̂2).

5. Run synthetic control estimation using the same matching specification as used for the real

data (in our simulations below we match on all pre-treatment Ys, but again other specifications

are possible), and record the estimated treatment effect.

6. Repeat steps 3-5 many times and compute the average treatment effect15. This is an estimate

of the bias.

7. Subtract the estimated bias from the treatment effect estimated from the actual data, resulting

in a bias-corrected estimate.

We show below that this approach can reduce or eliminate the bias from matching on noise.

This approach is limited in that the researcher assumes both the functional form of the DGP and

the distribution type (normal, uniform, etc.) of the unobserved parameters. This can be seen by

examining Appendix Figure A1. If we assume, for instance, a uniform distribution of µ0 but the

actual distribution is normal, then the difference between the gray triangles (uniform) and red circles

(normal) would be the degree of inaccuracy in the correction.

5.2 Implementation of Bias Correction

The simulations in this section continue to use the parameter settings from previous simulations,

and we simulate polynomial trend functions of degrees D=1 to 3. For each degree polynomial we

estimate a specification that matches on all pre-period values of the outcome variable, and one that

applies the simulation-based correction. We then graph, separately for each D, the mean difference

between the treatment group and the synthetic control group (the bias) across periods. For each
15 For each “nested” simulation described in these steps, as with all other analysis in this paper, we exclude data

realizations where the treated unit has any pre-treatment outcome observations that are the largest or smallest
of all units. In rare cases within our simulations, when D̂ is mis-specified the treated unit can receive extreme
estimated parameter values, so that nearly every simulated data realization is rejected because treated unit outcomes
are very large or small. We therefore use the following rule: if out of the first 20 nested simulations, four or fewer are
successful (i.e. the treated unit never has the largest or smallest outcome in a pre-treatment period), we terminate
the correction procedure and use the original baseline estimate as our “corrected” estimate.
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D, we run 3000 simulations, each with 100 “nested” simulation runs used to estimate bias with the

Monte Carlo bias correction procedure.

We consider empirical estimation of D when the true DGP is known to come from the family of

polynomial trend functions from degree 0 to 4. We run a series of Monte Carlo simulations where

the correction procedure is based on using D̂ and moments of the empirical distribution of outcomes

instead of (the empirically unobservable) D itself. We also provide results on estimate precision.

Figure 9 shows how accurately the BIC estimate identifies the polynomial order of the DGP (D̂).

The histogram shows the distribution of D̂ under three true values of D (linear, quadratic, and cubic

trends) and the parameter settings used in Figure 10. In each case, the BIC chooses the correct

degree of heterogeneity more than half the time, increasing from about 50% in the linear case, to

almost 100% in the case of a cubic polynomial. In every case, BIC chooses D̂ ≥ D.
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Figure 9: Estimates of D Given Candidate Family of Polynomial Functions

The bars indicate the proportion of the time D̂ is selected given the true D (x-axis). D̂ is selected via first running
a series of regression models with D-degree polynomial trend parameters. One regression is run for each D (ranging
between 1 and 4) and the model with the lowest BIC is selected. Results are over 3,000 Monte Carlo replications of
baseline DGP across each (true) dimension of D.

5.3 Performance of Bias Correction

We conduct a new series of simulation exercises to demonstrate the effectiveness of our bias reduction

strategy. We use the parameter settings from previous simulations, and we simulate polynomial trend
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functions of degrees D=1 to 3. For each degree polynomial we estimate a specification that matches

on all pre-period values of the outcome variable, and one that applies the Monte Carlo correction

discussed above. We then graph, separately for each D, the mean difference between the treatment

group and the synthetic control group (the bias) across periods. For each D, we run 3000 simulations,

each with 100 “nested” simulation runs of the correction used to estimate bias within each overall

simulation run.

Figure 10 shows the results of this exercise. Our Monte Carlos bias correction strategy substan-

tially reduces bias relative to the baseline of matching on all pre-period outcome variables across

DGPs of different polynomial orders. Further, the correction is nearly unbiased through true DGPs

of degree 2.

A number of lessons discussed previously continue to hold. For the specification that matches

on all pre-period outcome values (the red short-dashed line), increasing D (moving down panels of

Figure 10) leads to increased bias. The pre-period fit is on average quite good. The bias increases

over time following a functional form determined by the curvature in the underlying trend, due to

the mismatch between µi=treated and µS .

We additionally include density plots of the sampling distributions of the estimates and their

MSE in the right side of Figure 10. Here we graph, for each D, a kernel density estimate of the

sampling distribution of δ̂ from each specification. This shows that while the correction procedures

do indeed reduce bias, they also increase sampling variance. None of the corrected estimates have

an MSE below that achieved from matching on all pre-period Y values at any dimensionality D.

While the corrections do continue to reduce bias, the cost in terms of variance is sufficiently high

that their MSE is higher than the more biased estimates from matching on all pre-period outcomes.
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Figure 10: Performance of Bias Correction Procedures when DGP is unknown (Feasible)

This figure graphs bias and corrected estimates over 3,000 Monte Carlo simulations of the baseline DGP, while varying
the trends (D). We take the sum of the intercept and slope coefficients for each group and then select the treatment
group to be the one at the 70th percentile of that distribution. Rows denote trend (linear, quadratic, cubic). The
left column graphs mean bias by trend (D) across periods. The right column provides estimates of the density and
reports the true mean squared error.
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6 Empirical Application: Free Trade and Economic Growth

One important question for empirical researchers is the extent to which the bias we describe in

this paper should concern practitioners. That is, can it be sufficiently large to meaningfully alter

substantive conclusions about the real world? In this section, we show that there can be scope for

meaningful “matching on noise" bias in the context of a real world empirical example.

6.1 Empirical Example: Trade Liberalization and GDP per capita

Billmeier and Nannicini (2013) (henceforth BN) use a series of synthetic control models to analyze

the effect of national-level free trade agreements on economic growth. They first identify every

country that experienced a significant trade liberalization episode between 1963 and 2005, and

perform synthetic control estimates for each liberalizing country for which basic data requirements

were met16. For each episode of trade liberalization, they performed a separate synthetic control

estimation, using other countries in the same region that did not liberalize trade during the sample

window as the donor units.

We use replication data from BN to evaluate possible matching on noise bias using our proposed

bootstrap correction procedures. To fit the estimation framework in our paper, we differ from BN

in that we match on all available pre-treatment outcome values rather than the set of variables they

use. Further, we use ln(GDP/capita) rather than levels of GDP/capita to maintain comparability of

estimated bias magnitudes across countries. Thus we do not consider this work an empirical repli-

cation nor our corrected point estimates as directly informing the literature on trade liberalization.

The exercise is instead meant to investigate the scope for bias using real-world data in a meaningful

context.

Our application focuses on the BN estimates that use only nearby countries as synthetic control

donor units, and thus we drop all countries in the Middle-East and North Africa regions, which

use alternative donor pools. We also limit our sample to countries with 5 or more periods of data

both before and after the free trade agreement and good quality fits for our bootstrap procedure as

described in section 5.2. This leaves us with 17 countries from the original 30 countries in the BN

sample.

For each country in the remaining replication sample, we estimate two synthetic controls models,

using only data from the 5 periods before and after the trade liberalization. We estimate a baseline

synthetic control model matching only on all pre-period Y values and our feasible Monte Carlo

correction.
16 BN use World Bank GDP per capita data as an outcome.
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6.2 Empirical Results

The results are summarized in Figure 11. The top panel shows the Monte Carlo correction bias

estimates. The Monte Carlo produces smooth estimates across time, given the correction works off

averaging across polynomial time-trend simulations. Estimates largely fan out from zero, following

the cubic trend mismatch when choosing a simulated-treatment group at the appropriate part of

the unobserved variable distribution. The magnitudes of the estimated bias in the post period are

meaningfully large, ranging from +/- 25% of GDP by three years after liberalization.

The bottom panel shows the difference between the baseline estimate and the feasible correction

estimate (that is, the estimated bias). The BIC criteria chose D=3 (a cubic model for trends), the

largest value of D among the choice set. The scale of the y-axis is log points of GDP per capita.

The x-axis shows the baseline synthetic control estimate of the impact of trade liberalization after

5 years, in log points of GDP per capita, and the y-axis shows the corrected estimates. A 45 degree

line is plotted to give context for the magnitude of the corrections. The panel graphs corrected

estimates across the baseline estimate of matching on all pre-period Y.
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Figure 11: Bias Estimates in Free Trade Application

The top panel graphs mean bias estimates from the feasible bootstrap correction from 17 synthetic controls estimates
of the effects of Free Trade on (ln) $GDP per capita, following Billmeier and Nannicini (2013). The bottom panel
provides a scatter plot of corrected estimates across baseline estimates (matching on all Pre-Period Y).
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In the overall replication sample of 17 countries, the median absolute value of bias estimates

is 0.11 log points, approximately 11% of GDP per capita. However, this relatively moderate bias

conceals potentially large bias in several studies: the 75th percentile of absolute estimated bias is

0.33 log points. Fully 35% of Monte Carlo corrected estimates are of the opposite sign from the

baseline estimates.

This disagreement on bias estimates within-country can further be seen in Appendix Figure A5.

Here we graph country-specific estimates of both synthetic control models across year for 9 of the

17 countries in the estimation sample. The figures are ordered from the lowest estimated baseline

treatment effect in the upper left to the largest in the bottom right. The baseline estimate is in

dashed red, while the solid black lines represents the feasible Monte Carlo estimates. Of the examples

in Appendix Figure A5, two of the nine countries have estimates that disagree on sign, and three

additional countries have estimated magnitudes that disagree considerably.

Taken together, these exercises demonstrate that the bias that results from “matching on noise"

can be meaningfully large in a real world empirical application.

7 An Alternative to Synthetic Control: Interactive Fixed-

Effects

The factor structure justifying synthetic control estimation in Abadie et al. (2010) suggests an

alternative estimation approach17. The alternative is to directly estimate the individual factor

loadings (µi) for each control group, using the interactive fixed effects approach of Bai (2009). If

control units have differential polynomial trends, rather than weighting those groups to approximate

the trends of the treated group: we can directly estimate those trends. The interactive fixed effects

approach of Bai (2009) allows us to do this by providing a way of identifying the factor loadings by

separately estimating the factors (λt), and factor loadings (µi) simultaneously.

We employ this technique, estimating the interactive fixed effect in each draw of our Monte Carlo

simulation. Our setup is otherwise identical to our evaluation of the synthetic control estimates

above, with 10 pre-treatment periods, 30 donor groups and normally distributed draws of µ18. This

approach allows us to horse race the two methods and compare (in the context of our simulations)

the bias of synthetic control models to that of interactive fixed effects.

We estimate the following interactive fixed effects model:
17 We thank the Associate Editor for this suggestion.
18 Code to estimate interactive fixed effects was provided by Matthieu Gomez, Erik Loualiche, and Dave Kleinschmidt

online at: https://github.com/FixedEffects/InteractiveFixedEffectModels.jl
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Yit =

15∑
t=10

γtTreatedi +

R∑
r=1

λr,tµr,i + λ0,t + µ0,i + ϵit (12)

Where
∑15

t=10 γtTreatedi is a vector of treated status by time dummies for each post treatment

time period, and γt captures the treatment effect in time t. µ0,i and λ0,t represent standard unit and

time fixed effects and are always included in addition to the interactive fixed effects. The interactive

fixed effects themselves are captured by:
∑R

r=1 λr,tµr,i which reflect R distinct factors, where R

needs to be chosen in the process of estimation. In practice we will vary R to be from zero (a

standard two way fixed effects model) to R = 2 (allowing for two additional latent factors). Note

that λr,tµr,i allows for a different unit-time specific effect in each period. If the model is specified

correctly, γt will capture the treatment effect for each time period post treatment.

Figure 12 presents bias and dispersion estimates for interactive two-way fixed-effects models

instead of the synthetic control models. The left column graphs bias and the right-column graphs

the corresponding sampling distribution of post-period bias across units. Rows indicate the degree

of the true underlying polynomial time trends, D: 1) linear; 2) quadratic; and 3) cubic. For each

degree of DGP, we estimate three models: a standard two-way fixed-effects model with the treatment

effect enforced to be zero in each pre-period, and interactive two-way fixed-effect models with 1 and

2 latent factors (R) specified. We run all three estimations 3000 times for each treated unit rank,

and record the average bias.

When there are linear trends (D = 1), the standard two-way fixed effects model has bias that

increases over time in the post period. This is expected because the true differential trends across

units are not controlled for. Interactive fixed effects, allowing the common factor to have a single

rank, eliminates the bias completely. When there are quadratic trends (D = 2, first column second

row), allowing a rank of R = 2 for the common factor reduces the bias to zero (with a small decrease

in the bias if R = 1). Strikingly, as long as the model is not under-specified, there appears to be no

bias from matching on noise as we found in our main Monte Carlo simulations for synthetic control

methods. Focusing on the right column, the trade off for including too many latent parameters in

the model is apparently a relatively small increase in variance of the underlying estimates. Further,

the sign and magnitude of the bias from interactive fixed-effects models are similar to those of the

synthetic controls estimates, but only when the model under-specifies the number of unobserved

latent parameters. While the primary focus of this paper is not on interactive fixed effects, we

believe these results suggest this method has promise as a potential competitor or supplement to

synthetic controls. Future work could further explore the relative benefits and drawbacks of the two

methods in more detail.
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Figure 12: Interactive FE Results

The figure graphs mean bias estimates for interactive fixed-effect models over 3,000 Monte Carlo simulations of the
baseline DGP while varying the trends (D). We take the sum of the intercept and slope coefficients for each group
and then select the treatment group to be the one at the 70th percentile of that distribution. Rows denote trend
(linear, quadratic, cubic). The left column graphs mean bias by trend (D) across periods. The right column provides
estimates of the density and reports the true mean squared error, truncated at the 99th percentile. The short-dashed
line represents standard two way fixed-effects (TWFE) estimates, while the long-dash and solid line estimates come
from interactive fixed-effect models with 1 and 2 unobserved factors respectively, and also saturated with group and
time fixed effects, and treatment by time dummies for each post period.

8 Conclusion

Using a range of Monte Carlo simulations and a real world empirical example, we document bias in

synthetic controls estimates stemming from matching on idiosyncratic noise in the outcome variable.

Within the context of our assumed DGP, the magnitude of the bias is a function of the variance of

model errors of the outcome variable, the complexity of the underlying DGP, and features of the

data sample including number of potential donor units and length of pre-period. In a real world

application, we demonstrate that the bias can be substantial.
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We then present a simulation-based correction that directly estimates the bias in a feasibily

implementable manner. The correction can lead to bias improvements under a range of settings

for our polynomial-trend family of DGPs. However, the correction generates higher MSE in the

particular environments we simulate. Further, it requires knowledge of the parametric form of

the unobserved factors (in our setting, polynomial trends), which are not typically available to a

researcher.

Finally, we present interactive fixed effects as an alternative to synthetic controls. While fully

exploring the relative benefits and costs of interactive fixed effects compared to synthetic controls is

beyond the scope of the paper, our simulations suggest that interactive fixed effects do not produce

the same bias from matching on noise present in synthetic controls.

In sum, our paper sheds light on a poorly understood problem with an increasingly popular

program evaluation method. Our proposed correction procedures point towards future research

possibilities and refinements. Finally, we hope researchers employing synthetic control methods to

evaluate real world programs will employ similarly-motivated models and specifications in their work

to convince themselves and readers that their matches are on meaningful features of the world, and

not on noise.
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A Calculating the Bias in the Illustrative model

In this section we derive the bias in the estimated treatment effect for the model of Section 3.1 of

the paper. We consider a scenario with only three units, in which the treated unit lies in between

the two donor units. The only unobserved factor loading is the fixed effect for each unit. µ0 = 0

is the location of the fixed effect for the lower control unit, µ1 = 1 is the location of the fixed

effect for the upper control unit, and µtreated is the location of the fixed effect for the treated unit.

µtreated is a parameter that can vary, and the bias in the estimated treatment effect will depend on

this parameter. There are two time periods. The first period is used to estimate SC weights, and

the second period is used to estimate the treatment effect. The realized outcomes Yi,t are the unit

fixed effects, plus iid errors ϵ. For the treated unit in time 2, the realized outcome also includes the

treatment effect δ.

A.1 Bias in the treatment effect estimate

We consider the factor loadings (µ0, µ1, µtreated) as fixed, and we condition on these when we compute

the bias. We consider the model errors (ϵ’s) to be random. The bias is the expected error in the

estimated treatment effect, with expectation taken over the distribution of the ϵ’s

The SC weights on the donor units come from fitting the first period realization. There is a

weight w0 for unit 0 and a weight w1 for unit 1. The ideal “target” weights depend on the true

locations of the factor loadings:

wtgt
0 =

µ1 − µtreated

µ1 − µ0

wtgt
1 =

µtreated − µ0

µ1 − µ0

The ideal SC weights will recover the true factor loading for the treated unit:

wtgt
0 · µ0 + wtgt

1 · µ1 = µtreated

The estimated SC weights depend on the realized locations in period 1. In the formulas below

the model errors ϵ refer to first period errors only.

ŵ0 =
µ1 − µtreated + ϵ1 − ϵtreated

µ1 − µ0 + ϵ1 − ϵ0

ŵ1 =
µtreated − µ0 + ϵtreated − ϵ0

µ1 − µ0 + ϵ1 − ϵ0
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The Period 2 estimated treatment effect is:

δ̂ = Ytreated,t=2 − YSC,t=2

= δ + [µtreated − ŵ0µ0 − ŵ1µ1] + [ϵtreated,t=2 − ŵ0ϵ0,t=2 − ŵ1ϵ1,t=2]

The second period model errors (ϵ) are independent of everything and have mean 0, so the second

term in brackets will also have expectation 0. So the bias in the estimated treatment effect is:

Bias = E[µtreated − ŵ0 · µ0 − ŵ1 · µ1]

= E[(wtgt
0 − ŵ0) · µ0 + (wtgt

1 − ŵ1) · µ1]

The bias in the estimated treatment effect comes from the bias in the estimated SC weights.

A.2 The bias formula

The estimated weights (ŵ0, ŵ1) depend on the realizations on the first period’s ϵ. We can substitute

in, and then work to simplify:

(wtgt
0 − ŵ0) · µ0 = (

µ1 − µtreated

µ1 − µ0
− µ1 − µtreated + ϵ1 − ϵtreated

µ1 − µ0 + ϵ1 − ϵ0
) · µ0

(wtgt
1 − ŵ1) · µ1 = (

µtreated − µ0

µ1 − µ0
− µtreated − µ0 + ϵtreated − ϵ0

µ1 − µ0 + ϵ1 − ϵ0
) · µ1

Note: The ϵtreated term is only in the numerator, is independent of everything else, and has mean

0. So we can pull this part out of the equations and set equal to 0 in expectation. This means that

the existence of ϵtreated does not have an influence on the bias.

If we simplify further by plugging in the values µ0 = 0 and µ1 = 1, we then get:

Bias = E(µtreated −
µtreated − ϵ0
1 + ϵ1 − ϵ0

)

With the expectation taken over the distribution of the first period model errors, ϵ1 and ϵ0. This

can also be written as:

Bias = E(
µtreated · (ϵ1 − ϵ0) + ϵ0)

1 + ϵ1 − ϵ0
)
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A.3 Calculation of bias as a function of µtreated and σϵ

Figure 2 in Section 3.1 shows how the bias depends on µtreated and on σϵ. To calculate this, we

use the fact that ϵtreated plays no role in the bias, and set ϵtreated = 0. We then need to integrate

over the distribution of ϵi=0,t=1 and ϵi=1,t=1. To do so, we need to determine a distribution for the

ϵ. We use a truncated normal distribution. The truncation points are chosen to guarantee that

(µ0 + ϵ0) ≤ (µtreated) ≤ (µ1 + ϵ1). This ensures that the realized observed outcomes Y preserve the

same ranking as the underlying fixed effects: Yi=0,t=1 ≤ Yi=treated,t=1 ≤ Yi=1,t=1. To implement

this we first define a Normal distribution with standard deviation σnorm, and then truncate the

distribution at ±min(µtreated, 1 − µtreated). Figure 2, discussed in Section 3.1, shows a calculation

of the bias using numerical integration, for different values of of where the treated unit falls relative

to the donor units (µtreated). The x-axis in Figure 2 shows the standard deviation of the resulting

truncated variable, and the y-axis shows the bias in the estimated treatment effect.

A.4 SCAE for the illustrative example

In Section 3.2.2 of the paper, we introduce the Synthetic Control Average Error (SCAE), which

is the weighted sum of the model errors in the pre-treatment periods, using the synthetic control

weights. In this subsection we calculate the SCAE for the illustrative example of Section 3.1 in the

paper. This calculation shows that for the illustrative example, the expected value of the SCAE

produces the same formula as our definition of the bias of the synthetic control estimator.

The SCAE under the assumptions of the illustrative example is

SCAE = ŵ0 · ϵ0 + ŵ1 · ϵ1

=
(µ1 − µtreated + ϵ1 − ϵtreated) · ϵ0

µ1 − µ0 + ϵ1 − ϵ0
+

(µtreated − µ0 + ϵtreated − ϵ0) · ϵ1
µ1 − µ0 + ϵ1 − ϵ0

Taking expectations over ϵ, the terms for ϵtreated drop out. Combining remaining terms we have:

E[SCAE] = E[
µ1ϵ0 − µtreatedϵ0 + µtreatedϵ1 − µ0ϵ1

µ1 − µ0 + ϵ1 − ϵ0
]

For the illustrative model of section 3.1, µ0 = 0 and µ1 = 1. So the expected SCAE simplifies

to:

E[SCAE] = E[
µtreated(ϵ1 − ϵ0) + ϵ0

1 + ϵ1 − ϵ0
]
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This is the same as the formula for the bias of the SC estimator for this illustrative example.

B Alternative Distributions of µ0
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Figure A1: Alternative Distributions of µ0

The figure graphs mean bias by rank of treated group intercept, drawing the intercepts from alternative distributions.
The normal distribution line recreates the line in Figure 4a. Estimates come from 3,000 Monte Carlo repetitions using
models matching on all pre-period values of Y and varying distributions of µ.
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C Variability of Estimates
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Figure A2: Sampling Variability Across Data Features

These figures above mimic Figures 5, 6 and 7 above, graphing the standard deviation of the synthetic control estimates,
as opposed to the the mean, varying the parameters of interest. Estimates come from 3,000 Monte Carlo repetitions
using models matching on all pre-period values of Y.
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D Pre-Treatment Trend in Bias

Figure 3 shows a slight pre-treatment trend in the bias for higher values of error term variance.

As mentioned in the main text, this occurs because in some cases no perfect pre-treatment match

is available. These are less interesting cases, since they will be apparent to the researcher in the

form of bad pre-treatment matches. Our paper focuses on the case where there is a good pre-

treatment match. Figure A3 demonstrates that the bias is not primarily driven by lack of available

pre-treatment matches. Figure A3a recreates the case in Figure 3, where error variance is equal to

0.2 and the treated unit trend rank is 22nd out of 31. There is a slight pre-trend in the bias. But if

we drop Monte Carlo runs where the root mean squared pre-treatment error (RMSPE, a measure of

the pre-treatment fit) is below the 75th percentile across all Monte Carlo runs and recreate the same

graph, the trend is diminished. If we further limit the RMSPE to cases below the 50th percentile,

where all cases are effectively a perfect match, the bias is nearly exactly zero throughout the pre-

treatment period. But in all cases there is still a bias in the post period due to the spurious matching

on error terms discussed in this paper.

We considered requiring a maximum RMSPE for a given Monte Carlo run for all analysis per-

formed in this paper (recall that for all analysis we do require that the treated unit outcome is never

the highest or lowest of all units in any pre-treatment period, making a match impossible). However,

given the multitude of empirical settings we analyze, particularly when varying the dimensionality

of the DGP, a consistent RMSPE standard that both enforces an excellent match and does not

exclude the vast majority of runs proved impractical. Therefore we highlight the issue here and

acknowledge that some of the bias we show in our analysis may be driven by mismatches in the

pre-period (though also note that in most analyses we use 30 control units and conservatively set

the treated unit rank at the 70th percentile, so good matches are theoretically feasible), but a bias

exists even in the case of perfect matching.
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Figure A3: Bias by period for various matching-quality thresholds

This figure shows mean bias by period for 3 different rules for pre-period match quality of the synthetic controls
estimate. The top left panel shows bias results when all Monte Carlo simulations are included. The top right panel
limits results to those where the pre-period RMSE is below the 75th percentile of realized RMSE across simulation
runs. The bottom panel includes only the lowest 50% pre-period RMSE realized across simulation runs. Results are
averaged over 3,000 Monte Carlo replications of the baseline DGP with linear trends.
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E Holding Factor Loadings (µi) Fixed in Simulations

In our paper we think of the matching on noise bias as being conditional on fixed locations of µi,

and depending on the relative position of µi=treated compared to the donor units. However, in our

Monte Carlo simulations we draw random values for µi and choose as our treatment group the unit

with the appropriate rank of
D∑

d=0

µi. That is, we fix the relative rank of µi=treated, by randomly

generating the values of the muis and then always choosing µi=treated at its predetermined rank.

This approach allows for easy implementation in our simulations, and lets us show how bias

arises when conditioning on the ranking of the treated group among the controls. In this appendix

we show that we obtain similar results when we fix the factor loadings µi across simulations.

Fixing the factor loadings µi requires us to choose what values to fix them at. We do this as

follows. First, we take a univariate standard normal distribution and divide it into five segments

with equal probability, with four “cut points” dividing the segments (these cut points are at ap-

proximately {±0.253,±0.842}). We assign µ1 to take the value of the conditional mean within each

segment. We next divide the standard normal into six segments (these cut points are at approxi-

mately 0, {±0.532,±1.400}), and assign µ0 to take the value of the conditional mean within each

segment. The 30 donor units each take one of the values from the (5 × 6 = 30) combinations. We

select the values of the factor loadings of the treated unit to yield the 70th percentile of the sum of

µ0 and µ1 from a bivariate standard normal with zero correlation. This corresponds to the 70th per-

centile of a N(0,2) distribution, so we assign the treated factor loadings to be mu0 = mu1 = 0.3708

(since the 70th percentile of a N(0,2) is 0.3708 + 0.3708 = 0.7416).

Using these fixed values of µ, we then repeat our Monte Carlo analysis, allowing for random

draws of only ϵ across Monte Carlo replications. We present the results in Appendix Figure A4,

which is analogous to Figure 3 in the main text. The pattern of the bias is similar to the baseline

results in Figure 3. There is no bias when σϵ is zero; and the bias is monotonically increasing with

the variance of the error term. The key difference with Figure 3 is that the magnitude of the bias is

slightly smaller for each given level of σϵ in each pre-period: with the largest bias for σϵ = 0.5 being

slightly above .3 in period 10 rather than slightly below 0.4.
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Figure A4: Mean bias estimates by period across Var(ϵ) (σ).

This figure shows the average bias in our Monte Carlo simulations across different pre-periods; fixing the values of
the control mui (factor loadings for the intercept and trend). We set the treatment group such that the sum of
the intercept and slope coefficients is chosen to be the one at the 70th percentile of that distribution (in this case
mu0 = mu1 = 0.3708 since the 70th percentile of a N(0,2) is 0.3708 + 0.3708 = 7416). We specify the synthetic
control estimator to match on all pre-period values of Y. The DGP includes a linear time trend, 10 pre-periods, and
30 donor groups. Results are averaged over 3000 Monte Carlo replications. See text for more details

The similarity between Figure A4 and Figure 3 reassures us that our results are driven by the

randomness of the ϵ. They are not an artifact of drawing different values of mui’s across simulations.

We see this as evidence that our approach of fixing the rank of µi=treated while drawing µi across

simulations is conceptually similar.
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F Example Corrections for Free Trade Application
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Figure A5: Free Trade Demo by Country

The figure above provides country-level estimates of the effects of Free Trade on (ln) GDP/cap (following Billmeier
and Nannicini (2013)). Baseline estimates in the dashed red line match on all pre-period Y values; the solid black
line represents mean bias estimates from our feasible bootstrap correction. We display 9 of the 17 estimates, sorted
(beginning top left) from lowest to highest estimated average post-period treatment effect based on the baseline
specification. Results for all countries are available upon request.
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