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Abstract

This paper proposes an inference procedure for the interactive fixed
effects model that is valid in the presence of cross-sectional dependence.
When the error terms are cross-sectionally dependent, the Least Square
(LS) estimator of this model is asymptotically biased and therefore the
associated confidence interval tends to have a large coverage error. To
address this, we propose a bias correction of the LS estimator and a cross-
sectional dependence robust variance estimator to construct associated
test statistics. The paper also discusses practical issues in implementing
the proposed method, including the construction of distance that reflects
the decaying pattern of cross-sectional dependence and the selection of
the bandwidth parameters. Monte Carlo simulations show our procedure
works well in finite samples. As empirical illustrations, we apply our pro-
cedure to study the effect of divorce law reforms on divorce rates and
the impact of clean water and sewerage interventions on child mortality.
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2 Inference for IFE Model under Cross-Sectional Dependence

1 Introduction

It is crucial in panel regression analysis to control for unobserved individual
heterogeneity and time effects that are possibly correlated with regressors.
A typical approach in this regard is to use the standard fixed effects model,
in which the individual effects and time effects enter the model additively.
An alternative approach is the interactive fixed effects (IFE) model, in which
individual effects and time effects are interacted multiplicatively. Since the mul-
tiplicative structure captures the impact of individual heterogeneity and time
effects in a more flexible way, the IFE model has attracted a great deal of atten-
tion in the literature. Holtz-Eakin et al. (1988) explore a quasi-differencing
approach and Ahn and Horenstein (2001) propose the generalized method of
moments (GMM) estimation in large N and fixed T panel models. The sem-
inal work of Pesaran (2006) and Bai (2009) develop estimation and inference
procedures of this model under the large N and large T asymptotics. Pesaran
(2006) proposes the common correlated effects (CCE) estimator for hetero-
geneous panel models, and Bai (2009) develops the LS estimator using the
principal component method. Moon and Weidner (2017) also consider the LS
estimator for this model in the dynamic panel context. More recently, Hong
et al. (2023) propose a two-step profile GMM estimation procedure to esti-
mate the IFE model when the regressor are allowed to be correlated with the
idiosyncratic error terms. Callaway and Karami (2023) considers identifying
and estimating the Average Treatment Effect on the Treated (ATT) when
untreated potential outcomes are generated by IFE model.

In this paper, we propose an inference procedure on the IFE model that
is valid in the presence of cross-sectional dependence in the large N and large
T asymptotic framework. As discussed by Bai (2009), the LS estimator of
this model is asymptotically biased when the error terms are cross-sectionally
and/or serially heteroskedastic and dependent. This is known as an incidental
parameters problem (Neyman and Scott, 1948; Nickell, 1981), and inference
without taking this problem into account may yield a misleading statistical
conclusion. We develop an inference procedure that addresses this issue. For
technical simplicity we assume there is no serial dependence and focus on issues
caused by cross-sectional dependence. Our work is empirically relevant since
local dependence may often remain even after introducing the factor structure.
For example, when we use state level data, nationwide dependence can be
captured by the factor structure but local correlations among neighbor states
are likely to still exist in the model.

Our procedure consists of two parts: First, we correct the bias of the LS
estimator. Using the fact that the bias has a form of the time-series average
of cross-sectional long-run covariances, we develop a bias estimator based on
the spatial HAC approach. Second, we propose a cross-sectional dependence
robust variance estimator to construct associated test statistics. As the bias
estimator, we employ the spatial HAC method to estimate the variance. Spatial
HAC estimation is first proposed by Conley (1996, 1999), and is further studied
by Kelejian and Prucha (2007) and Kim and Sun (2011).
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Bai (2009) proposes a partial sample approach in the presence of cross-
sectional dependence, which constructs the bias and variance estimators using
partial samples. A practical issue of this method is that there is no practical
guidance on the selection of partial sample that reflects the dependence struc-
ture of all cross-sectional units. Another approach that yields valid inference
in this setting is the GLS method by Bai and Liao (2017). Their GLS trans-
formation eliminates the cross-sectional correlations of idiosyncratic errors,
which makes their estimator asymptotically centered at the true value. This
approach is attractive in that it is efficient and free of incidental parameters
bias. On the other hand, our simulation shows that the GLS inference tends
to yield substantial size distortions. Our procedure is shown to produce more
accurate inference results though it is not as efficient as the GLS. From this
perspective, our procedure complements the existing methods and we make a
contribution to the literature.

There are two practical issues in implementing the proposed method. The
first one is how to construct a distance measure. Since our bias and variance
estimators are constructed on the kernel based spatial HAC method, we need
a distance measure that characterizes the dependence structure of the data. A
typical approach in the literature is to use an auxiliary variable that captures
the decaying pattern of dependence (e.g., the transportation cost in Ligon
and Conley, 2002; the geographic distance in Pinkse et al., 2002). However,
such a variable may not be available in some applications. To address this, we
define a distance that reflects the cross-sectional dependence structure directly
and propose its implementation using the information from the time dimen-
sion. See, e.g., Cui et al. (2021), Fernandez (2011), Kim (2021), and Mantegna
(1999). An advantage of this method is that no prior information about the
dependence structure is required. The second issue is the selection of the band-
width parameters. This is particularly challenging in our setting because we
need to choose two bandwidths jointly in estimating the bias and variance. We
propose a selection method based on the cluster wild bootstrap, in which each
cluster contains all units in one time period to replicate the cross-sectional
dependence of the original data in bootstrap samples. We choose the band-
widths that maximize the bootstrap rejection probability under the null after
controlling the size.

While we establish our methods under the assumption of serial indepen-
dence for simplicity, serial dependence is a common feature of panel data and
is another source of incidental parameters problem in this model. If researchers
suspect the existence of serial dependence, we recommend they consider the
bias correction method proposed by Bai (2009). His method is easy to use
because it is based on the well-known Newey and West HAC estimation pro-
cedure. Regarding variance estimation, we can apply our variance estimation
method after clustering by individual. We discuss the possible extension for an
inference procedure that is robust to both serial and cross-sectional dependence
and heteroskedasticity in a remark under Section 4.
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We illustrate the application of our approach in two empirical examples.
The first one is the well-known problem of the U.S. divorce rates affected by
divorce law reforms around the 1970s. Wolfers (2006) uses the additive fixed
effects model and finds divorce rates rose in the first eight years after the
law reforms. However, the robustness of his results has been doubted because
the model may not be flexible enough to capture unobserved heterogeneity
varying over time and across states. Kim and Oka (2013) address this issue by
employing the IFE model, but they do not take the cross-sectional dependence
into account. We apply the proposed method to conduct inference for this
model. The second application studies the effects of clean water and effective
sewerage systems on U.S. child mortality. An important question in public
health is the cause of the sharp decrease in the U.S. infant mortality between
the late 19th century and the early 20th century. To answer this question,
Alsan and Goldin (2019) employ the additive fixed effects model to estimate
the independent and combined effects of clean water and effective sewerage
systems on under-5 mortality in Massachusetts in 1880-1920. We employ the
IFE model with the proposed inference procedure to examine the robustness
of their results.

The remainder of the paper is as follows. Section 2 reviews the IFE model
and the LS estimator. In Sections 3, we introduce the proposed inference
method and study its asymptotics. Section 4 proposes our distance measure
and selection rule of the bandwidth parameters, which are necessary to imple-
ment our method. Section 5 presents the simulation results. In Section 6, we
apply the proposed method to the empirical applications introduced above.
The last section concludes. All proofs and additional simulation results are
provided in the Appendix.

2 Review of IFE model

We consider a linear panel model with interactive fixed effects

Yit = X ′
itβ + uit, uit = λ′

iFt + εit, i = 1, · · ·N ; t = 1, · · · , T, (2.1)

where Yit is an outcome variable, Xit is a (p × 1) vector of regressors, β is a
vector of regression coefficients, and uit is an error term. We assume a factor
loading structure in uit, where Ft is a (r × 1) vector of common factors, λi

is a vector of factor loadings, and εit represents the idiosyncratic error. The
number of factors r is assumed to be known. Xit is possibly correlated with
λi and/or Ft.

The model can be rewritten as

Yi = Xiβ + Fλi + εi, (2.2)

where Yi = (Yi1, · · · , YiT )
′, Xi = (Xi1, · · · , XiT )

′, F = (F1, · · · , FT )
′ and

εi = (εi1, · · · , εiT )′. Bai (2009) considers the LS estimator of this model, which
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is given by

(β̂, F̂ , Λ̂) = argmin
β,F,Λ

N∑
i=1

(Yi −Xiβ − Fλi)
′(Yi −Xiβ − Fλi), (2.3)

where Λ = (λ1, · · · , λN )′. Since F and Λ are multiplicative, they are not
separately identifiable and the following normalization

1

T

T∑
t=1

FtF
′
t = Ir and

∑
i=1

λiλ
′
i = diagonal (2.4)

is employed. (2.4) generates r2 restrictions, which are sufficient to determine
F and Λ uniquely.

Using the first order condition, we have

λi(β, F ) =
1

T
F ′ (Yi −Xiβ) and Λ(β, F ) =

1

T
(Y −Xβ)

′
F. (2.5)

Plugging (2.5) into (2.3), we can obtain the LS estimator for β given F

β̂(F ) =
( N∑

i=1

X ′
iMFXi

)−1 N∑
i=1

X ′
iMFYi, (2.6)

where MF = I − F (F ′F )−1F ′.
For the estimation of F , since (2.2) reduces to a pure factor model given β,

we can use the principal components method. More specifically, the estimator
of F given β is equal to

√
T times the eigenvectors that are associated with

the r largest eigenvalues of
∑N

i=1(Yi −Xiβ)(Yi −Xiβ)
′.

Therefore, the LS estimators (β̂, F̂ ) are obtained by solving the following
equations simultaneously:

β̂ =

( N∑
i=1

X ′
iMF̂Xi

)−1 N∑
i=1

X ′
iMF̂Yi, (2.7)

and [
1

NT

N∑
i=1

(Yi −Xiβ̂)(Yi −Xiβ̂)
′
]
F̂ = F̂ VNT , (2.8)

where VNT is a diagonal matrix of the r largest eigenvalues of the matrix in
the square bracket. We also have Λ̂ = (Y −Xβ̂)′F̂ /T .

We follow Bai (2009) to make the following assumptions to establish the
asympotics.
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Assumption 2.1 E∥Xit∥4 ≤ M and let F = {F : F ′F/T = I}. Define

D(F ) =
1

NT

N∑
i=1

X ′
iMFXi −

1

T

(
1

N2

N∑
i=1

N∑
k=1

X ′
iMFXkaik

)
, (2.9)

where aik = λ′i(Λ
′Λ/N)−1λk. We assume inf

F∈F
D(F ) > 0.

Assumption 2.2 (a) E∥Ft∥4 ≤ M and 1
T

∑T
t=1 FtF

′
t

p→ ΣF > 0 for some r × r

matrix ΣF , as T → ∞; (b) E∥λi∥4 ≤ M and 1
N Λ′Λ

p→ ΣΛ for some r × r positive
definite matrix ΣΛ, as N → ∞.

Assumption 2.3
(a) E(εit) = 0 and E|εit|8 ≤ M ;
(b) E(εitεks) = 0 for all (i, k) if t ̸= s and E(εitεkt) = σkk,t = σkk for all t = 1, ..., T .

E(εitεkt) = σik,t, |σik,t| ≤ σ̄ik for all t = 1, ..., T such that 1
N

∑N
i,k=1 σ̄ik ≤ M , and

1
NT

∑N
i,k=1

∑T
t=1 |σik,t| ≤ M. The largest eigenvalue of Ωi = Eεiε

′
i is uniformly

bounded in i and T ;

(c) For every (t, s), E
N−1/2∑N

i=1(εitεis − E(εitεis))
4 ≤ M ;

(d) Moreover

T−2N−1∑
t,s,u,v

∑
i,k | cov(εitεis, εkuεkv)| ≤ M,

T−1N−2∑
t,s

∑
i,j,k,ℓ | cov(εitεjt, εksεℓs)| ≤ M.

Assumption 2.4 εit is independent of Xks, λk, and Fs for all i, t, k and s.

Assumption 2.5 Let Zi = (Zi1, . . . , ZiT )
′ = MF 0Xi − 1

N

∑N
k=1 aikMF 0Xk, where

F 0 is the true F . We have

1√
NT

N∑
i=1

Z′
iεi

d→ N(0,Ω), (2.10)

where Ω = limΩNT with ΩNT = 1
NT

∑N
i=1

∑N
k=1

∑T
t=1 σik,tE(ZitZ

′
kt).

Assumption 2.1 indicates D(F ) is positive definite and excludes the
low-rank regressors (e.g., time-invariant and common regressors) in (2.2).
Assumption 2.2 is a standard assumption for factor models. Under this assump-
tion, the largest r eigenvalues of the covariance matrix of Y diverge while the
rest are bounded as N,T → ∞. It ensures the consistency of the principal com-
ponent estimators of F and Λ in the factor model. Assumption 2.3 assumes εit
to be serially uncorrelated and homoskedasticity but allow it to exhibit weak
cross-sectional correlation and heteroskedasticity. Assumption 2.4 rules out
the dynamic panel data model. Assumption 2.5 states a central limit theorem
holds for the moment process.
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Under Assumptions 2.1-2.5, Bai (2009) shows that

√
NT (β̂ − β)

d→ N
(
ρ1/2B0, D

−1
0 ΩD′−1

0

)
, (2.11)

as T/N → ρ, where D0 = plimD(F 0) = plim 1
NT

∑N
i=1 Z

′
iZi,

B0 =plimBNT with BNT = −D−1
0

1

N

N∑
i=1

N∑
k=1

wiλk

(
1

T

T∑
t=1

σik,t

)
,︸ ︷︷ ︸

:=JNT

(2.12)

and wi = plim

(
(Xi−Vi)

′F 0

T

)(
F 0′F 0

T

)−1(
Λ′Λ
N

)−1

with Vi =
1
N

∑N
k=1 aikXk.

The expression of B0 in (2.12) implies that β̂ is asymptotically centered
at the true value only in the absence of cross-sectional correlation and het-
eroskedasticity. If not, β̂ becomes asymptotically biased, and inference without
correcting this bias leads to misleading conclusions.

3 Inference under cross-sectional dependence

In this section, we propose an inference procedure for β, which is valid under
cross-sectional dependence. As we can see from (2.11), the LS estimator of the
IFE model is asymptotically biased when {εit} are cross-sectionally dependent,
and the bias needs to be corrected for valid inference. Bai (2009) considers a
partial sample approach to address this problem. His bias estimator for B0 is
given by

B̂CS = −D̂−1 1

nsub

nsub∑
i=1

nsub∑
k=1

ŵiλ̂k

(
1

T

T∑
t=1

ε̂itε̂kt

)
, (3.1)

where nsub is the size of the partial sample. D̂ and ŵi are the estimators of
D0 and wi defined as

D̂ =
1

NT

N∑
i=1

Ẑ ′
iẐi =

1

NT

N∑
i=1

X ′
iMF̂Xi −

1

T

(
1

N2

N∑
i=1

N∑
k=1

X ′
iMF̂Xkâik

)

ŵi =

(
(Xi − V̂i)

′F̂

T

)(
Λ̂′Λ̂

N

)−1

,

where Ẑi = MF̂Xi − 1
N

∑N
k=1 âikMF̂Xk, V̂i = N−1

∑N
k=1 âikXk and âik =

λ̂′
i(Λ̂

′Λ̂/N)−1λ̂k. Bai shows B̂CS is consistent as nsub/min{N,T} → 0, and

constructs the bias corrected estimator for β based on B̂CS . While this method
is valid in the asymptotic sense, a practical issue for its implementation is that
there is no practical guidance on how to select the partial sample to replicate
the cross-sectional dependence of all observations. If the partial sample fails
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to do so, the finite sample performance of B̂CS would be poor. This is a prac-
tically important problem because the cross-sectional dependence structure is
unknown and very complex in general.

We propose an alternative bias estimator using the spatial HAC estimation
approach. Since BNT = −D−1

0 JNT and D0 is consistently estimated by D̂ in
(3), our interest is in

JNT =
1

T

T∑
t=1

Jt where Jt =
1

N

N∑
i=1

N∑
k=1

wiλkE(εitεkt). (3.2)

We propose estimating JNT with

Ĵ =
1

T

T∑
t=1

Ĵt where Ĵt =
1

N

N∑
i=1

N∑
k=1

K1

(
dik
d(1)

)
ŵiλ̂kε̂itε̂kt, (3.3)

where K1(·) is a real-valued kernel function, d(1) is the bandwidth parameter,
and dik is distance between units i and k that reflects the strength of their
cross-sectional dependence. More specifically, we assume dik to be small if εit
and εkt are highly dependent and vice versa. The distance measure is assumed
to satisfy dik ≥ 0, dii = 0 and dik = dki, but we do not require the triangle
inequality dik ≤ dij + djk to hold.

Ĵt has a form of the spatial HAC estimator (e.g., Conley, 1999; Kelejian
and Prucha, 2007) and Ĵ is its time-series average. Based on Ĵ , we construct
the bias corrected estimator for β as follows:

β̂† = β̂ − 1

N
B̂ where B̂ = −D̂−1Ĵ . (3.4)

To examine the asymptotic properties of our bias correction, we first assume
that εit has the following linear representation.

Assumption 3.1 (a) εit =
∑∞

l=1 γilelt, where elt
iid∼ (0, 1), E(e4lt) ≤ ∞, and γil is

an unknown constant; (b)
∑∞

i=1 |γil| < M for each l, and
∑∞

l=1 |γil| < M for each i.

Assumption 3.1(a) states εit is an infinite weighted sum of i.i.d random vari-
ables. This linear representation is widely used in the literature to characterize
spatial processes (e.g., Kelejian and Prucha, 2007; Robinson, 2011; Kim and
Sun, 2011; Pesaran and Tosetti, 2011; Kim, 2021). It also includes the popular
spatial parametric models such as spatial autoregressive (SAR) processes and
spatial moving average (SMA) processes as special cases. Assumption 3.1(b)
states the summability conditions for the coefficients of the linear representa-
tion, which restricts the strength of cross-sectional dependence. This condition
enables us to control the variance of B̂. An alternative to this linear repre-
sentation and summability assumptions would be to introduce some mixing
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and stationary assumptions to obtain the fourth-order cumulant condition as
in the time-series (e.g., Andrews, 1991), which, as pointed out by Bai and Ng
(2006), is difficult to justify in cross-sectional models.

We introduce the following assumption on the kernel functions.

Assumption 3.2 (a) The kernel Ka : R → [−1, 1] satisfies Ka(0) = 1,Ka(x) =
Ka(−x),Ka(x) = 0 for |x| ≥ 1. (b) For all x1, x2 ∈ R there is a constant, cL < 0,
such that

|Ka(x1)−Ka(x2)| ≤ cL|x1 − x2|.

Assumption 3.2 is standard and is satisfied by most of the kernels in the
HAC literature including the Bartlett, Tukey-Hanning, and Parzen kernels.

We suppose that there exists qa ∈ [0,∞) such that

K(qa)
a = lim

x→0

1−Ka(x)

|x|qa
< ∞.

The largest value of qa is called Parzen characteristic exponent of Ka(x) and
reflects the smoothness of Ka(x) at x = 0. The assumption below provides the
condition that we use to control the bias.

Assumption 3.3 There exists a finite constant M such that

lim
N,T→∞

1

NT

N∑
i=1

N∑
k=1

T∑
t=1

|σik,t|d
qa
ik < M (3.5)

for qa ∈ [0,∞).

Assumption 3.3 requires dik to capture the decaying pattern of the cross-
sectional dependence of {εit}. That is, σik,t is assumed to decrease to zero
fast enough as dik grows so that the summability condition in (3.5) holds.
This is a key condition that our distance measure should satisfy. We rely on
this assumption to control the bias caused by the truncation and downweight
imposed by the kernel function. When dik increases, the weight that Ka(·)
assigns to ε̂itε̂kt in (3.3) becomes smaller, but this does not lead to much bias
since σik,t also decreases to zero with dik under this assumption.

We define

ℓiN(a) =

N∑
k=1

1{dik ≤ d(a)} and ℓ̄N(a) =
1

N

N∑
i=1

ℓiN(a), (3.6)

where ℓiN(a) is the number of pseudo-neighbors that unit i has within d(a), and
ℓ̄N(a) is the average number of pseudo-neighbors. It is obvious that ℓ̄N(a) is an
increasing function of d(a). To control the variations of our HAC estimators,
we should increase d(a) slowly as N and T grow so that ℓ̄N(a)/min{N,T}
converges to zero.
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Assumption 3.4 ℓiN(a) ≤ cℓℓ̄N(a) for all i = 1, · · · , N with some constant cℓ.

This assumption allows a different number of pseudo-neighbors for different
units, but it rules out the case that only a few units have many cross-sectional
pseudo-neighbours while others have none or very few.

The following theorem establishes the consistency of our bias estimator.

Theorem 3.1 Suppose that Assumptions 2.1-2.5 and 3.1-3.4 hold. If d(1), N, T → ∞

such that
ℓ̄N(1)

min{N,T} → 0 and T
N → ρ > 0,

B̂ −BNT
p−→ 0. (3.7)

The corollary below follows directly from the asymptotic normality of the
LS estimator in (2.11) and Theorem 3.1.

Corollary 3.1 Suppose that the assumptions and the rate conditions in Theorem
3.1 hold. √

NT
(
β̂† − β

) d−→ N
(
0, D−1

0 ΩD′−1
0

)
. (3.8)

Corollary 3.1 indicates that our bias correction removes the bias success-
fully and β̂† is asymptotically centered at the true value. We also find that
our bias correction does not contribute to the asymptotic variance. This result
implies that we can use β̂† to make valid inference on β if we have a consistent
estimator of ΩNT in the presence of cross-sectional dependence.

Regarding the estimation of ΩNT , the cross-sectional heteroskedasticity
robust (HR) variance estimator is commonly used, which is given by

Ω̂HR =
1

N

N∑
i=1

σ̂2
i

(
1

T

T∑
t=1

ẐitẐ
′
it

)
with σ̂2

i =
1

T

T∑
t=1

ε̂2it. (3.9)

However, it is obvious that Ω̂HR is not valid in our setting, because it does
not allow for cross-sectional dependence of εit.

Bai (2009) addresses this issue by developing a partial sample variance
estimator

Ω̂CS =
1

nsub

nsub∑
i=1

nsub∑
k=1

(
1

T

T∑
t=1

ẐitẐ
′
ktε̂itε̂kt

)
, (3.10)

and shows it is consistent as nsub/min{N,T} → 0. As Bai’s bias estimator B̂CS

in (3.1), a practical problem for this partial sample approach is that it is not
clear how to choose the partial sample to replicate the overall cross-sectional
dependence structure.
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We propose an estimator of ΩNT using the spatial HAC approach. The
estimator is given by

Ω̂ =
1

T

T∑
t=1

Ω̂t with Ω̂t =
1

N

N∑
i=1

N∑
k=1

K2

(
dik
d(2)

)
ẐitẐ

′
ktε̂itε̂kt, (3.11)

where d(2) is the bandwidth parameter. As our bias estimator, Ω̂ is a time

average of spatial HAC estimators {Ω̂t}. The following theorem establishes the
consistency of our variance estimator.

Theorem 3.2 Suppose that Assumptions 2.1-2.5 and 3.1-3.4 hold. If d(2), N, T → ∞

such that
ℓ̄N(2)

min{N,T} → 0 and T
N → ρ > 0,

Ω̂− ΩNT
p−→ 0. (3.12)

Suppose that we employ the rectangular kernel for K2(·) and select d(2) to

be large such that ℓ̄N(2) = N and K2

(
dik

d(2)

)
= 1 for all i and k. In this case, Ω̂

reduces to the clustered variance estimator of which cluster is formed by each
time period. The clustering-by-time approach is widely used in the panel model
to construct a variance estimator that is robust to cross-sectional dependence.
See, for example, Driscoll and Kraay (1998) and Vogelsang (2012), who use
this approach in the linear panel model with individual fixed effects setup.

It is interesting to note that our rate condition requires
ℓ̄N(2)

N → 0 and this
implies the clustering-by-time approach does not produce a consistent variance
estimator in the IFE model. This rate condition is necessary to control for
the effect of estimation errors in F̂ and Λ̂ on Ω̂ under the large N and T
asymptotics. See the proof of Theorem 3.2 in the Appendix B for more details.

Suppose that we are interested in testing the following null hypothesis:

H0 : Rβ = r0, (3.13)

where R is a q × p matrix and r0 is a q × 1 vector. Using our bias corrected
estimator and variance estimator, we propose the following Wald statistic to
test H0:

WNT =
√
NT

(
Rβ̂† − r0

)′(
RD̂−1Ω̂D̂−1R′

)−1√
NT

(
Rβ̂† − r0

)
.

In case q = 1, we can also consider the t-statistic, which is given by

tNT =

√
NT

(
Rβ̂† − r0

)
√

RD̂−1Ω̂D̂−1R′
.
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The corollary below characterizes the limiting distribution of our test
statistics under the null hypothesis.

Corollary 3.2 Suppose that the assumptions and the rate conditions in Theorems
3.1 and 3.2 hold. If H0 is true, we have

WNT
d→ χ2

q and tNT
d→ N(0, 1).

Corollary 3.2 follows directly from Corollary 3.1 and Theorem 3.2. It sug-
gests we use the χ2 distribution with the degree of freedom q and the standard
normal distribution to obtain critical values.

4 Implementation

In this section, we discuss two major issues in implementing the proposed pro-
cedure. The first is the construction of a distance measure. Since we estimate
the bias and variance based on the kernel based spatial HAC approach, we need
a distance that captures the decaying pattern of cross-sectional dependence.
Different variables have been used as distance depending on applications. e.g.,
the transportation cost in Ligon and Conley (2002) and the geographic dis-
tance in Pinkse et al. (2002). However, such a variable may not be available in
some empirical applications. To address this issue, we consider the following
distance

dDik =
1

|ρik|
− 1, with ρik = Corr(εit, εkt),

which reflects the strength of dependence by definition.
Though dDik is not observed, we can estimate it using the sample counterpart

d̂Dik = min{1/|ρ̂ik|, 100} − 1,

with ρ̂ik =
∑T

t=1 ε̂itε̂kt/
√∑T

t=1 ε̂
2
it

∑T
t=1 ε̂

2
kt. An advantage of using d̂Dik is that

it is easy to calculate and no prior information about the dependence struc-
ture is required. We note that dDik does not satisfy the triangle inequality, but
the validity of our procedure does not require this inequality. Constructing
distance based on the correlation coefficient has been considered in the litera-
ture. See, e.g., Mantegna (1999), Fernandez (2011), Cui et al. (2021), and Kim

(2021). The performance of our procedure based on d̂Dik is investigated in our
simulations and empirical applications.

Another issue in implementing our method is how to select the bandwidth
parameters. This is particularly challenging in our model because two band-
width parameters should be chosen jointly for Ĵ and Ω̂. We address this issue
by developing a selection method based on the cluster wild bootstrap. Our
approach is similar to the one in Kim et al. (2017), who propose a simulation-
based calibration approach for the choice of bandwidth parameters in the
time-series kernel method. They use an autoregression type parametric model
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to approximate time-series dependence. However, their approach is not applica-
ble to our model because cross-sectional dependence is much more complex and
hard to parametrize. We employ a cluster wild bootstrap, in which each cluster
contains all units in one time period, to replicate cross-sectional dependence
without using a parametric model.

Let D(1)
M = {d1,(1), · · · , dM,(1)} and D(2)

S = {d1,(2), · · · , dS,(2)} be the sets
of reasonable bandwidth values for the choice of d(1) and d(2). Our selection
procedure follows the steps below.

Step 1. Estimate β̂, F̂t, Λ̂ using the LS and obtain the residuals from

ε̂t = Yt −Xtβ̂ − Λ̂F̂t,

where Yt = (Y1t, · · · , YNt)
′, Xt = (X1t, · · · , XNt)

′ and εt = (ε1t, · · · , εNt)
′.

Step 2. Generate B bootstrap samples based on the following procedure

Y ∗
b,t = Xtβ̂ + Λ̂F̂t + ε∗b,t,

where ε∗b,t = ε̂tξb,t with ξb,t
iid∼ (0, 1), for b = 1, ...,B.

Step 3. For each bootstrap sample, compute the bootstrap LS estimators
β̂∗
b , F̂

∗
b,t, Λ̂

∗
b , and ε̂∗b,t and construct the bootstrap bias estimator with d1,(1)

such that

B̂∗
b (d1,(1)) = −D̂∗−1

b

1

T

T∑
t=1

(
1

N

N∑
i=1

N∑
k=1

K1

( dik
d1,(1)

)
ŵ∗

b,iλ̂
∗
b,kε̂

∗
b,itε̂

∗
b,kt

)
,

where D̂∗
b and ŵ∗

b,i are the bootstrap versions of D̂ and ŵi in (3) by replacing

F̂ and Λ̂ with F̂ ∗
b and Λ̂∗

b , respectively.

Step 4. Construct the bootstrap variance estimator Ω̂∗
b(d1,(2)) with d1,(2)

such that

Ω̂∗
b(d1,(2)) =

1

T

T∑
t=1

(
1

N

N∑
i=1

N∑
k=1

Ẑ∗
b,itẐ

∗′
b,ktε̂

∗
b,itε̂

∗
b,ktK2

( dik
d1,(2)

))
,

where Ẑ∗
b,it is the bootstrap version of Ẑit in (3.9) by replacing F̂ and Λ̂

with F̂ ∗
b and Λ̂∗

b , respectively.

Step 5. Compute the bootstrap Wald statistic (or t-statistic) for each
bootstrap sample

W ∗
b (d1,(1), d1,(2)) =

√
NT

(
R
(
β̂†∗
b − β̂

))′(
RΓ̂∗

bR
′
)−1√

NT
(
R
(
β̂†∗
b − β̂

))
,



14 Inference for IFE Model under Cross-Sectional Dependence

where

β̂†∗
b = β̂∗

b − 1

N
B̂∗

b

(
d1,(1)

)
and Γ̂∗

b = D̂∗−1
b Ω̂∗

b

(
d1,(2)

)
D̂∗−1

b .

Step 6. Let α denote the pre-selected significant level. Compute the
bootstrap rejection probability

V∗(d1,(1), d1,(2)) =
1

B

B∑
b=1

1
(
W ∗

b (d1,(1), d1,(2)) > χ2
1−α(q)

)
,

where 1(·) is the indicator function and χ2
1−α(q) is the (1 − α) quantile of

the χ2 distribution with the degree of freedom q.

Step 7. Repeat Step 2 to Step 6 for all combinations of
(
d(1), d(2)

)
∈

D(1)
M

⊗
D(2)

S and select
(
d̂(1), d̂(2)

)
that solve

max
(d(1),d(2))∈D(1)

M

⊗
D(2)

S

V∗(d(1), d(2)), s.t. V∗(d(1), d(2)) ≤ α.

If none of d(1) and d(2) satisfy the constraint V∗(d(1), d(2)) ≤ α, choose the

one that minimizes V∗(d(1), d(2)).
Step 2 describes our cluster wild bootstrap. Since the external random

variable ξt is common for {ε̂it}ni=1, our bootstrap maintains the cross-sectional

dependence of residuals, and B̂∗(d(1)) and Ω̂∗(d(2)) are expected to be good

approximations to B̂(d(1)) and Ω̂(d(2)). We generate ξt from the Rademacher
distribution in our simulations and empirical applications. Step 6 suggests we
choose the bandwidths that maximize the bootstrap rejection probability after
controlling it under the significance level α. If the rejection probability exceeds

α with all (d(1), d(2)) ∈ D(1)
M

⊗
D(2)

S , we choose the ones that minimize the size
distortion. B denotes the number of bootstrap replications and we set B = 300
in our simulations and empirical applications.

Remark: In the presence of serial and cross-sectional dependence and
heteroskedasticity, as Bai (2009) shows, there exists another asymptotic bias
term C0, which is the probability limit of CNT with

CNT = −D
(
F 0
)−1 1

NT

N∑
i=1

X ′
iMF 0ΦF 0

(
F 0F 0

T

)−1(
Λ′Λ

N

)−1

λi

and Φ = 1
N

∑N
k=1 Φk with Φk = E (εkε

′
k).

To estimate CNT , we need to construct consistent estimators for X ′
iΦkF

0

and F 0′ΦkF
0, and then take averages over i and k. These terms are standard
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expressions in the usual HAC literature. Let Qi = (Xi, F
0), then

1

T
Q′

iΦkQi =

[
T−1X ′

iΦkXi T−1X ′
iΦkF

0

T−1F 0′ΦkXi T−1F 0′ΦkF
0

]
contains T−1X ′

iΦkF
0 and T−1F 0′ΦkF

0 as sub-blocks, and the limit of
1
T Q

′
iΦkQi is the long-run variance of T−1/2

∑T
t=1 Qitεkt. Thus, for each given

(i, k), we can construct a consistent estimator of 1
T Q

′
iΦkQi by the trun-

cated kernel method of Newey and West (1987) based on the sequence of
Q̂itε̂kt(t = 1, · · · , T ):

1

T

T∑
t=1

T∑
s=1

Q̂itQ̂
′
isε̂ktε̂ksK3

(
dts
d(3)

)
,

where K3(·) is a real-valued kernel function, d(3) is the bandwidth parameter,
and dts = |t − s| is time period between t and s that reflects the strength of
serial dependence.

To make valid inference on β, we also need to construct a variance esti-
mator that is robust to both types of dependencies. Assuming correlation and
heteroskedasticity in both dimensions, the variance of β̂ is given by D−1

0 ΩD−1
0

with

Ω = plim ΩNT =
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

T∑
s=1

σik,tsZitZ
′
ks,

where σik,ts = E(εitεks). For estimating it, we can apply the Panel HAC
estimator proposed by Kim and Sun (2013):

Ω̂NT =
1

NT

N∑
i,k=1

T∑
t,s=1

K2

(
dik
d(2)

)
K4

(
dts
d(4)

)
ẐitẐ

′
ksε̂itε̂ks,

where K2(·) and K4(·) are real-valued kernel functions, d(2) and d(4) are the
bandwidth parameters.

5 Monte Carlo Simulation

This section presents simulation evidence on the finite sample properties of the
proposed procedure. We conduct inference on β in the following IFE model:

Yit = Xitβ + λ′
iFt + εit,

where we set β = 0 and

Xit = 1 + λ′
iFt + λi + Ft + ηit;

Ft = ρFt−1 +
√

1− ρ2vt; λi, ηit, vt
iid∼ N(0, 1),
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The number of common factors is one and is assumed to be known. We let the
common factors be serially weakly dependent by setting ρ = 0.3.

We employ the spatial MA process to model the cross-sectional dependence
of the idiosyncratic errors. Assuming each unit to be located at (i1, i2) on an
(LN × LN ) square integer lattice, we generate εt = (ε1t, · · · , εNt)

′ from the
following process:

εt = (In + θM1 + θ2M2)vt, t = 1, 2, · · · , T

where vt = (v1t, · · · , vNt)
′ iid∼ N(0, IN ) and M1 = [m1,ik]

N
i,k=1 and M2 =

[m2,ik]
N
i,k=1 are (N ×N) spatial weighting matrices such that

m1,ik =

{
1 if dik = 1
0 if dik ̸= 1

and m2,ik =

{
1 if dik =

√
2

0 if dik ̸=
√
2

,

with dik =
√

(i1 − k1)2 + (i2 − k2)2. Thus, εit and εkt are cross-sectional

dependent if dik ≤
√
2. The number of replications is 3000.

We employ the distance measure d̂Dik proposed in Section 4 to construct B̂

and Ω̂. We use our bootstrap method to select d(1) and d(2). The Parzen kernel

and the rectangular kernel are used for B̂ and Ω̂, respectively. One concern
about Ω̂ is that it may not be positive semi-definite, which is often regarded
as a desirable property in kernel HAC variance estimation noted by Newey
and West (1987). However, we can achieve positive semi-definiteness with a
simple modification. As Ω̂ is symmetric, Ω̂ = Φ̂Ξ̂Φ̂′, where Φ̂ is an orthogonal
matrix and Ξ̂ = diag(ν̂1, ..., ν̂N ) is a diagonal matrix of the eigenvalues of Ω̂.
Let Ξ̂+ = diag(ν̂+1 , ..., ν̂+N ) where ν̂+i = max{ν̂i, 0}. Then, we define

Ω̂+ = Φ̂Ξ̂+Φ̂′.

As all the eigenvalues of Ω̂+ is non-negative, it is positive semi-definite. We
have the consistency of Ω̂+ according to Theorem 4.1. of Politis (2011).

For comparative purposes, we also consider the GLS method proposed by
Bai and Liao (2017) and the partial sample (CS) approach suggested by Bai
(2009). Let Yt = (Y1t, ..., YNt)

′
and Yt = (X1t, ..., XNt)

′
. The GLS estimator is

defined as

β̂GLS = argmin
β

min
Λ,Ft

T∑
t=1

(Yt −Xtβ − ΛFt)
′Σ̂−1

ε (Yt −Xtβ − ΛFt), (5.1)

where Σ̂ε is an estimator of Σε which is the (N ×N) covariance matrix of εt.
Since Σε is high-dimensional, it is estimated based on the thresholding method
by Fan et al. (2013). Their GLS transformation is designed to eliminate cross-

sectional correlation, so β̂GLS does not suffer from the asymptotic bias. The
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variance of β̂GLS is estimated by

Γ̂ =
1

NT
X ′ŴX, (5.2)

where X = (X11, · · · , X1T , X21, · · · , X2T , · · · , XN1, · · · , XNT )
′, and

Ŵ =
(
Σ̂−1

ε − Σ̂−1
ε Λ̂(Λ̂′Σ̂−1

ε Λ̂)−1Λ̂′Σ̂−1
ε

)⊗
MF̂ .

For implementation of this method, we use the matlab code which is available
on the authors’ webpage.

For the CS approach, we construct B̂CS in (3.1) by randomly selecting

nsub = min{
√
n,

√
T} consecutive units 20 times to obtain B̂

(1)
CS , · · · , B̂

(20)
CS ,

and then take their average. Similarly, we construct the partial sample vari-
ance estimator Ω̂CS in (3.10) by selecting the sub-samples . The CS approach
combines the bias-corrected estimator based on B̂CS and the partial sample
variance estimator based on Ω̂CS .

Table 1 presents the empirical coverage probabilities (ECPs) of the 95%
confidence intervals based on the LS estimator, the GLS estimator, the CS
approach, and the proposed procedure. The HR variance estimator in (3.9) is
used for the LS estimator. For our method, to investigate the effects of bias cor-
rection and robust variance estimation separately, we consider the confidence
intervals based on (i) our bias corrected estimator with HR variance estimator,
(ii) the LS estimator and our cross-sectional dependence robust variance esti-
mator, and (iii) our bias corrected estimator and cross-sectional dependence
robust variance estimator, which are denoted by SHAC1, SHAC2 and SHAC†,
respectively. Thus, SHAC† is the one that we propose to use in the paper.

The table reveals several important findings. Firstly, when there is no cross-
sectional correlation in εit (i.e., θ = 0), the LS method produces accurate
confidence intervals. However, in the presence of cross-sectional correlation, the
LS estimator-based confidence intervals exhibit substantially lower coverage
rates than the nominal probability. For instance, when (N,T ) = (144, 150),
the ECP based on the LS method with θ = 0 is 0.943, but it decreases to 0.761
when θ = 0.5. Secondly, the GLS method does not perform well in general, as
it yields substantially lower coverage rates than the nominal level in all cases.
Thirdly, the CS approach performs well when the strength of cross-sectional
dependence is weak but does not work as effectively as the strength of cross-
sectional dependence increases. For example, when (N,T ) = (196, 150) and
θ = 0.3, the ECP of the CS approach is 0.891. However, this ECP decreases
to 0.818 when θ = 0.5, indicating that the CS approach may not be robust
enough to handle stronger cross-sectional dependence.

The proposed SHAC procedure demonstrates good performance in the
presence of cross-sectional correlation, and its accuracy improves with increas-
ing sample size. For instance, when (N,T ) = (144, 100) and θ = 0.5, the
ECP of SHAC† is 0.905, which shows a substantial improvement compared
to the LS method with an ECP of 0.812. The coverage rate of our method
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increases further to 0.917 when (N,T ) = (196, 100). Furthermore, the results
clearly indicate that the proposed procedure significantly improves the accu-
racy of inference for the LS estimator by correcting its bias. For instance, when
(N,T ) = (196, 100) and θ = 0.5, SHAC1 improves the ECP of LS from 0.811 to
0.901. The ECP of LS can be further enhanced by employing our cross-sectional
dependence-robust variance estimator. For instance, when (N,T ) = (196, 100)
and θ = 0.5, SHAC† improves the ECP of SHAC1 from 0.901 to 0.917. In
addition, our proposed approach outperforms the CS approach in the pres-
ence of cross-sectional dependence. For example, when (N,T ) = (144, 150)
and θ = 0.5, the ECP of our approach and the CS approach are 0.910 and
0.827, respectively, demonstrating the superiority of our SHAC procedure in
handling cross-sectional dependence and improving inference accuracy.

We provide further simulation results in the Appendix A.

6 Empirical Application

In this section, we use two empirical examples to illustrate the application of
the proposed procedure. The first one is the well-known problem of the U.S.
divorce rate affected by the divorce law reform around the 1970s. The second
one studies the effects of clean water and effective sewerage systems on child
mortality in the U.S.

6.1 Effects of divorce law reforms

In the 1970s, about three quarters of states in the U.S. shifted from a consent
divorce regime to no-fault unilateral divorce laws. The new laws allow people
to seek a divorce without the consent of their spouse. An interesting empir-
ical question in this regard is to understand the causal relationship between
the divorce law reform and the divorce rate increase. Peters (1986) and Allen
(1992) use the same cross-section data in 1979, but they reach different empir-
ical results: the former concludes divorce rates are unaffected by the switch to
the unilateral law, while the latter finds its significant impact.

Friedberg (1998) employs the standard fixed effects approach to investigate
this relation. After controlling for state and year effects as well as state-specific
time trends, she finds the state law reform has contributed to about one-sixth
of the rise in the state level divorce rate since the late 1960s. Wolfers (2006)
focuses on the longer effects by considering the following model

Yst = DRst + f(vs, t) + ust, ust = δs + αt + εst, (6.1)

where Yst is the number of new divorces per thousand people in state s and
year t, DRst is the treatment effect of divorce law reform, and f(vs, t) is the
state-specific time trend. For example, we have f(vs, t) = vst to represent the
linear trend. ust contains the state and time effects δs and αt additively. The
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treatment effects DRst is formulated as

DRst = β11(Ts ≤ t ≤ Ts + 1) + β21(Ts + 2 ≤ t ≤ Ts + 3)

+ · · ·+ β81(Ts + 14 ≤ t),
(6.2)

where Ts is the law reform year of state s and 1(·) is the indicator function.
An issue about the robustness of the LS estimation of this additive fixed

effects model in Wolfers (2006) has been raised. The concern is that ust consists
of many missing social and cultural variables (e.g., the stigma of divorce, reli-
gious belief, and female participation in the workforce), and the additive fixed
effects model may not be flexible enough to capture unobserved heterogeneity
that may evolve over time and across states.

To tackle this, Kim and Oka (2013) propose using the IFE model with

ust = δs + αt + λ′
sFt + εst, (6.3)

which can effectively accommodate the remaining unobserved heterogeneity
in ust. They estimate the model using the LS method without taking the
cross-sectional dependence into account. Bai and Liao (2017) re-estimate this
model using their GLS method to improve the efficiency in the presence of
cross-sectional dependence.

We employ the proposed method to make inference based on this IFE
model. We set the number of factors equal to ten as Kim and Oka (2013)
and Bai and Liao (2017). To construct our bias and variance estimators, we
use the proposed distance measure and bootstrap method to select bandwidth
parameters.

Table 2 reports the estimates of (β1, ..., β8) and their standard errors. We
consider the additive fixed effects model as well as the IFE model. For the
latter, we estimate the model using the LS, the GLS, and our procedure. All
the models include state-specific time linear trends. The table shows that all
the estimates by the additive fixed effects model in the first column are positive
but not significant, which are the same as Kim and Oka (2013). We can also see
that all the estimation results based on the IFE model suggest the contribution
of the law reform to the rise of the divorce rate for the first six years after the
reform is significant. However, our method yields an insignificant estimate for
the 7-8 years, which is different from the other two methods. The proposed
method tends to produce smaller estimates with larger standard errors than
the LS method by taking the cross-sectional correlation into account. The GLS
tends to produce the smallest standard errors.

6.2 Effects of water and sewerage interventions

An essential question in public health is the cause of the sharp decrease in
infant mortality between the late 19th century and the early 20th century.
To answer this question, Cutler and Miller (2005) study the impact of water
chlorination and filtration on the death rates from waterborne diseases across
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13 U.S. cities. Their results suggest that improved water quality decreased 47
percent in log infant mortality in 1900-1936.

On the other hand, many U.S. metropolitan areas installed effective sew-
erage systems during that time, which may also have resulted in the child
mortality decline. Alsan and Goldin (2019) study the independent and com-
bined effects of clean water and effective sewerage systems on under-5 mortality
in Massachusetts in 1880-1920. Their data are annual and include 60 munic-
ipalities in Massachusetts for the period that predates national mortality
statistics. For empirical strategy, they employ the additive fixed effects panel
model, which suggests that the two interventions together account for approx-
imately one third of the decline in log child mortality during this period. Their
regression model is formulated as follows:

Yit = µ+ β1Wit + β2Sit + β3(W ∗ S)it + θXit + uit,

uit = αi + ft + δit+ εit,
(6.4)

where Yit is the under-5 mortality rate for the municipality i in year t; Wit and
Sit are indicator variables that equal to one if the municipality i had adopted
the safe water and sewerage interventions by year t, respectively;Xit is a vector
of time and municipality varying demographic controls including the log of
population density, percentage of the foreign-born, percentage of males, and
the percentage of females employed in manufacturing. uit captures unobserved
components including municipality and time fixed effects and municipality-
specific time trend.

We introduce the IFE specification in uit to accommodate various patterns
of unobserved heterogeneity. uit is modeled as

uit = λ′
iFt + εit, (6.5)

where Ft is a vector of common factors that dominate the portion of infant
mortality rates not explained by the regressors, and the loading vector λi

represents the heterogeneous responses to Ft from the municipality i. Note
that if we let λi = (αi, 1, δi)

′ and Ft = (1, ft, t)
′, then uit in (6.5) reduces to

the additive fixed effects specification with the time trend presented in (6.4).
Hence, we choose three factors in the IFE model to include the original model
by Alsan and Goldin (2019) as a special case.

We make inference on the IFE model based on (i) the LS method without
accounting for cross-sectional dependence, (ii) the GLS method, and (iii) the
proposed procedure. We use the same data set as Alsan and Goldin (2019),
which contains the under-5 mortality rates, municipality-level water and sew-
erage interventions, and demographic control regressors from 1981 to 1920 over
60 municipalities. To construct a balanced panel, we drop the data of West-
wood which contains many missing observations. We interpolate the missing
observations of Wellesley in 1980 and 1981 using the observations in 1982, and
the missing values of under-5 child mortality of Weston in 1904 by taking the
average of the values in 1903 and 1905. The same way of interpolation for
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missing values in 1917 with the values in 1916 and 1918. As a result, we have
a balanced panel that consists of 59 municipalities and 41 years.

The estimation results are summarized in Table 3. Panel A reports the
estimates based on the additive fixed effects model with the linear trend as
Alsan and Goldin (2019). Panels B-D present the estimates on the IFE model.
Panel B is based on the LS method. Comparing the results from Panels A and
B, we can see that the independent and combined effects of clean water and
effective sewerage system on under-5 mortality in Panel B tend to be smaller
than the ones from the additive fixed effects model in Panel A. For example,
while the combination of sewerage and safe water treatments in column (5)
decreases under-5 mortality by 13.530 percent in Panel A, it decreases to 11.595
percent in Panel B.

Panel C reports the coefficients based on the proposed procedure. Com-
paring between Panel B and Panel C, we see that the effect of safe water
in column (5) becomes statistically insignificant at 10% level when we take
cross-sectional dependence into account. This is consistent with our expecta-
tion since safe water is unlikely to raise the child mortality even without the
effect sewage system. The GLS estimates appear in Panel D. The GLS yields
smaller estimates and standard errors than the other methods.

7 Conclusion

This paper considers inference on the panel regression model with interac-
tive fixed effects. Under large N and large T asymptotics, the LS estimator
is asymptotically biased and the usual standard error is invalid when the
idiosyncratic errors are cross-sectionally dependent. We propose an inference
procedure that addresses this problem. We first develop a bias correction for
the LS estimator and then propose a cross-sectional dependence robust vari-
ance estimator to construct the associated test statistics. We also propose a
distance measure and bootstrap method to select bandwidth parameters which
are necessary to implement our method.
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Table 1 Empirical Coverage Rates of 95% Confidence Interval.

T N LS SHAC1 SHAC2 SHAC† GLS CS

θ = 0
100 144 0.942 0.941 0.942 0.942 0.386 0.942
100 196 0.951 0.951 0.952 0.952 0.321 0.952
150 144 0.943 0.944 0.942 0.943 0.388 0.943
150 196 0.944 0.944 0.943 0.943 0.309 0.945

θ = .3
100 144 0.881 0.927 0.882 0.928 0.549 0.913
100 196 0.884 0.932 0.886 0.934 0.477 0.918
150 144 0.823 0.908 0.826 0.908 0.525 0.878
150 196 0.840 0.917 0.845 0.919 0.426 0.891

θ = .5
100 144 0.812 0.884 0.837 0.905 0.708 0.869
100 196 0.811 0.901 0.833 0.917 0.630 0.875
150 144 0.761 0.900 0.776 0.910 0.688 0.827
150 196 0.738 0.899 0.757 0.908 0.566 0.818

Note: LS is the LS estimator, GLS is the GLS estimator, and CS is the partial sample estimator.
SHAC1 is the bias corrected estimator with HR variance estimator. SHAC2 is the LS estimator
with cross-sectional dependence robust variance estimator. SHAC† is the bias corrected estimator
with cross-sectional dependence robust variance estimator.

Table 2 Effects of divorce law reform on divorce rate

Additive LS SHAC†(d̂Dij) GLS

Est. S.E. Est. S.E. Est. S.E. Est. S.E.

First 2 years 0.095 0.096 0.108∗∗∗ 0.035 0.101∗∗ 0.044 0.088∗∗∗ 0.031
3–4 years 0.159 0.108 0.228∗∗∗ 0.050 0.213∗∗∗ 0.056 0.209∗∗∗ 0.043
5–6 years 0.091 0.121 0.193∗∗∗ 0.068 0.174∗∗∗ 0.066 0.171∗∗∗ 0.059
7–8 years 0.157 0.132 0.168∗ 0.088 0.138 0.091 0.167∗∗ 0.076
9–10 years 0.067 0.143 0.097 0.103 0.062 0.102 0.099 0.089
11–12 years 0.052 0.153 0.060 0.116 0.021 0.118 0.047 0.100
13–14 years 0.093 0.167 0.033 0.128 -0.005 0.134 0.042 0.111
15 years+ 0.222 0.186 0.117 0.143 0.079 0.150 0.101 0.123

Note: ∗ p < .1. ∗∗ p < .05. ∗∗∗ p < .01.

https://doi.org/http://dx.doi.org/10.1257/aer.96.5.1802
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Appendix A Monte Carlo

In this section, we present additional simulation results on the finite sample
performance of the proposed procedure. We also consider the LS estimator,
the GLS estimator, and the CS estimator for the purpose of comparison. We
examine their performance in terms of the bias and root mean square error
(RMSE). The DGP is the same as the one used in Section 5.

The simulation results are summarized in Table A1. When there is no cross-
sectional correlation (θ = 0), all the estimators perform very well, exhibiting
very small biases and root mean square errors (RMSEs). However, in the pres-
ence of cross-sectional dependence, several patterns emerge. Firstly, the bias
and RMSE of the LS estimator increase as the strength of cross-sectional
dependence grows. For example, when (N,T ) = (144, 150) and θ = 0.3, the
bias and RMSE of the LS estimator are −0.0077 and 0.0111, respectively.
These increase to −0.0105 and 0.0166, respectively, when θ = 0.5. Secondly,
the bias and RMSE of the LS estimator decrease with an increase in the sam-
ple size. For instance, in the case of (N,T ) = (144, 100) and θ = 0.3, the

bias and RMSE of β̂ are −0.0069 and 0.0120, respectively. These decrease to
−0.0059 and 0.0102, respectively, with (N,T ) = (196, 100). Thirdly, the pro-
posed bias-corrected estimator tends to produce smaller bias and RMSE than
the LS estimator. For example, when (N,T ) = (196, 150) and θ = 0.5, the

bias and RMSE of β̂ are −0.0102 and 0.0146, respectively, and the proposed
method reduces the bias and RMSE to −0.0032 and 0.0109, respectively.

We also compare the performances of the proposed bias-corrected estima-
tor with the CS estimator and the GLS estimator. The table shows that the
CS estimator tends to produce smaller bias and RMSE than the LS estima-
tor in the presence of cross-sectional dependence. In comparison, the proposed
estimator and the GLS estimator outperform the CS estimator by yielding
substantially smaller bias and RMSE. For instance, when (N,T ) = (144, 150)
and θ = 0.5, the bias and RMSE of the LS estimator are −0.0105 and 0.0166.
The CS estimator decreases the bias and RMSE to −0.0079 and 0.0151, respec-
tively, whereas β̂GLS reduces the bias and RMSE to −0.0030 and 0.0123,
respectively, and β̂†(d̂Dik) decreases the bias and RMSE to −0.0028 and 0.0132,
respectively.
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Table A1 Performances of estimated β; true β = 0.

β̂ β̂†(d̂Dik) β̂GLS β̂CS

T N Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θ = 0
100 144 0.0006 0.0084 0.0006 0.0084 0.0065 0.0315 0.0006 0.0084
100 196 0.0003 0.0072 0.0003 0.0072 0.0069 0.0329 0.0003 0.0072
150 144 0.0003 0.0069 0.0003 0.0069 0.0036 0.0266 0.0003 0.0069
150 196 0.0003 0.0060 0.0003 0.0060 0.0043 0.0264 0.0003 0.0060

θ = .3
100 144 -0.0069 0.0120 -0.0032 0.0105 0.0015 0.0254 -0.0050 0.0111
100 196 -0.0059 0.0102 -0.0028 0.0089 0.0027 0.0260 -0.0042 0.0094
150 144 -0.0077 0.0111 -0.0041 0.0090 -0.0011 0.0194 -0.0057 0.0098
150 196 -0.0062 0.0092 -0.0033 0.0076 0.0003 0.0186 -0.0046 0.0083

θ = .5
100 144 -0.0061 0.0263 0.0017 0.0251 -0.0021 0.0163 -0.0036 0.0257
100 196 -0.0078 0.0179 -0.0007 0.0160 -0.0009 0.0164 -0.0053 0.0169
150 144 -0.0105 0.0166 -0.0028 0.0132 -0.0030 0.0123 -0.0079 0.0151
150 196 -0.0102 0.0146 -0.0032 0.0109 -0.0016 0.0116 -0.0078 0.0130

Note: β̂ is the LS estimator, β̂GLS is the GLS estimator, and β̂CS is the partial sample
estimator. β̂†(d̂Dik) is our bias corrected estimators using the proposed distance measure.

Appendix B Proofs

Proof of Theorem 3.1: We define δNT = min{
√
N,

√
T}. Based on the

asymptotic result of the LS estimator by Bai (2009), we can complete the
proof of this theorem by showing the consistency of the bias estimator B̂. i.e.,
B̂ −BNT = op(1).

Since B̂ = −D̂−1Ĵ and the consistency of D̂ is established by Bai (2009),
it is sufficient to prove the consistency of Ĵ . Note that Ĵ − JNT = op(1) if and

only if a′Ĵa − a′JNTa = op(1) for any a ∈ Rp. Therefore, we assume Ĵ is a
scalar (p = 1) without loss of generality.

We set

Ĵ − JNT =
(
E(J̃)− JNT

)
+
(
J̃ − E(J̃)

)
+
(
Ĵ − J̃

)
, (B1)

where J̃ = 1
T

∑T
t=1

1
N

∑N
i=1

∑N
k=1 K1

(
dik

d(1)

)
wiλkεitεkt is the infeasible esti-

mator. We show each term in (B1) converges to zero in probability.

(a) E(J̃)− JNT = O
(

1
d
q1
(1)

)
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Note that we have

∥∥∥E(J̃)− JNT

∥∥∥ ≤ 1

dq1(1)

(
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

∥wi∥∥λk∥∥σik,t∥dq1ik

)1−K1

(
dik

d(1)

)
(

dik

d(1)

)q1


≤ K
(q1)
1

dq1(1)

(
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

∥wi∥∥λk∥∥σik,t∥dq1ik

)
+ o(1)

= O
( 1

dq1(1)

)
,

if d(1) → ∞ as N,T → ∞.

(b) J̃ − E(J̃) = Op

(√
ℓ̄N(1)

NT

)
By Chebyshev’s inequality, we have

P (|J̃ − E(J̃)| > ∆) ≤ 1

∆2
E(J̃ − E(J̃))2.

Thus, it is sufficient to show that E
(
J̃ − E(J̃)

)2
= o(1). We can write

E
(
J̃ − E(J̃)

)2
=

1

N2T 2

N∑
i,k=1

N∑
a,b=1

T∑
s,t=1

K1

( dik
d(1)

)
K1

( dab
d(1)

)
(wiλk)(waλb)

×
[
{Eεitεktεasεbs − E(εitεkt)E(εasεbs)− E(εitεas)E(εbsεkt)

− E(εitεbs)E(εasεkt)}+ E(εitεas)E(εbsεkt) + E(εitεbs)E(εasεkt)
]

:= A1 +A2 +A3.

For A1, we use the linear representation of εit in Assumption 3.1 to have

Eεitεktεasεbs − E(εitεkt)E(εasεbs)− E(εitεas)E(εbsεkt)− E(εitεbs)E(εasεkt)

=

∞∑
l=1

γilγklγalγbl(Ee4lt − 3).
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Under the moment condition for elt and the summability conditions in
Assumption 3.1, we have

∥A1∥ ≤ 1

N2T 2

N∑
i,k=1

N∑
a,b=1

T∑
t=1

∞∑
l=1

K1

( dik
d(1)

)
K1

( dab
d(1)

)
∥(wiλk)(waλb)∥ |γilγklγalγbl||Ee4lt − 3|

≤ O
( 1

NT

) 1

NT

T∑
t=1

N∑
i=1

( ∞∑
l=1

γil

)
︸ ︷︷ ︸

≤M

( N∑
k=1

γkl

)
︸ ︷︷ ︸

≤M

( N∑
a=1

γal

)
︸ ︷︷ ︸

≤M

( N∑
b=1

γbl

)
︸ ︷︷ ︸

≤M

= O
( 1

NT

)
.

For A2,

∥A2∥ ≤ 1

N2T 2

N∑
i=1

T∑
t=1

N∑
a=1

∑
k∈{dik≤d(1)}

∑
b∈{dab≤d(1)}

∥(wiλk)(waλb)∥|E(εitεat)||E(εktεbt)|

≤ O
( ℓ̄N(1)

NT

) 1

NT

T∑
t=1

N∑
i=1

1

ℓ̄N(1)

∑
k∈{dik≤d(1)}

( ∞∑
l=1

γil

)( N∑
a=1

γal

)( ∞∑
f=1

γkf

)( N∑
b=1

γbf

)

= O
( ℓ̄N(1)

NT

)
.

Using the same argument, it is easy to show A3 = O
(

ℓ̄N(1)

NT

)
. Combining all

the results, we have

E
(
J̃ − E(J̃)

)2
= O

(
1

NT

)
+O

(
ℓ̄N(1)

NT

)
,

which implies

J̃ − E(J̃) = Op

(√
ℓ̄N(1)

NT

)
= op(1),

as ℓ̄N(1)/NT → 0.

(c) Ĵ − J̃ = op(1)

Since

Ĵ − J̃ =
1

T

T∑
t=1

1

N

N∑
i=1

N∑
k=1

(
(Xi − V̂i)

′F̂

T

(
Λ̂′Λ̂

N

)−1

λ̂kε̂itε̂kt

− (Xi − Vi)
′F 0

T

(
F 0′F 0

T

)−1(
Λ′Λ

N

)−1

λkεitεkt

)
K1

( dik
d(1)

)
,
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we need to prove

C1 =
1

T

T∑
t=1

1

N

N∑
i=1

N∑
k=1

(
X ′

iF̂

T

(
Λ̂′Λ̂

N

)−1

λ̂kε̂itε̂kt

− X ′
iF

0

T

(
F 0′F 0

T

)−1(
Λ′Λ

N

)−1

λkεitεkt

)
K1

( dik
d(1)

)
= op(1),

and

C2 =
1

T

T∑
t=1

1

N

N∑
i=1

N∑
k=1

(
V̂ ′
i F̂

T

(
Λ̂′Λ̂

N

)−1

λ̂kε̂itε̂kt

− V ′
i F

0

T

(
F 0′F 0

T

)−1(
Λ′Λ

N

)−1

λkεitεkt

)
K1

( dik
d(1)

)
= op(1).

We prove C1 = op(1) using the identity âb̂ĉd̂ − abcd = (â − a)b̂ĉd̂ + a(b̂ −
b)ĉd̂+ ab(ĉ− c) d̂+ abc(d̂− d). Let H = (Λ′Λ/N)(F 0′F̂ /T )V −1

NT , where VNT is
defined in (2.8). For the first corresponding term,∥∥∥∥∥ 1

NT

T∑
t=1

N∑
i=1

N∑
k=1

X ′
i(F̂ − F 0H)

T
ε̂it

(
Λ̂′Λ̂

N

)−1

λ̂kε̂ktK1

( dik
d(1)

)∥∥∥∥∥
≤ 1

NT

T∑
t=1

N∑
i=1

N∑
k=1

∥∥∥∥∥X
′
i

(
F̂ − F 0H

)
T

ε̂it

∥∥∥∥∥
∥∥∥∥∥
(
Λ̂′Λ̂

N

)−1 ∥∥∥∥∥∥∥∥λ̂kε̂kt

∥∥∥K1

( dik
d(1)

)
≤

ℓ̄N(1)

T

T∑
t=1

(
1

N

N∑
i=1

∥∥∥∥∥X
′
i

(
F̂ − F 0H

)
T

∥∥∥∥∥
2)1/2( 1

N

N∑
i=1

ε̂4it

)1/4∥∥∥∥∥( Λ̂′Λ̂

N

)−1
∥∥∥∥∥

×

(
1

N

N∑
i=1

( 1

ℓ̄N(1)

∑
k∈{dik≤d(1)}

∥∥λ̂kε̂kt
∥∥)4)1/4

= Op

( ℓ̄N(1)√
NT

)
+Op

( ℓ̄N(1)

δ2NT

)
,

because we have

1

N

N∑
i=1

∥∥∥∥∥X
′
i

(
F̂ − F 0H

)
T

∥∥∥∥∥
2

= Op(β̂ − β) +Op

( 1

δ2NT

)
.

due to Lemma A.3 of Bai (2009).
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The second corresponding term is∥∥∥∥∥ 1

NT

T∑
t=1

N∑
i=1

N∑
k=1

ε̂it
X ′

iF
0

T

(( Λ̂′Λ̂

N

)−1

−H ′
(Λ′Λ

N

)−1

H

)
λ̂kε̂ktK1

( dik
d(1)

)∥∥∥∥∥
≤

ℓ̄N(1)

T

T∑
t=1

(
1

N

N∑
i=1

∥∥∥X ′
iF

0

T
ε̂it

∥∥∥2)1/2
(

1

N

N∑
i=1

( 1

ℓ̄N(1)

∑
k∈{dik≤d(1)}

∥λ̂kε̂kt∥
)2)1/2

×

∥∥∥∥∥( Λ̂′Λ̂

N

)−1

−H ′
(Λ′Λ

N

)−1

H

∥∥∥∥∥
= Op

( ℓ̄N(1)√
NT

)
+Op

( ℓ̄N(1)

δ2NT

)
,

where we use∥∥∥∥∥( Λ̂′Λ̂

N

)−1

−H ′
(Λ′Λ

N

)−1

H

∥∥∥∥∥ = Op

(∥∥∥β̂ − β
∥∥∥)+Op

( 1

δ2NT

)
.

under Lemma A.10 of Bai (2009).
Similarly,∥∥∥∥∥ 1

NT

T∑
t=1

N∑
i=1

N∑
k=1

ε̂it
X ′

iF
0

T

(Λ′Λ

N

)−1

(λ̂k −H−1λk)ε̂ktK1

( dik
d(1)

)∥∥∥∥∥
= Op

( ℓ̄N(1)√
NT

)
+Op

( ℓ̄N(1)

δ2NT

)
,

and ∥∥∥∥∥ 1

N
√
NT

N∑
i=1

N∑
k=1

λ′
i (Λ

′Λ/N)
−1

H(λ̂k −H−1λk)Xkεit

∥∥∥∥∥
= Op

( ℓ̄N(1)√
NT

)
+Op

( ℓ̄N(1)

δ2NT

)
.

Combining all the results, we have

C1 = op(1),

if N,T → ∞ such that T/N → ρ and ℓ̄N(1)/δ
2
NT → 0.

Note that we can use the same argument to prove C2 = op(1) if we replace

X ′
iF̂ /T in C1 with V̂ ′

i F̂ /T . Therefore, we have

Ĵ − J̃ = op(1),
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which completes the proof of Theorem 3.1. □

Proof of Theorem 3.2: As in the proof of Theorem 3.1, we assume ΩNT is
a scalar (p = 1) without loss of generality. We have

Ω̂− ΩNT = (EΩ̃− ΩNT ) + (Ω̃− EΩ̃) + (Ω̂− Ω̃), (B2)

where Ω̃ is an infeasible estimator of ΩNT which is defined as

Ω̃ =
1

T

T∑
t=1

1

N

N∑
i=1

N∑
k=1

ZitZ
′
ktεitεktK2

( dik
d(2)

)
.

Using the same procedure in the proof of Theorem 3.1, we can show that EΩ̃−
ΩNT = o(1) and Ω̃−EΩ̃ = op(1) as d(2), N, T → ∞ such that ℓ̄N(2)/NT → 0.

Thus, we need to prove Ω̂− Ω̃ = op(1) to complete the proof.

Ω̂− Ω̃ =
1

T

T∑
t=1

(
1

N

N∑
i=1

N∑
k=1

(ẐitẐktε̂itε̂kt − ZitZktεitεkt)

)
K2

( dik
d(2)

)
=

1

NT

N∑
i=1

N∑
k=1

T∑
t=1

ẐitẐkt(ε̂itε̂kt − εitεkt)K2

( dik
d(2)

)
+

1

NT

N∑
i=1

N∑
k=1

T∑
t=1

(ẐitẐkt − ZitZkt)εitεktK2

( dik
d(2)

)
= E1 + E2.

Applying

ε̂it = εit +Xit(β̂ − β) + (F̂t −H ′F 0
t )

′H−1λi + F̂ ′
t (λ̂i −H−1λi)

to E1, we have

E1 =
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

ẐitẐkt

[
XitXkt(β̂ − β)2 + (F̂t −H ′F 0

t )
′H−1λi(F̂t −H ′F 0

t )
′H−1λk

+ F̂ ′
t(λ̂i −H−1λi)F̂

′
t(λ̂k −H−1λk) + 2εitX

′
kt(β̂ − β) + 2εit(F̂t −H ′F 0

t )
′H−1λk

+ 2εitF̂
′
t(λ̂k −H−1λk) + 2X ′

it(β̂ − β)(F̂t −H ′F 0
t )

′H−1λk + 2X ′
it(β̂ − β)F̂t(λ̂k −H−1λk)

+ (F̂t −H ′F 0
t )

′H−1λiF̂t(λ̂k −H−1λk)
]
K2

( dik
d(2)

)
= E11 + · · ·+ E19.

For E11,

E11 ≤ Op

( 1
T

) 1
T

T∑
t=1

( 1
N

N∑
i=1

ẐitXit

)2
= Op

( 1

T

)
.
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For E12,

∥E12∥ ≤ Op(ℓ̄N(2))

(
1

T

T∑
t=1

∥∥∥F̂t −H ′F 0
t

∥∥∥2)×

 1

T

T∑
t=1

 1

N

N∑
i=1

∥∥∥Ẑitλi

∥∥∥ 1

ℓ̄N(2)

∑
k∈{dik≤d2}

∥∥∥Ẑktλk

∥∥∥
2


1/2

= Op

( ℓ̄N(2)

δ2NT

)
.

because we have 1
T

∑T
t=1 ∥F̂t − H ′F 0

t ∥2 = Op(∥β̂ − β∥2) + Op(δ
−2
NT ) from

Proposition A.1 in Bai (2009).
For E13,

∥E13∥ ≤ Op

(√
Nℓ̄N(2)

) 1

T

T∑
t=1

(
1

N

N∑
i=1

∥∥∥ẐitF̂
′
t

∥∥∥4)1/4(
1

N

N∑
i=1

∥∥∥(λ̂i −H−1λi)
∥∥∥4)1/4

×

 1

Nℓ̄N(2)

N∑
i=1

N∑
k=1

∥∥∥∥∥ẐktF̂
′
tK2

( dik
d(2)

)∥∥∥∥∥
2
1/2(

1

N

N∑
k=1

∥∥∥λ̂k −H−1λk

∥∥∥2)1/2

≤ Op

(√
Nℓ̄N(2)

) 1

T

T∑
t=1

(
1

N

N∑
i=1

∥∥∥ẐitF̂
′
t

∥∥∥4)1/4

×

 1

Nℓ̄N(2)

N∑
i=1

N∑
k=1

∥∥∥∥∥ẐktF̂
′
tK2

( dik
d(2)

)∥∥∥∥∥
2
1/2(

1

N

N∑
k=1

∥∥∥λ̂k −H−1λk

∥∥∥2)

= Op


√

Nℓ̄N(2)

δ2NT

 ,

where we use 1
N

∑N
i=1

∥∥∥(λ̂i −H−1λi)
∥∥∥2 = Op(∥β̂ − β∥2) +Op(δ

−2
NT ) due to Lemma

A.10 in Bai (2009).
Using similar procedures we can show that E14 = · · · = E18 = op(1) if N,T → ∞

such that T/N → ρ and ℓ̄N(2)/δ
2
NT → 0. Thus, we have

E1 = op(1)

if N,T → ∞ such that T/N → ρ and ℓ̄N(2)/δ
2
NT → 0.

For the proof of E2, we let Git = Zitεit and Ĝit = Ẑitεit. Then, we can rewrite

E2 =
1

NT

N∑
i=1

N∑
k=1

(Ĝ′
iĜk −G′

iGk)K2

( dik
d(2)

)
,
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where Gi = (Gi1, ..., GiT )
′ and Ĝi = (Ĝi1, ..., ĜiT )

′. Thus, we need to prove

E21 =
1

NT

N∑
i=1

N∑
k=1

U ′
i

(
M

F̂
−MF 0

)
UkK2

( dik
d(2)

)
= op(1),

E22 =
1

N2T

N∑
i=1

N∑
k=1

N∑
j=1

(
U ′
iMF̂

Uj âkj − U ′
iMF 0Ujakj

)
K2

( dik
d(2)

)
= op(1),

E23 =
1

N3T

N∑
i=1

N∑
k=1
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j=1

N∑
l=1

(
U ′
jMF̂

Ulâij âkl − U ′
jMF 0Ulaijakl

)
K2

( dik
d(2)

)
= op(1).

where Ui = (Ui1, ..., UiT )
′ and Uit = Xitεit.

For E21,

∥E21∥ ≤ Op(
√

ℓ̄N(2))

(
1

N

N∑
i=1

∥∥∥∥ 1√
T
U ′
i

∥∥∥∥2
)1/2 ∥∥PF 0 − P

F̂

∥∥
×

 1

N

N∑
i=1

∥∥∥∥∥ 1

ℓ̄N(2)

N∑
k=1

1√
T
UkK2

( dik
d(2)

)∥∥∥∥∥
2
1/2

= Op


√

ℓ̄N(2)

δNT

 .

(B3)

For E22,

E22 =
1

N2T

N∑
i=1

N∑
k=1

N∑
j=1

[
U ′
iMF̂

Uj

(
âkj − akj

)
+ U ′

i

(
M

F̂
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)
Ujakj

]
K2

( dik
d(2)

)
= E

(1)
22 + E

(2)
22 ,

where we can show E
(2)
22 = Op

(√
ℓ̄N(2)

δNT

)
using a similar argument in (B3). For E

(1)
22 ,

we follow the proof of Proposition 2 in Bai (2009) to have

E
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1

N2T
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N∑
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N∑
j=1
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)−1
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)

+
1
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Λ′Λ
N
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H
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)

+
1
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′
(
Λ′Λ
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(
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( dik
d(2)

)
:= e1 + e2 + e3.
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For e1,

∥e1∥ ≤
√

ℓ̄N(2)

 1

N
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( dik
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N
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1

N

N∑
k=1
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)1/2

= Op


√
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δNT

 .

For e2,

∥e2∥ ≤
√
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ℓ̄N(2)
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d(2)

) 1√
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N

N∑
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∥∥∥∥ 1√
T
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×
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(
Λ̂′Λ̂
N

)−1

−H ′
(
Λ′Λ
N

)′
H
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(

1

N

N∑
k=1

∥∥∥λ̂k∥∥∥2
)1/2

= Op


√

ℓ̄N(2)

δ2NT

+Op

(√
ℓ̄N(2)

∥∥∥β̂ − β
∥∥∥) .

because
(
Λ̂′Λ̂
N

)−1
−H ′

(
Λ′Λ
N

)′
H = Op

(
1

δ2NT

)
+Op

(∥∥∥β̂ − β
∥∥∥) due to Lemma A.10

in Bai (2009). Using the same procedure for ∥e1∥ = Op

(√
ℓ̄N(2)

δNT

)
, we can show that

∥e3∥ = Op

(√
ℓ̄N(2)

δNT

)
. Therefore, E22 = op(1) as N,T → ∞ such that T/N → ρ

and ℓ̄N(2)/δ
2
NT → 0..

The proof of E23 = op(1) is similar to the proof of E22 = op(1), so it is omitted.

Thus, Ω̂− Ω̃ = op(1), which completes the proof of Theorem 3.2. □
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