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T asymptotics. The number of groups, G, is allowed to grow but at a slower rate. We also
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1 Introduction

In this paper, we consider policy analysis using multilevel linear regression models with panel
data or repeated cross-sections. The multilevel regression model, which involves both aggregate
and individual level variables, is prevalent in policy analysis when examining the effect of group
level policies on individual level outcomes. See, for example, county level food stamp programs
and household level employment status (Hoynes and Schanzenbach, 2012), state level cigarette
tax policy and individual level childhood welfare (Simon, 2016), and county based social pension
provision and household level income (Huang and Zhang, 2021). In this setup, researchers often
use the additive fixed effects (or two-way fixed effects) approach based on the group fixed effects
and time effects. The model is given by

Yigt = Z ′gtβ
0
Z +W ′

igtβ
0
W + α0

g + f 0
t + εigt, (1)

where Yigt is an outcome variable for individual i in group g at time t, Wigt is a (dw × 1) vector
of individual level covariates, Zgt is a (dZ × 1) vector of group level regressors including the policy
variable, α0

g and f
0
t are scalar group fixed effects and time effects, respectively, εigt is an idiosyncratic

error, and β0 = (β0′
Z , β

0′
W )
′ is a (dβ × 1) vector of unknown coeffi cients. It is worth noting that Zgt

includes not only group specific variables, such as group level policies and group characteristics,
but also the group averages (or other summaries) of individual level variables, such as the average
income and education levels within the group.
A crucial condition for (1) to be valid is that the effect of unobserved group heterogeneity is

time invariant and the impact of time effects is homogeneous across groups. The latter is referred
to as the “parallel trends" assumption in the difference in differences (DID) model. However, this
assumption may not be plausible in empirical studies. For instance, differential trends can appear
if groups based on different regions, markets or ages exhibit heterogeneous responses to common
time effects such as cyclical fluctuations (Blundell and Dias, 2009).
To address this potential problem of the additive fixed effects approach, we propose an interactive

fixed effects model in the multilevel regression setting

Yigt = Z ′gtβ
0
Z +W ′

igtβ
0
W + λ0′

g F
0
t + εigt, (2)

where a (dF × 1) vector of unobserved common factors F 0
t interacts with unobserved group factor

loadings λ0
g. Xigt =

(
Z ′gt,W

′
igt

)′
is assumed to be exogenous with respect to εigt, but it is allowed to

be arbitrarily correlated with λ0
g and F

0
t . As F

0
t is multiplicative of λ

0
g, our proposed model in (2)

improves upon the additive model in (1) by accounting for the time varying effect of unobserved
group heterogeneity as well as the group specific impact of common factors. We refer to our model
as the group interactive fixed effects model. Our model nests the additive model as a special case
with λ0

g =
(
α0
g, 1
)′
and F 0

t = (1, f 0
t )
′.

The proposed model is a variation of the standard interactive fixed effects model, in which the
factor loading is individual specific. The interactive fixed effects model has become popular in the
literature due to its flexibility in accommodating a rich form of unobserved heterogeneity while
remaining parsimonious enough to make inference on β0. Pesaran (2006) and Bai (2009) are two
seminar papers that develop the estimation and inference procedures for this model. Pesaran (2006)
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introduces the common correlated effects (CCE) estimator for heterogeneous panel models, and Bai
(2009) proposes the LS estimator based on the principal component (PC) method. Various meth-
ods have been studied in the literature, including the QMLE method based on the common shock
model (Bai and Li, 2014), the method of LASSO (Lu and Su, 2016), and the GLS method (Bai and
Liao, 2017). Moon and Weidner (2017) investigate the LS estimator for this model in the context
of dynamic panel models. All those methods are based on the large n and large T asymptotics,
which has been the primary focus in this literature. Alternatively, there are papers that study this
model under the large n and fixed T asymptotic framework. Holtz-Eakin et al. (1988) and Ahn
et al. (2001, 2013) consider the GMM method based on the quasi-differencing approach. Recently,
Juodis and Sarafidis (2022) develop a novel GMM approach that approximates the unobserved
common factors with observed factor proxies. In the policy analysis context, Callaway and Karami
(2023) consider an interactive fixed effects method for estimating the average treatment effect with
a binary treatment. They propose a two-step estimation procedure that requires time invariant
instrumental variables. In our study, we extend Bai’s LS estimation procedure to our group in-
teractive fixed effects model and analyze its properties under the asymptotics where (n,G) → ∞
with fixed T , where G represents the number of groups. In Bai’s model, if the factor loadings were
known, consistency for β would be achieved as n→∞ regardless of whether T is fixed or diverges.
Therefore, the condition that (n, T ) → ∞ reflects the fact that the individual factor loadings are
unknown and estimated. In our model, since λ0

g is assumed to be common within each group, we
achieve consistency for a fixed T, if the number of individuals in each group grows as n→∞ such
that G/n→ 0.
It is important to acknowledge that our proposed approach, which assumes factor loadings to

be common within a group, may be vulnerable to endogeneity arising from unobserved individual
heterogeneity. This is a crucial limitation of our model when compared to the standard interactive
fixed effects model. Our model specification is primarily motivated by the context of policy analysis
using multilevel regression models. In such cases, it is common practice to employ the additive
group fixed effects regression model in (1). Our model in (2) enhances the additive model by
accommodating heterogeneous responses to common factors across different groups. Moreover,
our method can be applied not only to panel data but also to repeated cross-sections, whereas
the standard interactive model requires panel data. Additionally, our LS method is valid under
the large n and fixed T asymptotics, which differs from the typical asymptotic framework in the
standard interactive fixed effects literature, which assumes both n and T to diverge. Given that the
use of panel data and repeated cross-sections with a large number of individuals and a short time
period is prevalent in policy analysis employing multilevel regression models, our approach serves
as a valuable complement to the standard interactive model.
This paper proposes a test for the level of grouping for factor loadings. While our procedure

assumes that group membership is known, in practical situations, it can be challenging to decide
upon the appropriate level of grouping to specify the group factor loading. For instance, when a
policy is country specific and the outcome is at the firm level, one may initially specify the factor
loading at the country level. However, a finer level of grouping should be considered if there is a
suspicion that, within each country, the source of endogeneity is an unobserved variable that varies
across, for example, different industry sectors. We suppose that two different grouping schemes, A0

and Aa, of which the latter represents a finer level of grouping that nests the former as a special case,
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are available. The null hypothesis of our test is that A0 is correctly specified, and the alternative is
that A0 is misspecified. By exploiting the fact that, under the null, both A0 and Aa yield consistent
estimators, whereas A0 does not under the alternative, our test compares the group interactive fixed
effects estimators based on A0 and Aa and determines whether their difference is significant.
Another contribution of this paper is the extension of our approach to address the issue of

policy endogeneity with respect to idiosyncratic errors. Certain sources of endogeneity, such as
simultaneity and measurement error, can persist even after introducing group interaction terms.
To tackle this challenge, we propose a moment condition based GMM approach which we call the
“interactive fixed effects GMM" (IFE-GMM) estimator. The idea of this approach based on the
standard interactive fixed effects model is discussed by Moon et al. (2017) in the context of random
coeffi cients logit demand models, but they do not provide the asymptotic properties. Therefore,
our contribution lies in providing the estimation procedure and establishing the asymptotics in the
group interactive fixed effects setting. Regarding the endogeneity problem related to idiosyncratic
errors, Moon et al. (2017) propose the “least-squares minimum distance (LS-MD)" method in
random coeffi cients logit demand regression models. Subsequently, Lee et al. (2012) extend this
method to the linear regression model. Lu (2023) proposes the QMLE and iterative generalized
principal components (IGPC) methods to estimate spatial interactive fixed effects models in the
presence of simultaneity.
We provide empirical illustrations of the proposed approach using two empirical examples. The

first application builds upon Buccirossi et al. (2013), who examine the impact of country level
competition policy on country-industry level total factor productivity (TFP) growth. The authors
employ a multilevel additive fixed effects regression model with panel data. In our study, we
reexamine their findings using the proposed group interactive fixed effects method. We also conduct
the test on the level of grouping to specify the factor loading and estimate the model using the
IFE-GMM estimator. The second empirical application is based on Huang and Zhang (2021), who
investigate the effects of county based social pension provision on individual behaviors and social
welfare in China. They employ a multilevel additive fixed effects model with repeated cross-sections,
and we revisit their analysis using our group interactive fixed effects approach.
The outline of this paper is as follows. Section 2 introduces the proposed model and its LS

estimator. Section 3 examines the asymptotic properties of the LS estimator and associated test
statistics. In Section 4, we propose a test to determine the appropriate level of grouping for the
factor loading. Section 5 studies GMM estimation to address policy endogeneity with respect to
idiosyncratic errors. Empirical applications are presented in Section 6. The last section concludes.
Additional theoretical results are in the appendix. Monte Carlo simulations, additional discussion,
and proofs are included in the supplementary appendix.

2 Model and estimation

Let Ag = {i : gi = g} and ng =
∑n

i=1 1 {i ∈ Ag} denote the set of individuals in group g and the
size of Ag, respectively.

Assumption 1 For all g = 1, ..., G, ng is time invariant.
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Assumption 1 states that our group interactive approach requires the size of each group should
remain constant over time. If this assumption does not hold in practice, we have two alternatives.
First, we can reconstruct the dataset to satisfy the assumption, as demonstrated in our empirical
applications in Section 6. Alternatively, we can modify our proposed estimation procedure below,
based on the expectation-maximization (EM) algorithm by Stock and Watson (1998) and Bai (2009,
Supplemental Material), which is developed for estimating factor models with unbalanced panel.
The details of this modified procedure are provided in the supplementary appendix.
Under Assumption 1, (2) can be written as

Yig = Zgβ
0
Z +Wigβ

0
W + F 0λ0

g + εig, (3)

where F 0 = (F 0
1 , ..., F

0
T )
′
, Yig = (Yig1, ..., YigT )′ , and Zg,Wig and εig are defined in the same manner.

We propose LS estimation for our model based on Bai (2009). Let Xig = [Zg,Wig] and ΛG =
(λ1, ..., λG)′ . As λg is common within each group, the LS objective function can be written as

Q (β, F,ΛG) =
1

n

G∑
g=1

∑
i∈Ag

(Yig −Xigβ − Fλg)′ (Yig −Xigβ − Fλg) , (4)

which is minimized at the LS estimator
(
β̂, F̂ , Λ̂G

)
. F and ΛG are not separately identifiable due

to their multiplicative structure, and we employ the following normalization

T∑
t=1

FtF
′
t = IdF and

1

n

G∑
g=1

ngλgλ
′
g = diagonal (5)

to uniquely determine F and ΛG. F̂ and Λ̂G satisfy this normalization restriction.
Let w̄g = n−1

g

∑
i∈Ag wig denote the group average of random vectors {wig, i ∈ Ag} . Concentrat-

ing out

λ̂g (β, F ) = (F ′F )
−1
F ′

 1

ng

∑
i∈Ag

(Yig −Xigβ)

 = F ′
(
Ȳg − X̄gβ

)
(6)

out of (4), we have

Q (β, F ) =
1

n

G∑
g=1

∑
i∈Ag

(
Yig − PF Ȳg −

(
Xig − PF X̄g

)
β
)′ (

Yig − PF Ȳg −
(
Xig − PF X̄g

)
β
)

(7)

=
1

n

G∑
g=1

∑
i∈Ag

(Yig −Xigβ)′ (Yig −Xigβ)− 1

n

G∑
g=1

ng
(
Ȳg − X̄gβ

)′
FF ′

(
Ȳg − X̄gβ

)
, (8)

where PF = F (F ′F )−1 F ′ = FF ′ is the projection matrix. From (7), β̂ (F ) that minimizes Q (β, F )
given F is

β̂ (F ) =

 G∑
g=1

∑
i∈Ag

(
Xig − PF X̄g

)′ (
Xig − PF X̄g

)−1
G∑
g=1

∑
i∈Ag

(
Xig − PF X̄g

)′ (
Yig − PF Ȳg

)
.
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We also obtain F̂ (β) given β. Since the first term in (8) does not depend on F , the minimization
of (8) with respect to F is equivalent to the maximization of

1

n

G∑
g=1

ng
(
Ȳg − X̄gβ

)′
FF ′

(
Ȳg − X̄gβ

)
= tr

[
F ′
R̄ (β) R̄ (β)′

n
F

]
, (9)

where R̄ (β) =
[√
n1

(
Ȳ1 − X̄1β

)
, ...,
√
ng
(
Ȳg − X̄gβ

)
, ...
√
nG
(
ȲG − X̄Gβ

)]
. It is well known that

the solution to this maximization is the (T × dF ) matrix whose columns are the eigenvectors as-

sociated with the dF largest eigenvalues of n−1R̄ (β) R̄ (β)′. Therefore, we obtain
(
β̂, F̂

)
based

on

β̂ =

 G∑
g=1

∑
i∈Ag

(
Xig − PF̂ X̄g

)′ (
Xig − PF̂ X̄g

)−1
G∑
g=1

∑
i∈Ag

(
Xig − PF̂ X̄g

)′ (
Yig − PF̂ Ȳg

)
, (10)

and
1

n
R̄
(
β̂
)
R̄
(
β̂
)′
F̂ = F̂ Γ̂, (11)

where Γ̂ is a diagonal matrix that includes the dF largest eigenvalues of n−1R̄
(
β̂
)
R̄
(
β̂
)′
. For

implementation, we plug in an initial value of β into (11) or an initial value of F into (10) and
iterate (10) and (11) to convergence. As discussed in Bai (2009) and Su and Chen (2013), this
procedure can lead to a local minimum of the objective function in (7) depending on the initial
value we use. Thus, we need to conduct iteration with several initial values and choose the one that
produces the smallest value of (7). Applying

(
β̂, F̂

)
to (6), we have

λ̂g = F̂ ′
(
Ȳg − X̄gβ̂

)
and Λ̂G =

(
λ̂1, ..., λ̂G

)′
. (12)

Note that the rank condition requires dF ≤ T − 1. If dF = T, we have PF̂ = IdF because each
column of F̂ is orthonormal. Thus, Xi − PF̂ X̄gi = [Zgi ,Wi] −

[
Zgi , W̄gi

]
=
[
O,Wi − W̄gi

]
, where

O denotes a (T × dz) zero matrix. It is obvious that
∑n

i=1

(
Xi − PF̂ X̄gi

)′ (
Xi − PF̂ X̄gi

)
is not of

full rank in this case. This implies, for example, that when T = 5, 4 is the maximum number of
interaction term we can employ in the model.
Although our model nests the additive fixed effects model as discussed in Section 1, we can also

explicitly include the additive fixed effects terms in the model

Yigt = Z ′gtβ
0
Z +W ′

igtβ
0
W + λ0′

g F
0
t + α0

g + f 0
t + εigt. (13)

To estimate (13), we first use the within transformation to eliminate α0
g and f

0
t from the model,

and then apply the LS estimation method proposed above. See Bai (2009, Section 8) for details,
where the procedure is discussed in the context of standard interactive fixed effects model.
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3 Asymptotic theory and inference

In this section, we examine the asymptotic properties of β̂ and the associated test statistics. Let
Qvw
n (F ) = 1

n

∑G
g=1

∑
i∈Ag (vig − PF v̄g)′ (wig − PF w̄g) for random variables v and w. Define

BXX
n (F ) =

1

n

G∑
g=1

∑
i∈Ag

XX
ig (F )′XX

ig (F )

= QXX
n (F )− 1

n2

G∑
g=1

G∑
g̃=1

ngng̃a
0
gg̃X̄

′
gMF X̄g̃, (14)

where a0
gg̃ = λ0′

g

(
n−1

∑G
g1=1 ng1λ

0
g1
λ0′
g1

)−1

λ0
g̃ and

XX
ig (F ) =

(
Xig − PF X̄g

)
− 1

n

G∑
g̃=1

ng̃a
0
gg̃MF X̄g̃. (15)

Let MF̂ = IT − PF̂ . To understand (14) and (15), we need to look at

√
n
(
β̂ − β0

)
= QXX

n

(
F̂
)−1 1√

n

G∑
g=1

∑
i∈Ag

[
X̄ ′gMF̂F

0λ0
g +

(
Xig − PF̂ X̄g

)′
εig

]
, (16)

which is directly obtained from (3) and (10). The first part of (16) comes from the estimation error
in F̂ because MF 0F

0 = 0. For this term, we show that

1√
n

G∑
g=1

∑
i∈Ag

X̄ ′gMF̂F
0λ0

g

=

{
1

n2

G∑
g=1

G∑
g̃=1

ngng̃a
0
gg̃X̄

′
gMF̂ X̄g̃

}
√
n
(
β̂ − β0

)
− 1

n
√
n

G∑
g=1

G∑
g̃=1

ngng̃a
0
gg̃X̄

′
gMF̂ ε̄g̃ + op (1)

under the assumptions presented below. Combining this expression with (16), Proposition A2 states

√
n
(
β̂ − β0

)
= BXX

nT

(
F̂
)−1 1√

n

n∑
i=1

XX
ig

(
F̂
)′
εig + op (1) .

Thus, both (14) and (15) involve the effect of estimation error in F̂ .
To investigate the asymptotics of β̂, we make the following assumptions.

Assumption 2 (i) E ‖Xigt‖4 ≤M. (ii) Let F = {F : F ′F = IdF } . We have infF∈F B
XX
n (F ) > 0.

Assumption 3 (i) E ‖Ft‖4 ≤M. (ii) E ‖λg‖4 ≤M, n−1
∑G

g=1 ngλgλ
′
g →p

∑
Λ > 0 as (n,G)→∞.
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Assumption 4 (i) For all i, g and t, E (εigt) = 0 and E
(
ε8
igt

)
≤M.

(ii) For all (t, s) , lim(n,G)→∞
1
G

∑G
g=1

∑G
g̃=1

√
ngng̃ |E (ε̄gtε̄g̃s)| < M.

(iii) For all (t, s) , lim(n,G)→∞
1
n

∑G
g=1

∑G
g̃=1 ngng̃ |E (ε̄gtε̄g̃s)| < M.

(iv) For all (t, s), lim(n,G)→∞E
(

1√
G

∑G
g̃=1 ng̃ [ε̄g̃tε̄g̃s − E (ε̄g̃tε̄g̃s)]

)2

< M.

Assumption 5 εigt is independent of Xjg̃s, λg̃ and Fs for all i, j, g, g̃, t and s.

Assumption 2 is the identification condition for the proposed LS estimator and ensures that
there exist dF distinct common factors. Assumption 3 provides the moment conditions for Ft and
λg. Assumption 4 states the moment conditions and weak dependence conditions for εigt. These
conditions are adapted from Bai (2009) and consider the group structure of our model. Weak
dependence of

√
ngε̄gt across groups is not restrictive, as strong dependence is absorbed in the

interaction terms of the model.
Assumption 5 requires our group interactive model effectively captures the source of endogeneity

to ensure that regressors are exogenous with respect to idiosyncratic errors. It is important to note
that our group factor loading model may fail to satisfy this assumption if the true factor loadings
are individual specific. To understand the issue, let’s consider the case when the true model follows
the standard interactive fixed effects structure

Yigt = X ′igtβ
0 + F 0′

t λig + eigt, (17)

where λig represents a vector of factor loadings for individual i in group g, and eigt denotes the idio-
syncratic error. We ignore the fact that λig is time variant for repeated cross-sections for notational
simplicity. We can define the group factor loading as the group mean of λig, i.e., λ0

g = E (λig|i ∈ Ag),
and within-group individual heterogeneity γig as the difference between the individual factor loading
λig and the group mean λ0

g, which leads to λig = λ0
g + γig. In this setup, our regression model is

written as
Yigt = X ′igtβ

0 + F 0′
t λ

0
g + εigt with εigt = F 0′

t γig + eigt, (18)

which implies Assumption 5 does not hold if Xigt is correlated with γig.

Assumption 6 For all g, ng/nα → cg where cg ∈ (0,∞) and 0 < α < 1.

Assumption 6 allows group sizes to be different but requires them to be comparable to each
other. They are also allowed to grow as n increases but at a slower rate.

Theorem 1 Suppose that Assumptions 1-6 hold. Then, β̂ − β0 →p 0 as (n,G) → ∞ such that
G/n→ 0 for fixed T.

Theorem 1 establishes the consistency of β̂. The proof is provided in the supplementary appendix.
This is analogous to the consistency result in the standard interactive fixed effects model by Bai
(2009, Proposition 1(i)). We can compare the rate conditions between these two estimators. In
Bai’s model, if the factor loadings were known, consistency would be achieved as n→∞ regardless
of whether T is fixed or diverges. Hence, the rate condition (n, T ) → ∞ in Bai (2009) reflects the
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fact that the individual factor loadings are unknown and estimated. In our model, λ0
g is common

within each group. Due to this group structure, β̂ is consistent for a fixed T, if the number of
individuals in each group grows as n → ∞ such that G/n → 0. Regarding F̂ , its average norm
consistency is provided in Proposition A1 in the appendix.
If the true model follows the standard interactive fixed effects structure in (17), the proof of

Theorem 1 shows the consistency of β̂ requires

n−1

G∑
g=1

∑
i∈Ag

T∑
t=1

F 0′
t γigX

′
igt = n−1

G∑
g=1

∑
i∈Ag

T∑
t=1

F 0′
t

(
λig − λ0

g

)
X ′igt →p 0,

which holds if the data are panel and eventually grouped at the individual level (i.e., ng → 1).
However, this condition is not attainable in our large (n,G) and fixed T asymptotics as we require
G/n→ 0 leading to ng →∞. Thus, our approach does not achieve consistency when factor loadings
are individual specific, which contrasts with Bester and Hansen (2016) who establish the asymptotic
validity of the group fixed effects estimator in nonlinear panel models under the large n and large
T asymptotics.
To establish the asymptotic normality, we introduce the following assumptions.

Assumption 7 (n,G)→∞ such that G/
√
n→ 0.

The rate condition, G/
√
n → 0, in Assumption 7 requires G to grow at a slower rate than

the one for consistency in Theorem 1, which is necessary to address the asymptotic bias of β̂ as
(n,G)→∞ with fixed T . Letting XX

ig = XX
ig (F 0) , we define

Vn =
1

n

G∑
g=1

∑
i∈Ag

G∑
g̃=1

∑
j∈Ag̃

E
[(
XX
ig

)′
εigε

′
jg̃XX

jg̃

]
. (19)

Assumption 8 We have 1√
n

∑G
g=1

∑
i∈Ag

(
XX
ig

)′
εig →d N (0, V ) where V = lim(n,G)→∞ Vn is posi-

tive definite.

Assumption 8 is a high level assumption of the central limit theorem for 1√
n

∑G
g=1

∑
i∈Ag

(
XX
ig

)′
εig.

This assumption allows heteroskedasticity and serial and cross sectional correlation in the idiosyn-
cratic errors. A similar assumption is made in Bai (2009) and Lu and Su (2016). Theorem 2 states
the asymptotic normality of β̂.

Theorem 2 Suppose that Assumptions 1-8 hold. We then have
√
n
(
β̂ − β0

)
→d N

(
0, B−1

XX

V B−1
XX

)
where BXX = plim(n,G)→∞B

XX
n (F 0) .

The proof is in the supplementary appendix. To obtain this result, we consider the following
expansion which appears in the proof of the theorem

√
n
(
β̂ − β0

)
= B−1

XX

1√
n

G∑
g=1

∑
i∈Ag

(
XX
ig

)′
εig +

G√
n
B−1
XXAn

+ op

(√
n
∥∥∥β̂ − β0

∥∥∥)+ op

(
G√
n

)
+Op

(
1√
n

)
, (20)
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where ‖·‖ is the Euclidean norm and

An = − 1

n

G∑
g=1

ngX̄
′
gMF 0ΩF

0HΥλ0
g,

with Υ =
(∑T

t=1 F
0
t F̂
′
t

)−1 (
n−1

∑G
g=1 ngλ

0
gλ

0′
g

)−1

and Ω = 1
G

∑G
g=1 ngE

(
ε̄gε̄
′
g

)
. (20) indicates when

G grows at the same rate as
√
n, G√

n
B−1
XXAn becomes a source of asymptotic bias unless

√
ngε̄g

is uncorrelated and homoskedastic across the groups g = 1, ..., G. This is related to the incidental
parameters problem by Neyman and Scott (1948). Since T is assumed to be fixed in our model,
the estimation error in F̂t does not introduce asymptotic bias, and the only source of incidental
parameters problem arises from λ0

g. The rate condition G/
√
n → 0 implies the number of λ0

g’s to
be estimated becomes negligible with respect to n as (n,G) → ∞, leading the bias due to the
estimation error in λ̂g to vanish asymptotically. This rate condition is relevant in empirical studies
if each group includes a large number of individuals, for example, when we have a state/county
level policy and household based outcome, and when we have a country level policy and firm level
outcome. Under this rate condition, β̂ is asymptotically normal and centered at β0 when normalized
by the sample size.
We consider inference on β0 based on Theorem 2. Suppose that we are interested in the following

null and alternative hypotheses

H0 : Rβ = r0 vs. H1 : Rβ 6= r0, (21)

where R is a (dR × dβ) matrix and r0 is a (dR × 1) vector. To conduct the test, we first need to
estimate BXX

n and Vn in the variance term. We can estimate BXX
n using the sample analogue

B̂XX
n =

1

n

G∑
g=1

∑
i∈Ag

(
X̂X
ig

)′
X̂X
ig , (22)

where

X̂X
ig =

(
Xig − PF̂ X̄g

)
− 1

n

G∑
g̃=1

ng̃âgg̃MF̂ X̄g̃ and âgg̃ = λ̂′g

(
1

n

G∑
g1=1

ng1λ̂g1λ̂
′
g1

)−1

λ̂g̃. (23)

For the estimation of Vn, we consider two different cases.

Assumption 9 (i) εig and εjg̃ are independent for any i and j if g 6= g̃ and n−1
∑G

g=1 ng E
(√

ngε̄g
)4
<

M, (ii) εigt are i.i.d. over i, g and t with zero mean and variance σ2.

The cluster covariance structure in Assumption 9(i) is commonly employed in the multilevel
regression. See Moulton (1990) and Bertrand et al. (2004) for further discussion. While this
assumption characterizes the cluster dependence of {εig} based on {Ag, g = 1, ..., G} for notational
simplicity, it can be easily generalized to any level of clustering as long as the independence condition
holds across clusters. A researcher selects an appropriate level of clustering by using his/her prior

9



information about data or by conducting a test for this choice. See, for example, Ibragimov and
Mueller (2014), who have developed a test about the level of clustering. The i.i.d. assumption in
Assumption 9(ii) is considered to develop a group level test for factor loadings in Section 4.
Under Assumption 9(i) and (ii), Vn reduces to

V c
n =

1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

E
[(
XX
ig

)′
εigε

′
jgXX

jg

]
and V s

n =
σ2

n

G∑
g=1

∑
i∈Ag

E
[(
XX
ig

)′XX
ig

]
,

respectively. Thus, V c
n represents the variance under the cluster structure based on g = 1, ..., G,

and V s
n represents the variance under the i.i.d. and homoskedasticity assumption. We estimate V

c
n

and V s
n with

V̂ c
n =

1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

(
X̂X
ig

)′
ε̂igε̂

′
jgX̂X

jg and V̂
s
n = σ̂2B̂XX

n ,

where σ̂2 = 1
nT

∑G
g=1

∑
i∈Ag ε̂

′
igε̂ig with ε̂ig = Yig −Xigβ̂ − F̂ λ̂g.

Theorem 3 Suppose that Assumptions 1-8 hold. Then, we have(
B̂XX
n

)−1

V̂ c
n

(
B̂XX
n

)−1

−B−1
XXV

c
nB
−1
XX →p 0 and σ̂2

(
B̂XX
n

)−1

− σ2B−1
XX →p 0

under Assumption 9(i) and (ii), respectively.

The Wald statistics are given by

Wc =
√
n
(
Rβ̂ − r0

)′(
R
(
B̂XX
n

)−1

V̂ c
n

(
B̂XX
n

)−1

R′
)−1√

n
(
Rβ̂ − r0

)
,

Ws =
√
n
(
Rβ̂ − r0

)′(
σ̂2R

(
B̂XX
n

)−1

R′
)−1√

n
(
Rβ̂ − r0

)
.

The corollary below follows from Theorems 2 and 3.

Corollary 1 Suppose that Assumptions 1-8 hold. If H0 is true, then we have

Wc →d χ2(dR) and Ws →d χ2(dR)

under Assumption 9(i) and (ii), respectively.

4 Testing the level of grouping for group factor loadings

To establish the asymptotics of β̂, we have assumed that group membership is known. However, this
assumption may not hold in empirical applications. Researchers often do not have prior information
about group membership, which makes the problem more challenging. In recent literature, there
has been increasing attention given to grouped panel data models in which group membership is

10



unknown. See, for example, Sun (2005), Hahn and Moon (2010), Bonhomme and Manresa (2015),
Ando and Bai (2016), Su et al. (2016), and Lumsdaine et al. (2023). However, these approaches
are not directly applicable to our model, as they require large n and large T panel data with fixed
G, whereas our model accommodates large (n,G) and small T repeated cross-sections.
To address this practical issue, we develop a group level test to specify the group factor loading.

This allows us to decide upon the appropriate level of grouping among different alternatives. For
instance, when we estimate the effect of a country level policy on firm level outcomes, it is common
to introduce interaction terms using country specific factor loadings. However, if we suspect that
the sensitivity to common factors varies across different industry sectors within each country, a finer
level of grouping should be considered.
Suppose that two different levels of grouping are available, A0 = {A1, ...,Ag, ...,AG} and

Aa = {A(1)
1 , ...,A(κ1)

1 , ...,A(1)
g ...,A(κg)

g , ...,A(1)
G ...,A(κG)

G }, between which Aa represents a finer level
of grouping because Ag = ∪κg`=1A

(`)
g . While we assume group membership of A0 is the same as the

one for the group level regressors for notational simplicity, it is not necessary and can be gener-
alized to any level of grouping. Let λ(`)

g denote the vector of group factor loadings based on A(`)
g

and Ga =
∑G

g=1 κg denote the number of groups under Aa. We assume that the rate conditions in
Assumptions 6 and 7 hold for both A0 and Aa. The null and alternative hypotheses are given by

H0 : A0 is correctly specified vs. Ha : A0 is misspecified.

Let β̂a is the group interactive fixed effects estimator based on Aa. We develop the test using
the facts that (i) β̂ and β̂a are consistent under H0 because A0 is nested by Aa with λ(`)

g = λg for
all ` = 1, ..., κg, and (ii) only β̂a is consistent if Aa is correctly specified but A0 is misspecified.
We defineXX

a,ig (F ) , XX
a,ig, B

XX
a,n andBa,XX for the model in the same manner asXX

ig (F ) , XX
ig , B

XX
n ,

and BXX based on Aa. The following result is a direct consequence of Theorem 2.

Corollary 2 Suppose that Assumptions 1-8 hold. Then, under H0, we have

√
n
(
β̂ − β̂a

)
→d N (0, VT ) ,

where VT = limn→∞ V ar
(

1√
n

∑G
g=1

∑
i∈Ag

((
BXX
n

)−1 (XX
ig

)′ − (BXX
a,n

)−1 (XX
a,ig

)′)
εig

)
.

This result allows us to test the level of grouping. Under Assumption 9(ii), VT is written as

VT = σ2
(
B−1
XX +B−1

a,XX −B−1
XXC0a,XXB

−1
a,XX −B−1

a,XXCa0,XXB
−1
XX

)
, (24)

where C0a,XX = lim(n,G)→∞C
XX
0a,n, C

XX
0a,n = n−1

∑G
g=1

∑
i∈Ag E

[(
XX
ig

)′XX
a,ig

]
and Ca0,XX = C ′0a,XX .

Let B̂XX
a,n = n−1

∑G
g=1

∑
i∈Ag

(
X̂X
a,ig

)′
X̂X
a,ig and Ĉ

XX
0a,n = n−1

∑G
g=1

∑
i∈Ag

(
X̂X
ig

)′
X̂X
a,ig, where X̂X

a,ig

is defined in the same way as X̂X
ig in (23) based on Aa. We introduce the test statistic T given by

T =
√
n
(
β̂ − β̂a

)′
V̂ −1
T
√
n
(
β̂ − β̂a

)
,
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where

V̂T = σ̂2
a

[(
B̂XX
n

)−1

+
(
B̂XX
a,n

)−1

−
(
B̂XX
n

)−1

ĈXX
0a,n

(
B̂XX
a,n

)−1

−
(
B̂XX
a,n

)−1

ĈXX
a0,n

(
B̂XX
n

)−1
]
, (25)

where σ̂2
a is the estimator of σ

2 based on Aa.
It is worth noting that we may simplify the test statistic further. Using the fact that a finer

group A(1)
g ...,A(κg)

g are the subsets of Ag, we can show that

1

n

G∑
g=1

ngX̄
′
gPF X̄a,g =

1

n

G∑
g=1

ngX̄
′
gPF X̄g. (26)

If we apply (26) to (24), then, under the null hypothesis, the covariance of β̂ and β̂a equals the
variance of β̂. That is,

lim
n→∞

σ2

n

G∑
g=1

∑
i∈Ag

E
[(
XX
ig

)′XX
a,ig

]
= σ2BXX

and VT reduces to σ2
(
B−1
XX −B−1

a,XX

)
. This yields another candidate variance estimator

ṼT = σ̂2
a

((
B̂XX
n

)−1

−
(
B̂XX
a,n

)−1
)
.

It may be tempting to construct the test statistic based on ṼT , say T̃ , which is analogous to the
standard Hausman (1978) test statistic. Though both T and T̃ are valid in the asymptotic sense, we
suggest using the former. Let F̂a denote the estimator of F 0H based on Aa. The crucial condition
we need to rely on for T̃ is

1

n

G∑
g=1

∑
i∈Ag

XX
ig

(
F̂
)′
XX
a,ig

(
F̂a

)
≈ 1

n

G∑
g=1

∑
i∈Ag

XX
ig

(
F̂
)′
XX
ig

(
F̂
)
,

which requires F̂ ≈ F̂a. However, even when the null is true, this approximation can be poor due
to the estimation errors in F̂ and F̂a. If this approximation does not work well, T̃ suffers from poor
finite sample properties. In contrast, T does not impose such a restriction in V̂T to accommodate
estimation uncertainty in F̂ and F̂a. Another advantage of using V̂T is that it is positive semi-definite
by construction, which is an important property for the practical use of variance estimators. ṼT
may not yield a positive semi-definite estimate.
The asymptotics of T under the null hypothesis is characterized as follows.

Theorem 4 Suppose that Assumptions 1-8 and 9(ii) hold. If H0 is true, then T →d χ2 (dβ) .

We note that the rejection of H0 does not mean that β̂a is consistent. If the appropriate level of
grouping is in doubt and various levels of grouping are available in practical situations, we suggest
researchers use the finest level of grouping for Aa and explore other grouping schemes for A0 to test
their validity.
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5 Policy endogeneity with respect to idiosyncratic errors:
IFE-GMM approach

The validity of the LS estimation discussed thus far relies on the assumption that the regressors are
exogenous with respect to idiosyncratic errors. However, in empirical applications, this assumption
may not hold. For instance, simultaneity often appears between the policy and outcome variables,
in which case endogeneity persists even when the group interactive fixed effects are introduced. To
address this issue, we consider a moment condition based GMM estimator, which we refer to as the
“interactive fixed effects GMM (IFE-GMM)" estimator.

Let Zgt =
(
Z

(1)
gt , ..., Z

(dz)
gt

)′
. Z

(1)
gt represents a scalar policy variable that is potentially endogenous

with respect to εigt. Suppose that we have a vector of instruments for Z
(1)
gt , denoted as Ψ̃gt, and define

a (dΨ × 1) vector Ψigt =
(

Ψ̃′gt, Z
(2)
gt , ..., Z

(dz)
gt ,W ′

igt

)′
. We assume that Ψigt satisfies the following

conditions.

Assumption 10 (i) εigt is independent of Ψjg̃s for all i, j, g, g̃, t and s. (ii) rank
(
QXΨ
n (F )

)
= dβ

and rank
(
BXΨ
n (F )

)
= dβ for any F ∈ F .

Assumption 10 states the exogeneity condition of Ψigt with respect to idiosyncratic errors and
rank conditions. The advantage of our IFE-GMM approach is that it has a larger set of potential
instruments compared to the approach without interaction terms. In the latter case, the indepen-
dence condition is required to hold not only for εigt but also for λ0′

g F
0
t . This can be restrictive in

policy analysis, as instruments for a policy variable often exhibit a correlation with group charac-
teristics. See, for example, Besley and Case (2000). They use the fraction of female legislators in
state lower and upper houses as an instrument for the manual rate to study the impact of state
workers’compensation benefits on the employment and earnings of construction workers. It is nat-
ural to expect such a political variable to be correlated with unobserved (possibly time varying)
state characteristics.
The IFE-GMM estimator is given by(

F̂ (β) , Λ̂G (β)
)

= argmin
(F,ΛG)

1

n

G∑
g=1

∑
i∈Ag

(Yig −Xigβ − Fλg)′ (Yig −Xigβ − Fλg) , (27)

and

β̂gmm (F,ΛG) = argmin
β

1

n

G∑
g=1

∑
i∈Ag

[
Ψ′ig (Yig −Xigβ − Fλg)

]′
Ω−1
n

G∑
g=1

∑
i∈Ag

[
Ψ′ig (Yig −Xigβ − Fλg)

]
,

(28)
where Ωn is a positive definite (dΨ × dΨ) weight matrix. Note that while β̂gmm is obtained via the
GMM criterion based on the moment conditions in Assumption 10, F 0 and Λ0

G are estimated via
the LS criterion and principal component method. We have λ̂g (β, F ) = F ′

(
Ȳg − X̄gβ

)
from (27).

Plugging this in (28), we have the GMM estimator

β̂gmm =
[
QXΨ
n

(
F̂gmm

)
Ω−1
n QΨX

n

(
F̂gmm

)]−1

QXΨ
n

(
F̂gmm

)
Ω−1
n QΨY

n

(
F̂gmm

)
, (29)
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where F̂gmm satisfies
1

n
R̄
(
β̂gmm

)
R̄
(
β̂gmm

)′
F̂gmm = F̂gmmΓ̂gmm. (30)

Γ̂gmm is a diagonal matrix of the dF largest eigenvalues of n−1R̄
(
β̂gmm

)
R̄
(
β̂gmm

)′
. As in LS

estimation, we can obtain β̂gmm by iterating (29) and (30) to convergence. In case dΨ = dβ, we
have

β̂gmm = QΨX
n

(
F̂gmm

)−1

QΨY
n

(
F̂gmm

)
.

It is easy to see that this approach includes the LS estimator in Section 2 as a special case with
Ψig = Xig. That is, β̂gmm = β̂ if Ψig = Xig.
As noted by Moon et al. (2017), a drawback of the GMM approach is that it can lead to a local

minimum, which is in contrast to their LS-MD estimator. To minimize the risk of falsely choosing
a local minimum, we should conduct the iterations of (29) and (30) using multiple initial values.
The potential local minima problem is not a unique issue for this method. The LS estimator has
the same problem.
We introduce additional assumptions to establish the asymptotics for β̂gmm.

Assumption 11 (i) E ‖Ψigt‖4 ≤M. (ii) Ωn →p Ω and Ω is positive definite.

The theorem below states the consistency of the IFE-GMM estimator.

Theorem 5 Under Assumptions 1-4, 6, 10 and 11, we have β̂gmm − β0 →p 0 as (n,G)→∞ such
that G/n→∞ for fixed T .

The following high level assumptions are made to obtain the asymptotic normality of β̂gmm

Assumption 12 Let XΨ
ig = XΨ

ig (F 0) . We have 1√
n

∑G
g=1

∑
i∈Ag

(
XΨ
ig

)′
εig →d N (0, Vgmm) , where

Vgmm = lim(n,G)→∞
1
n

∑G
g=1

∑
i∈Ag

∑G
g̃=1

∑
j∈Ag̃ E

[(
XΨ
ig

)′
εigε

′
jg̃XΨ

jg̃

]
is positive definite.

The asymptotic normality of β̂gmm is presented as follows.

Theorem 6 Under Assumptions 1-4, 6, 7 and 10-12, we have
√
n
(
β̂gmm − β0

)
→d N

(
0,
(
QXΨΩ−1BΨX

)−1
QXΨΩ−1VgmmΩ−1QΨX

(
BXΨΩ−1QΨX

)−1
)
,

where QXΨ = plimn→∞Q
XΨ
n (F 0) , QΨX = Q′XΨ, BΨX = plimn→∞B

ΨX
n (F 0) and BXΨ = B′ΨX .

The proof is in the supplementary appendix. Inference on β0 can be conducted based on Theorem
6. This procedure is analogous to the one for the LS method in Section 3, so it is omitted here to
save space.
Regarding the choice of Ωn, it is well known that in a standard GMM framework, the asymptotic

variance of the sample moments is optimal and minimizes the asymptotic variance of the GMM
estimator (Hansen, 1982). However, this optimality scheme does not apply to our method. In our
case, the estimation error in F̂gmm affects the asymptotic variance of β̂gmm through BΨX , so the
choice of Ωn = Vgmm does not yield the usual variance form of the effi cient GMM estimator. It
will be interesting to study the optimal Ωn in IFE-GMM estimation and we leave this to future
research. In our empirical illustrations in Section 6, we set Ωn = QΨΨ

n

(
F̂gmm

)
, motivated by 2SLS

estimation.
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6 Empirical illustrations

In this section, we apply our group interactive fixed effects approach to two empirical examples.
The first example builds on Buccirossi et al. (2013, BCDSV hereafter), examining the impact of
country level competition policy on country-industry level total factor productivity (TFP) growth.
The second example is based on Huang and Zhang (2021, HZ hereafter), investigating the effects
of county based social pension provision on individual behaviors and social welfare in China. We
revisit the analyses of these studies, which employ multilevel additive fixed effects models with
panel and repeated cross-sections, using our group interactive fixed effects approach.
The choice of the number of interactive fixed effects terms is clearly important. To address this,

we modify the CP and IC criteria provided by Bai and Ng (2002) to reflect the fact that we consider
the large n and fixed T asymptotics and we have the group structure

IC (r) = log Q̂(r) + r
log (G)

n
, CP (r) = Q̂(r) + rQ̂ (r̄)

log (G)

n
,

where Q̂(r) = Q
(
β̂, F̂ , Λ̂G

)
based on r factors and r̄ represents the largest number of interactive

fixed effects terms that we assume. If T is not much smaller than G, we can also include T in the
criteria as follows

ĨC (r) = log
(
σ̂2 (r)

)
+ r

log (GT )

nT
, C̃P (r) = σ̂2 (r) + rσ̂2 (r̄)

log (GT )

nT
.

To avoid the local minima problem, we choose 50 different initial values of β around the additive
fixed effects estimator.

6.1 Competition policy and productivity growth

There is broad consensus in economics that competition tends to enhance economic effi ciency.
However, there is no such agreement on the effectiveness of competition policy. For example, Baker
(2002) argues that the benefit of antitrust enforcement outweighs the cost, while Crandall and
Winston (2003) claim that antitrust law has been ineffective in the US. In this regard, BCDSV
examine the importance of competition policy in improving productivity growth. Using the panel
and multilevel data, they provide empirical evidence that the effect of competition policy on total
factor productivity (TFP) growth is positive and significant. As a measure of competition policy,
they construct the Competition Policy Indicator (CPI) that summarizes the key features of a
country’s competition policy.
We revisit their analysis using our group interactive fixed effects approach. Our regression model

is given by

∆TFPigt = β0
0CPIgt−1 + β0

1∆TFPL(i)t + β0
2

TFPL(i)t

TFPigt
+ β0

3Wigt−1 + β0
4Zgt−1 + λ0′

g F
0
t + εigt, (31)

where ∆TFPigt is the TFP growth of industry i in country g at time t, CPIgt−1 is the CPI of
country g at time t− 1. Thus, β0

0 is the parameter of interest that represents the effect of country
level competition policy on country-industry specific TFP growth. ∆TFPL(i)t and TFPL(i)t/TFPigt
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denote the technology transfer from a technological frontier country and the productivity gap to
the technological frontier, respectively. Wigt−1 is a vector of country-industry specific covariates
including trade openness and country-industry specific trends, and Zgt−1 denotes a country level
product market regulation variable (prm). We estimate (31) using the proposed LS method and
IFE-GMM method.
Our estimation is based on the 1995-2005 balanced panel data. The dataset consists of 22

industries in 7 countries (Czech Republic, Germany, Italy, Japan, Sweden, UK, and US). The data
is available at https://dataverse.harvard.edu/dataverse/restat. BCDSV include 5 more countries
(Canada, France, Hungary, Netherlands and Spain), but we exclude them to obtain the balanced
panel. Note that the omission of these 5 countries yields a mild change in additive fixed effects
estimates. We follow ISIC Rev.3 for industry classification.
We first conduct the test to determine the level of grouping for the factor loading. The grouping

scheme under the null, A0, is at country level, resulting in 7 groups containing 22 industries each.
The finer grouping under the alternative, Aa, suggests two subgroups in each country divided be-
tween the manufacturing and non-manufacturing sectors. According to the ISIC Rev.3, 12 out of 22
industries belong to the manufacturing sector, while the other 10 belong to the non-manufacturing
sector. The results are presented in the table below.

<Test on the level of grouping>
H0 : Country level of grouping is correctly specified.
Ha : Country level of grouping is misspecified.

Number of interactive terms (dF ) 1 2 3
T 10.550 5.861 7.332

critical value χ2
0.95 (6) = 12.592

As presented in the table, the test does not reject the null hypothesis with various choice of dF
at 5% level. According to this result, we set the group factor loadings at country level. Thus, in
this application, we have n = 154, T = 10, and G = 7. Our procedure to choose the number of
interaction terms yields r = 2 with IC (r) and CP (r) and r = 1 with ĨC (r) and C̃P (r).
In addition to the proposed approach based on (31), we consider two additive fixed effects models

for the purpose of comparison. One is based on the individual fixed effects, which is employed by
BCDSV, and the other is based on the group fixed effects.
Table 1 reports the coeffi cients and their t-statistics based on the country based cluster standard

errors. We observe that the magnitudes of coeffi cients for CPI obtained from our approach are
substantially smaller than the ones based on the additive fixed effects models. The former are
between 0.029 and 0.037 with dF = 1∼3, while the latter are 0.088 with the group effects and 0.070
with the individual effects.
Table 2 reports the coeffi cients and their t-statistics using our IFE-GMM method and the 2SLS

method. We use the political variables developed by Cusack and Fuchs (2002) as instruments.
They include Market regulation (per403), Economic planning (per404), Welfare state limitations
planning (per505) and European Community (per108). BCDSV also use them as instruments. The
qualitative results are similar to the LS estimation case. Compared to the additive fixed effects
estimates, the magnitudes of the coeffi cients for CPI are substantially reduced when IFE-GMM
method are employed with various choices of dF .
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6.2 Social pensions policy on household health status

As public pension programs have become crucial components of social security systems in many
countries with the increasing aging population, it has become a critical research question to un-
derstand the impact of social pensions on the welfare of elderly individuals. In this context, HZ
examine the effect of the New Rural Pension Scheme (NRPS) on individual behaviors and social
welfare in China. The NRPS is a county-based rural pension program that started in 2009 and ex-
panded to cover all counties in China by the end of 2012. It is an extensive social pension program,
which covers the largest population in human history. In 2011, it offered pension benefits to 89
million rural pensioners, and 326 million rural residents participated in this program. The program
specifically targets age-eligible rural seniors, aged 60 years and older, who are eligible to receive a
non-trivial monthly pension. The paper finds that the NRPS leads to higher household income and
food expenditure, less farm work, better health, and lower mortality among age-eligible seniors.
HZ consider the following additive fixed effects regression model

Yigt = β0
0NRPSgt +W ′

igtβ
0
W + α0

g + f 0
t + εigt, (32)

where Yigt denotes an outcome variable (e.g., household income, expenditure, labor supply, and
health outcomes) of individual i in county g in year t, NRPSgt is an indicator variable representing
whether county g implemented the NRPS in year t, Wigt is a vector of individual level demographic
controls, including gender, age, age squared, and dummies for the education level, and α0

g and f
0
t are

the county fixed effects and year effects, respectively. Thus, the parameter of interest β0
0 captures

the effect of county level social pensions policy on county-individual specific outcomes.
HZ estimate the model using yearly repeated cross-sections from 2010 to 2013. The data for

their analysis is constructed based on China Family Panel Studies (CFPS) and the China Health
and Retirement Longitudinal Studies (CHARLS). These surveys are the Chinese equivalent of the
Panel Study of Income Dynamics and the Health and Retirement Survey in the US, respectively.
Since the CFPS and CHARLS surveys are biennial, they employ the 2010 and 2012 waves of the
CFPS and the 2011 and 2013 waves of the CHARLS for their study. The CFPS covers 162 counties
and the CHARLS covers 150 counties.
We revisit their study using the proposed group interactive fixed effects approach, focusing on

estimating the effect of the NRPS on the health status of rural seniors. Our regression model is
given by

Yigt = β0
0NRPSgt +W ′

igtβ
0
W + λ0′

g F
0
t + εigt, (33)

where Yigt represents the “unhealthiness score" developed by HZ to measure the poor health, dis-
ability and malnutrition of individual i in county g in year t.
Since our estimation method requires the group size to remain time invariant, we initially con-

sider 10 counties in HZ’s data that appear in both the CFPS and CHARLS surveys. We then
exclude one county from this set which contains a too small number of observations. Subsequently,
we randomly select the same number of individuals for each year in each county. After this adjust-
ment, our dataset consists of 9 counties with 292 individuals each year. Since T = 4, the maximum
number of common factors that we can employ in this model is 3 and our selection of the number
of interaction terms yields r = 2 with both IC (r) and CP (r) .
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Table 3 presents the estimation results. In addition to the group interactive fixed effects ap-
proach, we also employ the additive fixed effects model (32) for comparative purposes. The first two
columns of the table report the coeffi cients and t-statistics for (33) based on our LS estimator. For
the additive models, we provide two estimates. The third column presents the estimation results
using the size adjusted sample that we use for our method, while the fourth column corresponds to
the estimates without such adjustment on the sample size.
From the table, we first observe that the NRPS coeffi cient on the unhealthiness score is nega-

tive and significant when using the additive fixed effects model. Specifically, when employing the
adjusted sample, the estimate is -0.138 with a t-statistic of -2.238. Without the adjustment, the
estimate is -0.179 with a t-statistic of -2.550. These results are similar to the ones presented in HZ.
When using our group interactive fixed effects method, the magnitude of the NRPS coeffi cient

becomes substantially smaller and insignificant. The table indicates that the estimate is 0.036 with
a t-statistic of 0.556 when dF = 2, and it is 0.064 with a t-statistic of 0.741 when dF = 3. These
results suggest that the significance of the NRPS coeffi cient in the additive fixed effects model is
possibly due to endogeneity associated with unobserved time varying group heterogeneity, and our
group interactive fixed effects model may effectively mitigate this endogeneity issue.

7 Conclusion

The multilevel regression model is widely used for studying the effect of group level policies on indi-
vidual level outcomes. In this setting, researchers often employ the additive fixed effects regression
to account for the correlation between the policy variable and unobserved group heterogeneity/time
effects. A shortcoming of this approach is that its validity crucially depends on the assumption that
the group heterogeneity is time invariant and the time effects are common across groups. However,
this assumption may not hold in many applications. To address this important issue, we propose
the group interactive fixed effects model in the multilevel regression setting. This model accounts
for group specific impact of time effects as well as time varying effect of group heterogeneity. We
also develop a test to determine the level of grouping for factor loadings. To address the policy
endogeneity with respect to idiosyncratic errors in our model, we propose the GMM method.
For future research, it would be interesting to explore theoretical issues in our model under the

large n and large T panel framework, including (i) examining the trade-off between the misspecifi-
cation bias due to the group factor loading structure and incidental parameters bias, (ii) extending
our model to dynamic regression models, and (iii) investigating the problem of unknown group
membership problem. Another interesting extension would be to allow the heterogeneity of regres-
sion coeffi cients across groups when G is large, particularly to examine the heterogeneous effect of
a policy variable on different groups.
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8 Appendix

Proposition A1 Let H =
(
n−1

∑G
g=1 ngλ

0
gλ

0′
g

)(∑T
t=1 F

0
t F̂
′
t

)
Γ̂−1. Suppose that Assumptions 1-6

hold. Then, we have ∥∥∥F̂ − F 0H
∥∥∥ = Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
as (n,G)→∞ such that G/n→ 0 for fixed T .

Proposition A2 Let

An =
1

n

G∑
g=1

ngX̄
′
gMF 0

(
1

G

G∑
g̃=1

ng̃ε̄g̃ε̄
′
g̃

)
F 0HΥλ0

g

with Υ =
(∑T

t=1 F
0
t F̂
′
t

)−1 (
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∑G
g=1 ngλ

0
gλ

0′
g

)−1

. Under Assumptions 1-7,

√
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(
β̂ − β0

)
= BXX

n

(
F̂
)−1 1√
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G∑
g=1

∑
i∈Ag

((
Xig − PF̂ X̄g

)
− 1

n

G∑
g̃=1

ng̃a
0
gg̃MF̂ X̄g̃

)′
εig

+
G√
n
BXX
n

(
F̂
)−1

An + op

(√
n
∥∥∥β̂ − β∥∥∥)+ op

(
G√
n

)
+Op

(
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n

)
.

Proposition A3 Let Hgmm =
(
n−1

∑G
g=1 ngλ

0
gλ

0′
g

)(∑T
t=1 F

0F̂ ′gmm

)
Γ̂−1
gmm. Suppose that Assump-

tions 1-4, 6, 10 and 11 hold. Then, we have∥∥∥F̂gmm − F 0Hgmm

∥∥∥ = Op

(∥∥∥β̂gmm − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
,

as (n,G)→∞ such that G/n→ 0 for fixed T .

The proofs of Theorems 1-6 and Propositions A1-A3 are provided in the supplementary appendix
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Table 1: The effect of competition policy on TFP growth: LS estimation

Dependent Variable ∆TFPigt
Group IFE Group AFE Individual

dF 1 2 3 AFE
CPIgt−1 0.037 0.029 0.031 0.088 0.070

(4.660) (3.725) (3.468) (4.507) (5.110)
∆TFPL(i),t 0.107 0.111 0.121 0.114 0.079

(4.862) (4.996) (5.487) (5.675) (4.053)(
TFPL(i)g,t/TFPigt

)
0.000 0.000 0.001 0.000 0.009
(0.842) (0.724) (1.176) (0.992) (4.531)

Industry trendigt 0.001 0.006 0.007 0.006 0.038
(1.784) (5.827) (5.315) (6.943) (5.487)

Import penetrationigt 0.003 0.004 0.004 0.004 0.009
(3.305) (3.855) (3.668) (3.439) (3.718)

pmrgt -0.009 0.008 -0.000 -0.025 -0.039
(-4.290) (-3.363) (-3.445) (-4.002) (-8.302)

Note: The numbers in parentheses represent t statistics based on country level
cluster standard errors.

Table 2: The effect of competition policy on TFP growth: IV estimation

Dependent Variable ∆TFPigt
IFE-GMM Group AFE Individual

2SLS AFE 2SLS
dF 1 2 3

CPIgt−1 0.022 -0.013 0.009 0.213 0.178
(0.884) (-0.209) (0.268) (2.739) (1.954)

∆TFPL(i)gt 0.110 0.112 0.120 0.112 0.076
(4.920) (5.320) (5.483) (5.744) (4.202)(

TFPL(i)gt/TFPigt
)

0.000 0.000 0.000 0.000 0.008
(0.502) (0.644) (0.909) (0.976) (3.808)

Industry trendigt -0.000 0.009 0.009 0.005 0.029
(-0.077) (2.092) (2.272) (4.612) (1.381)

Import penetrationigt 0.004 0.004 0.004 0.004 0.006
(2.360) (2.885) (2.972) (3.544) (2.356)

pmrgt -0.005 0.004 -0.003 -0.060 -0.066
(-0.681) (0.205) (-0.311) (-2.672) (-2.861)

Note: The numbers in parentheses represent t statistics based on country level
cluster standard errors.
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Table 3: The effect of NRPS on household income: LS estimation

Dependent Variable Unhealthiness Score
Group IFE Group AFE

dF 2 3 Adjusted Unadjusted
NRPS 0.036 0.064 -0.138 -0.179

(0.556) (0.741) (-2.238) (-2.550)
Gender -0.087 -0.082 -0.082 -0.154

(Male=1, Female=0) (-2.887) (-2.954) (-2.471) (-2.660)
Age -0.027 -0.025 -0.088 -0.007

(-5.106) (-5.401) (-1.120) (-0.100)
Age2 0.040 0.039 0.082 0.0263

(6.038) (6.442) (1.513) (0.500)
Education Yes Yes Yes Yes

Note: The numbers in parentheses represent t statistics based on
county level cluster standard errors.
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S.1 Monte Carlo simulation

This section reports simulation results to document the properties of the proposed procedures.
The data is generated from the multilevel regression model:

Yigt = β0
ZZgt + β0

WWigt + uigt, (S.1)

where Zgt is a scalar group level regressor and Wigt is a scalar individual regressor. We set
β0
Z = β0

W = 0.
We first examine the performance of our method using the interactive fixed effects structure.

We generate uigt based on the following DGP:

uigt = λ0′
igF

0
t + εigt, (S.2)

λ0
ig = λ0

g + δ · γig with λ0
g =

(
λ0

1,g, λ
0
2,g

)′
, γig = (γ1,ig, γ2,ig)

′ ,

λ0
c,g ∼iid U (0, 1) and γc,ig ∼iid U (−0.5, 0.5) for c = 1, 2,

F 0
t ∼iid N (0, I2) , εigt ∼iid N (0, 4) .

λ0
ig is the factor loading for individual i in group g, which consists of two components, i.e.,
λ0
g : group factor loading, and γig : within-group individual heterogeneity. Since γig has zero
means, the group factor loading is the group mean of individual factor loadings in this setup.
δ determines the impact of individual heterogeneity on the factor loading. If δ = 0, we have
λ0
ig = λ0

g and (S.2) reduces to our group interactive fixed effects structure.
Zgt and Wigt are generated from the following processes:

Zgt = 0.5λ0′
g F

0
t + 0.5F 0′

t 12 + 0.5λ0′
g 12 + vZgt, (S.3)

Wigt = 0.5λ0′
igF

0
t + 0.5F 0′

t 12 + 0.5λ0′
ig12 + 0.5Zgt + vWigt, (S.4)
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where 12 = (1, 1)′ and
(
vZgt, v

W
igt

)′ ∼iid N (0, 4I2) . (S.3) and (S.4) show that the group level
regressor Zgt is corrleated with λ0

g whereas individual level regressor Wigt is correlated with λ0
ig.

Additionally, Zgt is correlated withWigt, allowing the endogeneity ofWigt to affect our estimation
of β0

Z . We make inference on β
0
Z and β

0
W based on the procedure in Section 2. The number of

replications is 5000.
Table S.1 provides the bias, standard deviation (SD), and empirical rejection probability

(ERP) of our group interactive fixed effects approach with δ = 0. We use individual based
cluster variance estimation to obtain the ERPs. d̃F denotes the number of interaction terms
used to estimate the model. The table reveals a few findings. Firstly, when d̃F is the same or
larger than the number of interaction terms in the DGP (dF = 2), our method performs well and
produces valid estimation and inference results. However, when our regression model includes
only one interactive term (d̃F = 1), our approach fails to yield valid results. Moon and Weidner
(2015) show that the limiting distribution of the standard interactive fixed effects estimator is
independent of the number of interaction terms in the regression model as long as this number is
not smaller than the true number of interaction terms. Our simulation results suggest that our
estimator may have the same property. The performance of our method becomes more accurate
as n and T increase.
Table S.2 examines the performance of our method when group sizes are heterogenous. The

table shows that though the presence of heterogeneity in group sizes has a slight negative impact
on the performance of our method in finite samples, it exhibits solid performance as the sample
size increases. For example, when there are 7 groups with a group size of ng = 100 and 10 groups
with a group size of ng = 30, the ERP for βZ0 is 0.070 for a sample size of (n, T ) = (1000, 5) and
d̃F = 2. However, as the sample size increases to (n, T ) = (1000, 10) , the ERP becomes very
close to the nominal size.
Table S.3 compares the proposed method with the standard interactive fixed effects approach

using different values of δ. When we set δ = 0, our model is correctly specified, and the group
interactive fixed effects approach performs very well. However, when δ = 0.5 and 1, in which
case our model is misspecified, our estimation and inference for β0

W and β0
Z become invalid. This

is because the group factor loading structure fails to accommodate individual heterogeneity in
λ0
ig, leading to an endogeneity bias of group interactive fixed effects estimator. The performance
becomes worse as the degree of individual heterogeneity increases. For example, when δ = 0.5
and (n, T ) = (1000, 10) , the bias, SD and ERP of β̂Z are -0.002, 0.013 and 0.067, respectively,
and they become -0.010, 0.014 and 0.133 when δ = 1.0. Regarding the standard interactive fixed
effects approach, we find that it does not yield accurate inference results when T is small. For
example, when (n, T ) = (1000, 5), the ERP for β0

Z is 0.111 with δ = 0 and 0.085 with δ = 1. They
improve to 0.075 and 0.059, respectively, when (n, T ) = (1000, 20) . This result is well expected
because the consistency of the standard interactive fixed effects estimator requires both n and
T to diverge.
In Table S.4, we compare our method with the additive fixed effects approach. For this

comparison, we generate uigt based on the interactive model in (S.2) and the additive model
given by

uigt = α0
g + f 0

t + εigt, (S.5)

α0
g ∼iid U (0, 1) , f 0

t ∼iid N (0, 1) , εigt ∼iid N (0, 4) .
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The table demonstrates that our approach performs almost as well as the additive fixed effects
approach when uigt is generated from the additive model. For instance, when (n, T ) = (2000, 10) ,

the bias, SD and ERP of β̂Z are 0.000, 0.009 and 0.055, respectively. These values are very close
to 0.000, 0.009 and 0.051, obtained by the additive fixed effects approach. However, when uigt is
generated from the interactive model in (S.2), only our approach performs properly. For example,
when (n, T ) = (2000, 10) , the ERP based on β̂Z is 0.052, while the one based on the additive
fixed effects approach is 0.421. Therefore, there is a remarkable improvement of our method
compared to the conventional additive fixed effects approach when uigt exhibits the interactive
structure, while its loss of accuracy when uigt is generated from the additive model is negligible.
In Table S.5, we present the performance of our group level test. We consider two candidate

group structures, A0 = {A1, ...,Ag, ...,AG} and Aa = {A(1)
1 ,A(2)

1 , ...,A(1)
g ,A(2)

g , ...,A(1)
G ,A(2)

G },
where A(1)

g and A(2)
g in Aa have the same group size for g = 1, ..., G. First, we examine the size

property of the test. In this simulation, we generate data based on (S.1)-(S.4) using the null
group structure A0, where the group structure for the factor loading is identical to the one for
the group level regressor. The table presents ERPs at a 5% nominal level and we observe that
the size of our test is well controlled.
Next, we investigate the power of the test. To examine the power properties, we generate

the factor loading based on the finer level of grouping Aa, while the group level regressor is still
generated based on A0. We simulate the regressors from the following processes

Zgt = 0.5λ̄′gF
0
t + 0.5F 0′

t 12 + 0.5λ̄′g12 + vZgt,

W
(`)
igt = 0.5λ(`)′

g F 0
t + 0.5F 0′

t 12 + 0.5λ(`)′
g 12 + 0.5Zgt + vWigt, ` = 1, 2,

where vZgt, v
W
igt ∼iid N (0, 4) , λ̄g = 1

2

∑2
`=1 λ

(`)
g , and λ

(`)
g =

(
λ

(`)
1,g, λ

(`)
2,g

)′
is generated from

λ(1)
c,g ∼iid U (0, 1) and λ(2)

c,g = (1 + τ)λ(1)
c,g , c = 1, 2. (S.6)

(S.6) implies the group factor loading becomes more heterogenous between A(1)
g and A(2)

g as τ
increases. Table S.5 demonstrates that our test exhibits good power properties with respect to
(S.6). The power of the test monotonically increases as the degree of heterogeneity between A(1)

g

and A(2)
g grows. Since our simulation shows that the size of the test is well controlled when

G = 20, Ga = 40 and d̃F = 2, we calculate the power without adjusting the size.
In Table S.6, we examine the properties of the LS estimator and the IFE-GMM estimator

when the group level regressor is endogenous with respect to idiosyncratic errors. We generate
data based on (S.1), (S.2) and (S.4), and consider the following specifications

ΨZ
gt = 0.5λ0′

g F
0
t + 0.5F 0′

t 12 + 0.5λ0′
g 12 + vΨ

gt with v
Ψ
gt ∼iid N (0, 4) ,

and

Zgt = ΨZ
gt + ε̄gt + vZgt, (S.7)

Wigt = 0.5λ0′
igF

0
t + 0.5F 0′

t 12 + 0.5λ0′
ig12 + 0.5ΨZ

gt + vWigt, (S.8)

where
(
vZgt, v

W
igt

)′ ∼iid N (0, 4I2) and ε̄gt = n−1
g

∑
i∈Ag εigt is the group average of idiosyncratic er-

rors. The table shows that the LS estimator of β0
Z suffers from substantial bias and size distortion,
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while the IFE-GMM successfully addresses this issue. For example, when (n, T ) = (2000, 10)
with G = 50, the bias and ERP of the LS estimator are 0.014 and 0.632, respectively. However,
when we use the proposed IFE-GMM method, they become 0.000 and 0.057, respectively.
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Table S.1: Bias, Standard Deviation and ERP of group interactive fixed effects estimators
(ng = n/G, dF = 2, δ = 0)

β0
W = 0 β0

Z = 0
n T Bias SD ERP Bias SD ERP

1000 5 0.009 0.017 0.127 0.008 0.026 0.169
G = 20 1000 10 0.009 0.012 0.187 0.006 0.017 0.183
d̃F = 1 2000 5 0.009 0.014 0.174 0.007 0.022 0.247

2000 10 0.009 0.010 0.270 0.006 0.014 0.260
1000 5 0.000 0.014 0.054 0.000 0.022 0.060

G = 20 1000 10 0.000 0.010 0.055 0.000 0.013 0.054
d̃F = 2 2000 5 0.000 0.010 0.053 0.000 0.015 0.062

2000 10 -0.000 0.007 0.044 -0.000 0.009 0.053
1000 5 0.000 0.014 0.052 0.002 0.030 0.084

G = 20 1000 10 -0.000 0.010 0.056 0.000 0.015 0.074
d̃F = 3 2000 5 -0.000 0.010 0.051 0.001 0.020 0.077

2000 10 0.000 0.007 0.042 -0.000 0.011 0.064
1000 5 0.009 0.017 0.129 0.007 0.021 0.118

G = 50 1000 10 0.009 0.012 0.188 0.006 0.014 0.127
d̃F = 1 2000 5 0.009 0.014 0.193 0.007 0.018 0.180

2000 10 0.009 0.010 0.285 0.006 0.011 0.195
1000 5 0.000 0.015 0.057 0.000 0.021 0.062

G = 50 1000 10 0.000 0.010 0.053 0.001 0.013 0.053
d̃F = 2 2000 5 0.000 0.010 0.056 0.000 0.015 0.060

2000 10 -0.000 0.007 0.048 0.000 0.009 0.051
1000 5 0.000 0.015 0.053 0.001 0.027 0.074

G = 50 1000 10 0.000 0.010 0.057 0.001 0.014 0.065
d̃F = 3 2000 5 0.000 0.010 0.055 0.000 0.019 0.075

2000 10 0.000 0.007 0.052 -0.000 0.010 0.064
The individual based cluster variance estimation is used to
obtain ERPs. The nominal size is 0.05.
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Table S.2: Bias, Standard Deviation and ERP of group interactive fixed effects estimators with
heterogenous group sizes (dF = 2, δ = 0)

β0
W = 0 β0

Z = 0
n T Bias SD ERP Bias SD ERP

G = 17 7 groups with ng = 100 and 10 groups with ng = 30

d̃F = 2 1000 5 0.000 0.015 0.055 0.000 0.023 0.070
1000 10 0.000 0.010 0.054 0.000 0.013 0.055

d̃F = 3 1000 5 0.000 0.015 0.054 0.002 0.032 0.088
1000 10 0.000 0.010 0.055 -0.000 0.016 0.070

G = 17 7 groups with ng = 200 and 10 groups with ng = 60

d̃F = 2 2000 5 0.000 0.010 0.050 0.000 0.016 0.063
2000 10 -0.000 0.007 0.048 0.000 0.009 0.053

d̃F = 3 2000 5 0.000 0.010 0.050 0.001 0.022 0.087
2000 10 -0.000 0.007 0.048 0.001 0.011 0.072

G = 35 10 groups with ng = 50 and 25 groups with ng = 20

d̃F = 2 1000 5 -0.000 0.014 0.055 0.001 0.022 0.066
1000 10 0.000 0.010 0.051 -0.000 0.013 0.054

d̃F = 3 1000 5 -0.001 0.014 0.057 0.002 0.028 0.082
1000 10 0.000 0.010 0.054 0.000 0.015 0.072

G = 35 10 groups with ng = 100 and 25 groups with ng = 40

d̃F = 2 2000 5 0.000 0.010 0.056 -0.000 0.015 0.060
2000 10 0.000 0.007 0.055 0.000 0.009 0.050

d̃F = 3 2000 5 0.000 0.010 0.057 -0.000 0.020 0.078
2000 10 0.000 0.007 0.056 0.000 0.010 0.065

The individual based cluster variance estimation is used to
obtain ERPs. The nominal size is 0.05.
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Table S.3: Comparison between the group interactive fixed effects estimator and standard inter-
active fixed effects estimator (G = 20, ng = n/G, dF = d̃F = 2)

β0
W = 0 β0

Z = 0
n T Bias SD ERP Bias SD ERP

δ = 0
Group Interactive FE

1000 5 0.000 0.014 0.054 0.000 0.022 0.060
1000 10 0.000 0.010 0.054 0.000 0.013 0.054
1000 20 0.000 0.007 0.045 0.000 0.009 0.052

Standard Interactive FE
1000 5 0.006 0.019 0.086 0.003 0.025 0.111
1000 10 0.004 0.012 0.078 0.002 0.015 0.092
1000 20 0.002 0.007 0.062 0.001 0.009 0.075

δ = 0.5
Group Interactive FE

1000 5 0.006 0.014 0.073 -0.002 0.022 0.063
1000 10 0.005 0.010 0.090 -0.002 0.013 0.067
1000 20 0.005 0.007 0.119 -0.003 0.009 0.061

Standard Interactive FE
1000 5 0.006 0.020 0.093 0.002 0.024 0.099
1000 10 0.004 0.012 0.080 0.001 0.015 0.089
1000 20 0.002 0.007 0.061 0.001 0.009 0.065

δ = 1
Group Interactive FE

1000 5 0.021 0.018 0.322 -0.010 0.022 0.094
1000 10 0.020 0.013 0.505 -0.010 0.014 0.133
1000 20 0.020 0.009 0.748 -0.010 0.009 0.223

Standard Interactive FE
1000 5 0.008 0.020 0.105 0.001 0.023 0.085
1000 10 0.005 0.012 0.093 0.001 0.014 0.075
1000 20 0.003 0.007 0.066 0.001 0.009 0.059
The individual based cluster variance estimation is used
to obtain ERPs. The nominal size is 0.05.
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Table S.4: Comparison between the group interactive fixed effects estimator and additive fixed
effects estimator (G = 20, ng = n/G, dF = d̃F = 2, δ = 0)

β0
W = 0 β0

Z = 0
n T Bias SD ERP Bias SD ERP

Additive Structure in (S.5)
Group Interactive FE

1000 5 0.000 0.014 0.054 -0.000 0.021 0.058
1000 10 -0.000 0.010 0.055 0.000 0.013 0.056
2000 5 -0.000 0.010 0.054 0.000 0.015 0.063
2000 10 -0.000 0.007 0.047 0.000 0.009 0.055

Additive FE
1000 5 0.000 0.014 0.051 -0.000 0.018 0.044
1000 10 -0.000 0.010 0.056 0.000 0.012 0.057
2000 5 -0.000 0.010 0.052 0.000 0.013 0.059
2000 10 -0.000 0.007 0.048 0.000 0.009 0.051

Interactive Structure in (S.2)
Group Interactive FE

1000 5 0.000 0.014 0.054 0.000 0.022 0.060
1000 10 0.000 0.010 0.055 0.000 0.013 0.054
2000 5 0.000 0.010 0.051 0.000 0.015 0.060
2000 10 -0.000 0.007 0.044 0.000 0.009 0.052

Additive FE
1000 5 0.016 0.016 0.215 0.012 0.030 0.249
1000 10 0.017 0.012 0.401 0.012 0.020 0.296
2000 5 0.015 0.013 0.338 0.013 0.027 0.369
2000 10 0.017 0.010 0.622 0.012 0.018 0.421
The individual based cluster variance estimation is
used to obtain ERPs. The nominal size is 0.05.
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Table S.5: Group level test for group factor loadings (ng = n/G, dF = 2, δ = 0)

n T Empirical Size
G = 20, Ga = 40, dF̃ = 2 G = 20, Ga = 40, dF̃ = 3

1000 5 0.064 0.067
1000 10 0.058 0.112
2000 5 0.058 0.057
2000 10 0.052 0.106

G = 20, Ga = 100, dF̃ = 2 G = 20, Ga = 100, dF̃ = 3
1000 5 0.096 0.083
1000 10 0.067 0.125
2000 5 0.072 0.074
2000 10 0.059 0.118
n T Power

G = 20, Ga = 40, dF̃ = 2
τ = 0.05 τ = 0.1

1000 5 0.594 0.650
1000 10 0.766 0.850
2000 5 0.599 0.709
2000 10 0.783 0.931

τ = 0.3 τ = 0.5
1000 5 0.932 0.984
1000 10 0.997 1.000
2000 5 0.973 0.993
2000 10 0.999 1.000
The nominal size is 0.05.
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Table S.6: Comparison between the LS estimator and IFE-GMM estimator in the presence of
endogeneity with respect to idiosyncratic errors (ng = n/G, dF = d̃F = 2)

β0
W = 0 β0

Z = 0
n T Bias SD ERP Bias SD ERP

G = 20
Group Interactive FE

1000 5 -0.002 0.014 0.055 0.010 0.015 0.130
1000 10 -0.003 0.010 0.063 0.011 0.009 0.240
2000 5 -0.001 0.010 0.052 0.005 0.010 0.088
2000 10 -0.002 0.007 0.060 0.006 0.006 0.150

IFE-GMM
1000 5 0.000 0.014 0.049 -0.000 0.023 0.067
1000 10 -0.000 0.010 0.050 -0.000 0.013 0.054
2000 5 -0.000 0.010 0.046 -0.000 0.016 0.058
2000 10 -0.000 0.007 0.051 -0.000 0.009 0.047

G = 50
Group Interactive FE

1000 5 -0.006 0.014 0.077 0.026 0.014 0.506
1000 10 -0.008 0.010 0.141 0.026 0.008 0.885
2000 5 -0.003 0.010 0.064 0.013 0.010 0.278
2000 10 -0.004 0.007 0.103 0.014 0.006 0.632

IFE-GMM
1000 5 0.001 0.014 0.056 0.001 0.021 0.062
1000 10 0.000 0.010 0.055 -0.000 0.013 0.051
2000 5 0.000 0.010 0.047 -0.000 0.015 0.059
2000 10 -0.000 0.007 0.057 0.000 0.009 0.057
The individual based cluster variance estimation is
used to obtain ERPs. The nominal size is 0.05.
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S.2 When group sizes are time varying

The main results of this paper rely on the assumption that the group sizes remain constant
over time (Assumption 1). This assumption may not hold in practice. For example, when we
use unbalanced panel or repeated cross-sections, it is likely that group sizes change over time.
In such cases, we can reconstruct the dataset to satisfy the assumption, as demonstrated in
our empirical applications in Section 6. Alternatively, we can consider a modification of our
estimation procedure based on the expectation-maximization (EM) algorithm by Bai (2009,
Supplemental Material), which is proposed to estimate the standard interactive fixed effects
models with unbalanced panel. Bai’s approach is an extension of the EM algorithm by Stock
and Watson (1998), which is developed for the pure factor model.
Let ngt denote the size of group g at time t. We also define ng = max {ng1, ..., ngT} , n =∑n
g=1 ng. Additionally, we define n

S
g =

∑g
l=1 nl−1 + 1 and nEg =

∑g
l=1 nl with n0 = 0. For each

time period, we can index each individual so that all individuals who belong to group g are
indexed as i ∈

[
nSg , n

E
g

]
. Let Iigt = 1 if individaul i exists in group g at time t and Iigt = 0

otherwise for i = 1, ..., n.
The following steps describe our estimation procedure using the EM algorithm.

1. Given F and ΛG, we estimate β by

β̂ =

 T∑
t=1

G∑
g=1

nEg∑
i=nSg

1 {i ∈ Ag}XigtX
′
igt

−1
T∑
t=1

G∑
g=1

nEg∑
i=nSg

1 {i ∈ Ag}Xigt

(
Yigt − λ′gFt

)
(S.9)

2. Given β, we let Rigt = Yigt −X ′igtβ. Then, Rigt = λ′gFt + εigt is a pure factor model with
group factor loadings, which has missing values. We impute them in each round of iteration
based on the EM algorithm by Stock and Watson (1998).

(a) In round a, we define

R
(a)
igt = Rigt1 {Iigt = 1}+ λ̂(a−1)′

g F̂
(a−1)
t 1 {Iigt = 0} ,

where λ̂(0)
g = F̂

(0)
t = 0 and 1 {·} is an indicator function.

(b) F̂ (a) =
(
F̂

(a)
1 , ..., F̂

(a)
T

)′
is the (T × dF ) matrix whose columns are the eigenvectors

associated with the dF largest eigenvalues of n−1R̄(a)R̄(a)′ subject to
∑T

t=1 FtF
′
t = IdF ,

where
R̄(a) =

[√
n1R̄

(a)
1 , ...,

√
ngR̄

(a)
g , ...,

√
nGR̄

(a)
G

]
with R̄(a)

g =
(
n−1
g

∑nEg
i=nSg

R
(a)
ig1, ..., n

−1
g

∑nEg
i=nSg

R
(a)
igT

)′
.

(c) Λ̂
(a)
G =

(
λ̂

(a)
1 , .., λ̂

(a)
g , .., λ̂

(a)
G

)′
is obtained from

λ̂(a)
g = F̂ (a)′R̄(a)

g .
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(d) We iterate (a) - (c) to convergence. Let F̂ and Λ̂G be the the estimates in the final
round.

3. We plug F̂ and Λ̂G from step 2 in (S.9) and repeat steps 1 and 2 to update β̂, F̂ and Λ̂G.
We iterate the procedure to convergence.

S.3 Proofs

For a column vector x, the Euclidean norm is defined by ‖x‖ =
√
x′x. For an (a× b) matrix A,

the Frobenius norm is ‖A‖ =
√
tr (A′A).

Proof of Theorem 1. Suppose that β0 = 0 without loss of generality.
(
β̂, F̂

)
minimizes

Q̃(β, F ) = Q (β, F )− 1

n

G∑
g=1

∑
i∈Ag

(εig − PF 0 ε̄g)′ (εig − PF 0 ε̄g) (S.10)

as the second term of the right hand side does not depend on (β, F ). Let

Q∗(β, F ) =
1

n

G∑
g=1

ngλ
0′
g F

0′MFF
0λ0

g −
2

n

G∑
g=1

∑
i∈Ag

λ0′
g F

0′MF X̄gβ (S.11)

+ β′
1

n

G∑
g=1

∑
i∈Ag

(
Xig − PF X̄g

)′ (
Xig − PF X̄g

)
β.

Note that given H, MF 0H = MF 0 and

Q∗(β0, F 0H) = 0. (S.12)

The first step is to show that

Q̃(β, F )−Q∗(β, F )

=
1

n

G∑
g=1

∑
i∈Ag

[
2λ0′

g F
0′MF ε̄g − 2

(
ε′igXig − ε̄′gPF X̄g

)
β − ε̄′g (PF − PF 0) ε̄g

]
= op(1) (S.13)

for all bounded β and F ∈ F = {F : F ′F = IdF } as (n,G)→∞ with T fixed such that G/n→ 0.
For the first term, we have∣∣∣∣∣ 1n

G∑
g=1

ngλ
0′
g F

0′MF ε̄g

∣∣∣∣∣
≤
∣∣∣∣∣ 1n

G∑
g=1

ngλ
0′
g F

0′ε̄g

∣∣∣∣∣+

∣∣∣∣∣ 1n
G∑
g=1

ng
(
λ0′
g F

0′F
)

(F ′ε̄g)

∣∣∣∣∣
= a1 + a2.
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It is easy to show that a1 = Op

(
n−α/2

)
under Assumptions 1-5. For a2,

a2 ≤
(

1

n

G∑
g=1

ng
∥∥λ0′

g F
0′F
∥∥2

)1/2(
1

n

G∑
g=1

ng ‖F ′ε̄g‖2

)1/2

= Op (1)

(
1

n

G∑
g=1

ng ‖F ′ε̄g‖2

)1/2

,

and

P

(
1

n

G∑
g=1

ng ‖F ′ε̄g‖2
> ∆

)
≤ G

∆n

T∑
t=1

T∑
s=1

1

G

G∑
g=1

ngE(ε̄gtε̄gs)E (F ′sFt)

= O

(
G

n

)
.

Thus, a1 and a2 are op (1) under our rate condition. Using the same procedure, we can show
that the second and third terms in (S.13) are also op (1). Therefore, (S.13) holds.
The second step is to show

Q∗(β, F ) > 0 (S.14)

for any (β, F ) 6= (β0, F 0H), and the proof of consistency in Bai (2009, Proposition 1) can directly
apply here. Therefore, Q∗(β, F ) ≥ 0 and Q∗(β, F ) > 0 if (β, F ) 6= (β0, F 0H), which completes
the proof of Part (i).
Proof of Proposition A1. Define Λ0 = (λ0

1, ..., λ
0
1︸ ︷︷ ︸

n1

, ..., λ0
G, ..., λ

0
G︸ ︷︷ ︸

nG

)′. From (11), we have

F̂ Γ̂− F 0

(
Λ0′Λ0

n

)(
F 0′F̂

)
=

1

n

G∑
g=1

ngX̄g

(
β0 − β̂

)(
β0 − β̂

)′
X̄ ′gF̂

+
1

n

G∑
g=1

ngX̄g

(
β0 − β̂

)
λ0′
g F

0′F̂ +
1

n

G∑
g=1

ngX̄g

(
β0 − β̂

)
ε̄′gF̂

+
1

n

G∑
g=1

ngF
0λ0

g

(
β0 − β̂

)′
X̄ ′gF̂ +

1

n

G∑
g=1

ngε̄g

(
β0 − β̂

)′
X̄ ′gF̂

+
1

n

G∑
g=1

ngF
0λ0

gε̄
′
gF̂ +

1

n

G∑
g=1

ngε̄gλ
0′
g F

0′F̂ +
1

n

G∑
g=1

ngε̄gε̄
′
gF̂

= I1 + I2 + · · ·+ I8. (S.15)
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We multiply
(
F 0′F̂

)−1

(Λ0′Λ0/n)
−1 to obtain

F̂ Γ̂
(
F 0′F̂

)−1
(

Λ0′Λ0

n

)−1

︸ ︷︷ ︸
=H−1

− F 0

≤ (I1 + · · ·+ I8)
(
F 0′F̂

)−1
(

Λ0′Λ0

n

)−1

.

For I1,

‖I1‖ ≤ 1

n

G∑
g=1

ng
∥∥X̄g

∥∥2
∥∥∥β0 − β̂

∥∥∥2 ∥∥∥F̂∥∥∥︸︷︷︸
=1

= Op

(∥∥∥β̂ − β0
∥∥∥2
)
.

Using similar procedures, we can show that ‖I2‖ = · · · = ‖I5‖ = Op

(∥∥∥β0 − β̂
∥∥∥) .

For I6, we have

‖I6‖ ≤ 1√
n

∥∥∥∥∥ 1√
G

G∑
g=1

√
ngλ

0
gε̄g

∥∥∥∥∥∥∥F 0
∥∥∥∥∥F̂∥∥∥O (1)

= Op

(
1√
n

)
.

In the same way, we can show that ‖I7‖ = Op

(
n−1/2

)
.

For I8, we have

‖I8‖ =

∥∥∥∥∥ 1

n

G∑
g=1

ngε̄gε̄
′
gF̂

∥∥∥∥∥
≤ Op

(
G

n

)
1

G

G∑
g=1

∥∥√ngε̄g∥∥2
∥∥∥F̂∥∥∥

= Op

(
G

n

)
.

Combining I1-I8, we obtain

F̂ Γ̂
(
F 0′F̂

)−1
(

Λ0′Λ0

n

)−1

− F 0

= Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
. (S.16)
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Premultiplying F̂ ′ in (S.16), we obtain

Γ̂ =
(
F̂ ′F 0

)(Λ0′Λ0

n

)(
F 0′F̂

)
+ op (1) . (S.17)

As in Bai (2009, Proposition I(ii)), F 0′F̂ is invertible, so Γ̂ is invertible. Thus, from (S.16) we
have ∥∥∥F̂ − F 0H

∥∥∥ = Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
.

Lemma S1 Under Assumptions 1-5, for each g

√
ngε̄

′
g

(
F̂ − F 0H

)
= op

(∥∥∥β0 − β̂
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
as (n,G)→∞ such that G/n→ 0.

Lemma S2 Under Assumptions 1-5,

HH ′ −
(
F 0′F 0

)−1
= Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
.

Proof of Lemma S2. Note that

HH ′ −
(
F 0′F 0

)−1
= H

[
H ′F 0′F 0H − I

] (
H ′F 0′F 0H

)−1
H ′

= H

[
H ′F 0′

(
F 0H − F̂

)
+
(
F 0H − F̂

)′ (
F̂ − F 0H

)
+
(
F 0H − F̂

)′
F 0H

] (
H ′F 0′F 0H

)−1
H ′. (S.18)

Thus, it follows from Proposition A1 that

HH ′ −
(
F 0′F 0

)−1
= Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
. (S.19)

Lemma S3 Under Assumptions 1-5,

PF̂ − PF 0 = Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
.
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Proof of Lemma S3. We note that

PF̂ − FF 0 = F̂ F̂ ′ − F 0
(
F 0′F 0

)−1
F 0′

= F̂ F̂ ′ −
(
F 0H

) (
F 0H

)′
+ F 0HH ′F 0′ − F 0

(
F 0′F 0

)−1
F 0′

= Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
due to Proposition A1 and Lemma S2.
Proof of Proposition A2. Note that

√
n
(
β̂ − β0

)
=

 1

n

G∑
g=1

∑
i∈Ag

(
Xig − PF̂ X̄g

)′ (
Xig − PF̂ X̄g

)−1

1√
n

G∑
g=1

∑
i∈Ag

(
X ′igMF̂F

0λ0
g

+
(
Xig − PF̂ X̄g

)′
εig

)
. (S.20)

Let Υ =
(
F 0′F̂

)−1

(Λ0′Λ0/n)
−1
. For the first term of (S.20), using MF̂ F̂ = 0, we have

1√
n

G∑
g=1

∑
i∈Ag

X ′igMF̂F
0λ0

g =
1√
n

G∑
g=1

∑
i∈Ag

X ′igMF̂

[
F 0 − F̂ Γ̂

(
F 0′F̂

)−1
(

Λ0′Λ0

n

)−1
]
λ0
g

=
1√
n

G∑
g=1

∑
i∈Ag

X ′igMF̂

[
F 0

(
Λ0′Λ0

n

)(
F 0′F̂

)
− F̂ Γ̂

]
Υλ0

g

= − 1√
n

G∑
g=1

∑
i∈Ag

X ′igMF̂ (I1 + · · ·+ I8) Υλ0
g

:= J1 + · · ·+ J8.

For J1,

‖J1‖ =

∥∥∥∥∥ 1√
n

G∑
g=1

ngX̄
′
gMF̂ (I1) Υλ0

g

∥∥∥∥∥
≤ 1

n
√
n

(
1

n

G∑
g=1

ng
∥∥X̄ ′g∥∥2

)1/2(
1

n

G∑
g=1

ng
∥∥λ0

g

∥∥2

)1/2

‖Υ‖ op
(∥∥∥β̂ − β0

∥∥∥)
= op

(∥∥∥√n(β̂ − β0
)∥∥∥) , (S.21)

in which we use ∥∥X̄ ′gMF̂

∥∥2
= tr

(
X̄ ′gX̄g

)
− tr

(
X̄ ′gF̂ F̂

′X̄g

)
=
∥∥X̄g

∥∥2 −
∥∥∥F̂ ′X̄g

∥∥∥2

≤
∥∥X̄g

∥∥2
. (S.22)
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For J2, we have

J2 =
1

n2

G∑
g=1

G∑
g̃=1

ngng̃X̄
′
gMF̂ X̄g̃λ

0′
g̃

(
Λ0′Λ0

n

)−1

λ0
g

√
n
(
β̂ − β0

)
=

1

n2

G∑
g=1

G∑
g̃=1

a0
gg̃ngng̃X̄

′
gMF̂ X̄g̃

√
n
(
β̂ − β0

)
(S.23)

= Op

(√
n
(
β̂ − β0

))
,

because ∥∥∥∥∥ 1

n2

G∑
g=1

G∑
g̃=1

ngng̃X̄
′
gMF̂ X̄g̃

{
λ0′
g

(
Λ0′Λ0

n

)−1

λ0
gi

}∥∥∥∥∥
≤
(

1

n

G∑
g=1

ng
∥∥X ′ig∥∥∥∥λ0

g

∥∥)2 ∥∥∥∥∥
(

Λ0′Λ0

n

)−1
∥∥∥∥∥ = Op (1) .

For J3,

‖J3‖ =

∥∥∥∥∥ 1

n
√
n

G∑
g=1

G∑
g̃=1

ngng̃X̄
′
gMF̂ X̄g̃

(
β0 − β̂

)
ε̄′g̃F̂Υλ0

g

∥∥∥∥∥
≤
√
G√
n

(
1

n

G∑
g=1

ng
∥∥X̄ ′g∥∥2

)(
1

n

G∑
g=1

ng
∥∥λ0

g

∥∥2

)1/2(
1

G

G∑
g̃=1

∥∥√nε̄′g̃∥∥2

)1/2

× ‖Υ‖
∥∥∥√n(β0 − β̂

)∥∥∥
= op

(√
n
(
β0 − β̂

))
.

For J4,

‖J4‖ =

∥∥∥∥∥ 1

n
√
n

G∑
g=1

G∑
g̃=1

ngng̃X̄
′
gMF̂

(
F 0 − F̂H−1

)
λ0
g̃

(
β0 − β̂

)′
X̄ ′g̃F̂Υλ0

g

∥∥∥∥∥
≤
(

1

n

G∑
g=1

ng
∥∥X̄ ′g∥∥2

)(
1

n

G∑
g=1

ng
∥∥λ0

g

∥∥2

)1/2(
1

n

G∑
g̃=1

ng̃
∥∥λ0

g̃

∥∥2

)1/2

×
∥∥∥F̂∥∥∥ ‖Υ‖∥∥∥F 0 − F̂H−1

∥∥∥∥∥∥√n(β0 − β̂
)∥∥∥

= op

(∥∥∥√n(β0 − β̂
)∥∥∥) .
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For J5,

‖J5‖ =

∥∥∥∥∥ 1

n
√
n

G∑
g=1

G∑
g̃=1

ngX̄
′
gMF̂ng̃ε̄g̃

(
β0 − β̂

)′
X̄ ′g̃F̂Υλ0

g

∥∥∥∥∥
≤ O

(
G

n

)(
1

n

G∑
g=1

ng
∥∥X̄ ′g∥∥2

)1/2(
1

n

G∑
g=1

ng
∥∥λ0

g

∥∥2

)1/2(
1

G

G∑
g̃=1

∥∥√ng̃ε̄g̃∥∥2

)1/2

×
(

1

n

G∑
g̃=1

ng̃
∥∥X̄ ′g̃∥∥

)1/2 ∥∥∥∥√n(β0 − β̂
)′∥∥∥∥∥∥∥F̂∥∥∥ ‖Υ‖

= op

(∥∥∥√n(β0 − β̂
)∥∥∥) .

For J6, since MF̂ F̂ = 0,

‖J6‖ =

∥∥∥∥∥ 1

n
√
n

G∑
g=1

G∑
g̃=1

ngng̃X̄
′
gMF̂

(
F 0 − F̂H−1

)
λ0
g̃ε̄
′
g̃F̂Υλ0

g

∥∥∥∥∥
≤
(

1

n

G∑
g=1

ng
∥∥X̄ ′g∥∥2

)1/2(
1

n

G∑
g=1

∥∥λ0
g

∥∥2

)1/2 ∥∥∥F̂∥∥∥ ‖Υ‖ (S.24)

×
∥∥∥∥∥ 1√

n

G∑
g̃=1

ng̃λ
0
g̃ε̄
′
g̃

∥∥∥∥∥∥∥∥F 0 − F̂H−1
∥∥∥ (S.25)

= Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
.

where

P

(∥∥∥∥∥ 1√
n

G∑
g̃=1

ng̃λ
0
g̃ε̄
′
g̃

∥∥∥∥∥ > ∆

)
≤ O (1)

1

n

G∑
g̃1=1

G∑
g̃2=1

ng̃1ng̃2E
(
ε̄′g̃1 ε̄g̃2

)
< M.

For J7, since a0
g̃g is a scalar,

J7 = − 1

n
√
n

G∑
g=1

G∑
g̃=1

ngng̃a
0
g̃gX̄

′
gMF̂ ε̄g̃.

Let

An = − 1

n

G∑
g=1

ngX̄
′
gMF 0ΩF

0HΥλ0
g

where Ω = 1
G

∑G
g̃=1E

(
ng̃ε̄g̃ε̄

′
g̃

)
.
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Then, J8 can be rewritten as

J8 = − G√
n

1

n

G∑
g=1

ngX̄
′
gMF̂

(
1

G

G∑
g̃=1

ng̃ε̄g̃ε̄
′
g̃

)
F̂Υλ0

g

= − G√
n

1

n

G∑
g=1

ngX̄
′
gMF̂ΩF̂Υλ0

g

−
√
G

n

1

n

G∑
g=1

ngX̄
′
gMF̂

(
1√
G

G∑
g̃=1

(
ng̃ε̄g̃ε̄

′
g̃ − Ω

))
F̂Υλ0

g

= J81 + J82.

For J81,

J81 = − G√
n

1

n

G∑
g=1

ngX̄
′
gMF 0ΩF

0HΥλ0
g

− G√
n

1

n

G∑
g=1

ngX̄
′
g (MF̂ −MF 0) ΩF 0HΥλ0

g

− G√
n

1

n

G∑
g=1

ngX̄
′
gMF̂Ω

(
F̂ − F 0H

)
Υλ0

g

=
G√
n
An −

G√
n
b11 −

G√
n
b12.

For b11,

b11 =
1

n

G∑
g=1

ngX̄
′
g (PF 0 − PF̂ ) ΩF 0HΥλ0

g

= Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
(S.26)

under our rate condition because of Lemma S3. It is also easy to show that b12 = oP (1) . Thus,

J81 =
G√
n
An + oP

(
G√
n

)
.

For J82, we note that∥∥∥∥∥ 1

n

G∑
g=1

ngX̄
′
gMF̂

(
1√
G

G∑
g̃=1

(
ng̃ε̄g̃ε̄

′
g̃ − Ω

))
F̂Υλ0

g

∥∥∥∥∥
≤
(

1

n

G∑
g=1

ng
∥∥X̄ ′g∥∥2

)1/2(
1

n

G∑
g=1

ng
∥∥λ0

g

∥∥2

)1/2 ∥∥∥∥∥ 1√
G

G∑
g̃=1

(
ng̃ε̄g̃ε̄

′
g̃ − Ω

)∥∥∥∥∥ ∥∥∥F̂∥∥∥ ‖Υ‖
= Op (1) ,
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because for all t, s = 1, ..., T

P

(∣∣∣∣∣ 1√
G

G∑
g̃=1

ng̃ (ε̄g̃tε̄g̃s − E (ε̄g̃tε̄g̃s))

∣∣∣∣∣ > ∆

)

≤ 1

∆2
E

(
1√
G

G∑
g̃=1

ng̃ (ε̄g̃tε̄g̃s − E (ε̄g̃tε̄g̃s))

)2

= O (1)

as (n,G)→∞ under Assumption 4(iv). Therefore, J82 = OP

(√
G
n

)
and we have

J8 =
G√
n
An + op

(
G√
n

)
.

From J1-J8, we have

1√
n

G∑
g=1

∑
i∈Ag

X ′igMF̂F
0λ0

g

=
1

n2

G∑
g=1

G∑
g̃=1

a0
gg̃ngng̃X̄

′
gMF̂ X̄g̃

√
n
(
β̂ − β0

)
− 1

n
√
n

G∑
g=1

G∑
g̃=1

ngng̃a
0
g̃gX̄

′
gMF̂ ε̄g̃

+
G√
n
An + op

(√
n
(
β0 − β̂

))
+ op

(
G√
n

)
+Op

(
1√
n

)
. (S.27)

Combining this result with (S.20), we have

 1

n

G∑
g=1

∑
i∈Ag

(
Xig − PF̂ X̄g

)′ (
Xig − PF̂ X̄g

)
− 1

n2

G∑
g=1

G∑
g̃=1

a0
gg̃ngng̃X̄

′
gMF̂ X̄g̃

√n(β̂ − β0
)

=
1√
n

G∑
g=1

∑
i∈Ag

((
Xig − PF̂ X̄g

)′ − 1

n

G∑
g̃=1

ngng̃a
0
g̃gX̄

′
g̃MF̂

)′
εig +

G√
n
An

+ op

(√
n
(
β0 − β̂

))
+ op

(
G√
n

)
+Op

(
1√
n

)
.

By premultiplying BXX
n

(
F̂
)−1

, we have

√
n
(
β̂ − β0

)
= BXX

n

(
F̂
)−1 1√

n

G∑
g=1

∑
i∈Ag

((
Xig − PF̂ X̄g

)′ − 1

n

G∑
g̃=1

ng̃a
0
g̃gX̄

′
g̃MF̂

)′
εig

+
G√
n
BXX
n

(
F̂
)−1

An + op

(√
n
(
β0 − β̂

))
+ op

(
G√
n

)
+Op

(
1√
n

)
.
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Proof of Proposition A3. The proof is omitted because it is the same as the proof of Propo-
sition A1.

Proof of Theorem 2. Let XX
ig = XX

ig (F 0) and BXX
n = BXX

n (F 0) for notational simplicity.
From Proposition A2, we have

√
n
(
β̂ − β0

)
= BXX

n

(
F̂
)−1 1√

n

G∑
g=1

∑
i∈Ag

XX
ig

(
F̂
)′
εig + op (1)

as (n,G)→∞ such that G/
√
n→ 0. Thus, we need to show

(i)
1√
n

G∑
g=1

∑
i∈Ag

XX
ig

(
F̂
)′
εig −

1√
n

G∑
g=1

∑
i∈Ag

(
XX
ig

)′
εig = op (1) ,

(ii) BXX
n

(
F̂
)
−BXX

n = op (1)

to complete the proof.

Part (i) We have

1√
n

G∑
g=1

∑
i∈Ag

XX
ig

(
F̂
)′
εig −

1√
n

G∑
g=1

∑
i∈Ag

(
XX
ig

)′
εig

=
1√
n

G∑
g=1

ngX̄
′
g (PF̂ − PF 0) ε̄g −

1

n
√
n

G∑
g=1

G∑
g̃=1

ngng̃a
0
g̃gX̄

′
g̃ (MF 0 −MF̂ )′ ε̄g

= H1 +H2.

For H1,

‖H1‖ ≤ Op

(√
G
)( 1

n

G∑
g=1

ng
∥∥X̄ ′g∥∥2

)1/2(
1

n

G∑
g=1

ng
∥∥√ngε̄g∥∥2

)1/2 ∥∥∥F̂ F̂ ′ − PF 0∥∥∥
= Op

(√
G
∥∥∥β̂ − β0

∥∥∥)+Op

(√
G√
n

)
+Op

(
G
√
G

n

)

= op

(√
n
∥∥∥β̂ − β0

∥∥∥)+ op

(
G√
n

)
(S.28)

if (n,G)→∞ such that G/
√
n→ 0.

For H2, we define Kg = n−1
∑G

g̃=1 ng̃a
0
g̃gX̄

′
g̃. Replacing X̄g with Kg in (S.28), we can use the

same procedure for H2, and we have

‖H2‖ = op

(√
n
∥∥∥β̂ − β0

∥∥∥)+ op

(
G√
n

)
. (S.29)
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From (S.28) and (S.29), we have

1√
n

G∑
g=1

∑
i∈Ag

XX
ig

(
F̂
)′
εig

=
1√
n

G∑
g=1

∑
i∈Ag

(
XX
ig

)′
εig + op

(√
n
∥∥∥β̂ − β0

∥∥∥)+ op

(
G√
n

)
.

as (n,G)→∞ such that G/
√
n→ 0.

Part (ii) We have

BXX
n

(
F̂
)
−BXX

n

=
1

n

G∑
g=1

∑
i∈Ag

ngX̄
′
g (PF 0 − PF̂ ) X̄g

− 1

n2

G∑
g=1

G∑
g̃=1

a0
gg̃ngng̃X̄

′
g (MF̂ −MF 0) X̄g̃

= G1 + G2,

Using similar procedures in (S.26), we have

G1 = Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
,

G2 = Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
.

Combining (i) and (ii), we have

√
n
(
β̂ − β

)
=
(
BXX
n + op (1)

)−1

 1√
n

G∑
g=1

∑
i∈Ag

(
XX
ig

)′
εig +

G√
n
An

+op

(√
n
(
β0 − β̂

))
+ op

(
G√
n

)
+Op

(
1√
n

)]
=
(
BXX
n

)−1 1√
n

G∑
g=1

∑
i∈Ag

(
XX
ig

)′
εig + op (1)

under Assumption 7.

Lemma S4 Under Assumptions 1-6,

1√
G

(
Λ̂′G −H−1Λ′G

)
= Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(√
G

n

)
.
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Proof of Lemma S4. Note that

1√
G

(
Λ̂′G −H−1Λ0′

G

)
=

1√
G
F̂ ′
[(
Ȳ1 − X̄1β̂

)
, · · · ,

(
ȲG − X̄Gβ̂

)]
− 1√

G
H−1Λ0′

G

=
1√
G
F̂ ′
[(
X̄1

(
β0 − β̂

)
+ F 0λ0

1 + ε̄1

)
, · · · ,

(
X̄G

(
β0 − β̂

)
+ F 0λ0

G + ε̄G

)]
− 1√

G
H−1Λ0′

G

=
F̂ ′√
G

(
F 0 − F̂H−1

)
Λ0′
G +

F̂ ′√
G

[ε̄1, · · · , ε̄G] +
F̂ ′√
G

[
X̄1, · · · , X̄G

] (
β0 − β̂

)
= S1 + S2 + S3,

where

‖S1‖ ≤
∥∥∥F̂ ′∥∥∥∥∥∥F 0 − F̂H−1

∥∥∥ ‖Λ0
G‖√
G

= Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(
G

n

)
,

‖S2‖ ≤

∥∥∥F̂ ′∥∥∥
√
G
‖ε̄1, · · · , ε̄G‖

= O

(√
G

n

)∥∥∥F̂ ′∥∥∥
√√√√ 1

G

G∑
g=1

ngε̄′gε̄g

= Op

(√
G

n

)
,

‖S3‖ ≤

∥∥∥F̂ ′∥∥∥
√
G

∥∥[X̄1, · · · , X̄G

]∥∥ ∥∥∥β0 − β̂
∥∥∥

= Op

(∥∥∥β0 − β̂
∥∥∥)

Therefore,

1√
G

(
Λ̂′G −H−1Λ′G

)
= Op

(∥∥∥β̂ − β0
∥∥∥)+Op

(
1√
n

)
+Op

(√
G

n

)
.

Proof of Theorem 3. Part (i) Due to Proposition A2 and Theorem 2, we need to prove

(a) B̂XX
n −BXX

n

(
F̂
)

= op (1) ,

(b) V̂ c
n − V c

n = op (1) .
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For (a), it is straightforward to show that

B̂XX
n −BXX

n

(
F̂
)

=
1

n2

G∑
g=1

G∑
g̃=1

(
a0
gg̃ − âgg̃

)
ngng̃X̄

′
gMF̂ X̄g̃

=
1

n2

G∑
g=1

G∑
g̃=1

[
λ0′
g

(
H−1

)′(H−1Λ0′Λ0 (H−1)
′

n

)−1 (
H−1λ0

g̃ − λ̂g̃
)]

ngng̃X̄
′
gMF̂ X̄g̃

+
1

n2

G∑
g=1

G∑
g̃=1

λ0′
g

(
H−1

)′(H−1Λ0′Λ0 (H−1)
′

n

)−1

−
(

Λ̂′Λ̂

n

)−1
 λ̂g̃

ngng̃X̄ ′gMF̂ X̄g̃

+
1

n2

G∑
g=1

G∑
g̃=1

(λ0′
g

(
H−1

)′ − λ̂′g)
(

Λ̂′Λ̂

n

)−1

λ̂g̃

ngng̃X̄ ′gMF̂ X̄g̃

= op (1) ,

using n−2
∑G

g=1

∑G
g̃=1 ngng̃

∥∥X̄ ′gMF̂ X̄g̃

∥∥2
= Op (1) and Lemma S4.

For (b), let

Ṽ c
n =

1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

(
XX
ig

)′
εigε

′
jgXX

jg and V̈
c
n =

1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

(
X̂X
ig

)′
εigε

′
jgX̂X

jg .

We have
V̂ c
n − V c

n =
(
V̂ c
n − V̈ c

n

)
+
(
V̈ c
n − Ṽ c

n

)
+
(
Ṽ c
n − V c

n

)
(S.30)

and need to show that each term in (S.30.) is op (1) .
We note that

V̂ c
n − V̈ c

n =
1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

(
X̂X
ig

)′ [
Xig

(
β0 − β̂

)(
β0 − β̂

)′
X ′jg

+
(
F 0λ0

g − F̂ λ̂g
)(

β0 − β̂
)′
X ′jg + εig

(
β0 − β̂

)′
X ′jg

+Xig

(
β0 − β̂

)(
F 0λ0

g − F̂ λ̂g
)′

+
(
F 0λ0

g − F̂ λ̂g
)(

F 0λ0
g − F̂ λ̂g

)′
+εig

(
F 0λ0

g − F̂ λ̂g
)′

+Xig

(
β0 − β̂

)
εjg +

(
F 0λ0

g − F̂ λ̂g
)
εjg

]
X̂X
jg , (S.31)
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and ∥∥∥∥∥∥ 1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

(
X̂X
ig

)′
Xig

(
β0 − β̂

)(
β0 − β̂

)′
X ′jgX̂X

jg

∥∥∥∥∥∥
≤ 1

G

G∑
g=1

∥∥∥∥∥∥ 1

ng

∑
i∈Ag

(
X̂X
ig

)′
Xig

∥∥∥∥∥∥
2

OP

(∥∥∥∥√ n

G

(
β0 − β̂

)∥∥∥∥2
)

= op (1) .

Using similar arguments, we can show that the other terms in (S.31) are op (1) .
For the second term in (S.30),

V̈ c
n − Ṽ c

n =
1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

(
X̂X
ig −XX

ig

)′
εigε

′
jg

(
X̂X
jg −XX

jg

)

+
1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

(
X̂X
ig −XX

ig

)′
εigε

′
jgXX

jg

+
1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

(
XX
ig

)′
εigε

′
jg

(
X̂X
jg −XX

jg

)
= R1 +R2 +R3 (S.32)

First, we have

R1 =
1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

X̄ ′g (PF 0 − PF̂ ) εigε
′
jg (PF 0 − PF̂ ) X̄g

+
1

n

G∑
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∑
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∑
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1

n

G∑
g̃=1

ng̃X̄
′
g̃

(
a0
gg̃MF 0 − âgg̃MF̂

)
εigε

′
jg (PF 0 − PF̂ ) X̄g

+
1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

X̄ ′g (PF 0 − PF̂ ) εigε
′
jg

1

n

G∑
g̃=1

ng̃
(
a0
gg̃MF 0 − âgg̃MF̂

)
X̄g̃

+
1

n

G∑
g=1

∑
i∈Ag

∑
j∈Ag

[
1

n

G∑
g̃1=1

ng̃1X̄
′
g̃1

(
a0
gg̃1
MF 0 − âgg̃1MF̂

)]
εigε

′
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[
1

n

G∑
g̃2=1

ng̃2
(
a0
gg̃2
MF 0 − âgg̃2MF̂

)
X̄g̃2

]
= R11 +R12 +R13 +R14.

For R11,

‖R11‖ ≤
(

1

n

G∑
g=1

ng
∥∥X̄ ′g∥∥2 ∥∥√ngε̄′g∥∥2

)
‖PF 0 − PF̂‖

2

= op (1) .
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For R12,

R12 =
1

n2

G∑
g=1

G∑
g̃=1

n2
gng̃X̄

′
g̃

(
a0
gg̃MF 0 − âgg̃MF̂

)
ε̄gε̄
′
g (PF 0 − PF̂ ) X̄g

=
1

n

G∑
g=1

ng

(
1

n

G∑
g̃=1

ng̃a
0
gg̃X̄

′
g̃

)
(PF̂ − PF 0)

(√
ngε̄g

) (√
ngε̄

′
g

)
(PF 0 − PF̂ ) X̄g

+
1

n

G∑
g=1

ng

(
1

n

G∑
g̃=1

ng̃
(
a0
gg̃ − âgg̃

)
X̄ ′g̃

)
MF̂

(√
ngε̄g

) (√
ngε̄

′
g

)
(PF 0 − PF̂ ) X̄g

= L1 + L2

and we can show that L1 = op (1) using a similar procedure to show R11 = op (1) . For L2,

‖L2‖ ≤ O (1)
1

n

G∑
g=1

ng

∥∥∥∥∥ 1

n

G∑
g̃=1

ng̃
(
a0
gg̃ − âgg̃

)
X̄ ′g̃

∥∥∥∥∥∥∥√ngε̄g∥∥2 ∥∥X̄g

∥∥ ‖PF 0 − PF̂‖
≤ O (1)

 1

n

G∑
g=1

ng

∥∥∥∥∥ 1

n

G∑
g̃=1

ng̃
(
a0
gg̃ − âgg̃

)
X̄ ′g̃

∥∥∥∥∥
2
1/2

×
(

1

n

G∑
g=1

ng
∥∥√ngε̄g∥∥4 ∥∥X̄g

∥∥2

)1/2

‖PF 0 − PF̂‖

= op (1) .

Thus, R12 = op (1) . Using similar procedures, we can prove that R13 = op (1) and R14 = op (1) .
Thus, R1 = op (1) . The proofs for R2 = op (1) and R3 = op (1) are omitted because it is the
same as the one for R1 = op (1) .
For the last term in (S.30), since the convergence is elementwise, let’s assume that Ṽ c

n − V c
n

is a scalar. Then, under independence among groups in Assumption 9(i), we have

P
(∣∣∣Ṽ c

n − V c
n

∣∣∣ > ∆
)

≤ 1

∆2

1

n2

G∑
g=1

∑
i∈Ag

∑
j∈Ag

E
((
XX
i

)′
εiε
′
jXX

j − E
[(
XX
i

)′
εiε
′
jXX

j

])2

= o (1) .

Part (ii) Due to the proofs of Theorem 2 and Theorem 3 Part (i), we only need to show that

σ̂2 − σ2 →p 0. (S.33)
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We have

σ̂2 =
1

nT

G∑
g=1

∑
i∈Ag

[(
β0 − β̂

)′
X ′igXig

(
β0 − β̂

)
+ 2

(
β0 − β̂

)′
X ′ig

(
F 0λ0

g − F̂ λ̂g
)

+ 2
(
β0 − β̂

)′
X ′igεig

+
(
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g − F̂ λ̂g
)′ (

F 0λ0
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)
+ 2

(
F 0λ0

g − F̂ λ̂g
)′
εig + ε′igεig

]
= T1 + ...+ T6.

It is straightforward to show that T1 = ... = T5 = op (1) .
For T6, we have

T6 =
1

nT

G∑
g=1

∑
i∈Ag

ε′igεig →p=
1

T
Eε′igεig =

1

T

T∑
t=1

Eε2
igt = σ2,

which completes the proof of (S.33).

Proof of Theorem 4. Part (i) Due to the proofs of Theorem 2 and Theorem 3, it is suffi cient
to show that ĈXX

0a,n − CXX
0a,n →p 0 under the null hypothesis.

Let

C̃XX
0a,n =

1

n

G∑
g=1

κg∑
`=1

∑
i∈A(`)g

XX
i`gXX

a,i`g.
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0a,n − CXX
0a,n =

(
ĈXX

0a,n − C̃XX
0a,n

)
+
(
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0a,n − CXX
0a,n

)
. (S.34)
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The second term is op (1) by the law of large numbers. For the first term, under the null, we
have

ĈXX
0a,n − C̃XX

0a,n

=
1

n
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+
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1
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For U1, we can show that
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1

n

G∑
g=1

κg∑
`=1

n(`)
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n
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)
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under the null as (Ga, n) → ∞ such that Ga/
√
n → 0 based on Lemma S2. Using similar

arguments, it is easy to prove U2, U3 and U4 are also op (1) .
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Proof of Theorem 5. Part (i) Without loss of generality, we set β0 = 0. Let
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n

1

n
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∑
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)′
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g
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n
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∑
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F

(
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n

1

n

G∑
g=1
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(
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)′ (
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)
β

+
1
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1
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and
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)CnT (F ),

where

Cn(F ) = Dn (F )
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(
Ψjg − PF Ψ̄g

)
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0λg

 ,
Dn (F ) =
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n (F )Ω−1

n QΨX
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]−1
QXΨ
n (F )Ω−1

n .

The proof consists of two steps. The first step is to show that (β0, F 0H) is the unique
minimizer of Q∗gmm (β, F ) for all bounded β and F ∈ F and Q̃gmm (β, F )−Q∗gmm (β, F ) = op (1) .

The second step is to show F 0H is the unique minimizer of Q∗LS(F ) and Q̃LS (F )−Q∗LS (F ) =
op (1) for F ∈ F .
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For the first step, it is easy to see that Q∗gmm (β0, F 0H) = 0 and since Ω−1
n is positive definite

Q∗gmm (β, F ) =
1

n
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(
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)
β
]

> 0

if (β, F ) 6= (β0, F 0H) . Thus, (β0, F 0H) is the unique minimizer of Q∗gmm (β, F ) . We also have
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Xig − PF X̄g

)
β

= op (1) .

For the second step, we have Q∗LS(F 0H) = 0, and it is easy to prove that Q̃LS(F )−Q∗LS(F ) =
op (1) . We can show that Q∗LS(F ) > 0 if F 6= F 0H using the proof of consistency in Bai (2009,
Proposition 1) by replacing β with CnT (F ).

Proof of Theorem 6. Note that[
QXΨ
n

(
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)
Ω−1
n QΨX

n

(
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)]√
n
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(
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)′
εig

)
. (S.35)

Using a similar procedure in the proof of Proposition A2, we can have

1√
n

G∑
g=1

∑
i∈Ag

Ψ′igMF̂gmm
F 0λg

=
1

n2

G∑
g=1

G∑
g̃=1

ngng̃a
0
gg̃Ψ̄

′
gMF̂gmm

X̄g̃

√
nT
(
β̂gmm − β

)
− 1

n
√
n

G∑
g=1

G∑
g̃=1

ngng̃a
0
gg̃Ψ̄

′
gMF̂gmm

ε̄g̃

+ op

(√
n
∥∥∥β̂gmm − β∥∥∥)+Op
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G√
n
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.
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Applying this result to (S.35), under the rate condition in Assumption 5, we have

QXΨ
n

(
F̂gmm

)
Ω−1
n BΨX

n

(
F̂gmm

)√
n
(
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)
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n

(
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)
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n

1√
n

G∑
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∑
i∈Ag

XΨ
ig

(
F̂gmm

)′
εig + op (1) .

Then, using a similar procedure in the proof of Theorem 2, we have

√
n
(
β̂gmm − β

)
=
(
QXΨΩ−1

n BΨX

)−1
QXΨΩ−1

n

1√
n

G∑
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∑
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(
XΨ
ig

)′
εig + op (1) .

Applying Assumptions 11(ii) and 12 to this result completes the proof.
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